JPH10241702A - Fuel electrode of solid electrolyte type electrochemical cell - Google Patents

Fuel electrode of solid electrolyte type electrochemical cell

Info

Publication number
JPH10241702A
JPH10241702A JP9045167A JP4516797A JPH10241702A JP H10241702 A JPH10241702 A JP H10241702A JP 9045167 A JP9045167 A JP 9045167A JP 4516797 A JP4516797 A JP 4516797A JP H10241702 A JPH10241702 A JP H10241702A
Authority
JP
Japan
Prior art keywords
fuel electrode
solid electrolyte
electrode
stabilized zirconia
thermal expansion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP9045167A
Other languages
Japanese (ja)
Inventor
Masakazu Miyaji
正和 宮地
Hiroichi Yamamoto
博一 山本
Yasuhiko Tsuru
靖彦 水流
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP9045167A priority Critical patent/JPH10241702A/en
Publication of JPH10241702A publication Critical patent/JPH10241702A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9041Metals or alloys
    • H01M4/905Metals or alloys specially used in fuel cell operating at high temperature, e.g. SOFC
    • H01M4/9066Metals or alloys specially used in fuel cell operating at high temperature, e.g. SOFC of metal-ceramic composites or mixtures, e.g. cermets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • H01M2300/0074Ion conductive at high temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a fuel electrode of a solid electrolyte type electrochemical cell which can enhance electrode reaction property and suppress shrinking property, while maintaining matching property of thermal expansion with solid electrolyte and high conductivity. SOLUTION: By a constitution, wherein a fuel cell 2 is composed of a metal parts 2a comprising Ni, Co, or its alloy, a stabilized zirconia part 2d such as YSN (stabilized zirconia with Y2 , O3 dissovled), an oxidized compound part 2b with a smaller coefficient of thermal expansion than that of solid electrolyte 3, comprising a stabilized zirconia such as YSZ, and a cement with a hole 2c, the fuel cell is made so that shrinkage when deoxidizing is suppressed by the firmly stabilized zirconia part 2d, while a surface area of a three-phase boundary surface S3 to produce an electrochemical reaction is substantially increased.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、固体電解質型燃料
電池や固体電解質型水蒸気電解装置などに用いられる固
体電解質型電気化学セルの燃料極に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel electrode for a solid oxide electrochemical cell used for a solid oxide fuel cell, a solid oxide steam electrolyzer, and the like.

【0002】[0002]

【従来の技術】固体電解質型燃料電池の電気化学セル
は、多孔質性の燃料極および空気極で固体電解質を挟
み、これを多孔質性の板状または管状をなす基体上に上
記燃料極を当接させるように複数配設した構造となって
いる。
2. Description of the Related Art In an electrochemical cell of a solid oxide fuel cell, a solid electrolyte is sandwiched between a porous fuel electrode and an air electrode, and the above-mentioned fuel electrode is formed on a porous plate-like or tubular base. It has a structure in which a plurality are arranged to be in contact with each other.

【0003】このような電気化学セルでは、基体の外側
に空気や酸素などの酸化ガスを流通させ、基体の内側に
水素やメタンなどの燃料ガスを流通させる一方、温度を
約1000℃まで上昇させると、燃料ガスが基体および
燃料極を透過すると共に、酸化ガスが空気極を透過し
て、これらガスが固体電解質で電気化学的に反応し、電
力を得ることができるようになっている。
In such an electrochemical cell, an oxidizing gas such as air or oxygen flows through the outside of the base, and a fuel gas such as hydrogen or methane flows through the inside of the base, while the temperature is raised to about 1000 ° C. Then, the fuel gas permeates the base and the fuel electrode, and the oxidizing gas permeates the air electrode, and these gases electrochemically react with the solid electrolyte to obtain electric power.

【0004】ところで、燃料極の材料には、固体電解質
の材料のYSZ(Y2 3 が固溶した安定化ジルコニ
ア)との熱膨張率の整合性を図るため、NiとYSZと
を混合したサーメットが主に使用されている。このサー
メットは、一般に、そのNi含有量が30〜50%の範
囲であることから、高導電性を得にくいものであった。
このため、例えば、Ni−3Al2 3 ・2SiO2
サーメット等(特願平3−41855号等)、Ni−T
2 5 系サーメットやNi−ZrSiO4 系サーメッ
ト等(特願平7−308773号等)などのように、Y
SZよりも低熱膨張率の酸化化合物(セラミックス)を
用いてNi含有量を増大させたサーメットを燃料極に用
いることにより、固体電解質との熱膨張の整合性と高導
電性とを両立させることが提案されている。
[0004] By the way, Ni and YSZ are mixed in the material of the fuel electrode in order to match the coefficient of thermal expansion with YSZ (stabilized zirconia in which Y 2 O 3 is dissolved) as the material of the solid electrolyte. Cermet is mainly used. Since this cermet generally has a Ni content in the range of 30 to 50%, it is difficult to obtain high conductivity.
For this reason, for example, Ni-3Al 2 O 3 .2SiO 2 -based cermets (Japanese Patent Application No. 3-41855) and Ni-T
As in the case of a 2 O 5 cermet or Ni—ZrSiO 4 cermet (Japanese Patent Application No. 7-308773), Y
By using a cermet in which the Ni content is increased by using an oxide compound (ceramic) having a lower coefficient of thermal expansion than that of SZ for the fuel electrode, it is possible to achieve both compatibility of thermal expansion with the solid electrolyte and high conductivity. Proposed.

【0005】[0005]

【発明が解決しようとする課題】例えば、高エネルギ密
度の得られる形状として期待される平板型の固体電解質
型燃料電池の電気化学セルでは、スケールアップ(大面
積化)に伴って、作製時や運転時に燃料極と固体電解質
との界面に多大に加わるようになった熱応力をできるだ
け緩和させるため、燃料極と固体電解質との熱膨張率の
厳密な整合性が検討されていると共に、内部抵抗が増大
するのをできるだけ抑えるため、燃料極の高導電性化が
種々検討されている。その結果、Ni−3Al2 3
2SiO2系サーメット等(特願平3−41855号
等)、Ni−Ta2 5 系サーメットやNi−ZrSi
4 系サーメット等(特願平7−308773号等)な
どのサーメットを燃料極に用いることが提案されてい
る。
For example, in a flat-type electrochemical cell for a solid oxide fuel cell expected to have a high energy density, it is difficult to manufacture the electrochemical cell with a scale-up (large area). In order to reduce as much as possible the thermal stress that has been applied to the interface between the anode and the solid electrolyte during operation, rigorous matching of the coefficient of thermal expansion between the anode and the solid electrolyte has been studied, and the internal resistance has been studied. In order to suppress the increase in the fuel electrode as much as possible, various studies have been made on increasing the conductivity of the fuel electrode. As a result, Ni-3Al 2 O 3.
2SiO 2 cermet or the like (Japanese Patent Application No. 3-41855, etc.), Ni-Ta 2 O 5 based cermet and Ni-ZrSi
It has been proposed to use a cermet such as an O 4 cermet (Japanese Patent Application No. 7-308773) for the fuel electrode.

【0006】しかしながら、電気化学セルの内部抵抗に
は、電極の導電性に依存するオーミックな抵抗と電極反
応に伴う分極抵抗とがあるものの、3Al2 3 ・2S
iO 2 、Ta2 5 、ZrSiO4 などのような酸化化
合物には、電極反応の促進作用がないため、このような
酸化化合物を用いたサーメットからなる燃料極では、電
気化学セルの性能のさらなる向上が困難となっていた。
However, due to the internal resistance of the electrochemical cell,
Is the ohmic resistance and electrode resistance depending on the conductivity of the electrode.
3AlTwoOThree ・ 2S
iO Two, TaTwoOFive, ZrSiOFourOxidation such as
Compounds do not have the effect of accelerating the electrode reaction.
At the anode made of cermet using oxidized compound,
It has been difficult to further improve the performance of the electrochemical cell.

【0007】また、上述したようなサーメットを燃料極
に用いた電気化学セルでは、運転時に燃料極が燃料ガス
で還元される際に当該燃料極が収縮してしまう場合があ
った。例えば、Ni−40vol.%MgAl2 4 (熱膨
張率:約10×10-6/℃,導電率:約2000S/c
m)からなるサーメットでは、図11に示すように、還
元開始直後から大きく収縮してしまう。このようなサー
メットを燃料極に用いると、運転時に燃料極の近傍が変
形しまい、発電性能の低下を引き起こしてしまう虞があ
るだけでなく、最悪の場合にはセルを損傷してしまう虞
がある。
[0007] In an electrochemical cell using a cermet as a fuel electrode as described above, the fuel electrode sometimes contracts when the fuel electrode is reduced with fuel gas during operation. For example, Ni-40 vol.% MgAl 2 O 4 (thermal expansion coefficient: about 10 × 10 −6 / ° C., conductivity: about 2000 S / c)
In the cermet of m), as shown in FIG. 11, the cermet shrinks immediately after the start of the reduction. When such a cermet is used for the fuel electrode, the vicinity of the fuel electrode is deformed during operation, which may not only cause a decrease in power generation performance, but also may cause cell damage in the worst case. .

【0008】このような収縮の原因は、NiOがセル運
転時に還元されてNiになる際に、骨材である酸化化合
物を引き込みながら体積収縮(約40%)するためと考
えられる。このため、骨材となる酸化化合物の骨格が強
固であれば、NiOからNiに還元される際の収縮分が
そのまま間隙として残り、ガス透過性を有する多孔質体
となるものの、骨材となる酸化化合物を引き込みながら
体積収縮してしまうことから、NiOからNiに還元さ
れる際の収縮分が間隙としてあまり残らず、ガス透過性
が低くなってしまうという問題も生じてしまう。
The cause of such shrinkage is considered to be that when NiO is reduced to Ni during cell operation, the volume shrinks (about 40%) while drawing in the oxidizing compound as the aggregate. For this reason, if the skeleton of the oxidizing compound serving as the aggregate is strong, the amount of contraction when NiO is reduced to Ni remains as a gap as it is, resulting in a porous body having gas permeability, but as an aggregate. Since the volume shrinks while the oxidizing compound is being drawn in, the shrinkage during the reduction from NiO to Ni does not remain much as a gap, and there is also a problem that the gas permeability decreases.

【0009】上述したような問題は、固体電解質型燃料
電池の電気化学セルの燃料極に限らず、固体電解質型水
蒸気電解装置の電気化学セルの燃料極など、固体電解質
型電気化学セルの燃料極であれば、上述と同様にして起
こり得ることである。
The above-mentioned problem is not limited to the fuel electrode of the electrochemical cell of the solid oxide fuel cell, but is also the fuel electrode of the solid electrolyte electrochemical cell such as the fuel electrode of the electrochemical cell of the solid electrolyte steam electrolyzer. If so, it can happen in the same way as described above.

【0010】以上のことから、本発明は、固体電解質と
の熱膨張の整合性および高導電率性を維持しながらも、
電極反応性の向上および還元時の収縮性の抑制を図るこ
とができる固体電解質型電気化学セルの燃料極を提供す
ることを目的とした。
From the above, it can be seen that the present invention maintains the thermal expansion consistency and high conductivity with the solid electrolyte,
An object of the present invention is to provide a fuel electrode of a solid electrolyte type electrochemical cell capable of improving electrode reactivity and suppressing shrinkage during reduction.

【0011】[0011]

【課題を解決するための手段】前述した課題を解決する
ための、本発明による固体電解質型電気化学セルの燃料
極は、Ni、Coまたはこれらの合金と、安定化ジルコ
ニアと、前記安定化ジルコニアよりも熱膨張率の小さい
酸化化合物とのサーメットからなることを特徴とする。
In order to solve the above-mentioned problems, the fuel electrode of the solid electrolyte type electrochemical cell according to the present invention comprises Ni, Co or an alloy thereof, stabilized zirconia, and the stabilized zirconia. And a cermet with an oxide compound having a smaller coefficient of thermal expansion.

【0012】上述の固体電解質型電気化学セルの燃料極
において、前記酸化化合物が金属酸化物と酸化珪素との
珪酸塩化合物であることを特徴とする。
[0012] In the fuel electrode of the solid electrolyte type electrochemical cell described above, the oxide compound is a silicate compound of a metal oxide and silicon oxide.

【0013】[作用]燃料極と固体電解質との界面で
は、下記のような反応を生じる。
[Operation] At the interface between the fuel electrode and the solid electrolyte, the following reaction occurs.

【化1】 H2 + 1/2 O2- → H2 O + e- [Formula 1] H 2 + 1/2 O 2- → H 2 O + e -

【0014】つまり、燃料極の空孔を透過した燃料ガス
中の水素と、空気極の空孔を透過して固体電解質(安定
化したジルコニア)を流れてきた酸化ガス中の酸素イオ
ンとが反応して、水蒸気と電子とが生じ、水蒸気が燃料
ガスと共に燃料極の空孔を透過して外部へ放出される一
方、電子が燃料極の金属部分を流れることにより電力を
得ることができるのである。このため、上記反応は、水
素および水蒸気の流通する燃料極の空孔と、酸素イオン
の流通する安定化ジルコニア部分と、電子の流れる燃料
極の金属部分との三相界面で生じる、すなわち、従来の
燃料極においては、図2(b)に示すように、燃料極2
の空孔2cと、固体電解質(YSZ)3と、燃料極2の
金属(Ni)部2aとの三相界面S3 で生じている。な
お、図2(b)中、2bは固体電解質3よりも熱膨張率
の小さい酸化化合物部である。
That is, the hydrogen in the fuel gas that has passed through the pores of the fuel electrode reacts with the oxygen ions in the oxidizing gas that has passed through the pores of the air electrode and flowed through the solid electrolyte (stabilized zirconia). As a result, water vapor and electrons are generated, and the water vapor passes through the pores of the fuel electrode together with the fuel gas and is emitted to the outside, while the electrons flow through the metal part of the fuel electrode to obtain electric power. . Therefore, the above reaction occurs at the three-phase interface between the vacancy of the fuel electrode through which hydrogen and water vapor flow, the stabilized zirconia portion through which oxygen ions flow, and the metal portion of the fuel electrode through which electrons flow. As shown in FIG. 2B, the fuel electrode 2
At the three-phase interface S 3 between the pores 2 c, the solid electrolyte (YSZ) 3, and the metal (Ni) portion 2 a of the fuel electrode 2. In FIG. 2B, reference numeral 2b denotes an oxide compound part having a smaller coefficient of thermal expansion than the solid electrolyte 3.

【0015】そこで、図2(a)に示すように、YSZ
などのような安定化ジルコニア部2dをさらに有する燃
料極2を用いるようにすれば、上述の三相界面S3 の表
面積が大幅に増えるので、電極反応性を大幅に向上させ
ることができる。
Therefore, as shown in FIG.
If to use the fuel electrode 2, further comprising a stabilized zirconia portion 2d, such as, the surface area of the three-phase interface S 3 described above is increased greatly, it is possible to greatly improve the electrode reactivity.

【0016】また、安定化ジルコニア部2dを有する燃
料極2では、NiOが運転時に還元されてNiとなる場
合でも、安定化ジルコニア部2dが強固であることか
ら、大きく収縮してしまうことがないので、還元時の収
縮性を大幅に抑制することができる。
Further, in the fuel electrode 2 having the stabilized zirconia portion 2d, even when NiO is reduced to Ni during operation, the stabilized zirconia portion 2d is strong, so that it does not significantly shrink. Therefore, the contractility at the time of reduction can be significantly suppressed.

【0017】このため、上述した燃料極2においては、
NiOからNiに還元される際の収縮体積分がそのまま
間隙として残って空孔2cが確実に形成されるようにな
るので、燃料ガスなどの透過性が高くなり、電極反応性
をさらに向上させることができる。
For this reason, in the above-mentioned fuel electrode 2,
Since the volume of contraction during the reduction from NiO to Ni remains as it is and the pores 2c are reliably formed, the permeability of the fuel gas and the like is increased, and the electrode reactivity is further improved. Can be.

【0018】なお、上述した金属部2aの材料として
は、Ni以外に、Coや、NiとCoとの合金などが挙
げられる。また、安定化ジルコニア部2dとしては、Y
SZに限らず、立方晶に完全または部分的に安定化され
たジルコニアであればよい。また、酸化化合物部2bと
しては、金属酸化物と酸化珪素との珪酸塩化合物である
と好ましく、特に、HfSiO4 ,Y2 SiO5 ,Zn
2 SiO4 ,SrAl(SiO4)2 などのような、金属
酸化物と酸化珪素との珪酸塩化合物や、Yb 2 Si
5 ,Er2 SiO5 ,Dy2 SiO5 ,Gd2 SiO
5 などのような、ランタノイド系金属酸化物と酸化珪素
との珪酸塩化合物などであるとさらに好ましい。
Incidentally, as a material of the above-mentioned metal part 2a,
In addition to Ni, Co and alloys of Ni and Co are listed.
I can do it. Further, as the stabilized zirconia portion 2d, Y
Not only SZ but also fully or partially stabilized to cubic
Zirconia may be used. In addition, the oxidized compound part 2b
Is a silicate compound of metal oxide and silicon oxide
And especially HfSiOFour, YTwoSiOFive, Zn
TwoSiOFour, SrAl (SiOFour)TwoLike metal
Silicate compound of oxide and silicon oxide, Yb TwoSi
OFive, ErTwoSiOFive, DyTwoSiOFive, GdTwoSiO
FiveLanthanoid metal oxides and silicon oxides
More preferably, it is a silicate compound with the above.

【0019】[0019]

【発明の実施の形態】本発明による固体電解質型電気化
学セルの燃料極を固体電解質型燃料電池の電気化学セル
の燃料極に適用した場合の実施の形態を図1を用いて説
明する。なお、図1は、その要部の概略構造図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment in which a fuel electrode of a solid oxide electrochemical cell according to the present invention is applied to a fuel electrode of an electrochemical cell of a solid oxide fuel cell will be described with reference to FIG. FIG. 1 is a schematic structural view of the main part.

【0020】図1において、1は基体、2は燃料極、3
は固体電解質、4は空気極、5は中間接続子(インタコ
ネクタ)である。
In FIG. 1, 1 is a substrate, 2 is a fuel electrode, 3
Is a solid electrolyte, 4 is an air electrode, and 5 is an intermediate connector (interconnector).

【0021】基体1は、多孔質性であり、板状または管
状をなしている。燃料極2は、多孔質性であり、先の作
用の説明で用いた図2(a)に示すように、Ni、Co
またはこれらの合金からなる金属部2aと、YSZ(Y
2 3 が固溶した安定化ジルコニア)などのような安定
化したジルコニアからなる安定化ジルコニア部2dと、
この安定化ジルコニア部2cよりも熱膨張率の小さい酸
化化合物からなる酸化化合物部2bと、空孔2cとを有
するサーメットからなり、基体1上に所定の間隔で複数
設けられている。固体電解質3は、YSZなどのような
安定化ジルコニアからなり、燃料極2上にそれぞれ設け
られている。空気極4は、多孔質性であり、高温の酸化
雰囲気下でも安定した高い導電性を発現するペロブスカ
イト型複合酸化物などからなり、固体電解質3上にそれ
ぞれ設けられている。中間接続子5は、La−Cr系ペ
ロブスカイト型複合酸化物などからなり、上記燃料極
2、固体電解質3、空気極4からなる単素子間を電気的
に接続するように当該単素子間にそれぞれ設けられてい
る。
The substrate 1 is porous and has a plate shape or a tubular shape. The fuel electrode 2 is porous and, as shown in FIG.
Alternatively, a metal part 2a made of these alloys and YSZ (Y
A stabilized zirconia portion 2d made of stabilized zirconia, such as stabilized zirconia in which 2 O 3 is dissolved;
It is composed of an oxidized compound part 2b made of an oxidized compound having a smaller coefficient of thermal expansion than the stabilized zirconia part 2c and a cermet having pores 2c, and a plurality of cermets are provided on the base 1 at predetermined intervals. The solid electrolyte 3 is made of stabilized zirconia such as YSZ, and is provided on the fuel electrode 2. The air electrode 4 is made of a perovskite-type composite oxide which is porous and exhibits stable high conductivity even in a high-temperature oxidizing atmosphere, and is provided on the solid electrolyte 3. The intermediate connector 5 is made of a La—Cr-based perovskite-type composite oxide or the like, and is connected between the single elements including the fuel electrode 2, the solid electrolyte 3, and the air electrode 4 so as to electrically connect the single elements. Is provided.

【0022】このような電気化学セルでは、基体1の外
側、すなわち、空気極4側に空気や酸素などの酸化ガス
12を流通させ、基体1の内側、すなわち、燃料極2側
に水素やメタンなどの燃料ガス11を流通させる一方、
温度を約1000℃まで上昇させると、燃料ガス11が
基体1および燃料極2を透過すると共に、酸化ガス12
が空気極4を透過して、これらガス11,12が固体電
解質3で電気化学的に反応し、電力を得ることができ
る。
In such an electrochemical cell, an oxidizing gas 12 such as air or oxygen flows through the outside of the base 1, ie, the air electrode 4 side, and hydrogen or methane flows inside the base 1, ie, the fuel electrode 2 side. While circulating the fuel gas 11 such as
When the temperature is raised to about 1000 ° C., the fuel gas 11 penetrates the base 1 and the fuel electrode 2 and the oxidizing gas 12
Pass through the air electrode 4 and these gases 11 and 12 react electrochemically with the solid electrolyte 3 to obtain electric power.

【0023】この電気化学反応の際、燃料極2は、安定
化ジルコニア部2dを有していることから、先の作用で
説明したように、燃料極2の空孔2cと、燃料極2の安
定化ジルコニア部2dまたは固体電解質3と、燃料極2
の金属部2aとの三相の接する三相界面S3 の表面積が
増大しているので、電極反応性が非常に高くなる。
At the time of this electrochemical reaction, since the fuel electrode 2 has the stabilized zirconia portion 2d, the pores 2c of the fuel electrode 2 and the fuel electrode 2 Stabilized zirconia part 2d or solid electrolyte 3 and fuel electrode 2
Since the surface area of the three-phase interface S 3 in contact with the three-phase metal portion 2a of is increased, the electrode reactivity is very high.

【0024】また、安定化ジルコニア部2dが強固であ
ることから、先に説明したように、運転時に還元される
場合でも、大きく収縮してしまうことがないので、還元
時の収縮性が非常に小さくなる。
Further, since the stabilized zirconia portion 2d is strong, as described above, even if it is reduced during operation, it does not significantly shrink, so that the shrinkage during reduction is very low. Become smaller.

【0025】このため、還元時の収縮体積分がそのまま
間隙として残って空孔2cが確実に形成されているの
で、燃料ガス11などの透過性が高くなり、電極反応性
がさらに高くなる。
Therefore, since the pores 2c are surely formed with the contracted volume during reduction remaining as a gap as it is, the permeability of the fuel gas 11 and the like is increased, and the electrode reactivity is further increased.

【0026】したがって、このような燃料極2によれ
ば、固体電解質3との熱膨張の整合性および高導電率性
を維持しながらも、電極反応性の向上および還元時の収
縮性の抑制を図ることができる。
Therefore, according to the fuel electrode 2, it is possible to improve the reactivity of the electrode and to suppress the shrinkage during reduction while maintaining the consistency of the thermal expansion with the solid electrolyte 3 and the high conductivity. Can be planned.

【0027】なお、本実施の形態では、固体電解質型燃
料電池の電気化学セルの燃料極に適用した場合について
説明したが、固体電解質型水蒸気電解装置の電気化学セ
ルの燃料極など、固体電解質型電気化学セルの燃料極で
あれば、本実施の形態の場合と同様にして適用すること
ができ、本実施の形態の場合と同様な効果を得ることが
できる。
In this embodiment, the case where the present invention is applied to a fuel electrode of an electrochemical cell of a solid oxide fuel cell has been described. The fuel electrode of the electrochemical cell can be applied in the same manner as in the present embodiment, and the same effect as in the present embodiment can be obtained.

【0028】[0028]

【実施例】本発明による固体電解質型電気化学セルの燃
料極の最適な組成比を求めるため、次のような実験を行
った。
EXAMPLE The following experiment was conducted to determine the optimum composition ratio of the fuel electrode of the solid oxide electrochemical cell according to the present invention.

【0029】[実験例1:NiO−Y2 SiO5 −YS
Z系材料] <試験片の作製>NiO、Y2 SiO5 、YSZの各原
料粉末を各種の配合量で混合し、乾燥して150μm以
下に分級した後、一軸プレス成形し、1400℃で4時
間熱処理して焼結し、これを3×4×14mmのサイズ
に切り分けて試験片を得た。
[Experimental Example 1: NiO-Y 2 SiO 5 -YS]
Z-based material] <Preparation of test piece> NiO, Y 2 SiO 5 , and YSZ raw material powders were mixed in various amounts, dried, classified to 150 μm or less, uniaxially press-formed, and heated at 1400 ° C. After sintering by heat treatment for a time, this was cut into a size of 3 × 4 × 14 mm to obtain a test piece.

【0030】<実験方法> 熱膨張率の測定方法 大気中で行い、基準温度を25℃とし、1000℃での
伸び率から熱膨張率を算出した。
<Experimental Method> Method of measuring thermal expansion coefficient The thermal expansion coefficient was calculated from the elongation at 1000 ° C. at a reference temperature of 25 ° C. in the air.

【0031】導電率の測定方法 直流四端子法により、1000℃の水素還元雰囲気中で
導電率を測定し、測定値が変動しなくなった時点(数時
間後)での値を求めた。
Method for Measuring Conductivity The conductivity was measured by a DC four-terminal method in a hydrogen reducing atmosphere at 1000 ° C., and the value at the time when the measured value no longer fluctuated (after several hours) was determined.

【0032】電極反応抵抗の測定方法 ドクタブレード法により成形した固体電解質を燃料極に
貼り合わせた後に1400℃で焼結したものを交流イン
ピーダンス法により測定し、この測定結果をコールプロ
ット法でプロットすることにより、その時に現れる円弧
の大きさを電極反応抵抗の値とみなした。
Method for Measuring Electrode Reaction Resistance The solid electrolyte formed by the doctor blade method was bonded to the fuel electrode and then sintered at 1400 ° C., and the result was measured by the AC impedance method, and the measurement results were plotted by the Cole plot method. Thus, the size of the arc appearing at that time was regarded as the value of the electrode reaction resistance.

【0033】長さ変化率の測定方法 熱膨張率の測定で用いた試験片を1000℃で5時間還
元処理し、還元処理前後での長さの変化率を求めた。
Method of Measuring the Rate of Change in Length The test piece used in the measurement of the coefficient of thermal expansion was reduced at 1000 ° C. for 5 hours, and the rate of change in length before and after the reduction was determined.

【0034】<実験結果> 熱膨張率の測定結果 熱膨張率の測定結果を図3に示す。図3からわかるよう
に、Y2 SiO5 の配合量が増えると、熱膨張率は、次
第に小さくなり、特に、Y2 SiO5 の配合量が30vo
l.%であると、YSZの熱膨張率(約10×10-6
℃)と略等しくなる。
<Experimental Results> Measurement Results of Thermal Expansion Coefficient FIG. 3 shows the measurement results of the thermal expansion coefficient. As can be seen from FIG. 3, as the amount of Y 2 SiO 5 increases, the coefficient of thermal expansion gradually decreases, and in particular, the amount of Y 2 SiO 5 increases by 30 vo.
l.%, the coefficient of thermal expansion of YSZ (about 10 × 10 −6 /
° C).

【0035】導電率の測定結果 導電率の測定結果およびその際の熱膨張率を図4に示
す。図4からわかるように、NiO−30vol.%Y2
iO5 系でYSZを10vol.%配合すると、YSZを配
合しない場合に比べて、導電率が小さくなってしまう
(約2000S/cm)ものの十分な大きさを有すると
共に、熱膨張率がほとんど変わらないことが判明した。
Measurement Results of Conductivity FIG. 4 shows the measurement results of the conductivity and the coefficient of thermal expansion at that time. As can be seen from FIG. 4, NiO-30 vol.% Y 2 S
When 10 vol.% of YSZ is blended in the iO 5 system, the conductivity becomes smaller (about 2000 S / cm) as compared with the case where YSZ is not blended, but it has a sufficient size and the thermal expansion coefficient is hardly changed. It has been found.

【0036】電極反応抵抗の測定結果 電極反応抵抗の測定結果を図5に示す。図5からわかる
ように、NiO−30vol.%Y2 SiO5 系でYSZを
10vol.%配合すると、電極反応抵抗は、YSZを配合
しない場合(約3Ω・cm2 )に比べて半減する(約
1.5Ω・cm2 )ことが判明した。
FIG. 5 shows the measurement results of the electrode reaction resistance. As can be seen from FIG. 5, when 10 vol.% Of YSZ is blended in the NiO-30 vol.% Y 2 SiO 5 system, the electrode reaction resistance is reduced by half compared to the case where YSZ is not blended (about 3 Ω · cm 2 ). 1.5 Ω · cm 2 ).

【0037】長さ変化率の測定結果 長さ変化率の測定結果を図6に示す。図6からわかるよ
うに、NiO−30vol.%Y2 SiO5 系でYSZを1
0vol.%配合すると、長さ変化率は、非常に小さく
(0.1%以下)、還元収縮を生じないことが判明し
た。
FIG. 6 shows the measurement results of the length change rate. As can be seen from FIG. 6, YSZ is 1 in NiO-30 vol.% Y 2 SiO 5 system.
When 0 vol.% Was blended, it was found that the rate of change in length was very small (0.1% or less) and no reduction shrinkage occurred.

【0038】以上の結果から、セルの大きさや形状によ
って異なってくる部分があるものの、固体電解質がYS
Zの場合、NiOの配合量を約60vol.%とし、Y2
iO 5 の配合量を約30vol.%とし、YSZの配合量を
約10vol.%とすれば、固体電解質との熱膨張の整合性
および高導電率性を維持しながらも、電極反応性の向上
および還元時の収縮性の抑制を最も効率よく図れる燃料
極が得られると判断される。
From the above results, it can be seen that depending on the size and shape of the cell,
However, the solid electrolyte is YS
In the case of Z, the amount of NiO is about 60 vol.TwoS
iO FiveAbout 30vol.%, And the amount of YSZ
Approximately 10 vol.%, Consistency of thermal expansion with solid electrolyte
Electrode reactivity while maintaining high electrical conductivity
That can most efficiently suppress shrinkage during reduction and reduction
It is determined that a pole is obtained.

【0039】[実験例2:NiO−HfSiO4 −YS
Z系材料] <試験片の作製>NiO、HfSiO4 、YSZの各原
料粉末を各種の配合量で混合し、前述した実験例1の場
合と同様にして試験片を得た。
[Experimental Example 2: NiO-HfSiO 4 -YS]
Z-based Material] <Preparation of Test Piece> NiO, HfSiO 4 , and YSZ raw material powders were mixed at various compounding amounts, and a test piece was obtained in the same manner as in Experimental Example 1 described above.

【0040】<試験方法> 熱膨張率の測定方法 前述した実験例1と同様にして熱膨張率を求めた。<Test Method> Method of Measuring Coefficient of Thermal Expansion The coefficient of thermal expansion was determined in the same manner as in Experimental Example 1 described above.

【0041】導電率の測定方法 前述した実験例1と同様にして導電率を求めた。Method of Measuring Conductivity Conductivity was determined in the same manner as in Experimental Example 1 described above.

【0042】電極反応抵抗の測定方法 前述した実験例1と同様にして電極反応抵抗を求めた。Method for Measuring Electrode Reaction Resistance The electrode reaction resistance was determined in the same manner as in Experimental Example 1 described above.

【0043】長さ変化率の測定方法 前述した実験例1と同様にして長さ変化率を求めた。Method of Measuring Length Change Rate The length change rate was determined in the same manner as in Experimental Example 1 described above.

【0044】<実験結果> 熱膨張率の測定結果 熱膨張率の測定結果を図7に示す。図7からわかるよう
に、HfSiO4 の配合量が増えると、熱膨張率は、次
第に小さくなり、特に、HfSiO4 の配合量が30vo
l.%であると、YSZの熱膨張率(約10×10-6
℃)と略等しくなる。
<Experimental Results> Measurement Results of Thermal Expansion Coefficient FIG. 7 shows measurement results of the thermal expansion coefficient. As can be seen from Figure 7, the amount of the HfSiO 4 increases, the thermal expansion coefficient becomes progressively smaller, in particular, the amount of HfSiO 4 is 30vo
l.%, the coefficient of thermal expansion of YSZ (about 10 × 10 −6 /
° C).

【0045】導電率の測定結果 導電率の測定結果およびその際の熱膨張率を図8に示
す。図8からわかるように、NiO−30vol.%HfS
iO4 系でYSZを10vol.%配合すると、YSZを配
合しない場合に比べて、導電率が小さくなってしまう
(約2600S/cm)ものの十分な大きさを有すると
共に、熱膨張率がほとんど変わらないことが判明した。
Measurement Results of Conductivity FIG. 8 shows the measurement results of the conductivity and the coefficient of thermal expansion at that time. As can be seen from FIG. 8, NiO-30 vol.% HfS
When 10 vol.% of YSZ is blended in the iO 4 system, the electrical conductivity becomes smaller (about 2600 S / cm) as compared with the case where YSZ is not blended, but it has a sufficient size and the thermal expansion coefficient hardly changes. It has been found.

【0046】電極反応抵抗の測定結果 電極反応抵抗の測定結果を図9に示す。図9からわかる
ように、NiO−30vol.%HfSiO4 系でYSZを
10vol.%配合すると、電極反応抵抗は、YSZを配合
しない場合(約3Ω・cm2 )に比べて半減する(約
1.5Ω・cm2 )ことが判明した。
FIG. 9 shows the measurement results of the electrode reaction resistance. As it can be seen from Figure 9, the NiO-30 vol.% HfSiO the YSZ at 4 system 10 vol.% Formulated, the electrode reaction resistance is reduced by half as compared with the case of not blending the YSZ (about 3Ω · cm 2) (about 1. 5 Ω · cm 2 ).

【0047】長さ変化率の測定結果 長さ変化率の測定結果を図10に示す。図10からわか
るように、NiO−30vol.%HfSiO4 系でYSZ
を10vol.%配合すると、長さ変化率は、非常に小さく
(約0.1%程度)、還元収縮を生じないことが判明し
た。
Measurement Results of Length Change Rate FIG. 10 shows measurement results of the length change rate. As can be seen from FIG. 10, YSZ in NiO-30vol.% HfSiO 4 system
Was found to be very small (approximately 0.1%) and did not cause reduction shrinkage.

【0048】以上の結果から、セルの大きさや形状によ
って異なってくる部分があるものの、固体電解質がYS
Zの場合、NiOの配合量を約60vol.%とし、HfS
iO 4 の配合量を約30vol.%とし、YSZの配合量を
約10vol.%とすれば、固体電解質との熱膨張の整合性
および高導電率性を維持しながらも、電極反応性の向上
および還元時の収縮性の抑制を最も効率よく図れる燃料
極が得られると判断される。
From the above results, it can be seen that depending on the size and shape of the cell,
However, the solid electrolyte is YS
In the case of Z, the compounding amount of NiO is about 60 vol.
iO FourAbout 30vol.%, And the amount of YSZ
Approximately 10 vol.%, Consistency of thermal expansion with solid electrolyte
Electrode reactivity while maintaining high electrical conductivity
That can most efficiently suppress shrinkage during reduction and reduction
It is determined that a pole is obtained.

【0049】[0049]

【発明の効果】本発明による固体電解質型電気化学セル
の燃料極では、Ni、Coまたはこれらの合金と、安定
化ジルコニアと、前記安定化ジルコニアよりも熱膨張率
の小さい酸化化合物とのサーメットからなることから、
電気化学反応を生じる三相界面の表面積が増えるように
なるので、電極反応性を向上させることができる。
The fuel electrode of the solid oxide electrochemical cell according to the present invention uses a cermet of Ni, Co or an alloy thereof, stabilized zirconia, and an oxidized compound having a smaller coefficient of thermal expansion than the stabilized zirconia. From becoming
Since the surface area of the three-phase interface where the electrochemical reaction occurs increases, the electrode reactivity can be improved.

【0050】また、安定化ジルコニアが強固であること
から、還元雰囲気下であっても収縮してしまうことがな
いので、還元雰囲気下での収縮性を非常に小さくするこ
とができる。
Further, since the stabilized zirconia is strong, it does not shrink even under a reducing atmosphere, so that the shrinkability under a reducing atmosphere can be extremely reduced.

【0051】このため、還元時の収縮体積分がそのまま
間隙として残って空孔を確実に生じさせることができる
ので、燃料ガスなどの透過性を高くすることができ、電
極反応性をさらに高くすることができる。
For this reason, since the contracted volume at the time of reduction remains as a gap as it is, voids can be reliably generated, so that the permeability of fuel gas and the like can be increased, and the electrode reactivity can be further increased. be able to.

【0052】したがって、固体電解質との熱膨張の整合
性および高導電率性を維持しながらも、電極反応性の向
上および還元時の収縮性の抑制を図ることができる。
Therefore, it is possible to improve the reactivity of the electrode and to suppress the shrinkage at the time of reduction while maintaining the consistency of the thermal expansion with the solid electrolyte and the high conductivity.

【0053】また、酸化化合物が金属酸化物と酸化珪素
との珪酸塩化合物であれば、上述した効果をより効率的
に発現することができる。
When the oxidized compound is a silicate compound of a metal oxide and silicon oxide, the above-described effects can be exhibited more efficiently.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による固体電解質型電気化学セルの燃料
極を固体電解質型燃料電池の電気化学セルの燃料極に適
用した場合の実施の形態の要部の概略構造図である。
FIG. 1 is a schematic structural diagram of a main part of an embodiment in which a fuel electrode of a solid oxide electrochemical cell according to the present invention is applied to a fuel electrode of an electrochemical cell of a solid oxide fuel cell.

【図2】図1の燃料極の作用説明図である。FIG. 2 is an explanatory diagram of an operation of a fuel electrode of FIG. 1;

【図3】NiO−Y2 SiO5 −YSZ系材料のY2
iO5 配合量と熱膨張率との関係を表すグラフである。
FIG. 3 shows Y 2 S of NiO—Y 2 SiO 5 —YSZ-based material
5 is a graph showing the relationship between the amount of iO 5 and the coefficient of thermal expansion.

【図4】NiO−Y2 SiO5 −YSZ系材料のY2
iO5 配合量を30vol.%とした場合のYSZ配合量と
熱膨張率および導電率との関係を表すグラフである。
FIG. 4 shows Y 2 S of NiO—Y 2 SiO 5 —YSZ-based material
5 is a graph showing the relationship between the YSZ content and the coefficient of thermal expansion and electrical conductivity when the content of iO 5 is 30 vol.%.

【図5】NiO−Y2 SiO5 −YSZ系材料のY2
iO5 配合量を30vol.%とした場合のYSZ配合量と
電極反応抵抗との関係を表すグラフである。
FIG. 5: Y 2 S of NiO—Y 2 SiO 5 —YSZ-based material
iO 5 amount of a graph showing the relationship between the 30 vol.% and YSZ amount in the case where the electrode reaction resistance.

【図6】NiO−Y2 SiO5 −YSZ系材料のY2
iO5 配合量を30vol.%とした場合のYSZ配合量と
長さ変化率との関係を表すグラフである。
FIG. 6: Y 2 S of NiO—Y 2 SiO 5 —YSZ-based material
iO 5 amount of a graph showing the relationship between the 30 vol.% and YSZ amount in the case where the length variation rate.

【図7】NiO−HfSiO4 −YSZ系材料のHfS
iO4 配合量と熱膨張率との関係を表すグラフである。
FIG. 7: HfS of NiO—HfSiO 4 —YSZ-based material
4 is a graph showing the relationship between the amount of iO 4 and the coefficient of thermal expansion.

【図8】NiO−HfSiO4 −YSZ系材料のHfS
iO4 配合量を30vol.%とした場合のYSZ配合量と
熱膨張率および導電率との関係を表すグラフである。
FIG. 8: HfS of NiO—HfSiO 4 —YSZ-based material
It is a graph showing the relationship between the amount of YSZ, the coefficient of thermal expansion, and the electrical conductivity when the amount of iO 4 is 30 vol.%.

【図9】NiO−HfSiO4 −YSZ系材料のHfS
iO4 配合量を30vol.%とした場合のYSZ配合量と
電極反応抵抗との関係を表すグラフである。
FIG. 9 shows HfS of NiO—HfSiO 4 —YSZ-based material.
It is a graph showing the relationship between the amount of YSZ and the electrode reaction resistance when the amount of iO 4 is 30 vol.%.

【図10】NiO−HfSiO4 −YSZ系材料のHf
SiO4 配合量を30vol.%とした場合のYSZ配合量
と長さ変化率との関係を表すグラフである。
FIG. 10 shows the Hf of NiO—HfSiO 4 —YSZ-based material
5 is a graph showing the relationship between the YSZ content and the rate of change in length when the content of SiO 4 is 30 vol.%.

【図11】Ni−40vol.%MgAl2 4 系材料の還
元時間と膨張率との関係を表すグラフである。
FIG. 11 is a graph showing a relationship between a reduction time and an expansion rate of a Ni-40 vol.% MgAl 2 O 4 material.

【符号の説明】[Explanation of symbols]

1 基体 2 燃料極 2a 金属部 2b 酸化化合物部 2c 安定化ジルコニア部 2d 空孔 3 固体電解質 4 空気極 5 中間接続子 11 燃料ガス 12 酸化ガス DESCRIPTION OF SYMBOLS 1 Base 2 Fuel electrode 2a Metal part 2b Oxide compound part 2c Stabilized zirconia part 2d Void 3 Solid electrolyte 4 Air electrode 5 Intermediate connector 11 Fuel gas 12 Oxidizing gas

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成9年4月4日[Submission date] April 4, 1997

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0007[Correction target item name] 0007

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0007】また、上述したようなサーメットを燃料極
に用いた電気化学セルでは、運転時に燃料極が燃料ガス
で還元される際に当該燃料極が収縮してしまう場合があ
った。例えば、Ni−40vol.%MgAl2 4 (熱膨
張率:約10×10-6/℃,導電率:約2000S/c
m)からなるサーメットでは、図11に示すように、還
元開始直後から大きく収縮してしまう。このようなサー
メットを燃料極に用いると、運転時に燃料極の近傍が変
してしまい、発電性能の低下を引き起こしてしまう虞
があるだけでなく、最悪の場合にはセルを損傷してしま
う虞がある。
[0007] In an electrochemical cell using a cermet as a fuel electrode as described above, the fuel electrode sometimes contracts when the fuel electrode is reduced with fuel gas during operation. For example, Ni-40 vol.% MgAl 2 O 4 (thermal expansion coefficient: about 10 × 10 −6 / ° C., conductivity: about 2000 S / c)
In the cermet of m), as shown in FIG. 11, the cermet shrinks immediately after the start of the reduction. The use of such cermet fuel electrode, the vicinity of the fuel electrode will be deformed during operation, not only there is a fear that causes a decrease in power generation performance, resulting in damage to the cell in the worst case a risk There is.

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0016[Correction target item name] 0016

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0016】また、安定化ジルコニア部2dを有する燃
料極2では、NiOが運転時に還元されてNiとなる場
合でも、安定化ジルコニア部2dが骨材の構造を維持す
る働きを有することから、大きく収縮してしまうことが
ないので、還元時の収縮性を大幅に抑制することができ
る。
In the fuel electrode 2 having the stabilized zirconia portion 2d, even when NiO is reduced to Ni during operation, the stabilized zirconia portion 2d maintains the structure of the aggregate.
Since it has the function of reducing, it does not significantly shrink, so that the shrinkage during reduction can be greatly suppressed.

【手続補正3】[Procedure amendment 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0019[Correction target item name] 0019

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0019】[0019]

【発明の実施の形態】本発明による固体電解質型電気化
学セルの燃料極を固体電解質型燃料電池の電気化学セル
の燃料極に適用した場合の実施の形態を図1を用いて説
明する。なお、図1は、その要部の概略構造図の一例
ある。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment in which a fuel electrode of a solid oxide electrochemical cell according to the present invention is applied to a fuel electrode of an electrochemical cell of a solid oxide fuel cell will be described with reference to FIG. FIG. 1 is an example of a schematic structural diagram of the main part.

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0024[Correction target item name] 0024

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0024】また、安定化ジルコニア部2dが骨材の構
造を維持する働きを有することから、先に説明したよう
に、運転時に還元される場合でも、大きく収縮してしま
うことがないので、還元時の収縮性が非常に小さくな
る。
The stabilized zirconia portion 2d is formed of an aggregate.
Since it has the function of maintaining the structure, as described above, even if it is reduced during operation, it does not significantly shrink, so that the shrinkage during reduction is very small.

【手続補正5】[Procedure amendment 5]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0050[Correction target item name] 0050

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0050】また、安定化ジルコニアが骨材の構造を維
持する働きを有することから、還元雰囲気下であっても
収縮してしまうことがないので、還元雰囲気下での収縮
性を非常に小さくすることができる。
Further, stabilized zirconia maintains the structure of the aggregate.
Since it has the function of maintaining, it does not shrink even under a reducing atmosphere, so that the shrinkability under a reducing atmosphere can be extremely reduced.

【手続補正6】[Procedure amendment 6]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】図1[Correction target item name] Fig. 1

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図1】本発明による固体電解質型電気化学セルの燃料
極を固体電解質型燃料電池の電気化学セルの燃料極に適
用した場合の実施の形態の要部の概略構造図の一例であ
る。
FIG. 1 is an example of a schematic structural diagram of a main part of an embodiment in which a fuel electrode of a solid oxide electrochemical cell according to the present invention is applied to a fuel electrode of an electrochemical cell of a solid oxide fuel cell.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 Ni、Coまたはこれらの合金と、 安定化ジルコニアと、 前記安定化ジルコニアよりも熱膨張率の小さい酸化化合
物とのサーメットからなることを特徴とする固体電解質
型電気化学セルの燃料極。
1. A fuel for a solid electrolyte type electrochemical cell comprising a cermet of Ni, Co or an alloy thereof, stabilized zirconia, and an oxide compound having a smaller coefficient of thermal expansion than the stabilized zirconia. very.
【請求項2】 前記酸化化合物が金属酸化物と酸化珪素
との珪酸塩化合物であることを特徴とする請求項1に記
載の固体電解質型電気化学セルの燃料極。
2. The fuel electrode according to claim 1, wherein the oxide compound is a silicate compound of a metal oxide and silicon oxide.
JP9045167A 1997-02-28 1997-02-28 Fuel electrode of solid electrolyte type electrochemical cell Withdrawn JPH10241702A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9045167A JPH10241702A (en) 1997-02-28 1997-02-28 Fuel electrode of solid electrolyte type electrochemical cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9045167A JPH10241702A (en) 1997-02-28 1997-02-28 Fuel electrode of solid electrolyte type electrochemical cell

Publications (1)

Publication Number Publication Date
JPH10241702A true JPH10241702A (en) 1998-09-11

Family

ID=12711717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9045167A Withdrawn JPH10241702A (en) 1997-02-28 1997-02-28 Fuel electrode of solid electrolyte type electrochemical cell

Country Status (1)

Country Link
JP (1) JPH10241702A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005285750A (en) * 2004-03-29 2005-10-13 Sulzer Hexis Ag Anode material for high temperature fuel cell
WO2006030590A1 (en) * 2004-09-13 2006-03-23 Kyocera Corporation Electrode support for fuel cell
JP2006524902A (en) * 2003-04-28 2006-11-02 バッテル・メモリアル・インスティチュート Electrodes for solid oxide fuel cell anodes and other electrochemical devices

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006524902A (en) * 2003-04-28 2006-11-02 バッテル・メモリアル・インスティチュート Electrodes for solid oxide fuel cell anodes and other electrochemical devices
JP2005285750A (en) * 2004-03-29 2005-10-13 Sulzer Hexis Ag Anode material for high temperature fuel cell
WO2006030590A1 (en) * 2004-09-13 2006-03-23 Kyocera Corporation Electrode support for fuel cell
US8524419B2 (en) 2004-09-13 2013-09-03 Kyocera Corporation Electrode support for fuel cells

Similar Documents

Publication Publication Date Title
Dai et al. Tailoring cathode composite boosts the performance of proton-conducting SOFCs fabricated by a one-step co-firing method
US20160254549A1 (en) Metal Supported Solid Oxide Fuel Cell
US5143801A (en) Solid oxide fuel cells, and air electrode and electrical interconnection materials therefor
WO1992012106A1 (en) Zirconia-bismuth oxide graded electrolyte
CA2597997A1 (en) Fuel cell cathodes
JP3599894B2 (en) Fuel electrode of solid oxide fuel cell
JPWO2009001739A1 (en) High temperature structural material and solid oxide fuel cell separator
JP5288686B2 (en) Conductive sintered body for fuel cell, fuel cell, fuel cell
Solís et al. Electrochemical properties of composite cathodes for La0. 995Ca0. 005NbO4− δ-based proton conducting fuel cells
Bi et al. Proton-conducting solid oxide fuel cells prepared by a single step co-firing process
JP2002151091A (en) Air electrode material for alkaline earth-added nickel- iron perovskite type low-temperature operating solid fuel cell
JPH10241702A (en) Fuel electrode of solid electrolyte type electrochemical cell
JP2003208902A (en) Solid electrolyte-type fuel cell
JP2007123005A (en) Cell for fuel cell, cell stack and fuel cell
US3522103A (en) Process for the densification of mixed nickel oxide and stabilized zirconia
JP3609146B2 (en) Fuel electrode of solid oxide fuel cell
KR20230087170A (en) Sintering method of proton ceramic fuel cell electrolyte and proton ceramic fuel cell manufactured using the same
JP3241306B2 (en) Interconnector material
Kening et al. Fabrication and performance of La0. 8Sr0. 2MnO3/YSZ graded composite cathodes for SOFC
JP2001072465A (en) Solid electrolyte, its production, and fuel cell and oxygen sensor each using the same
JP4184039B2 (en) Oxygen ion conductive solid electrolyte, electrochemical device using the same, and solid oxide fuel cell
CN113166959A (en) Proton conductor, fuel cell, and water electrolysis device
JPH10172578A (en) Fuel electrode material of solid electrolyte type electrochemical cell
JPH09147876A (en) Fuel electrode material of solid electrolyte type electrochemical cell
JPH05170528A (en) Method for sintering lanthanum chromite

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20040511