JPH10241513A - Vacuum bulb - Google Patents

Vacuum bulb

Info

Publication number
JPH10241513A
JPH10241513A JP4344597A JP4344597A JPH10241513A JP H10241513 A JPH10241513 A JP H10241513A JP 4344597 A JP4344597 A JP 4344597A JP 4344597 A JP4344597 A JP 4344597A JP H10241513 A JPH10241513 A JP H10241513A
Authority
JP
Japan
Prior art keywords
cuti
alloy
vacuum valve
valve according
insulating container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4344597A
Other languages
Japanese (ja)
Inventor
Isao Okutomi
功 奥富
Takashi Kusano
貴史 草野
Rika Takigawa
りか 滝川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHIBAFU ENG KK
Toshiba Corp
Original Assignee
SHIBAFU ENG KK
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHIBAFU ENG KK, Toshiba Corp filed Critical SHIBAFU ENG KK
Priority to JP4344597A priority Critical patent/JPH10241513A/en
Publication of JPH10241513A publication Critical patent/JPH10241513A/en
Pending legal-status Critical Current

Links

Landscapes

  • High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a vacuum bulb which can retain air-tightness for a long duration and exhibit vacuum circuit breaking characteristic. SOLUTION: As a solder to be used for joining of a sealing plate to seal the open side of an insulating container to the insulating container, a solder produced by previously uniting a Cu-Ti alloy containing Ti at 0.05-5% Ti/(Cu+ Ti) ratio with Ag or a Ag alloy containing Ag as a main component is used, so that the wettability of the sealing plate and the insulating container can be improved and the reliability of the joining part can be improved.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は真空バルブに係り、
特に封着用のろう材を改良した真空バルブに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vacuum valve,
In particular, the present invention relates to a vacuum valve having an improved brazing material for sealing.

【0002】[0002]

【従来の技術】真空バルブの絶縁容器は、真空遮断条件
を維持するために長期に亘って気密性を保持しなければ
ならない。従来から、真空バルブの絶縁容器と両側の封
着金属とを接合する方法として、第1に、絶縁容器の端
面に、モリブデン(Mo)又はタングステン(W)を主
成分とする粉末を塗布し、還元雰囲気中で例えば1,400
〜1,700 ℃に加熱して、あらかじめメタライズ層(例え
ばMoMnの被覆)を形成し、このメタライズ層を介し
て銀ろうで接合する方法がある。この方法の特徴は、一
般的な72%AgCu合金のろう材を使用できることであ
る。
2. Description of the Related Art An insulating container of a vacuum valve must maintain hermeticity for a long period of time in order to maintain vacuum shut-off conditions. BACKGROUND ART Conventionally, as a method for joining an insulating container of a vacuum valve and a sealing metal on both sides, first, a powder mainly containing molybdenum (Mo) or tungsten (W) is applied to an end surface of the insulating container, 1,400 for example in a reducing atmosphere
There is a method in which a metallized layer (for example, a coating of MoMn) is formed in advance by heating to 1,1,700 ° C., and bonding is performed with silver brazing via the metallized layer. A feature of this method is that a brazing filler metal of a general 72% AgCu alloy can be used.

【0003】また、第2に、絶縁容器の端面に、Ti,
Zrなどの活性金属と、Ni,Cuなどの遷移金属を配
置し、これらの合金を所定の温度でメタライジングして
封着金具と接合する方法がある(特開昭56-163093 号公
報)。
[0003] Second, Ti,
There is a method in which an active metal such as Zr and a transition metal such as Ni and Cu are arranged, and these alloys are metallized at a predetermined temperature and joined to a sealing metal fitting (JP-A-56-163093).

【0004】この方法の特徴は、強い接合力が容易に得
られることである。さらに第3に、絶縁容器の端面と封
着金具との間に、活性金属を含んだ合金ろう材(例えば
AgCuTi合金)を配置して接合する方法もあり、こ
の方法の特徴は工程が単純簡単なことである。
A feature of this method is that a strong bonding force can be easily obtained. Thirdly, there is a method in which a brazing alloy containing an active metal (for example, an AgCuTi alloy) is disposed between the end face of the insulating container and the sealing metal and joined, and the feature of this method is that the process is simple and simple. That is what.

【0005】[0005]

【発明が解決しようとする課題】このうち、第1の方法
は、メタライズ層を形成させる工程で高温の処理を必要
とするほか、工程も多く、経済的にも劣る。又、処理条
件の僅かな違いで接合力が低下し、且つ変動する。
Among them, the first method requires a high-temperature treatment in the step of forming the metallized layer, has many steps, and is economically inferior. Also, a slight difference in the processing conditions lowers and fluctuates the bonding strength.

【0006】このうち、ばらつきは、気密性の信頼性す
なわち、真空バルブの品質(再点弧を含む遮断性能)に
大きく影響する。また、第2の方法では、バインダや有
機溶剤を用いるので、これらの廃液の処理設備が必要と
なる。
[0006] Among them, the variation greatly affects the reliability of the airtightness, that is, the quality of the vacuum valve (cutoff performance including restriking). Further, in the second method, since a binder and an organic solvent are used, equipment for treating these waste liquids is required.

【0007】なお、絶縁容器と封着金具が十分に重なり
合った所では、銀ろうで良好に接合されるが、僅かでも
隙間があったり、十分に重なり合っていない部分がある
と、十分にメタライジングされない場合がある。
[0007] When the insulating container and the sealing metal are sufficiently overlapped with each other, they are satisfactorily joined with silver brazing. However, if there is a small gap or if there is a part which does not sufficiently overlap, the metallizing is sufficiently performed. May not be.

【0008】そのため、密着させるための処置も必要
で、そのための加圧部品が炉中に占める空間で生産性も
劣る。特に絶縁容器の端面に、Tiなどの活性金属を均
一に配置しないと、接合力と気密性がばらつき、遮断特
性が低下する。
Therefore, it is necessary to take measures for bringing the parts into close contact with each other, and the pressurized parts for that purpose occupy the space in the furnace, and the productivity is poor. In particular, if an active metal such as Ti is not uniformly arranged on the end surface of the insulating container, the bonding force and the airtightness vary, and the cutoff characteristics deteriorate.

【0009】特開昭63-49758号公報では、加圧力を均一
にするために、活性金属のTi又はZr粉末を使用し、
この粉末を絶縁容器の端面に塗布した例が示されてい
る。
In Japanese Patent Application Laid-Open No. 63-49758, active metal Ti or Zr powder is used in order to make the pressure uniform.
An example in which this powder is applied to the end surface of an insulating container is shown.

【0010】活性金属を粉末化することで、Ti又はZ
rが均一に端面に分布し、密着して、接合強度と気密性
を備えた真空バルブを得ている。
[0010] By powdering the active metal, Ti or Z
r is uniformly distributed on the end face and closely adhered to obtain a vacuum valve having bonding strength and airtightness.

【0011】しかし、ポリビニールアルコール,エチル
セルローズなどのバインダを塗布した絶縁容器に、Ti
又はZr粉末を塗布する工程で、エタノール,テトラリ
ンなどの有機溶剤が活性金属粉末をペースト状態にする
ので、これらのバインダや有機溶剤の廃液に対する処理
設備が必要となる。
However, an insulating container coated with a binder such as polyvinyl alcohol, ethyl cellulose, etc.
Alternatively, in the step of applying the Zr powder, an organic solvent such as ethanol or tetralin turns the active metal powder into a paste state, so that a treatment facility for a waste liquid of the binder and the organic solvent is required.

【0012】このように、第1,第2の方法は、メタラ
イジングを施した後、絶縁容器と封着金属とをろう付す
るので、工程が増えるだけでなく、接合強度や気密性な
ども劣る。
As described above, in the first and second methods, after the metallizing is performed, the insulating container and the sealing metal are brazed, so that not only the number of steps is increased, but also the bonding strength and airtightness are improved. Inferior.

【0013】一方、第3の方法では、活性金属が絶縁容
器の母材のぬれ性を上げるので、加圧が不要で、活性金
属のために母材に強い接合力でメタライジングすること
ができる。しかし、AgCuTi合金のろう材は、Ti
の固溶度の関係で均質な合金が得られない。
On the other hand, in the third method, since the active metal enhances the wettability of the base material of the insulating container, no pressurization is required, and the active metal can be metallized with a strong bonding force to the base material. . However, the brazing material of the AgCuTi alloy is Ti alloy.
A homogeneous alloy cannot be obtained due to the solid solubility of the alloy.

【0014】さらに、AgCuTi合金は、ビッカース
(Hv)硬度が約100 程度の軟質のAgCuマトリック
ス中に、ビッカース(Hv)硬度が約300 〜400 程度で
比較的高く、かつ粒状のCuTi相(析出物)が点在す
る場合がある。
Further, the AgCuTi alloy contains a relatively high Vickers (Hv) hardness of about 300 to 400 and a relatively high and granular CuTi phase (precipitate) in a soft AgCu matrix having a Vickers hardness (Hv) of about 100. ) May be scattered.

【0015】そのため、この合金を板材や線材又は管材
に加工する工程で、応力が不均一となり、特に薄板及び
細線や薄肉管では、CuTi相の部分で破断したり、亀
裂や凹凸が発生する。
[0015] Therefore, in the process of processing this alloy into a plate, wire, or tube, the stress becomes non-uniform, and particularly in the case of a thin plate, a thin wire, or a thin-walled tube, breakage, cracks, and irregularities occur in the CuTi phase portion.

【0016】真空バルブと封着金具とのろう付部に、薄
板や細線のAgCuTi合金のろう材を使用すると、こ
のろう材のAgCuマトリックス中に粒状のCuTi相
が点在したり、組成的にTi濃度に偏析するときがあ
り、すると、この部分に応力が集中して、破断したり、
亀裂や凹凸が発生するおそれがある。そのうえ、このろ
う材でろう付した真空バルブでは、十分な接合力が得ら
れなかったり、接合力がばらついて、遮断特性も不安定
となる。
When a brazing material of a thin plate or a thin wire of an AgCuTi alloy is used for a brazing portion between the vacuum valve and the sealing member, a granular CuTi phase is scattered in the AgCu matrix of the brazing material, There is a case where segregation occurs in the Ti concentration.
Cracks and irregularities may occur. In addition, with a vacuum valve brazed with this brazing material, a sufficient joining force cannot be obtained or the joining force varies, so that the shutoff characteristics become unstable.

【0017】そこで、メタライジングを施すことなく、
封着金具を絶縁容器にろう付する一段階接合法が提案さ
れている(特開昭59-32628号公報)。この方法は、活性
金属としてTi又は及びZrを含むAgろう材を用いる
か、活性金属の薄板とAgろう材を重ねたろう材を用い
る。この一段階接合法は、メタライジングが不要なため
に、工程を短縮することができる。
Therefore, without metallizing,
A one-step joining method of brazing a sealing fitting to an insulating container has been proposed (JP-A-59-32628). This method uses an Ag brazing material containing Ti or Zr as an active metal, or a brazing material obtained by stacking a thin plate of an active metal and an Ag brazing material. This one-step bonding method can reduce the number of steps because metalizing is not required.

【0018】しかし、この一段階接合法でも、Agろう
材が封着金具や絶縁容器、特に絶縁容器と十分密着して
いないと、良好な接合力と気密性が得られないおそれが
ある。そこで、本発明の目的は、気密性を長期に亘って
維持し、真空遮断の特長を長期に亘って発揮することの
できる真空バルブを得ることである。
However, even in this one-step bonding method, if the Ag brazing material does not sufficiently adhere to the sealing fitting or the insulating container, particularly the insulating container, there is a possibility that good bonding strength and airtightness cannot be obtained. Then, an object of the present invention is to obtain a vacuum valve which can maintain airtightness for a long period of time and exhibit the features of vacuum shutoff for a long period of time.

【0019】[0019]

【課題を解決するための手段】本発明は、絶縁容器の両
端に接合され内部の真空を維持する封止板の片側に貫設
された固定側通電軸と、封止板の他側に進退自在に貫設
された可動側通電軸と、この可動側通電軸と固定側通電
軸の対向面に接合され可動側通電軸の進退動作で接離す
る電極とを備えた真空バルブにおいて、封止板を絶縁容
器に接合するろう材はTi/(Cu+Ti)を0.05〜5
%としたCuTi合金と、Agを主成分とするAg合金
又はAgとの一体化材であることを特徴とする。
According to the present invention, there is provided a fixed-side energizing shaft which is provided at one end of a sealing plate which is joined to both ends of an insulating container and maintains an internal vacuum, and which is advanced and retracted to the other side of the sealing plate. A vacuum valve comprising a movable-side energized shaft freely penetrated, and an electrode joined to a surface facing the movable-side energized shaft and the fixed-side energized shaft and coming and going when the movable-side energized shaft advances and retreats, is sealed. The brazing material for joining the plate to the insulating container is Ti / (Cu + Ti) 0.05-5.
% Of CuTi alloy and an Ag alloy containing Ag as a main component or an integrated material of Ag.

【0020】請求項2に対応する発明の真空バルブは、
CuTi合金は、非酸化性雰囲気中の溶融状態から合金
が凝固する迄を、50〜106 K/秒の速度で冷却して製造
したCuTi合金を用いたことを特徴とする。
A vacuum valve according to the invention according to claim 2 is:
CuTi alloy from a molten state in a non-oxidizing atmosphere until the alloy solidifies, characterized by using a CuTi alloy manufactured by cooling at a rate of 50 to 10 6 K / sec.

【0021】請求項3に対応する発明の真空バルブは、
CuTi合金は、0.05〜5%のTiをCuマトリックス
中に固溶させていることを特徴とする。請求項4に対応
する発明の真空バルブは、CuTi合金は、Tiを固溶
したCuマトリックスとCuTi化合物とで構成したこ
とを特徴とする。
According to a third aspect of the present invention, there is provided a vacuum valve comprising:
The CuTi alloy is characterized in that 0.05 to 5% of Ti is dissolved in a Cu matrix. A vacuum valve according to a fourth aspect of the invention is characterized in that the CuTi alloy comprises a Cu matrix in which Ti is dissolved and a CuTi compound.

【0022】請求項5に対応する発明の真空バルブは、
CuTi合金中のCuTi化合物は、Cuマトリックス
中に析出物の平均粒子間距離が50μm以下に分散し、か
つ、その析出物の大きさを25μm以下としたことを特徴
とする。
According to a fifth aspect of the present invention, there is provided a vacuum valve comprising:
The CuTi compound in the CuTi alloy is characterized in that the average interparticle distance of the precipitate is dispersed in the Cu matrix to 50 μm or less, and the size of the precipitate is 25 μm or less.

【0023】請求項6に対応する発明の真空バルブは、
Agは、(Ag+Cu)で構成され、この(Ag+C
u)中のAgの比率を30%以上としたことを特徴とす
る。請求項7に対応する発明の真空バルブは、Agは、
(Ag+Cu+Pd)で構成され、この(Ag+Cu+
Pd)中のAgの比率を30%以上としたAgCuPdと
したことを特徴とする。
A vacuum valve according to a sixth aspect of the present invention comprises:
Ag is composed of (Ag + Cu), and this (Ag + C)
The ratio of Ag in u) is set to 30% or more. The vacuum valve of the invention according to claim 7, wherein Ag is:
(Ag + Cu + Pd).
AgCuPd in which the ratio of Ag in Pd) is 30% or more is characterized.

【0024】請求項8に対応する発明の真空バルブは、
Agは、AgにIn,Sn,Znの少なくとも一つを1
%以上10%以下含有させたことを特徴とする。請求項9
に対応する発明の真空バルブは、Agは、(Ag+C
u)にIn,Sn,Znの少なくとも一つを1%以上10
%以下含有させたことを特徴とする。
A vacuum valve according to the invention according to claim 8 is as follows.
Ag is obtained by adding at least one of In, Sn and Zn to Ag.
% Or more and 10% or less. Claim 9
In the vacuum valve of the invention corresponding to (Ag), Ag is (Ag + C
u) contains at least one of In, Sn, and Zn by 1% or more.
% Or less.

【0025】請求項10に対応する発明の真空バルブは、
Agは、(Ag+Cu+Pd)にIn,Sn,Znの少
なくとも一つを1%以上10%以下含有させたことを特徴
とする。
A vacuum valve according to the invention according to claim 10 is as follows:
Ag is characterized in that (Ag + Cu + Pd) contains at least one of In, Sn, and Zn at 1% or more and 10% or less.

【0026】請求項11に対応する発明の真空バルブは、
絶縁容器と封止板との間に、CuTi合金とAgを一体
化させてなるろう材とともに、活性金属を含まないCu
やAgよりなる中間層を介挿したことを特徴とする。
The vacuum valve according to the present invention corresponds to claim 11:
Between the insulating container and the sealing plate, together with the brazing material obtained by integrating the CuTi alloy and Ag, the Cu containing no active metal is used.
And an intermediate layer made of Ag or Ag.

【0027】請求項12に対応する発明の真空バルブは、
CuTiとAgを組合わせ一体化したことを特徴とす
る。請求項13に対応する発明の真空バルブは、CuTi
の両面にAgを配置し、これらを一体化したことを特徴
とする。
The vacuum valve according to the invention of claim 12 is:
It is characterized by combining and integrating CuTi and Ag. The vacuum valve of the invention according to claim 13 is CuTi
Ag is disposed on both surfaces of the substrate, and these are integrated.

【0028】請求項14に対応する発明の真空バルブは、
板材,線材と管材のCuTi,Agを組合わせ一体化し
たことを特徴とする。さらに、請求項15に対応する発明
の真空バルブは、CuTi合金の板厚,線径と管材の肉
厚は、30μm〜150 μmとしたことを特徴とする。
A vacuum valve according to the invention according to claim 14 is:
It is characterized by combining and integrating a plate material, a wire material and a tube material of CuTi and Ag. Further, a vacuum valve according to the invention according to claim 15 is characterized in that the plate thickness, wire diameter and wall thickness of the tube material of the CuTi alloy are 30 μm to 150 μm.

【0029】次に、本発明のCuTi合金とAgとを使
用してろう付した真空バルブの作用について説明する。
Cu中へのTiは、約5重量%の最大固溶度を有してい
る。このため、本発明者らの研究によれば、良質のCu
Ti合金を得ることができ、これに熱処理と加工とを組
み合わせることで、所定の範囲内のTi量では、Cuマ
トリックス中にTiを均一に分散させた加工性のよいC
uTi合金が得られることが分かった。
Next, the operation of the vacuum valve brazed using the CuTi alloy and Ag of the present invention will be described.
Ti in Cu has a maximum solid solubility of about 5% by weight. Therefore, according to the study of the present inventors, good quality Cu
A Ti alloy can be obtained, and by combining this with heat treatment and processing, with a Ti content within a predetermined range, a C having good workability in which Ti is uniformly dispersed in a Cu matrix.
It was found that a uTi alloy was obtained.

【0030】次いで、ろう材としての溶融温度を調節す
るために、AgやAgCuをCuTi合金と組み合わせ
ることで、CuTiとAgとを一体化したろう材を得
る。一体化の程度は、次の接合工程で両者は溶融合金化
するので、界面は拡散状態でも単なる接触状態でも、ろ
う材としての機能は十分発揮し、良好な接合材となる。
Next, in order to adjust the melting temperature of the brazing material, Ag or AgCu is combined with a CuTi alloy to obtain a brazing material in which CuTi and Ag are integrated. The degree of integration is such that the two are melt-alloyed in the next joining step, so that the interface functions as a brazing material sufficiently even if the interface is in a diffusion state or a mere contact state, and a good joining material is obtained.

【0031】本発明の真空バルブのCuTiとAgとを
一体化したろう材で気密にろう付して製造する真空バル
ブにおいて、CuTi合金の[Ti/(Cu+Ti)]
値を0.05〜5%とする理由は、0.05%以下では、マトリ
ックス中のCuTi析出物も極めて微量でほぼ均質な素
材となるが、Agと一体化してろう材として絶縁容器と
接合した後の容器との濡れ性に劣り、ほとんど接合され
ないためである。
In the vacuum valve of the present invention, which is manufactured by hermetically brazing CuTi and Ag with a brazing material in which CuTi and Ag are integrated, [Ti / (Cu + Ti)] of CuTi alloy is used.
The reason for setting the value to 0.05 to 5% is that if it is 0.05% or less, CuTi precipitates in the matrix are also extremely small and become a substantially homogeneous material. This is because it is inferior in wettability and hardly joined.

【0032】一方、5%を超えると、マトリックス中に
多量のCuTi析出物が存在し、大きさも50μmを超え
るものがあるとともに、これらの析出物の分布も著しく
偏析し、Agと一体化して使用しても、十分な接合力が
得られず強度もばらつく。
On the other hand, if it exceeds 5%, a large amount of CuTi precipitates are present in the matrix, and some of them have a size exceeding 50 μm, and the distribution of these precipitates is remarkably segregated, so that they are used integrally with Ag. However, sufficient bonding strength cannot be obtained and the strength varies.

【0033】また、0.05〜5%のTiをCuマトリック
ス中に固溶させる理由は、この範囲では、マトリックス
中のCuTi析出物を均一に分布させることができ、固
溶量が5%以上の素材を得ることが困難なためである。
The reason why 0.05 to 5% of Ti is dissolved in the Cu matrix is that in this range, CuTi precipitates in the matrix can be uniformly distributed and the material having a solid solution amount of 5% or more is used. Is difficult to obtain.

【0034】さらに、CuTi合金中のCuTi相のC
uマトリックス中に高度に分散させる理由は、析出物の
平均粒子間距離が50μm以上では、Agと一体化して接
合した後の強度がばらつくためである。
Further, the C of the CuTi phase in the CuTi alloy
The reason why the particles are highly dispersed in the u matrix is that if the average interparticle distance of the precipitate is 50 μm or more, the strength after being integrated with and joined to Ag varies.

【0035】一方、その析出物の大きさの上限値を25μ
m以下に抑える理由は、25μm以上では、薄板加工や細
線加工時に析出物に応力が集中し、破断及び亀裂や凹凸
が発生するだけでなく、マトリックスよりも溶融温度の
高い析出物が偏在する結果、接合強度がばらつくためで
ある。
On the other hand, the upper limit of the size of the precipitate is 25 μm.
The reason for keeping it below m is that if it is 25 μm or more, stress concentrates on the precipitate during thin plate processing and fine wire processing, not only breaks, cracks and irregularities occur, but also precipitates with a higher melting temperature than the matrix are unevenly distributed. This is because the bonding strength varies.

【0036】なお、析出物の大きさの下限値は、 300倍
の金属顕微鏡で視認できない程度のものを含むのが好ま
しく、例えばCu,Tiを溶融状態とした後、この溶融
温度からCuTi合金が凝固するまでを、50〜106 K/
秒の速度で冷却して製造する。
It is preferable that the lower limit of the size of the precipitates includes those that are not visually recognizable with a metallographic microscope at a magnification of 300 times. until coagulation, 50~10 6 K /
It is manufactured by cooling at a speed of seconds.

【0037】また、Agを(Ag+Cu),(Ag+C
u+Pd)としてもよい。Tiでマトリックスの溶融温
度の上昇を抑え、絶縁容器にかかる応力を抑えることが
できる。AgにIn,Sn,Znを1〜10%程度添加し
てもよい。これは、Tiによって絶縁容器とのぬれ性が
低下する状態を防ぐことができる。
Further, Ag is expressed as (Ag + Cu), (Ag + C
u + Pd). With Ti, the rise in the melting temperature of the matrix can be suppressed, and the stress applied to the insulating container can be suppressed. About 1 to 10% of In, Sn, and Zn may be added to Ag. This can prevent the state where the wettability with the insulating container is reduced by Ti.

【0038】また、(Ag+Cu)と、(Ag+Cu+
Pd)中のAgの比率を30%以上(100 %以上を含む)
とする理由は、ろう材中のCuTi相の生成を抑えるた
めである。
Further, (Ag + Cu) and (Ag + Cu +
30% or more (including 100% or more) of Ag in Pd)
The reason is to suppress the generation of the CuTi phase in the brazing material.

【0039】さらに、(Ag+Cu)及び(Ag+Cu
+Pd)中に、In,Sn,Znの少なくとも一つを、
(Ag+Cu)と(Ag+Cu+Pd)に対して1%以
上10%以下とする理由は、10%を超えるとろう材として
の加工性が著しく低下するためである。
Further, (Ag + Cu) and (Ag + Cu)
+ Pd), at least one of In, Sn, and Zn is
The reason why the content is set to 1% or more and 10% or less with respect to (Ag + Cu) and (Ag + Cu + Pd) is that if it exceeds 10%, the workability as a brazing material is remarkably reduced.

【0040】なお、CuTi合金とAg,Ag合金とを
一体化する方法は、例えばこれらを重ねるだけもよい
が、重ねた後にかしめや加圧,圧延,押し出し,鍛造加
工又は熱拡散などでより強固確実に一体化した方が好ま
しい。
The method of integrating the CuTi alloy with the Ag and Ag alloys may be, for example, merely stacking them. However, after the stacking, they are more firmly formed by caulking, pressing, rolling, extruding, forging or heat diffusion. It is preferable to integrate them securely.

【0041】また、CuTi合金,Ag,Ag合金の形
状は、板状でなくて線,棒,中空(パイプ)でもよい。
例えば、線材のCuTi合金をパイプ状のAgの中に挿
入した後、押し出し加工法で一体化してもよい。
The shape of the CuTi alloy, Ag, Ag alloy may be a wire, a rod, or a hollow (pipe) instead of a plate.
For example, after the CuTi alloy of the wire is inserted into the pipe-shaped Ag, it may be integrated by extrusion.

【0042】なお、CuTi合金の板厚,線径とパイプ
の肉厚は、10μm以上、好ましくは30μm以上がよい。
理由は、CuTi相(析出物)の大きさ(d)と板厚
(t)との比であるが、CuTi相が増えると、好まし
いCuTi合金の板,線,パイプが得られないからであ
る。
The plate thickness, wire diameter and wall thickness of the CuTi alloy are preferably at least 10 μm, more preferably at least 30 μm.
The reason is the ratio between the size (d) of the CuTi phase (precipitate) and the plate thickness (t). However, if the CuTi phase increases, it is not possible to obtain a preferable CuTi alloy plate, wire, or pipe. .

【0043】発明者の実験によれば、d/tの比率は、
ほぼ1/3程度以下がよい。具体的には、CuTi合金
の板厚,線径とパイプの肉厚は、10μm以上、できれば
30μm以上が好ましい。
According to the experiment of the inventor, the ratio of d / t is
About 1/3 or less is preferable. Specifically, the thickness, wire diameter, and pipe thickness of the CuTi alloy should be 10 μm or more, if possible.
It is preferably at least 30 μm.

【0044】また、CuTiの両面にAgを配置して一
体化すれば、一体化した後のバイメタル効果に伴う素材
の弯曲を防ぐことができる。管状のAgの内部にCuT
iを挿入して一体化しても同様である。
If Ag is arranged on both surfaces of CuTi and integrated, it is possible to prevent the material from being bent due to the bimetal effect after the integration. CuT inside tubular Ag
The same applies when i is inserted and integrated.

【0045】また、CuTi合金とAgを熱処理であら
かじめ一体化するときには、熱処理は真空か非酸化性雰
囲気とすべきで、かつAg,Ag合金の固相点以下の温
度で行うのがよい。
When the CuTi alloy and Ag are previously integrated by heat treatment, the heat treatment should be performed in a vacuum or a non-oxidizing atmosphere, and should be performed at a temperature equal to or lower than the solidus point of Ag and the Ag alloy.

【0046】その理由は、Tiが酸化するとろう付け性
が低下するので、一体化時のTiの選択酸化を防ぐため
である。固相点以上の温度で一体化すると、Ag,Ag
Cuマトリックス中でのTiの移動を促進しTiが偏
析,凝集するので、これを防ぐためである。
The reason is that if the Ti is oxidized, the brazing property is reduced, so that the selective oxidation of the Ti during the integration is prevented. When integrated at a temperature higher than the solidus point, Ag, Ag
This is for promoting the movement of Ti in the Cu matrix and preventing the segregation and aggregation of Ti.

【0047】接合強度のばらつきの要因を検討したとこ
ろ、絶縁容器の表面状態の他に、ろう材の量,厚さ,材
質、特にろう材の状態、すなわち、ろう材の内部に発生
する亀裂とその進展の有無や、接合界面に発生する応力
などに関与する組織の均一性などの影響が大きいことが
分かった。
When the factors of the variation in the bonding strength were examined, the amount, thickness, and material of the brazing material, particularly the state of the brazing material, that is, cracks generated inside the brazing material, in addition to the surface condition of the insulating container, were examined. It was found that the influence of the progress and the uniformity of the structure related to the stress generated at the joint interface was large.

【0048】このうち、組織の均一性は、ろう材の内部
のCuTi相の量,大きさと偏析の程度が左右し、これ
らはろう材の製造中の雰囲気(真空非酸化性),溶解条
件,加工圧延条件,熱処理条件などで影響される。Cu
Ti相は、CuTiインゴットを圧延する過程と、ろう
付け過程で生成される場合がある。
Among these, the uniformity of the structure depends on the amount and size of the CuTi phase inside the brazing material and the degree of segregation. These are determined by the atmosphere during the production of the brazing material (vacuum non-oxidizing property), melting conditions, It is affected by processing and rolling conditions and heat treatment conditions. Cu
The Ti phase may be generated in a process of rolling a CuTi ingot and in a brazing process.

【0049】後者ではろう材は再溶解させるので、前者
のろう材製造過程で生成したCuTi相は消滅する。そ
のため、ろう材製造過程で生成したCuTi相は一般に
軽視されるが、本発明の真空バルブでは、CuTi板と
Ag板とを一体化する際の加工性に影響する。
In the latter, the brazing material is redissolved, so that the CuTi phase generated in the former brazing material manufacturing process disappears. Therefore, the CuTi phase generated in the brazing material manufacturing process is generally neglected. However, the vacuum valve of the present invention affects the workability when the CuTi plate and the Ag plate are integrated.

【0050】ろう在中のCuTi相が多すぎると、組成
の不均一で、溶融温度がばらつくだけでなく、加工不良
で良質の板状ろう材が得られず、板厚の調整に手間を要
し、接合力も低下し、遮断特性も低下する。このような
ろう材では、接合面の浸透性も損なわれ、接合強度もば
らつく。
If the amount of the CuTi phase in the brazing material is too large, not only the composition is not uniform and the melting temperature varies, but also a poor quality brazing material cannot be obtained due to poor processing. As a result, the bonding force is reduced, and the cutoff characteristics are also reduced. In such a brazing material, the permeability of the joining surface is impaired, and the joining strength varies.

【0051】CuTi相が多いろう材では、接合強度も
低く、ばらつきもあり、気密性も劣る。接合部の断面の
顕微鏡写真では、CuTi相や近傍から亀裂が絶縁容器
の方向に発生している状態が見られた。
The brazing filler metal having a large amount of CuTi phase has low bonding strength, variation, and poor airtightness. In the micrograph of the cross section of the joint, a crack was observed in the direction of the insulating container from the CuTi phase or the vicinity.

【0052】これに対して、CuTi相が少ないろう材
を用いた接合部では、やはりCuTi相を起点とする亀
裂が発生し、一部には絶縁容器に及んでいるのもあるが
その程度は前者より少ない。
On the other hand, in a joint using a brazing material having a low CuTi phase, cracks originating from the CuTi phase also occur, and some of the cracks extend to the insulating container. Less than the former.

【0053】使用するろう材の状態(CuTi相の量や
存在形態)が、亀裂の発生時期,発生状況と相関関係が
あることが分かった。これが接合力のばらつく原因と考
えられる。
It has been found that the state of the brazing material (the amount and the form of the CuTi phase) has a correlation with the time and the state of crack generation. This is considered to be a cause of the variation in the joining force.

【0054】したがって、ばらつきを減らすためには、
使用するろう材の状態をあらかじめ管理することが接合
力の安定化による真空バルブの遮断特性を上げるために
重要である。
Therefore, in order to reduce the variation,
It is important to control the state of the brazing material to be used in advance in order to improve the shutoff characteristics of the vacuum valve by stabilizing the joining force.

【0055】[0055]

【発明の実施の形態】以下、本発明の真空バルブの一実
施形態を詳細に説明する。 再点弧の発生頻度 直径30mm,厚さ5mmの円板状の接点を実験用の真空バル
ブに組み込み、6kv500 Aの回路を遮断したときの再
点弧の発生頻度と7.2 kV,50Hzでの遮断限界値を2
台の真空遮断器(真空バルブとして6本)のばらつきを
含めて表1と表2に示した。なお、遮断回路の力率は1
である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, an embodiment of the vacuum valve of the present invention will be described in detail. Frequency of re-ignition The frequency of re-ignition when a circuit of 6 kv 500 A is cut off and a break of 7.2 kV, 50 Hz when a disc-shaped contact with a diameter of 30 mm and a thickness of 5 mm is incorporated into an experimental vacuum valve. Limit value 2
Tables 1 and 2 include the variations of the vacuum circuit breakers (six vacuum valves). The power factor of the shutoff circuit is 1
It is.

【0056】[0056]

【表1】 [Table 1]

【0057】[0057]

【表2】 [Table 2]

【0058】接点の装着に際しては、ベーキング加熱
(450 ℃×30分)のみ行い、ねじで電極に固定してろう
材の使用とこれに伴う加熱は行わなかった。なお、表2
の評価結果の再点弧の頻度において、試験は遮断倍率の
試験のときの接点間隙よりも狭くして行った。
At the time of mounting the contacts, only baking heating (450 ° C. × 30 minutes) was performed, and the brazing material was fixed to the electrodes with screws, and the use of the brazing material and the accompanying heating were not performed. Table 2
The test was conducted with the frequency of re-ignition being narrower than the contact gap at the time of the test for breaking magnification.

【0059】また、遮断回数の2万回とは、6本の真空
バルブの合計で、試験を中止したバルブの回数も加算さ
れている。また、発生頻度の下限の値は、6本中の最小
の値を示し、上限の値は、最多の値を示す。
The number of cutoffs of 20,000 is the total of six vacuum valves, and the number of valves for which the test is stopped is also added. The lower limit value of the occurrence frequency indicates the minimum value of the six lines, and the upper limit value indicates the maximum value.

【0060】遮断倍率 遮断試験用真空バルブに接点電極を装着し、接点表面の
ベーキング,電流・電圧エージングを行い、開極速度条
件を一定とした後、7.2 kV,50Hzで、遮断電流値を
5kAから増やしながら、限界電流値を測定した。
Breaking magnification A contact electrode was mounted on a vacuum valve for a breaking test, baking and current / voltage aging of the contact surface were performed, and after making the opening speed condition constant, the breaking current value was 5 kA at 7.2 kV, 50 Hz. The limiting current value was measured while increasing from.

【0061】表1及び表2に示すように、実施例3の遮
断限界電流値を100 とし、各条件下でのその値と対比
し、その倍率を遮断倍率として示した。次いで、真空バ
ルブの封着金具のろう付用として表1に示したCuTi
合金とAg又は銀合金を用いた。
As shown in Tables 1 and 2, the cut-off limit current value of Example 3 was set to 100, and compared with the value under each condition, the magnification was shown as the cut-off magnification. Next, CuTi shown in Table 1 was used for brazing a sealing metal fitting for a vacuum valve.
An alloy and an Ag or silver alloy were used.

【0062】また、平均表面粗さ(Rave.)を約 0.1μ
mに研磨し1,450 ℃の前加熱処理を施し、絶縁容器(主
成分:アルミナ)を用いた。また、封着金具として、表
面に厚さ約1μmのNi被覆を施した板厚2mmの42%N
i−Fe合金,コバールなど用いた。
The average surface roughness (Rave.) Is set to about 0.1 μm.
m, pre-heated at 1,450 ° C., and used an insulating container (main component: alumina). As a sealing metal, a 42 mm N 2 mm thick plate having a surface coated with Ni having a thickness of about 1 μm was used.
i-Fe alloy, Kovar, etc. were used.

【0063】ろう付用部材として最も重要なCuTi板
は、所定値に秤量したCu粒,Ti粒を真空度5×10-4
Pa.で溶融状態とした後、真空の雰囲気中で冷却した
後、鍛造,圧延,熱処理を組合わせて所定厚さのCuT
i板とした。
The most important CuTi plate as a brazing member is to weigh Cu particles and Ti particles weighed to predetermined values at a degree of vacuum of 5 × 10 -4.
Pa. And then cooled in a vacuum atmosphere, and then combined with forging, rolling and heat treatment to form a CuT
An i plate was used.

【0064】Ti量を精密に管理するCuTi板は、C
u板に正確な厚さのTi層をめっきで形成し、熱拡散法
等で両者を均一合金化してCuTiとした。なお、Ti
層は、イオンプレーティング法やスパッタリング法で形
成してもよい。
A CuTi plate for precisely controlling the amount of Ti is a CTi plate.
A Ti layer having an accurate thickness was formed on the u-plate by plating, and both were uniformly alloyed by a thermal diffusion method or the like to obtain CuTi. Note that Ti
The layer may be formed by an ion plating method or a sputtering method.

【0065】CuTi板を製造する他の方法として、例
えば96%Cu−4%Ti合金溶湯を回転するロールに吹
付け、溶湯から固体となるまでの間の冷却速度を104
/秒程度の速度で冷却固化してもよい。この場合のCu
Ti板の顕微鏡組織は、CuTi相がほとんど見られ
ず、均一であった。
As another method for producing a CuTi plate, for example, a 96% Cu-4% Ti alloy melt is sprayed on a rotating roll, and the cooling rate from the melt to the solid becomes 10 4 K.
/ Solidification at a rate of about / second. Cu in this case
The microstructure of the Ti plate was uniform with almost no visible CuTi phase.

【0066】次に、このCuTi合金、Agなどでろう
付して真空バルブを製作した。CuTi合金とAgとの
一体化する方法のうち、単に重ね合わせてかしめる方法
が簡単であるが、絶縁容器と封着金具の間への挿入作業
が繁雑で、CuTi板とAgとがずれるおそれがあり、
取扱いが不便で、真空バルブのろう付工程が繁雑とな
る。
Next, a vacuum valve was manufactured by brazing with this CuTi alloy, Ag or the like. Of the methods of integrating the CuTi alloy and Ag, it is simple to simply overlap and caulk, but the insertion work between the insulating container and the sealing fitting is complicated, and the CuTi plate and Ag may be displaced. There is
The handling is inconvenient and the brazing process of the vacuum valve becomes complicated.

【0067】そこで、重ね合わせた後、更に加圧で強固
に両者を一体化すれば取扱いが容易となる。また、熱処
理で界面を冶金的に接合すれば更に改善される。熱処理
で一体化するときには、Tiが酸化すると接合力が下が
るので、Tiの選択的酸化を抑えるために、真空中で行
った。
Then, if the two are firmly integrated by further applying pressure after the superposition, the handling becomes easy. Further, if the interface is metallurgically joined by heat treatment, the situation is further improved. When integrated by heat treatment, when the Ti is oxidized, the bonding strength is reduced. Therefore, in order to suppress the selective oxidation of the Ti, it was performed in a vacuum.

【0068】さらに、AgもしくはAg合金の固相点以
下の温度で、熱間圧着または冷間圧着で一体化してもよ
い。固相点以上の温度で一体化させると、液相となった
Ag,Agマトリックス中をTiが移動し凝集する結
果、Tiの移動で偏析して分布し、接合力がばらつき、
再点弧が発生するものもあった。
Further, they may be integrated by hot pressing or cold pressing at a temperature not higher than the solidus point of Ag or Ag alloy. When integrated at a temperature equal to or higher than the solidus point, Ti moves and aggregates in the Ag and Ag matrix that has become a liquid phase.
In some cases, restriking occurred.

【0069】したがって、熱的な手段でCuTi板とA
gとを一体化するには、雰囲気と温度の選択が重要であ
る。CuTi板とAgの一体化方法として、スポット溶
接で部分的に接合してもよい。この方法は、接合部が部
分的となるが、Tiの移動や選択的酸化のおそれもな
い。
Therefore, the CuTi plate and the A
In order to integrate g, selection of atmosphere and temperature is important. As a method of integrating the CuTi plate and the Ag, they may be partially joined by spot welding. In this method, the junction is partially formed, but there is no fear of migration or selective oxidation of Ti.

【0070】次に、このようにして一体化した(CuT
i合金Ag)のろう材で封着部を860 ℃の真空炉で20分
接合した。アルゴンガス、水素ガスなど非酸化性雰囲気
でも良く接合したが、酸化性雰囲気では接合できなかっ
たり、たとえ接合できても強度がばらついた。
Next, the integrated (CuT)
The sealing portion was joined with a brazing material of i-alloy Ag) in a vacuum furnace at 860 ° C. for 20 minutes. Bonding was performed well in a non-oxidizing atmosphere such as argon gas and hydrogen gas, but bonding was not possible in an oxidizing atmosphere, or even if bonding could be performed, the strength varied.

【0071】したがって、一体化したCuTi合金Ag
を用いるときには、特に接合処理時の雰囲気の選択が重
要である。ろう付け工程後の銀ろうの付着状況を、目視
と接合部界面の顕微鏡写真で観察した。
Therefore, the integrated CuTi alloy Ag
Is particularly important to select the atmosphere during the bonding process. The state of adhesion of the silver solder after the brazing step was observed visually and by a micrograph of the interface of the joint.

【0072】気密封着後の真空バルブを治具に装着し、
両端をインストロン式万能試験機で封着金具と絶縁容器
との接合部の引き外し力を測定した。72%AgCuろう
材の強度の20〜30kgf /mm2 以上を目標とした。
The vacuum valve after the hermetically sealed attachment is attached to the jig,
The peeling force of the joint between the sealing fitting and the insulating container was measured at both ends using an Instron universal testing machine. 72% of the intensity of the AgCu brazing material 20~30kgf / mm 2 or more was targeted.

【0073】なお、本発明の真空バルブでは、一体化し
た(CuTi合金Ag)ろう材を、厚さが例えば約1mm
のCu板と重ね合わせて、絶縁容器と封着金具の間に配
置する、すなわち(CuTi合金Ag)/Cuとして使
用することもできる。
In the vacuum valve according to the present invention, the integrated (CuTi alloy Ag) brazing material is, for example, about 1 mm thick.
And placed between the insulating container and the sealing fitting, that is, (CuTi alloy Ag) / Cu.

【0074】Cu板は、製造条件などによっては省いた
り厚さや枚数を変える。Cu板は、CuTi合金の酸化
と例えば封着金具の表面にめっきした場合のNiTi化
合物の生成を抑制する。
The Cu plate may be omitted or its thickness or number may be changed depending on the manufacturing conditions. The Cu plate suppresses oxidation of the CuTi alloy and generation of a NiTi compound when, for example, plating is performed on the surface of the sealing metal.

【0075】さらに、本発明の真空バルブでは、一体化
したCuTi合金Agのろう材を、厚さが約1mmのCu
板で挟んで、絶縁容器と封着金具との間に配置する、す
なわち、Cu/CuTi合金Ag/Cuとして絶縁容器
をろう付してもよい。Cu板は、製造条件などによって
省いたり、厚さや枚数を変えてもよい。
Further, in the vacuum valve of the present invention, the integrated CuTi alloy Ag brazing material is
The insulating container may be sandwiched between plates and disposed between the insulating container and the sealing fitting, that is, the insulating container may be brazed as Cu / CuTi alloy Ag / Cu. The Cu plate may be omitted or the thickness and the number of Cu plates may be changed depending on manufacturing conditions.

【0076】実施例1〜5,比較例1〜2 CuTi合金中のTi量(Ti/Cu+Ti)を、0〜
8.5 %の範囲で変えて秤量したCu,Ti原料を高周波
誘導溶解法(実施例1〜3,比較例1),電子ビーム溶
解法(実施例4〜5,比較例2)で真空溶解し、溶湯を
水冷銅鋳型に注入し、CuTi合金のインゴットを製造
した。
Examples 1-5, Comparative Examples 1-2 The Ti content (Ti / Cu + Ti) in the CuTi alloy was
The Cu and Ti raw materials weighed while varying in the range of 8.5% were vacuum melted by the high frequency induction melting method (Examples 1 to 3 and Comparative Example 1) and the electron beam melting method (Examples 4 to 5 and Comparative Example 2). The molten metal was poured into a water-cooled copper mold to produce a CuTi alloy ingot.

【0077】このインゴットを鍛造、圧延と焼鈍熱処理
で、厚さ100 μmのCuTi合金板を作製した。Agと
しては、通常のAg板を用いた。絶縁容器のろう付面を
平均表面粗さ(Rave. )約0.1 μmに研磨した。
This ingot was forged, rolled, and annealed to produce a CuTi alloy plate having a thickness of 100 μm. As the Ag, a normal Ag plate was used. The brazing surface of the insulating container was polished to an average surface roughness (Rave.) Of about 0.1 μm.

【0078】封着金具には、表面に厚さ約1μmのNi
被覆を施した厚さ2mmの42%Ni−Fe合金を用いた。
The surface of the sealing member was made of Ni having a thickness of about 1 μm.
A coated 42% Ni-Fe alloy with a thickness of 2 mm was used.

【0079】ろう付後の真空バルブを治具に装着し、両
側からインストロン式万能試験機で引っ張って接合強度
を測定した。CuTi合金とAgを絶縁容器と封着金具
との間に配置し、真空中で860 ℃20分で接合した。
The vacuum valve after brazing was mounted on a jig, and pulled from both sides with an Instron universal testing machine to measure the bonding strength. The CuTi alloy and Ag were placed between the insulating container and the sealing fitting, and joined at 860 ° C. for 20 minutes in a vacuum.

【0080】一部の実施例では、あらかじめCuTi合
金とAgとを冶金的に一体化した後、絶縁容器と封着金
具との間に配置し、真空中で860 ℃20分で接合した。他
の実施例では、あらかじめCuTi合金とAgとを圧着
などで一体化した後、絶縁容器と封着金具との間に配置
し、真空中で860 ℃20分で接合した。
In some embodiments, the CuTi alloy and Ag were metallurgically integrated in advance, then placed between the insulating container and the sealing fitting, and joined in vacuum at 860 ° C. for 20 minutes. In another embodiment, a CuTi alloy and Ag were previously integrated by pressure bonding or the like, then placed between an insulating container and a sealing fitting, and joined at 860 ° C. for 20 minutes in a vacuum.

【0081】その他の実施例では、あらかじめCuTi
合金とAgとをスポット溶接機で一体化して、絶縁容器
と封着金具との間に配置し、真空中で860 ℃20分で接合
した。いずれの方法でも良好な真空バルブを得た。
In another embodiment, CuTi
The alloy and Ag were integrated by a spot welder, placed between an insulating container and a sealing fitting, and joined at 860 ° C. for 20 minutes in a vacuum. In any case, a good vacuum valve was obtained.

【0082】このように、本発明では、あらかじめCu
Ti合金とすることと、CuTi合金中の好ましいTi
量(Ti/Cu+Ti)値を0.05〜5.0 %の範囲とする
のが好ましい(実施例1〜5)。
As described above, in the present invention, Cu
Ti alloy and preferred Ti in CuTi alloy
The amount (Ti / Cu + Ti) value is preferably in the range of 0.05 to 5.0% (Examples 1 to 5).

【0083】実施例6,比較例3〜4 実施例1〜5,比較例1〜2では、CuTi合金の厚さ
を100 μmとしたときのCuTi合金中のTi量の影響
と効果を示した。
Example 6, Comparative Examples 3 and 4 In Examples 1 and 5 and Comparative Examples 1 and 2, the effects and effects of the amount of Ti in the CuTi alloy when the thickness of the CuTi alloy was 100 μm were shown. .

【0084】しかし、(Ti/Cu+Ti)値を0.5 %
とし、CuTi合金の厚さを1〜1000μmとすると、C
uTi合金の厚さが1〜5μm(比較例3〜4)では、
CuTi合金板の製造過程で、CuTi合金中のCuT
i化合物の割合が増えて、CuTi化合物に応力が集中
し、CuTi合金を薄板や細線にする加工中に破断する
おそれがあり、真空バルブの組立の作業性が劣るととも
に、Tiの絶対量も不足して真空バルブの接合面も十分
なぬれ性が得られず、真空リークによる再点弧が多発し
た。
However, when the (Ti / Cu + Ti) value is 0.5%
Assuming that the thickness of the CuTi alloy is 1 to 1000 μm, C
When the thickness of the uTi alloy is 1 to 5 μm (Comparative Examples 3 and 4),
During the manufacturing process of CuTi alloy plate, CuT in CuTi alloy
The ratio of the i-compound increases, stress concentrates on the CuTi compound, which may cause breakage during the processing of the CuTi alloy into a thin plate or a thin wire, resulting in poor workability in vacuum valve assembly and an insufficient amount of Ti. As a result, sufficient wettability could not be obtained at the joint surface of the vacuum valve, and re-ignition due to a vacuum leak occurred frequently.

【0085】これに対して、CuTi合金の厚さが10μ
m以上(実施例6〜9)では、良質のCuTi合金Ag
の一体化材が得られ、絶縁容器と封着金具とを接合した
ときの接合力は、60〜100 kgf /mm2 で優れている。
On the other hand, when the thickness of the CuTi alloy is 10 μm
m or more (Examples 6 to 9), high-quality CuTi alloy Ag
Is obtained, and the joining strength when the insulating container and the sealing fitting are joined is excellent at 60 to 100 kgf / mm 2 .

【0086】なお、この場合のろう付け工程後の接合界
面の顕微鏡による観察によって、CuTi相の量も少な
く分散状況も凝集することなく良好な接合部分が得られ
た。また、CuTi合金の析出物の大きさは25μm以下
であった。平均析出物間距離も50μm以下であった。し
たがって、本発明では、CuTi合金の厚さは、10μm
以上とするのが好ましい(実施例6〜9)。
In this case, by observation with a microscope of the bonding interface after the brazing step, a good bonding portion was obtained without the amount of CuTi phase being small and the dispersion state being agglomerated. The size of the precipitate of the CuTi alloy was 25 μm or less. The average distance between precipitates was also 50 μm or less. Therefore, in the present invention, the thickness of the CuTi alloy is 10 μm
It is preferable to use the above (Examples 6 to 9).

【0087】実施例10〜11,比較例5〜6 実施例1〜9,比較例3〜4では、CuTi合金のCu
Ti化合物の大きさを5〜25μmの範囲としたが、Cu
Ti合金中のTi量(Ti/Cu+Ti)を0.5 %,C
uTi合金の厚さを100 μmとして、CuTi化合物の
大きさを5μm以下と5〜25μmとしても、実施例1〜
9と同様に再点弧の発生頻度が少なく、遮断特性が安定
した(実施例10〜11)。
Examples 10 to 11 and Comparative Examples 5 to 6 In Examples 1 to 9 and Comparative Examples 3 and 4, the CuTi alloy
Although the size of the Ti compound was in the range of 5 to 25 μm,
0.5% Ti content (Ti / Cu + Ti) in Ti alloy
Even when the thickness of the uTi alloy is 100 μm and the size of the CuTi compound is 5 μm or less and 5 to 25 μm,
As in No. 9, the frequency of occurrence of restriking was low, and the cutoff characteristics were stable (Examples 10 to 11).

【0088】これに対して、CuTi化合物の大きさが
20〜60μm(比較例5)と100 μm以上(比較例6)で
は、CuTi析出物とマトリックスとの界面に亀裂や破
断が発生して良質のCuTi合金が得られず、Agと一
体化しても界面から剥離した。
On the other hand, the size of the CuTi compound is
When the thickness is 20 to 60 μm (Comparative Example 5) and 100 μm or more (Comparative Example 6), cracks or breaks occur at the interface between the CuTi precipitate and the matrix, so that a high-quality CuTi alloy cannot be obtained. Peeled from the interface.

【0089】真空バルブと封着金具のろう付に用いたと
き、接合力として10〜70kgf /mm2から5〜85kgf /mm
2 とばらつき、開閉による衝撃で一部の真空バルブでは
リークしたので、再点弧テストを中止した。遮断特性も
著しく不安定であった。
When used for brazing a vacuum valve and a sealing fitting, the bonding force is 10 to 70 kgf / mm 2 to 5 to 85 kgf / mm.
The re-ignition test was stopped because some vacuum valves leaked due to the impact of opening and closing. The blocking characteristics were also extremely unstable.

【0090】したがって、CuTi合金におけるCuT
i化合物の大きさを25μm以下とすれば、再点弧の発生
頻度が少ない遮断特性を示した(実施例10〜11)。以上
の実施例では、あらかじめCuTi合金を製造し、次い
でCuTi合金とAgとを一体化したが、CuTi合金
とせず、Cu板、Ti板を別々にAgともに一体化した
状態で絶縁容器と封着金具との間に配置する方法は作業
が繁雑となるが、再点弧を含む遮断特性への影響は少な
い。
Therefore, CuT in CuTi alloy
When the size of the i-compound was set to 25 μm or less, the cutoff characteristics with less occurrence of restriking were exhibited (Examples 10 to 11). In the above embodiment, the CuTi alloy was manufactured in advance, and then the CuTi alloy and Ag were integrated. However, the Cu plate and the Ti plate were not integrated with the CuTi alloy, but were sealed with the insulating container in a state where the Ag and the Ag were separately integrated. The method of arranging it between the metal fittings makes the operation complicated, but has little effect on the cutoff characteristics including restriking.

【0091】実施例12〜14,比較例7 実施例1〜11,比較例2〜6では、Agとして100 %の
Agを用いたが、本発明のAgはこれだけでなく、20%
Cu残部Ag,28%Cu残部Ag,70%Cu残部Ag
(実施例12〜14)でも再点弧の発生頻度が少なく、安定
した遮断特性を発揮した。
Examples 12 to 14 and Comparative Example 7 In Examples 1 to 11 and Comparative Examples 2 to 6, 100% Ag was used as Ag.
Cu remaining Ag, 28% Cu remaining Ag, 70% Cu remaining Ag
Also in Examples 12 to 14, the frequency of occurrence of restriking was low, and stable blocking characteristics were exhibited.

【0092】これに対して、85%Cu残部Ag(比較例
7)では、CuTi析出物が増え、開閉動作で接合力の
ばらつきと気密不良が出た。接合力は、15〜75kgf /mm
2 の範囲でばらつき、封着部の界面の顕微鏡観察で、C
uTi合金中に粗大なCuTi相が多量に見られ、大き
さも50μmを超えるものがあった(比較例7)。投入・
開極時の振動で、一部の真空バルブでは、気密性が低下
し、再点弧が多発するとともに試験不能のバルブも出
た。
On the other hand, in the case of 85% Cu remaining Ag (Comparative Example 7), the amount of CuTi precipitates increased, and a variation in bonding force and poor airtightness occurred during the opening / closing operation. Bonding force is 15-75kgf / mm
Variations in the range of 2 were observed by microscopic observation of the interface of the sealed part.
A large amount of coarse CuTi phase was found in the uTi alloy, and the size of some of them exceeded 50 μm (Comparative Example 7). Input
Due to the vibration at the time of opening, the airtightness of some vacuum valves decreased, re-ignition frequently occurred, and some valves could not be tested.

【0093】実施例15〜26 実施例1〜11,比較例2〜6では、Agとして100 %A
g,Ag合金としてAgCuを使用した例で示したが、
Ag合金としてAgPd,AgCuPd,AgIn,A
gSn,AgInSn,AgZn,AgCuIn,Ag
CuSn,AgCuInSn,AgCuZn(実施例15
〜26)でも、良好なCuTi合金を得ることができ、か
つ良好な気密接合となって、いずれも再点弧の発生頻度
が少ない遮断特性となった。
Examples 15 to 26 In Examples 1 to 11 and Comparative Examples 2 to 6, 100% A was used as Ag.
g, the example using AgCu as the Ag alloy was shown,
AgPd, AgCuPd, AgIn, A as Ag alloy
gSn, AgInSn, AgZn, AgCuIn, Ag
CuSn, AgCuInSn, AgCuZn (Example 15
26-26), a good CuTi alloy could be obtained, and good airtight bonding was obtained, and in each case, the breaking characteristics were less likely to cause re-ignition.

【0094】上記実施例では、板状のCuTi合金とA
gとを使用し一体化したが、両者が一体化加工した状態
であってもよい。さらに、上記実施例、比較例の封着金
具は、CuまたはNiなどを被覆したSUS304 ,42ア
ロイまたはコバールなど鉄基合金あるいは鉄基低熱膨張
係数合金でも、Cu−Ni基合金(Ni70wt%以下、
Ni=0含む)よりなる被接合金属でも同等の遮断特性
を得た。絶縁容器の材料も、アルミナ以外にマグネシ
ア、ジルコニアなど酸化物系セラミックスを用いてもよ
い。
In the above embodiment, a plate-shaped CuTi alloy and A
g was used for integration, but both may be integrated. Further, the sealing metal fittings of the above Examples and Comparative Examples are made of Cu-Ni-based alloys (Ni 70 wt% or less, Ni-based alloys such as SUS304, 42 alloy or Kovar coated with Cu or Ni).
(Equipped with Ni = 0), the same cut-off characteristics were obtained. As the material of the insulating container, oxide ceramics such as magnesia and zirconia may be used in addition to alumina.

【0095】[0095]

【発明の効果】本発明によれば、絶縁容器と封止板をろ
う付するろう材を、あらかじめCuとTiとをCuTi
合金としてAgとを一体化したので、AgCuTi合金
を製造してから板、線とするよりもTiの分布が均一と
なり、真空遮断の特長を長期に亘って維持することので
きる真空バルブを得ることができる。
According to the present invention, the brazing material for brazing the insulating container and the sealing plate is made of Cu and Ti beforehand.
Since Ag is integrated as an alloy, the distribution of Ti becomes more uniform than when AgCuTi alloy is manufactured and then as a plate or wire, and a vacuum valve that can maintain the characteristics of vacuum interruption for a long time is obtained. Can be.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C22C 9/00 C22C 9/00 (72)発明者 滝川 りか 東京都府中市東芝町1番地 株式会社東芝 府中工場内──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI C22C 9/00 C22C 9/00 (72) Inventor Rika Takikawa 1 Toshiba-cho, Fuchu-shi, Tokyo Toshiba Corporation Fuchu Plant

Claims (15)

【特許請求の範囲】[Claims] 【請求項1】 絶縁容器の両端に接合され内部の真空を
維持する封止板の片側に貫設された固定側通電軸と、前
記封止板の他側に進退自在に貫設された可動側通電軸
と、この可動側通電軸と前記固定側通電軸の対向面に接
合され前記可動側通電軸の進退動作で接離する電極とを
備えた真空バルブにおいて、前記封止板を前記絶縁容器
に接合するろう材はTi/(Cu+Ti)を0.05〜5%
としたCuTi合金と、Agを主成分とするAg合金又
はAgとの一体化材であることを特徴とする真空バル
ブ。
1. A fixed-side energizing shaft which is joined to both ends of an insulating container and is provided on one side of a sealing plate for maintaining an internal vacuum, and a movable shaft which is provided on the other side of the sealing plate so as to be able to advance and retreat. A vacuum valve comprising: a side energizing shaft; and an electrode which is joined to an opposing surface of the movable side energizing shaft and the fixed side energizing shaft and which comes into contact with and separates from the movable side energizing shaft. The brazing material to be joined to the container is Ti / (Cu + Ti) 0.05-5%
A vacuum valve characterized by being an integrated material of a CuTi alloy described above, and an Ag alloy or Ag containing Ag as a main component.
【請求項2】 前記CuTi合金は、非酸化性雰囲気中
の溶融状態から前記合金が凝固する迄を、50〜106 K/
秒の速度で冷却して製造したCuTi合金を用いたこと
を特徴とする請求項1に記載の真空バルブ。
Wherein said CuTi alloy from a molten state in a non-oxidizing atmosphere until the alloy solidifies, 50 to 10 6 K /
The vacuum valve according to claim 1, wherein a CuTi alloy manufactured by cooling at a speed of seconds is used.
【請求項3】 前記CuTi合金は、0.05〜5%のTi
をCuマトリックス中に固溶させていることを特徴とす
る請求項1又は請求項2に記載の真空バルブ。
3. The CuTi alloy contains 0.05 to 5% of Ti.
3. The vacuum valve according to claim 1, wherein is dissolved in a Cu matrix.
【請求項4】 前記CuTi合金は、Tiを固溶したC
uマトリックスとCuTi化合物とで構成したことを特
徴とする請求項1乃至請求項3に記載の真空バルブ。
4. The CuTi alloy has a solid solution of Ti
The vacuum valve according to any one of claims 1 to 3, wherein the vacuum valve comprises a u matrix and a CuTi compound.
【請求項5】 前記CuTi合金中のCuTi化合物
は、Cuマトリックス中に析出物の平均粒子間距離が50
μm以下に分散し、かつ、その析出物の大きさを25μm
以下としたことを特徴とする請求項1又は請求項2に記
載の真空バルブ。
5. The CuTi compound in the CuTi alloy has an average interparticle distance of the precipitate of 50 in the Cu matrix.
μm or less, and the size of the precipitate is 25 μm
The vacuum valve according to claim 1 or 2, wherein:
【請求項6】 前記Agは、(Ag+Cu)で構成さ
れ、この(Ag+Cu)中のAgの比率を30%以上とし
たことを特徴とする請求項1又は請求項2に記載の真空
バルブ。
6. The vacuum valve according to claim 1, wherein the Ag is composed of (Ag + Cu), and a ratio of Ag in the (Ag + Cu) is 30% or more.
【請求項7】 前記Agは、(Ag+Cu+Pd)で構
成され、この(Ag+Cu+Pd)中のAgの比率を30
%以上としたAgCuPd合金としたことを特徴とする
請求項1又は請求項2に記載の真空バルブ。
7. The Ag is composed of (Ag + Cu + Pd), and the ratio of Ag in the (Ag + Cu + Pd) is 30.
%. The vacuum valve according to claim 1, wherein the alloy is an AgCuPd alloy having a percentage of at least%.
【請求項8】 前記Agは、In,Sn,Znの少なく
とも一つをAgに対して1%以上10%以下含有させたこ
とを特徴とする請求項1又は請求項2に記載の真空バル
ブ。
8. The vacuum valve according to claim 1, wherein the Ag contains at least one of In, Sn, and Zn with respect to Ag by 1% or more and 10% or less.
【請求項9】 前記Agは、(Ag+Cu)にIn,S
n,Znの少なくとも一つを1%以上10%以下含有させ
たことを特徴とする請求項1又は請求項2に記載の真空
バルブ。
9. The method according to claim 9, wherein the Ag is In, S in (Ag + Cu).
3. The vacuum valve according to claim 1, wherein at least one of n and Zn is contained in a range of 1% to 10%.
【請求項10】 前記Agは、(Ag+Cu+Pd)に
In,Sn,Znの少なくとも一つを1%以上10%以下
含有させたことを特徴とする請求項1又は請求項2に記
載の真空バルブ。
10. The vacuum valve according to claim 1, wherein the Ag contains (Ag + Cu + Pd) at least one of In, Sn, and Zn in a range of 1% or more and 10% or less.
【請求項11】 前記絶縁容器と前記封止板との間に、
CuTi合金とAgを一体化させてなる前記ろう材とと
もに、活性金属を含まないCuやAgよりなる中間層を
介挿したことを特徴とする請求項1又は請求項2に記載
の真空バルブ。
11. Between the insulating container and the sealing plate,
The vacuum valve according to claim 1 or 2, wherein an intermediate layer made of Cu or Ag containing no active metal is interposed with the brazing material obtained by integrating the CuTi alloy and Ag.
【請求項12】 前記CuTiと前記Agを組合わせ一
体化したことを特徴とする請求項1乃至請求項11記載の
真空バルブ。
12. The vacuum valve according to claim 1, wherein the CuTi and the Ag are combined and integrated.
【請求項13】 前記CuTiの両面に前記Agを配置
し、これらを一体化したことを特徴とする請求項1乃至
請求項11に記載の真空バルブ。
13. The vacuum valve according to claim 1, wherein the Ag is disposed on both surfaces of the CuTi, and the Ag is integrated.
【請求項14】 板材,線材,管材の前記CuTiと前
記Agを組合わせ一体化したことを特徴とする請求項1
乃至請求項11に記載の真空バルブ。
14. The method according to claim 1, wherein said CuTi and said Ag of a plate material, a wire material, and a tube material are combined and integrated.
A vacuum valve according to claim 11.
【請求項15】 前記CuTi合金の板厚,線径,管材
の肉厚は、30μm〜150 μmとしたことを特徴とする請
求項14に記載の真空バルブ。
15. The vacuum valve according to claim 14, wherein a plate thickness, a wire diameter, and a wall thickness of the CuTi alloy are 30 μm to 150 μm.
JP4344597A 1997-02-27 1997-02-27 Vacuum bulb Pending JPH10241513A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4344597A JPH10241513A (en) 1997-02-27 1997-02-27 Vacuum bulb

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4344597A JPH10241513A (en) 1997-02-27 1997-02-27 Vacuum bulb

Publications (1)

Publication Number Publication Date
JPH10241513A true JPH10241513A (en) 1998-09-11

Family

ID=12663909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4344597A Pending JPH10241513A (en) 1997-02-27 1997-02-27 Vacuum bulb

Country Status (1)

Country Link
JP (1) JPH10241513A (en)

Similar Documents

Publication Publication Date Title
CN103732351B (en) Active metal solder
CN115360035A (en) Preparation method of CuCr50Te contact material with high fusion welding resistance
CN107617831A (en) A kind of ceramic and metal jointing oxidation resistant low-silver solder
KR100921704B1 (en) A manufacturing method of the planer electric contact
US6524525B2 (en) Method for producing a contact material for contact pieces for vacuum switch devices, and a contact material and contact pieces therefor
JP3428416B2 (en) Vacuum circuit breaker, vacuum valve and electric contact used therefor, and manufacturing method
JPH1173830A (en) Vacuum valve
JPH10199830A (en) Aluminum-type sputtering target material and manufacture thereof
US4654275A (en) Storage life of Pb-In-Ag solder foil by Sn addition
JPH10241513A (en) Vacuum bulb
JP6887183B1 (en) Solder alloys and molded solders
JP2015001023A (en) Zn-Al ALLOY FUSE
EP1591191B1 (en) Joining method by Au-Sn brazing material, its thickness being i.a. dependent on the Sn-content
JP2023519588A (en) Low-silver brazing material used for joining electric vacuum elements and its manufacturing method
JP4348444B2 (en) Zinc alloy for fuse, fuse and manufacturing method thereof
JP3509011B2 (en) Method for Refining Production Materials for Target Material for Al-based Sputtering
KR102220724B1 (en) NiSnP BRAZING FILLER METAL, BRAZING FILLER ALLOY PANNEL AND BRAZING METHOD
JPH04339575A (en) Manufacture of resistance welding electrode
JPH08245275A (en) Production of laminated brazing filler metal and joining method
JP4782386B2 (en) Bonding materials for vacuum valves
JPH1092276A (en) Vacuum valve and its manufacture
JP4515695B2 (en) Contact materials for vacuum circuit breakers
JPS59819A (en) Contact material for vacuum breaker
JP3575924B2 (en) Brazing material
JP2002279867A (en) Vacuum valve, its manufacturing method and vacuum circuit breaker