JP2002279867A - Vacuum valve, its manufacturing method and vacuum circuit breaker - Google Patents

Vacuum valve, its manufacturing method and vacuum circuit breaker

Info

Publication number
JP2002279867A
JP2002279867A JP2001076927A JP2001076927A JP2002279867A JP 2002279867 A JP2002279867 A JP 2002279867A JP 2001076927 A JP2001076927 A JP 2001076927A JP 2001076927 A JP2001076927 A JP 2001076927A JP 2002279867 A JP2002279867 A JP 2002279867A
Authority
JP
Japan
Prior art keywords
vacuum valve
alloy layer
current
weight
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001076927A
Other languages
Japanese (ja)
Inventor
Isao Okutomi
功 奥富
Takashi Kusano
貴史 草野
Katsumi Oshiumi
勝美 鴛海
Atsushi Yamamoto
敦史 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Shibafu Engineering Corp
Original Assignee
Toshiba Corp
Shibafu Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Shibafu Engineering Corp filed Critical Toshiba Corp
Priority to JP2001076927A priority Critical patent/JP2002279867A/en
Publication of JP2002279867A publication Critical patent/JP2002279867A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Switches (AREA)
  • High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)
  • Contacts (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve both energization characteristics and breaking characteristics of a vacuum circuit breaker. SOLUTION: An Ag-Cu-In alloy layer with 60 to 75 wt.% of Ag, 0.1 to 15 wt.% of In, and the rest of Cu is formed on the surface of an end part of each conductive axis of vacuum valve on the side connected to an outside conductor to lead to the vacuum circuit breaker. With this structure, contact resistance characteristics at coupling part of the energization axes of the vacuum valve and the outside conductor are improved.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、優れた通電特性と
遮断特性とを有する真空バルブとその製造方法および真
空遮断器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vacuum valve having excellent current-carrying and shut-off characteristics, a method for manufacturing the same, and a vacuum circuit breaker.

【0002】[0002]

【従来の技術】<真空バルブの代表的構造>第3図は、
真空バルブの代表的な構造を示す断面図である。絶縁容
器101の両端開口部を金属蓋体102a,102bに
より気密封止した真空容器103内に、一対の接点材料
104,105を対向させて設けると共に、金属蓋体1
02a,102bを貫通させて真空容器103内に挿入
された通電軸106,107の端部に接点材料104,
105をそれぞれ装着してある。この通電軸107を図
示しない操作機構により軸方向(M)に移動可能とする
ことにより、接点材料104(以下、適宜「固定接点1
04」という)に対して接点材料105(以下、適宜
「可動接点105」という)が接触または開離出来るよ
うにしてある。
2. Description of the Related Art <Representative structure of vacuum valve> FIG.
It is sectional drawing which shows the typical structure of a vacuum valve. A pair of contact materials 104 and 105 are provided facing each other in a vacuum container 103 in which openings at both ends of the insulating container 101 are hermetically sealed by metal covers 102a and 102b.
02a, 102b, and contact material 104,
105 are attached. The energizing shaft 107 can be moved in the axial direction (M) by an operation mechanism (not shown), so that the contact material 104 (hereinafter, “fixed contact 1
04 ") with a contact material 105 (hereinafter referred to as" movable contact 105 "as appropriate).

【0003】なお、金属蓋体102bと通電軸107と
の間には、真空容器103内を真空気密に保持し、かつ
通電軸107の軸方向への移動を可能とするベローズ1
08が設けられている。また、図中109は、各接点材
料104,105および通電軸106,107を包むた
めに設けられたシールドである。
[0003] A bellows 1 is provided between the metal lid 102b and the energizing shaft 107 to keep the inside of the vacuum vessel 103 airtight and to allow the energizing shaft 107 to move in the axial direction.
08 is provided. In the figure, reference numeral 109 denotes a shield provided for enclosing the contact materials 104 and 105 and the energizing shafts 106 and 107.

【0004】第4図は、代表的な真空バルブの別の構成
を示す断面図である。図3の接点材料104,105に
代えて、一対の接点材料41,51を対向させて設ける
と共に接点材料41の背面(通電軸106を接続する側
の面)には、接点材料41の表面に磁界を生成するため
の小型のコイル電極(図示せず)が設けられ、平板型電
極40によって支持されている。また、接点材料51の
背面にもコイル電極(図示せず)が設けられ平板型電極
50によって支持されている。
FIG. 4 is a sectional view showing another configuration of a typical vacuum valve. Instead of the contact materials 104 and 105 in FIG. 3, a pair of contact materials 41 and 51 are provided so as to face each other, and on the back surface of the contact material 41 (the surface on the side to which the conducting shaft 106 is connected), the surface of the contact material 41 is provided. A small coil electrode (not shown) for generating a magnetic field is provided, and is supported by the flat electrode 40. Also, a coil electrode (not shown) is provided on the back surface of the contact material 51, and is supported by the flat electrode 50.

【0005】第5図は、真空バルブの通電軸106,1
07が真空遮断器につなげるための外部導体にそれぞれ
接続された状態を示す図である。固定側の通電軸106
の接点材料104を装着したのと反対側の端部123
は、絶縁容器101の外側で外部導体121(電力導入
端子、図1で図示せず)の左側下面にボルトで固定され
る。可動側の通電軸107の接点材料105を装着した
のと反対側の端部124は、環状の導体125に挿入さ
れてロウ付けされ、この導体125の右側面には、薄い
金属板を重ねて構成された可撓導体126の上端部がボ
ルトで固定され、この可撓導体126の下端部は、可動
側の外部導体122にボルトで固定される。
[0005] FIG. 5 shows a current-carrying shaft 106, 1 of a vacuum valve.
FIG. 7 is a diagram showing a state in which 07 is connected to external conductors for connecting to a vacuum circuit breaker. Fixed-side energized shaft 106
End 123 opposite to the contact material 104
Is fixed to the outer conductor 121 (power supply terminal, not shown in FIG. 1) on the left lower surface with a bolt outside the insulating container 101. The end 124 of the movable energizing shaft 107 on the opposite side to the contact material 105 is inserted into the annular conductor 125 and brazed. On the right side of the conductor 125, a thin metal plate is laminated. The upper end of the formed flexible conductor 126 is fixed by a bolt, and the lower end of the flexible conductor 126 is fixed to the movable outer conductor 122 by a bolt.

【0006】<真空バルブの代表的組み立て方法>
(1)真空バルブを製造する1つの方法は、例えばAg
が58.5重量%(wt%、以下、適宜単に「%」と示
す)、Pdが10%、Cuがその残部31.5%からな
る58.5%Ag−Cu−10%Pd合金を用いて、接
点材料と通電軸との接続部分、接点材料と電極との接続
部分、金属蓋体とベローズ部分との接続部分等の各部材
をあらかじめ「部分ロウ付け」する(「部分ロウ付け」
工程)。なお、この58.5%Ag−Cu−10%Pd
合金層は、固相線温度825℃、液相線温度850℃、
適切な接合作業温度850〜950℃、JIS規格BP
d−2のものである。
<Representative method of assembling vacuum valve>
(1) One method of manufacturing a vacuum valve is, for example, Ag
Using a 58.5% Ag-Cu-10% Pd alloy consisting of 58.5% by weight (wt%, hereinafter, simply referred to as "%"), 10% of Pd, and the remaining 31.5% of Cu. Each member such as a connection portion between the contact material and the current-carrying shaft, a connection portion between the contact material and the electrode, and a connection portion between the metal lid and the bellows portion is previously "partially brazed"("partialbrazing").
Process). This 58.5% Ag-Cu-10% Pd
The alloy layer has a solidus temperature of 825 ° C, a liquidus temperature of 850 ° C,
Appropriate joining work temperature 850-950 ° C, JIS standard BP
d-2.

【0007】次いで、「部分ロウ付け」した各部材を絶
縁容器101に収納し、絶縁容器101の両端を金属蓋
体102a,102bで閉塞した後、58.5%Ag−
Cu−10%Pd合金が融解しない程度の低い融解温度
を備えた合金、一般には最も信頼性の高い72%Ag−
28%Cu合金(固相線温度780℃、液相線温度78
0℃、JIS規格BAg−8)の適切な接合作業温度
(820〜830℃)で各部材を接合する。そして、絶
縁容器101の内部を真空気密(内部を真空に排気す
る)しながら絶縁容器101を金属蓋体102a,10
2bで気密封止することにより真空バルブの最終組み立
てを行う(「全体組み立て」工程)。このように、「部
分ロウ付け」工程と「全体組み立て」工程とにより組み
立てを行う方法は、分離組み立て方法と呼ばれる。
Next, the members that have been "partially brazed" are stored in an insulating container 101, and both ends of the insulating container 101 are closed with metal lids 102a and 102b.
An alloy with a melting temperature low enough that the Cu-10% Pd alloy does not melt, typically the most reliable 72% Ag-
28% Cu alloy (solidus temperature 780 ° C, liquidus temperature 78
Each member is joined at an appropriate joining operation temperature (820 to 830 ° C) of 0 ° C and JIS standard BAg-8). Then, while keeping the inside of the insulating container 101 airtight (evacuating the inside to a vacuum), the insulating container 101 is closed with the metal lids 102a and 102a.
The final assembly of the vacuum valve is performed by hermetic sealing in 2b ("whole assembly" step). The method of performing the assembly by the “partial brazing” step and the “whole assembly” step is called a separation and assembly method.

【0008】(2)真空バルブを製造する別の方法とし
ては、「部分ロウ付け」工程と「全体組み立て」工程と
を別個に分けることなく各部材の接続と真空排気とを一
括して行わせる一括組み立て方法も実施されている。
(2) As another method of manufacturing a vacuum valve, the "partial brazing" step and the "whole assembly" step are performed separately without separately connecting the members and evacuating. collective assembly method has also been implemented.

【0009】<真空遮断器の通電特性、遮断特性>一般
に、真空遮断器の主要部分は、固定側、可動側の2つの
通電軸106,107のそれぞれの端部に配置した一対
の接点材料104,105を開閉させながら真空中での
優れたアーク拡散性を利用して電流の投入・遮断を行わ
せる真空バルブと、各通電軸106,107の接続材料
を装着したのと反対側の端部に真空バルブを挟むように
して接続された外部導体121,122とにより構成さ
れる。
<Electrification Characteristics and Interruption Characteristics of Vacuum Circuit Breaker> In general, the main part of the vacuum circuit breaker is composed of a pair of contact materials 104 arranged at respective ends of two fixed-side and movable-side energization shafts 106 and 107. And a vacuum valve for opening and closing a current by utilizing the excellent arc diffusivity in a vacuum while opening and closing, and an end opposite to a side on which a connecting material for each of the conducting shafts 106 and 107 is mounted. And external conductors 121 and 122 connected so as to sandwich a vacuum valve therebetween.

【0010】真空遮断器は、通常、量接点材料が接続し
たときに通電状態となる。この状態から通電軸107が
図1中矢印M方向に移動すると、可動接点105が固定
接点104から開離し両接点材料間にアークが発生す
る。このアークは陰極(例えば可動接点105)側から
の金属蒸気の発生により維持され、電流がゼロ点(零
点)に達すると金属蒸気の発生が止まってアークが維持
できなくなり、遮断が完了する。
The vacuum circuit breaker is normally energized when the quantity contact material is connected. When the energizing shaft 107 moves in the direction of arrow M in FIG. 1 from this state, the movable contact 105 is separated from the fixed contact 104, and an arc is generated between both contact materials. This arc is maintained by the generation of the metal vapor from the cathode (for example, the movable contact 105) side. When the current reaches the zero point (zero point), the generation of the metal vapor stops, the arc cannot be maintained, and the interruption is completed.

【0011】この両接点材料間に発生するアークは、遮
断電流が大きいとアーク自身により生じた磁場と外部回
路により生じた磁場との相互作用により著しく不安定な
状態となる。その結果、アークは、接点材料104,1
05のそれぞれの表面上を移動し(接点材料が電極に取
り付けられ一体化している時には、アークは電極面上に
も移動している場合もある)、接点材料の端部あるいは
周辺部に片寄ることとなり、その部分を局部的に過熱し
多量の金属蒸気を放出させて、真空容器103内の真空
度を低下させる。これは主として接点材料の状態に依存
することが多く、真空遮断器の電流遮断性能の低下要因
と1つとなっている。
If the breaking current is large, the arc generated between the two contact materials becomes extremely unstable due to the interaction between the magnetic field generated by the arc itself and the magnetic field generated by the external circuit. As a result, the arc contact material 104,
05 (if the contact material is attached to and integrated with the electrode, the arc may also move on the electrode surface) and offset to the edge or periphery of the contact material next, the portions locally overheated to release a large amount of metal vapor, lowering the degree of vacuum in the vacuum chamber 103. This often depends mainly on the state of the contact material, which is one of the factors that lower the current interrupting performance of the vacuum circuit breaker.

【0012】また、大電流を遮断した直後、および定格
電流を遮断した直後の接点材料104,105の表面
は、主としてアーク熱によって極めて高温になり、その
熱は通電軸106,107を通って各通電軸の端部表面
にまで伝達される。またジュール熱の発生も伴い、その
熱はやはり各通電軸を通ってその端部表面にまで伝達さ
れる。前者のアーク熱の大きさは、遮断した電力エネル
ギに依存し、主として接点材料の接点特性に依存する。
後者のジュール熱の大きさは、接点材料のバルク抵抗、
固定接点・可動接点間の接触抵抗に依存し、また通電軸
の端部と外部導体間の接触抵抗に依存する。
Immediately after the high current is cut off and immediately after the rated current is cut off, the surfaces of the contact materials 104 and 105 become extremely hot mainly due to arc heat, and the heat passes through the conduction shafts 106 and 107 and becomes high. It is transmitted to the end surface of the energized shaft. Joule heat is also generated, and the heat is also transmitted to the end surface through each current-carrying shaft. The magnitude of the former arc heat depends on the interrupted power energy, and mainly depends on the contact characteristics of the contact material.
The magnitude of the Joule heat is determined by the bulk resistance of the contact material,
It depends on the contact resistance between the fixed contact and the movable contact, and also on the contact resistance between the end of the conducting shaft and the external conductor.

【0013】真空遮断器では、このような電流断性能、
そして耐電圧性能、耐溶着性能の基本的3条件の他に、
再点弧現象の発生の抑制が重要な条件となっている。し
かしながら、これらの要素の中には相反するものがある
関係上、接点材料を単一の金属種で製造していたのでは
全ての条件を満足させることは不可能である。
In a vacuum circuit breaker, such current interruption performance,
In addition to the three basic conditions of withstand voltage performance and welding resistance performance,
Suppression of the occurrence of restriking is an important condition. However, because some of these elements are contradictory, it is impossible to satisfy all the conditions if the contact material is made of a single metal type.

【0014】このため、実用されている多くの真空バル
ブにおいては、不足する性能を相互に補うような2種以
上の元素を組み合せた接点材料、例えば大電流用、高耐
圧用などのように特定の用途に合った接点材料の選択採
用が行われ、一部の機能を犠牲にして対応している真空
バルブが開発されている。今のところ、更に強まる通電
特性と遮断特性の両立を充分満足する真空バルブは未だ
得られていないのが実情である。
For this reason, in many vacuum valves in practical use, contact materials combining two or more kinds of elements that mutually complement the insufficient performance are specified, such as those for large current and high withstand voltage. The selection and adoption of contact materials suitable for the above-mentioned applications have been carried out, and vacuum valves have been developed that are compatible with some functions. At present, a vacuum valve that sufficiently satisfies both of the energizing characteristics and the breaking characteristics, which has been further enhanced, has not yet been obtained.

【0015】例えば、大電流遮断性を目的とした接点材
料として、Crを50wt%程度含有させたCu−Cr
合金(特開昭45−35101号公報)が知られてい
る。この合金は、Cr自体がCuとほぼ同等の蒸気圧特
性を保持し、かつ強力なガスのゲッタ作用により高電圧
大電流断性を実現し、高耐圧特性と大容量遮断とを両立
させ得る優れた接点材料である。しかも、原料粉の選
択、不純物の混入、雰囲気の管理などに十分に配慮しな
がら素材を製造(焼結工程など)したり、素材から接点
材料への加工技術に配慮しながら製品としている。しか
し、このように優れた接点材料を用いたにも関わらず、
通電特性、遮断性能を低下させる場合が見られ、その改
善が望まれている。
For example, Cu—Cr containing about 50% by weight of Cr is used as a contact material for the purpose of breaking large current.
Alloys (JP-A-45-35101) are known. This alloy is excellent in that Cr itself retains almost the same vapor pressure characteristics as Cu, and realizes high-voltage large-current disconnection by strong gas gettering, and achieves both high voltage resistance and large-capacity cutoff. Contact material. In addition, the material is manufactured (sintering process, etc.) while giving due consideration to the selection of the raw material powder, the contamination of impurities, the management of the atmosphere, and the like, and the product is made with consideration given to the processing technology from the material to the contact material. However, despite the use of such excellent contact materials,
In some cases, the current-carrying characteristics and the breaking performance are reduced, and improvements are desired.

【0016】真空遮断器の通電特性、遮断性能を低下さ
せる要因としては、固定接点、可動接点間での接触抵抗
特性、各通電軸および外部導体の導電率(固有抵抗)、
通電軸と外部導体との間で生ずる接触抵抗特性、通電軸
と外部導体間での接触熱抵抗特性などが重大な影響を与
えるものと考えられている。しかも、通電軸の端部と外
部導体間の接触抵抗は真空バルブの製造過程で変動する
ことが多い。
Factors that degrade the current-carrying characteristics and breaking performance of the vacuum circuit breaker include contact resistance characteristics between the fixed contact and the movable contact, the conductivity (specific resistance) of each conducting shaft and the external conductor,
It is considered that the contact resistance characteristics generated between the current-carrying shaft and the outer conductor, the contact thermal resistance characteristics between the current-carrying shaft and the outer conductor, and the like have a significant effect. In addition, the contact resistance between the end of the current-carrying shaft and the external conductor often fluctuates during the manufacturing process of the vacuum valve.

【0017】また、近年ではより一層の大電流遮断、よ
り高電圧が印加される可能性のあるような過酷な回路へ
の適応が日常的に行われるようになったため、上述した
ような接点材料の特性改良のみでは、次の電流を開閉し
た時に、接触抵抗の異常上昇や温度の異常上昇を引起こ
すおそれが多分にあり、真空遮断器の通電特性と遮断特
性が十分に得られない。
Further, in recent years, since the adaptation to a severe circuit in which a higher current interruption and a higher voltage may be applied has been performed on a daily basis, the above-mentioned contact material is used. By simply improving the characteristics described above, there is a possibility that an abnormal increase in contact resistance or an abnormal increase in temperature will occur when the next current is opened or closed, and the current-carrying characteristics and cutoff characteristics of the vacuum circuit breaker cannot be sufficiently obtained.

【0018】そこで最近の真空バルブの製造において
は、このような事態を回避するため、図3に示したよう
な固定側の通電軸106の上端部123に、外部導体
(固定側)121との接続時の接触抵抗および接触熱抵
抗を減ずる為に、Agメッキ(通電軸が主としてCuで
形成されているため結果的にはAgCu合金を形成)又
はSn(錫)メッキ(Snが拡散し結果的にはAgCu
Sn合金を形成)を施している。同じく可動側の通電軸
107の下端部124にも、Agメッキ又はSnメッキ
を施している。
Therefore, in recent manufacturing of a vacuum valve, in order to avoid such a situation, an external conductor (fixed side) 121 is connected to the upper end 123 of the fixed side conducting shaft 106 as shown in FIG. In order to reduce the contact resistance and the contact thermal resistance at the time of connection, Ag plating (which forms an AgCu alloy because the current-carrying shaft is mainly made of Cu) or Sn (tin) plating (when Sn diffuses, AgCu
(Forming a Sn alloy). Similarly, the lower end 124 of the movable shaft 107 is also plated with Ag or Sn.

【0019】[0019]

【発明が解決しようとする課題】ところが、このような
AgCu合金やAgCuSn合金によるメッキでは次の
ような問題があった。
However, plating with such an AgCu alloy or AgCuSn alloy has the following problems.

【0020】(1)通電軸の端部に参考例として60%
Ag−30%Cu−10%Sn合金層(適切な接合作業
温度720〜840℃。JIS規格BAg−18)を形
成させる場合には、固相線温度が大幅に低下し600℃
となり、液相線温度も大幅に低下し720℃となる。こ
のため、72%Agー28%Cu合金の適切な接合作業
温度820〜830℃で接合すると、通電軸の端部の表
面上の60%Ag−30%Cu−10%Sn合金層は、
その融解温度の低さに起因した過度の流動性を示し、通
電軸の端部の表面上のみならず通電軸の周囲および通電
軸の側面にまで過度に流れてしまい不均一に分布するこ
ととなる。これによって、通電軸の端部の表面上で合金
層が量的に不足して接触抵抗はバラツキを示し、通電軸
の端部と外部導体間の接触抵抗の安定性が損われるとい
う問題があった。Ag,Snの比率を変えた例えば55
%Ag−30%Cu−15%Sn合金層では、固相線温
度、液相線温度が更に低下し同様の問題があった。
(1) 60% as a reference example at the end of the conducting shaft
In the case of forming an Ag-30% Cu-10% Sn alloy layer (appropriate joining operation temperature of 720 to 840 ° C; JIS standard BAg-18), the solidus temperature is greatly reduced to 600 ° C.
And the liquidus temperature also drops significantly to 720 ° C. For this reason, when bonding is performed at an appropriate bonding temperature of 820 to 830 ° C. for a 72% Ag-28% Cu alloy, the 60% Ag-30% Cu-10% Sn alloy layer on the surface of the end portion of the conducting shaft becomes:
Excessive fluidity due to the low melting temperature is shown, it flows excessively not only on the surface of the end of the energized shaft but also around the energized shaft and the side of the energized shaft and is unevenly distributed. Become. As a result, there is a problem that the contact resistance varies due to a shortage of the alloy layer on the surface of the end of the current-carrying shaft and the stability of the contact resistance between the end of the current-carrying shaft and the external conductor is impaired. Was. For example, 55 in which the ratio of Ag and Sn is changed
In the case of the% Ag-30% Cu-15% Sn alloy layer, the solidus temperature and the liquidus temperature were further lowered, and had the same problem.

【0021】(2)一方、通電軸の端部に72%Ag−
28%Cu合金層(JIS規格BAg−8)を形成させ
る場合には、固相線温度、液相線温度は共に779℃と
なるるので、72%Ag−28%Cu合金層の好適な接
合作業温度820〜830℃で接合すると、通電軸の端
部の表面上には、十分溶融した72%Ag−28%Cu
合金層が形成される。
(2) On the other hand, 72% Ag-
When forming a 28% Cu alloy layer (JIS standard BAg-8), both the solidus temperature and the liquidus temperature are 779 ° C., so that the suitable joining of the 72% Ag-28% Cu alloy layer is performed. When joined at an operating temperature of 820 to 830 ° C., a sufficiently melted 72% Ag-28% Cu
An alloy layer is formed.

【0022】しかし、通電軸の端部の直径が比較的大き
い場合には、接合作業温度(820〜830℃)が、7
2%Ag−28%Cu合金の融解温度よりも高いにもか
かわらず、通電軸の端部表面上の72%Ag−28%C
u合金が部分的に融解しない領域が存在してしまうとい
う予期しない現象が見られる。更に通電軸の熱容量が過
度に大きい場合にも、通電軸の端部表面には局部的に7
2%Ag−28%Cu合金層の厚さが不均一な領域が存
在してしまうという現象も見られる。これらの現象によ
って、通電軸と外部導体間の接触抵抗の安定性が損なわ
れるという問題があった。
However, when the diameter of the end of the current-carrying shaft is relatively large, the joining operation temperature (820-830 ° C.)
Despite being higher than the melting temperature of the 2% Ag-28% Cu alloy, 72% Ag-28% C on the end surface of the conducting shaft
There is an unexpected phenomenon that a region where the u alloy does not partially melt exists. Further, even when the heat capacity of the energized shaft is excessively large, 7
The thickness of the 2% Ag-28% Cu alloy layer phenomenon also seen that non-uniform region will be present. These phenomena, the stability of the contact resistance between the current-carrying rod and the outer conductor is disadvantageously impaired.

【0023】このように、接点材料の改良、通電軸と外
部導体との間の接触抵抗特性の改良などを進めているに
も拘らず、上述したような近年の状況下では、未だ真空
遮断器の通電特性および遮断特性は十分なものとなって
いない。
[0023] Thus, improved contact material, despite being promoted and improvement of contact resistance characteristic between the current-carrying rod and the outer conductor, under recent circumstances as described above, yet the vacuum circuit breaker Are not sufficient in current-carrying characteristics and cut-off characteristics.

【0024】本発明は、上記に鑑みてなされたものであ
り、その目的とするところは、真空遮断器の通電特性お
よび遮断特性の双方を向上させ得る真空バルブを提供す
ることにある。
The present invention has been made in view of the above, and an object of the present invention is to provide a vacuum valve capable of improving both the current-carrying characteristics and the breaking characteristics of a vacuum circuit breaker.

【0025】本発明の別の目的は、上記真空バルブの製
造方法、および上記真空バルブを用いた真空遮断器を提
供することにある。
Another object of the present invention is to provide a method for manufacturing the above-mentioned vacuum valve and a vacuum circuit breaker using the above-mentioned vacuum valve.

【0026】[0026]

【課題を解決するための手段】上記目的を達成するた
め、請求項1記載の真空バルブは、気密封止された絶縁
容器の内部に一対の接点材料が設けられ、絶縁容器の両
端から挿入された各通電軸の端部が各接点材料にそれぞ
れ接続され、各通電軸の他方の端部が絶縁容器の外側で
真空遮断器につなげるための外部導体にそれぞれ接続さ
れる真空バルブにおいて、前記外部導体に接続される側
の各通電軸の端部の表面に、Agが60〜75重量%、
Inが0.1〜15重量%、その残部がCuよりなるA
g−Cu−In合金層を形成したことを特徴とする。
In order to achieve the above object, a vacuum valve according to claim 1 is provided with a pair of contact materials inside an airtightly sealed insulating container, and inserted from both ends of the insulating container. A vacuum valve in which one end of each energized shaft is connected to each contact material, and the other end of each energized shaft is connected to an external conductor for connecting to a vacuum circuit breaker outside the insulating container. Ag is 60 to 75% by weight on the surface of the end of each energized shaft on the side connected to the conductor,
A containing 0.1 to 15% by weight of In and the balance of Cu
A g-Cu-In alloy layer is formed.

【0027】本発明にあっては、外部導体に接続される
側の各通電軸の端部の表面に、Agが60〜75重量
%、In(インジウム)が0.1〜15重量%(wt
%、以下適宜「%」と示す)、その残部がCuよりなる
Ag−Cu−In合金層を形成するようにしたことで、
真空バルブの通電軸と真空遮断器へつなげるための外部
導体との連結部分の接触抵抗特性が改善され、良好な通
電特性および遮断特性が得られるようにしている。
In the present invention, the surface of the end of each energized shaft on the side connected to the external conductor has 60 to 75% by weight of Ag and 0.1 to 15% by weight of In (indium) (wt.
%, Hereinafter appropriately referred to as “%”), and the remainder is formed by forming an Ag—Cu—In alloy layer made of Cu.
The contact resistance characteristics of the connection portion between the current-carrying shaft of the vacuum valve and the external conductor for connection to the vacuum circuit breaker are improved, so that good current-carrying characteristics and good breaking characteristics can be obtained.

【0028】すなわち、Ag−Cu−In合金層中のI
n量が15重量%を越えた場合には、固相線温度は63
0℃以下、液相線温度は680℃以下にまで低下するた
め、72%Ag−28%Cu合金の好適な接合作業温度
(820〜830℃)でAg−Cu−In合金層を通電
軸の端部に接合させた場合には、通電軸の端部の表面上
で、Ag−Cu−In合金層は過度の流動性を示し、通
電軸の端部表面上のみならず通電軸の周囲や通電軸の側
面にまで過度に流れてしまい、Ag−Cu−ln合金層
は不均一な厚さに分布することとなる。このため、通電
軸と外部導体と間の接接触抵抗はバラツキを示し、接触
抵抗特性は不安定になってしまう。このような不安定な
接触抵抗特性は、通電軸と外部導体との接続部分の温度
上昇特性にも好ましくない影響を与えると共に通電特性
の低下を招くことになる。
That is, I in the Ag—Cu—In alloy layer
When the amount of n exceeds 15% by weight, the solidus temperature becomes 63%.
0 ℃ less, the liquidus temperature decreases to 680 ° C. or less, 72% Ag-28% Cu alloy suitable junction working temperature (eight hundred twenty to eight hundred and thirty ° C.) with Ag-Cu-In alloy layer of the energization shaft When joined to the end, the Ag-Cu-In alloy layer shows excessive fluidity on the surface of the end of the energized shaft, and is not only on the end surface of the energized shaft but also around the energized shaft. The Ag-Cu-In alloy layer is distributed to an uneven thickness, because the Ag-Cu-In alloy layer excessively flows to the side surface of the current-carrying shaft. For this reason, the contact resistance between the current-carrying shaft and the external conductor varies, and the contact resistance characteristics become unstable. Such unstable contact resistance characteristics have an unfavorable effect on the temperature rise characteristics of the connection portion between the current-carrying shaft and the external conductor, and also lead to a decrease in the current-carrying characteristics.

【0029】一方、Ag−Cu−In合金層中のIn量
が0.1重量%未満の場合では、合金層の固相線温度、
液相線温度を引き下げる効果が低く、72%Ag−28
%Cu合金層の適切な接合作業温度で接合した場合に、
局部的な未融解部分、厚さの不均一性などが見られ、接
触抵抗特性はやはり不安定なものとなってしまう。
On the other hand, when the amount of In in the Ag—Cu—In alloy layer is less than 0.1% by weight, the solidus temperature of the alloy layer,
Low effect of lowering the liquidus temperature, 72% Ag-28
% Cu alloy layer when joined at an appropriate joining operation temperature,
Local unmelted portions, thickness non-uniformity, and the like are seen, and the contact resistance characteristics are still unstable.

【0030】例えば、各通電軸の端部表面に、本発明に
よる60%Ag−30%Cu−10%In合金層を形成
させた場合には、固相線温度は、参考例の60%Ag−
30%Cu−10%Sn合金層のものよりも大幅に高い
685℃となる(液相線温度はほぼ同等の710℃とな
る)。その結果、72%Ag−28%Cu合金の一般的
な接合作業温度820〜830℃で接合作業を行うと、
60%Ag−30%Cu−10%In合金層は、通電軸
の端部表面上にのみ良好な状態(合金層が均一な厚さと
未融解領域がない状態)で流れ、均一に分布し、安定し
た接触抵抗特性を示す。
For example, when a 60% Ag-30% Cu-10% In alloy layer according to the present invention is formed on the end surface of each energized shaft, the solidus temperature is 60% Ag of the reference example. −
The temperature is 685 ° C., which is much higher than that of the 30% Cu-10% Sn alloy layer (the liquidus temperature is almost equal to 710 ° C.). As a result, when the joining operation is performed at a general joining operation temperature of 820 to 830 ° C. of a 72% Ag-28% Cu alloy,
The 60% Ag-30% Cu-10% In alloy layer flows in a good state (a state in which the alloy layer has a uniform thickness and no unmelted region) only on the end surface of the conducting shaft, and is uniformly distributed. Shows stable contact resistance characteristics.

【0031】このように、通電軸の端部表面に形成させ
る合金層は、AgCu合金中にIn又はSnを同じ量
(重量%)だけ含有させた場合に、本発明のAgCuI
n合金層と参考例のAgCuSn合金層とでは、Inを
用いた場合の方が高い固相線温度を示し、適度な流動性
を示すのに対して、Snの場合には過度の流動性を示し
不要な部分にまで流出してしまい、接触抵抗特性の不安
定化を招くことになる。
As described above, the alloy layer formed on the end surface of the current-carrying shaft, when the same amount (% by weight) of In or Sn is contained in the AgCu alloy, the AgCuI of the present invention is used.
In the n alloy layer and the AgCuSn alloy layer of the reference example, when In is used, a higher solidus temperature is exhibited and appropriate fluidity is exhibited, whereas in the case of Sn, excessive fluidity is exhibited. It flows out to an unnecessary part to be shown, which causes instability of the contact resistance characteristic.

【0032】請求項2記載の本発明に係る真空バルブ
は、請求項1記載の真空バルブにおいて、前記Ag−C
u−In合金層は、その固相線温度を630℃以上78
0℃未満とし、かつ液相線温度を680℃以上780℃
未満としたことを特徴とする。
The vacuum valve according to the present invention described in claim 2 is the vacuum valve according to claim 1, wherein the Ag-C
The u-In alloy layer has a solidus temperature of 630 ° C. or more and 78
0 ° C or lower and liquidus temperature 680 ° C or higher and 780 ° C
Less than.

【0033】本発明にあっては、Ag−Cu−In合金
層の固相線温度を630℃以上780℃未満、液相線温
度を680℃以上780℃未満としたことで、通常の7
2%Ag−28%Cu合金を用いたときの適切な接合作
業温度(820〜830℃)でAg−Cu−In合金層
を通電軸の端部表面に形成させた場合に、この合金層の
固相線温度および液相線温度が適温であるので、端部表
面上に合金層の未融解領域が生じることを防ぎ、均一の
厚さを得て安定した接触抵抗特性が得られるようにして
いる。
In the present invention, by setting the solidus temperature of the Ag—Cu—In alloy layer to 630 ° C. or more and less than 780 ° C. and the liquidus temperature to 680 ° C. or more and less than 780 ° C.
When an Ag-Cu-In alloy layer is formed on the end surface of the current-carrying shaft at an appropriate joining operation temperature (820 to 830 ° C) when using a 2% Ag-28% Cu alloy, Since the solidus temperature and liquidus temperature are appropriate, it prevents the unmelted region of the alloy layer from being formed on the end surface, so that a uniform thickness can be obtained and stable contact resistance characteristics can be obtained. I have.

【0034】すなわち、金属層の固相線温度が630℃
未満では、72%Ag−28%Cu合金の適切な接合作
業温度(820〜830℃)で接合作業を行うと、通電
軸の端部の表面上の合金層は過度の流動性を示し、通電
軸の周囲や通電軸の側面にまで合金層が流出してしま
い、必要な部分での合金層の不足を招き接触抵抗分布に
バラツキをもたらし接触抵抗特性の不安定化を招くこと
となる。
That is, the solidus temperature of the metal layer is 630 ° C.
When the joining is performed at an appropriate joining temperature (820 to 830 ° C.) of a 72% Ag-28% Cu alloy, the alloy layer on the surface of the end of the conducting shaft shows excessive fluidity, The alloy layer flows out to the periphery of the shaft and to the side surface of the current-carrying shaft, leading to a shortage of the alloy layer at a necessary portion, causing variation in the contact resistance distribution and instability of the contact resistance characteristics.

【0035】一方、固相線温度が780℃を越えた場合
には、通電軸の端部表面上の合金層の中のInを含むA
gCu化合物の生成量が増加し、未融解領域を生成して
しまい接触抵抗特性の不安定化を招くこととなる。
On the other hand, when the solidus temperature exceeds 780 ° C., A containing In in the alloy layer on the end surface of the current-carrying axis
The production amount of the gCu compound increases, and an unmelted region is produced, which causes instability of the contact resistance characteristics.

【0036】また、金属層の液相線温度が680℃未満
では、72%Ag−28%Cu合金の適切な接合作業温
度(820〜830℃)で接合作業を行うと、やはり過
度の流動性を示し、不要な部分にまで合金層が流出して
しまう。液相線温度が780℃を越えた場合には、やは
り通電軸の端部表面上の合金層の中に未融解領域を生成
してしまい接触抵抗特性の不安定化を招くこととなる。
When the liquidus temperature of the metal layer is lower than 680 ° C., if the joining operation is performed at an appropriate joining operation temperature (820 to 830 ° C.) of a 72% Ag-28% Cu alloy, the excessive fluidity will still occur. And the alloy layer flows out to unnecessary portions. When the liquidus temperature exceeds 780 ° C., an unmelted region is also formed in the alloy layer on the end surface of the current-carrying shaft, and the contact resistance characteristics become unstable.

【0037】請求項3記載の本発明に係る真空バルブ
は、請求項1又は2記載の真空バルブにおいて、前記A
g−Cu−In合金層は、その厚さを1〜200μmの
範囲としたことを特徴とする。
A vacuum valve according to a third aspect of the present invention is the vacuum valve according to the first or second aspect, wherein
The g-Cu-In alloy layer is characterized in that its thickness is in the range of 1 to 200 μm.

【0038】本発明にあっては、Ag−Cu−In合金
層の厚さを1〜200μmの範囲としたことで、各通電
軸と外部導体との間の接触抵抗特性が改善され、良好な
通電特性および遮断特性が得られるようにしている。
In the present invention, by setting the thickness of the Ag—Cu—In alloy layer to be in the range of 1 to 200 μm, the contact resistance characteristics between each current-carrying shaft and the external conductor are improved. Energizing characteristics and cutoff characteristics are obtained.

【0039】請求項4記載の本発明に係る真空バルブ
は、請求項1乃至3のいずれかに記載の真空バルブにお
いて、前記Ag−Cu−In合金層は、AgとCuとの
比率[(Ag)/(Ag+Cu)]を0.65〜0.8
の範囲としたことを特徴とする。
According to a fourth aspect of the present invention, there is provided the vacuum valve according to any one of the first to third aspects, wherein the Ag—Cu—In alloy layer has a ratio of Ag to Cu [(Ag ) / (Ag + Cu)] from 0.65 to 0.8
The range is characterized by.

【0040】本発明にあっては、Ag−Cu−In合金
層中のAgとCuとの比率[(Ag)/(Ag+C
u)]を0.65〜0.8の範囲としたことで、各通電
軸と外部導体との間の接触抵抗特性が改善され、良好な
通電特性および遮断特性が得られるようにしている。
In the present invention, the ratio of Ag to Cu in the Ag—Cu—In alloy layer [(Ag) / (Ag + C
u)] is in the range of 0.65 to 0.8, so that the contact resistance characteristics between each energized shaft and the external conductor are improved, and good energization characteristics and cutoff characteristics are obtained.

【0041】すなわち、合金層中の[(Ag)/(Ag
+Cu)]値が0.65未満および0.8以上では、固
相線温度および液相線温度を所定の範囲に制御すること
が難しく適切でないことに基づくものである。
That is, [(Ag) / (Ag) in the alloy layer
+ Cu)] values less than 0.65 and 0.8 or more are based on the fact that it is difficult and unsuitable to control the solidus temperature and liquidus temperature within the predetermined ranges.

【0042】請求項5記載の本発明に係る真空バルブ
は、請求項1乃至4のいずれかに記載の真空バルブにお
いて、前記Ag−Cu−In合金層は、AgCu合金を
主成分とするマトリックスと、Ag又は/及びCuを含
むIn化合物とで構成されたものであって、前記In化
合物をマトリックスに分散させたことを特徴とする。
According to a fifth aspect of the present invention, there is provided the vacuum valve according to any one of the first to fourth aspects, wherein the Ag-Cu-In alloy layer comprises a matrix containing an AgCu alloy as a main component. And an In compound containing Ag or / and Cu, wherein the In compound is dispersed in a matrix.

【0043】本発明にあっては、通電軸の端部表面上の
合金層の中のIn化合物はAgCu合金を主成分とする
マトリックスよりも脆性を持つことから、In化合物を
マトリックスに分散させるようにしたことで、このIn
化合物を起点とする亀裂の進展をマトリックスで吸収で
きるようにしている。
In the present invention, since the In compound in the alloy layer on the end surface of the current-carrying shaft is more brittle than the matrix mainly composed of the AgCu alloy, the In compound is dispersed in the matrix. In this In
Crack growth originating from the compound can be absorbed by the matrix.

【0044】請求項6記載の本発明に係る真空バルブの
製造方法は、気密封止された絶縁容器の内部に一対の接
点材料が設けられ、絶縁容器の両端から挿入された各通
電軸の端部が各接点材料にそれぞれ接続され、各通電軸
の他方の端部が絶縁容器の外側で真空遮断器につなげる
ための外部導体にそれぞれ接続される真空バルブを製造
する製造方法において、前記外部導体に接続される側の
各通電軸の端部の表面に、Agが60〜75重量%、I
nが0.1〜15重量%、その残部がCuよりなるAg
−Cu−In合金層を780℃以上840℃未満の接合
作業温度で接合させることを特徴とする。
According to a sixth aspect of the present invention, there is provided a method of manufacturing a vacuum valve, wherein a pair of contact materials are provided inside an airtightly sealed insulating container, and the end of each energized shaft inserted from both ends of the insulating container. parts are connected to each contact material, in the manufacturing method of the other end of each current-carrying rod to produce a vacuum valve which is connected to the outer conductor for connecting the vacuum circuit breaker outside of the insulating container, wherein the outer conductor On the surface of the end of each energized shaft on the side connected to
Ag in which n is 0.1 to 15% by weight and the balance is Cu
-It is characterized in that the Cu-In alloy layer is joined at a joining operation temperature of 780 ° C or more and less than 840 ° C.

【0045】本発明にあっては、各通電軸の端部表面
に、Ag−Cu−In合金層を780℃以上840℃未
満の接合作業温度で接合させることで、72%Ag−2
8%Cu合金の接合作業温度(820〜830℃)に対
して、適切な温度で接合できるようにし、安定した接触
抵抗特性が得られるようにしている。
In the present invention, an Ag—Cu—In alloy layer is joined to the end surface of each energized shaft at a joining operation temperature of 780 ° C. or more and less than 840 ° C., so that 72% Ag-2
Against 8% Cu alloy bonding working temperature (eight hundred twenty to eight hundred and thirty ° C.), to allow bonding at a suitable temperature, so that stable contact resistance characteristic can be obtained.

【0046】例えば、接合作業温度が780℃未満で
は、通電軸の端部表面上でのAg−Cu−In合金層は
十分な流動性が得られず、接触抵抗特性の不安定化を招
くこととなる。
For example, if the joining temperature is lower than 780 ° C., the Ag—Cu—In alloy layer on the end surface of the current-carrying shaft does not have sufficient fluidity, which leads to instability of the contact resistance characteristics. Becomes

【0047】請求項7記載の本発明に係る真空バルブの
製造方法は、請求項6記載の真空バルブの製造方法にお
いて、Agが60〜75重量%、Inが0.1〜15重
量%、その残部がCuよりなる厚さ1〜200μmのA
g−Cu−In合金箔を、前記各通電軸の端部の表面に
接触配置させる工程と、780℃以上840℃未満の接
合作業温度で前記各通電軸の端部の表面に前記合金箔を
接合させる工程と、を有することを特徴とする。
According to a seventh aspect of the present invention, there is provided the method of manufacturing a vacuum valve according to the sixth aspect, wherein Ag is 60 to 75% by weight, In is 0.1 to 15% by weight, A having a thickness of 1 to 200 μm with the remainder being Cu
placing the g-Cu-In alloy foil in contact with the surface of the end of each of the energized shafts, and applying the alloy foil to the surface of the end of each of the energized shafts at a joining operation temperature of 780 ° C or more and less than 840 ° C. And a joining step.

【0048】本発明にあっては、Agが60〜75重量
%、Inが0.1〜15重量%、残部がCuよりなる厚
さ1〜200μmのAg−Cu−In合金箔を、780
℃以上840℃未満の作業温度で、各通電軸の端部表面
に接合させるようにしたことで、各通電軸と外部導体と
の間の接触抵抗特性が改善され、良好な通電特性および
遮断特性が得られるようにしている。
[0048] In the present invention, Ag is 60 to 75 wt%, an In 0.1 to 15 wt%, the Ag-Cu-In alloy foil with a thickness of 1~200μm that the balance of Cu, 780
The contact resistance between each energized shaft and the external conductor is improved by joining the end surfaces of the energized shafts at a working temperature of 840 ° C. or more and less than 840 ° C., and good energizing and blocking characteristics Is to be obtained.

【0049】すなわち、接合時には、通電軸(Cu)中
へAg,Cu,In合金の粒子の拡散が起こるが、Ag
−Cu−In合金層の厚さが1μm未満では、その量が
少なすぎるため、拡散後の合金層は初期の組成を維持で
きず組成変動の結果、適度の固相線温度、液相線温度を
確保することが困難となってしまう。
That is, at the time of joining, diffusion of Ag, Cu, and In alloy particles into the current-carrying axis (Cu) occurs.
If the thickness of the Cu—In alloy layer is less than 1 μm, the amount is too small, so that the alloy layer after diffusion cannot maintain the initial composition, and as a result of the composition fluctuation, the appropriate solidus temperature and liquidus temperature are obtained. Is difficult to secure.

【0050】一方、Ag−Cu−In合金層の厚さが2
00μmを越える場合には、融解後の合金層の表面は平
滑性を失い接触抵抗特性、温度上昇特性にバラツキが出
ると共に通電軸の端部表面の合金層の量が過剰となり、
残余の合金層が通電軸の周囲や側面などの不要な部分に
まで流出し、接触抵抗特性の不安定化を招くこととな
る。
On the other hand, when the thickness of the Ag—Cu—In alloy layer is 2
If the thickness exceeds 00 μm, the surface of the alloy layer after melting loses smoothness, the contact resistance characteristics and the temperature rise characteristics vary, and the amount of the alloy layer on the end surface of the current-carrying shaft becomes excessive.
The remaining alloy layer flows out to unnecessary portions such as the periphery and side surfaces of the current-carrying shaft, which causes instability of the contact resistance characteristics.

【0051】請求項8記載の本発明に係る真空バルブの
製造方法は、請求項6記載の真空バルブの製造方法にお
いて、Agが60〜75重量%、Inが0.1〜15重
量%、その残部がCuとなるようにそれぞれ厚さを調整
したAg、In、Cuの単体箔を、前記各通電軸の端部
の表面に積層させる工程と、780℃以上840℃未満
の接合作業温度で前記各通電軸の端部の表面に前記単体
箔を接合させる工程と、を有することを特徴とする。
The method for manufacturing a vacuum valve according to the present invention according to claim 8 is the method for manufacturing a vacuum valve according to claim 6, wherein Ag is 60 to 75% by weight, In is 0.1 to 15% by weight, A step of laminating a single foil of Ag, In, and Cu, each having a thickness adjusted so that the remainder is Cu, on the surface of the end portion of each of the energized shafts; Bonding the single foil to the surface of the end of each energized shaft.

【0052】本発明は、最終的にAgが60〜75重量
%、Inが0.1〜15重量%、残部がCuよりなるA
g−Cu−In合金層を得るために、接合作業の開始前
の形態がAg、In、Cuの単体箔であっても、初めか
ら3元合金化していた場合と同様の合金層が得られるこ
とに基づくものである。
According to the present invention, A is finally composed of 60 to 75% by weight of Ag, 0.1 to 15% by weight of In and the balance of Cu.
In order to obtain a g-Cu-In alloy layer, even if the form before the start of the joining operation is a single foil of Ag, In, and Cu, an alloy layer similar to that obtained when ternary alloying is obtained from the beginning is obtained. It is based on

【0053】請求項9記載の本発明に係る真空バルブの
製造方法は、請求項6記載の真空バルブの製造方法にお
いて、Ag、In、Cuのいずれか2種よりなる合金箔
と残りの1種よりなる単体箔とを、Agが60〜75重
量%、Inが0.1〜15重量%、その残部がCuとな
るように前記各通電軸の端部の表面に厚さを調整して積
層させる工程と、780℃以上840℃未満の接合作業
温度で前記各通電軸の端部の表面に前記合金箔および前
記単体箔を接合させる工程と、を有することを特徴とす
る。
According to a ninth aspect of the present invention, there is provided a method for manufacturing a vacuum valve according to the sixth aspect, wherein the alloy foil comprising any two of Ag, In, and Cu and the remaining one is used. A single foil composed of a single foil of which the thickness is adjusted on the surface of the end of each of the energized shafts so that Ag is 60 to 75% by weight, In is 0.1 to 15% by weight, and the remainder is Cu. And bonding the alloy foil and the single foil to the surface of the end of each of the energized shafts at a bonding operation temperature of 780 ° C. or more and less than 840 ° C.

【0054】本発明は、最終的にAgが60〜75重量
%、Inが0.1〜15重量%、残部がCuよりなるA
g−Cu−In合金層を得るために、Ag、In、Cu
のいずれか2種よりなる合金箔と残りの1種よりなる単
体箔とを複合化したとしても、初めから3元合金化して
いた場合と同様の合金層が得られることに基づくもので
ある。
According to the present invention, the final composition of A is 60 to 75% by weight of Ag, 0.1 to 15% by weight of In, and the balance of Cu.
To obtain a g-Cu-In alloy layer, Ag, In, Cu
This is based on the fact that the same alloy layer as in the case of ternary alloying from the beginning can be obtained even if the alloy foil composed of any two of the above and the single foil composed of the remaining one is compounded.

【0055】請求項10記載の本発明に係る真空バルブ
の製造方法は、請求項6乃至9のいずれかに記載の真空
バルブの製造方法において、AgとCuとの比率[(A
g)/(Ag+Cu)]を0.65〜0.8の範囲とす
る工程を有することを特徴とする。
According to a tenth aspect of the present invention, there is provided a method of manufacturing a vacuum valve according to any one of the sixth to ninth aspects, wherein the ratio of Ag to Cu [(A
g) / (Ag + Cu)] is referred to as comprising a step of in the range of 0.65 to 0.8.

【0056】本発明にあっては、Ag−Cu−In合金
層中のAgとCuとの比率[(Ag)/(Ag+C
u)]を0.65〜0.8の範囲としたことで、各通電
軸と外部導体との間の接触抵抗特性が改善され、良好な
通電特性および遮断特性が得られるようにしている。
In the present invention, the ratio of Ag to Cu in the Ag—Cu—In alloy layer [(Ag) / (Ag + C)
u)] is in the range of 0.65 to 0.8, so that the contact resistance characteristics between each energized shaft and the external conductor are improved, and good energization characteristics and cutoff characteristics are obtained.

【0057】請求項11記載の本発明に係る真空遮断器
は、請求項1乃至5のいずれかに記載の真空バルブを用
いたことを特徴とする。
An eleventh aspect of the present invention provides a vacuum circuit breaker using the vacuum valve according to any one of the first to fifth aspects.

【0058】請求項12記載の本発明に係る真空遮断器
は、請求項6乃至10のいずれかに記載の製造方法によ
り製造された真空バルブを用いたことを特徴とする。
According to a twelfth aspect of the present invention, there is provided a vacuum circuit breaker using a vacuum valve manufactured by the manufacturing method according to any one of the sixth to tenth aspects.

【0059】請求項11,12の本発明にあっては、上
記真空バルブあるいは上記製造方法により製造された真
空バルブを用いるようにしたことで、真空バルブの各通
電軸と外部導体との間の接触抵抗特性が改善され、真空
遮断器の通電特性および遮断特性を向上させることがで
きる。
According to the eleventh and twelfth aspects of the present invention, by using the above-mentioned vacuum valve or the vacuum valve manufactured by the above-described manufacturing method, the distance between each energized shaft of the vacuum valve and the external conductor is reduced. The contact resistance characteristics are improved, and the current-carrying characteristics and the breaking characteristics of the vacuum circuit breaker can be improved.

【0060】[0060]

【発明の実施の形態】真空バルブの通電特性、遮断特性
を向上させるためには、通電軸(電力導入端子)の端部
と外部導体との間の接触抵抗特性の安定化が深く関与す
る。本実施の形態では、この接触抵抗特性の安定化のた
めに、通電軸の端部の表面に、所定条件のAg−Cu−
In合金層を形成させ、この所定条件を、Agが60〜
75重量%、In(インジウム)が0.1〜15重量
%、残部がCuからなり、厚さが1〜200μm、固相
線温度が680℃以上780℃未満、液相線温度が68
0℃以上780℃未満としたことを特徴とするものであ
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In order to improve the current-carrying characteristics and the breaking characteristics of a vacuum valve, stabilization of the contact resistance characteristics between the end of a current-carrying shaft (power introduction terminal) and an external conductor is deeply involved. In the present embodiment, in order to stabilize the contact resistance characteristics, the surface of the end of the current-carrying shaft is coated with Ag-Cu-
An In alloy layer is formed.
75% by weight, 0.1 to 15% by weight of In (indium), the balance being Cu, thickness of 1 to 200 μm, solidus temperature of 680 ° C. or more and less than 780 ° C., liquidus temperature of 68
It is characterized in that the temperature is not lower than 0 ° C. and lower than 780 ° C.

【0061】以下、本発明の実施の形態について図面を
用いて説明する。
[0061] Hereinafter, will be explained with reference to drawings, embodiments of the present invention.

【0062】第1図は、通電特性、遮断特性等を調べる
ためのAg−Cu−In合金層の評価条件をまとめた表
を示す図である。同図において、実施例1〜8は、本発
明を適用したAg−Cu−In合金層を示し、比較例1
〜8は、各実施例との特性比較のために用意したAg−
Cu−In合金層を示す。
FIG. 1 is a table showing a summary of the evaluation conditions of the Ag—Cu—In alloy layer for examining the current-carrying characteristics, the breaking characteristics, and the like. In the same figure, Examples 1 to 8 show an Ag—Cu—In alloy layer to which the present invention was applied, and Comparative Example 1
To 8 are Ag- prepared for comparison of characteristics with each of the examples.
3 shows a Cu-In alloy layer.

【0063】評価条件の項目は、通電軸の端部表面に形
成させる合金層の組成、合金層の融解温度、通電軸の端
部に合金層を形成させるときの接合作業温度、通電軸の
端部表面に形成させる合金層の厚さとした。この合金層
の組成は、AgとCuの比率[(Ag)/(Ag+C
u)]、Inの含有量(重量%)により定めることとし
た。
The evaluation conditions include the composition of the alloy layer formed on the end surface of the energized shaft, the melting temperature of the alloy layer, the joining work temperature for forming the alloy layer on the end of the energized shaft, and the end of the energized shaft. The thickness of the alloy layer formed on the part surface was set. The composition of this alloy layer is based on the ratio of Ag and Cu [(Ag) / (Ag + C
u)], and the In content (% by weight).

【0064】第2図は、Ag−Cu−In合金層の評価
結果をまとめた表を示す図である。評価結果の項目は、
1通電特性、2接触抵抗特性、3遮断特性、4備考とし
た。
FIG. 2 is a table showing a summary of evaluation results of the Ag—Cu—In alloy layer. The items of the evaluation result are
(1) conduction characteristics, (2) contact resistance characteristics, (3) breaking characteristics, and (4) remarks.

【0065】<1.通電特性>直径25mmのCu製の
通電軸と、直径30mm、厚さ5mmの円板状の固定接
点・可動接点(接点材料には75%Cu−25%Crを
使用)をディマウンタブル型真空遮断器に装着し、その
通電軸の端部と厚さ5mm、幅25mm、長さ200m
mの外部導体とを対面接触させて簡易型真空遮断器を組
み立てた。この真空バルブの基本的な構成、および通電
軸と外部導体との接続構成は、図3〜図5に示したもの
とほぼ同様である。
<1. Current-carrying characteristics> Dismountable vacuum using a 25 mm-diameter Cu-made current-carrying shaft and 30 mm-diameter, 5 mm-thick disk-shaped fixed / movable contacts (75% Cu-25% Cr is used for the contact material) Attach to the breaker, the end of the conducting shaft and thickness 5mm, width 25mm, length 200m
The simple type vacuum circuit breaker was assembled by making face-to-face contact with the m external conductor. The basic configuration of this vacuum valve and the connection configuration between the current-carrying shaft and the external conductor are almost the same as those shown in FIGS.

【0066】200V×500Aの回路を2000回開
閉させた時の、通電軸の端部と外部導体との接続部分に
ついて温度特性(測定周囲温度を除いた上昇値平均値、
上昇値最大値)を測定した。このときの測定値の評価は
次のように定め、評価A〜評価Cを「合格」、評価X〜
評価Zを「不良」の目安とした。
When the circuit of 200V × 500A is opened and closed 2000 times, the temperature characteristics (the average value of the rising values excluding the measured ambient temperature,
The maximum rise) was measured. The evaluation of the measured values at this time was determined as follows, and the evaluations A to C were “passed”, and the evaluations X to
The evaluation Z was used as a measure of “poor”.

【0067】 上昇値が10℃以下………………(評価A) 上昇値が10〜20℃未満………(評価B) 上昇値が20〜40℃未満………(評価C) 上昇値が40〜60℃未満………(評価X) 上昇値が60〜80℃未満………(評価Y) 上昇値が80℃以上………………(評価Z) <2.接触抵抗特性>上記温度特性を測定した後、通電
軸の端部と外部導体との接続部分を分解分離してから再
度接続し、この接続部分に100kgの加重を与え、測
定電流20Aで接触抵抗を測定した。なお、図2では、
実施例2の接触抵抗値を100とした時の相対値を示し
た。
The rise value is 10 ° C. or less (Evaluation A) The rise value is less than 10 to 20 ° C. (Evaluation B) The rise value is less than 20 to 40 ° C. (Evaluation C) The rise Value is less than 40 to 60 ° C. (Evaluation X) Rise value is less than 60 to 80 ° C. (Evaluation Y) Rise value is 80 ° C. or more (Evaluation Z) <2. Contact Resistance Characteristics> After measuring the above temperature characteristics, the connecting portion between the end of the conducting shaft and the external conductor is disassembled and separated, and then reconnected, a 100 kg load is applied to this connecting portion, and the contact resistance is measured at a measuring current of 20 A. Was measured. In FIG. 2,
The relative value when the contact resistance value of Example 2 is set to 100 is shown.

【0068】<3.遮断特性>直径70mmの接点材料
を装着した遮断テスト用の真空バルブを真空遮断器に取
り付けると共に、ベーキング、電圧エージング等を与え
た後、24kv,50Hzの回路に接続し、電流をほぼ
1kAずつ増加しながら遮断限界となる電流値を真空バ
ルブ3本について評価した。なお、同図では、実施例2
の電流値を1.0とした時の相対値を3本分のバラツキ
幅で示した。
<3. Breaking characteristics> Attach a vacuum valve for a breaking test equipped with a contact material with a diameter of 70 mm to the vacuum circuit breaker, apply baking, voltage aging, etc., connect to a 24 kv, 50 Hz circuit, and increase the current by approximately 1 kA. The current value at which the cutoff limit was reached was evaluated for three vacuum valves. Note that in FIG.
The relative value when the current value of the sample was set to 1.0 was shown by the variation width of three lines.

【0069】この遮断テスト用の真空バルブの組立ての
概要としては、まず、平均表面粗さを約1.5μmに研
磨した主成分がALからなるセラミックス製絶縁
容器を用意した。このセラミックス製絶縁容器について
は、組立て前に1600℃の前加熱処理を施した。封止
金具として、板厚さ2mmの42%Ni−Fe合金を用
意した。ロウ材として、厚さ0.1mmの72%Ag−
28%Cu合金板を用意した。接点材料については、7
5%Cu−25%Crを用意した。上記用意した各部材
を気密封止が可能なように配置して、5×10−4Pa
の真空雰囲気で封止金具とセラミックス製絶縁容器とを
気密封止した。
As an outline of the assembly of the vacuum valve for the shut-off test, first, a ceramic insulating container mainly made of AL 2 O 3 polished to an average surface roughness of about 1.5 μm was prepared. This For ceramic insulating vessel was subjected to a heat treatment prior to 1600 ° C. prior to assembly. A 42% Ni-Fe alloy having a plate thickness of 2 mm was prepared as a sealing metal. As a brazing material, 0.1% thick 72% Ag-
A 28% Cu alloy plate was prepared. For the contact material, 7
5% Cu-25% Cr was prepared. By placing the respective members have been prepared so as to allow hermetic sealing, 5 × 10 -4 Pa
In the vacuum atmosphere, the sealing fitting and the ceramic insulating container were hermetically sealed.

【0070】<4.備考>72%Ag−28%Cu合金
の好適な接合作業温度(820〜830℃)で、通電軸
の端部表面にAg−Cu−In合金層を形成させたとき
の接合状態、および総合評価を示した。総合評価は良好
なら「○」、そうでないなら「×」とした。
[0070] <4. Remarks> Bonding condition when Ag-Cu-In alloy layer is formed on the end surface of current-carrying shaft at a suitable joining temperature (820-830 ° C) of 72% Ag-28% Cu alloy, and comprehensive evaluation showed that. The overall evaluation was evaluated as “O” if good, and “X” otherwise.

【0071】次に、各実施例、各比較例について検討し
た結果を説明する。
Next, a description will be given of the results of a study on each example and each comparative example.

【0072】<実施例1〜4,比較例1〜2>図1の評
価条件に示すように、通電軸の端部表面に形成させるA
g−Cu−In合金中のAgとCuとの比率[(Ag)
/(Ag+Cu)]を0.72、通電軸の端部表面に合
金層を形成させる時の接合作業温度を820〜830
℃、通電軸の端部表面に形成させる合金層の厚さを95
〜105μmにそれぞれ一定とし、合金中のIn量を比
較例1ではゼロ、実施例1では0.1〜0.2%、実施
例2では3〜3.5%、実施例3では7.4〜7.6
%、実施例4では14.5〜15.0%、比較例2では
20.1〜20.5%にそれぞれ一定とし、このときの
通電特性、接触抵抗特性、遮断特性について調査した。
<Examples 1-4 and Comparative Examples 1-2> As shown in the evaluation conditions of FIG. 1, A formed on the end surface of the current-carrying shaft
Ratio of Ag and Cu in g-Cu-In alloy [(Ag)
/ (Ag + Cu)] is 0.72, and the joining operation temperature when forming an alloy layer on the end surface of the conducting shaft is 820 to 830.
℃, the thickness of the alloy layer formed on the end surface of the conducting shaft is 95
The In amount in the alloy was zero in Comparative Example 1, 0.1 to 0.2% in Example 1, 3 to 3.5% in Example 2, and 7.4 in Example 3. ~ 7.6
%, 14.5 to 15.0% in Example 4, and 20.1 to 20.5% in Comparative Example 2, and the current-carrying characteristics, contact resistance characteristics, and cutoff characteristics were examined.

【0073】図2の評価結果に示すように、通電軸の端
部表面に形成したIn量が0.1〜15.0(実施例1
〜4)の場合には、2000回開閉中の通電特性を示す
温度上昇特性の平均値は(評価A〜B)、最大値も(評
価A〜C)を示し良好な範囲であった。接触抵抗特性も
実施例2を100とした場合の相対値が、通電テスト前
後とも90〜110を示し良好な範囲であった。遮断特
性も実施例2を1.0とした場合の相対値が、0.95
〜1.05を示し良好な範囲であった。
As shown in the evaluation results of FIG. 2, the amount of In formed on the end surface of the current-carrying shaft was 0.1 to 15.0 (Example 1).
In the cases of (4) to (4), the average values of the temperature rise characteristics indicating the current-carrying characteristics during the 2,000 times opening / closing were (Evaluation A to B), and the maximum values were also (Evaluation A to C), which were in good ranges. The contact resistance characteristics were in a good range, with the relative value when Example 2 was set to 100 being 90 to 110 before and after the energization test. The relative value when the blocking characteristic was 1.0 in Example 2 was 0.95.
~ 1.05, which was a good range.

【0074】これに対して、In量がゼロ(比較例1)
の場合には、通電特性を示す温度上昇特性の平均値は
(評価C)で良好であったが、最大値は(評価Y)を示
し大幅なバラツキを示した。接触抵抗特性も実施例2を
100とした場合の相対値が、通電テスト後で90〜3
10を示し大幅なバラツキを示した。遮断特性は実施例
2を1.0とした場合の相対値が、0.95〜1.05
を示し良好な範囲であった。
On the other hand, the In amount was zero (Comparative Example 1).
In the case of (1), the average value of the temperature rise characteristics indicating the current-carrying characteristics was good in (Evaluation C), but the maximum value was (Evaluation Y), indicating a large variation. The relative value of the contact resistance characteristic when the value of Example 2 was set to 100 was 90 to 3 after the energization test.
10 showed a large variation. As for the cutoff characteristic, the relative value when Example 2 was set to 1.0 was 0.95 to 1.05.
And within a good range.

【0075】また、In量が20.1〜20.5%(比
較例2)の場合には、温度上昇特性の平均値、最大値は
(評価X〜Y)を示し大幅なバラツキを示した。接触抵
抗特性も実施例2を100とした場合の相対値が、通電
テスト前で120〜240、通電テスト後では130〜
340に劣化(接触抵抗は数値が大の程、特性は低下)
した。遮断特性は実施例2を1.0とした場合の相対値
が、0.9〜1.0を示し良好な範囲であった。
When the amount of In was 20.1 to 20.5% (Comparative Example 2), the average value and the maximum value of the temperature rise characteristics were (Evaluation X to Y), indicating a large variation. . As for the contact resistance characteristics, the relative value when Example 2 is set to 100 is 120 to 240 before the energization test, and 130 to 240 after the energization test.
Degradation 340 (degree numbers contact resistance is larger, the characteristics decrease)
did. As for the cutoff characteristics, the relative value when Example 2 was set to 1.0 was 0.9 to 1.0, which was in a good range.

【0076】以上から、通電軸の端部表面に形成するI
n量は、諸特性に関与し、その量は0.1〜15%の範
囲が適切であることが確認された。
As described above, the I formed on the end surface of the conducting shaft
The amount of n is related to various properties, and it has been confirmed that the amount is appropriately in the range of 0.1 to 15%.

【0077】<実施例5、比較例3〜4>上記実施例1
〜 4、比較例1〜2では、接合作業温度を820〜8
30℃で一定としたが、ここでは、この接合作業温度を
変更して通電特性、接触抵抗特性、遮断特性について調
査した。
<Example 5, Comparative Examples 3-4> Example 1
-4, Comparative Examples 1-2, the joining operation temperature was 820-8
Although the temperature was kept constant at 30 ° C., here, the joining operation temperature was changed and the current-carrying characteristics, the contact resistance characteristics, and the breaking characteristics were investigated.

【0078】図1の評価条件に示すように、実施例5で
は接合作業温度を780〜840℃、比較例3では87
0〜890℃、比較例4では750〜780℃でそれぞ
れ一定とした。なお、いずれもAgとCuとの比率は
0.72、In量は7.4〜7.6%で一定とし、合金
層の融解温度は646〜748℃、合金層の厚さは95
〜105μmとした。
As shown in the evaluation conditions of FIG. 1, in Example 5, the joining temperature was set at 780 to 840 ° C., and in Comparative Example 3, 87
0 to 890 ° C., and 750 to 780 ° C. in Comparative Example 4, respectively. In each case, the ratio of Ag to Cu was constant at 0.72, the In amount was constant at 7.4 to 7.6%, the melting temperature of the alloy layer was 646 to 748 ° C, and the thickness of the alloy layer was 95%.
105105 μm.

【0079】図2の評価結果に示すように、接合作業温
度が780〜840℃(実施例5)の場合では、200
0回開閉中の温度上昇特性は、平均値、最大値ともに
(評価A)を示し良好な範囲であった。接触抵抗特性も
実施例2を100とした場合の相対値が、通電テスト前
後とも90〜110を示し良好な範囲であった。遮断特
性も実施例2を1.0とした場合の相対値が、0.95
〜1.05を示し良好な範囲であった。
As shown in the evaluation results of FIG. 2, when the joining temperature is 780 to 840 ° C. (Example 5), 200
The temperature rise characteristics during the zero-time opening and closing were both in the average value and the maximum value (evaluation A), and were in a favorable range. The contact resistance characteristics were in a good range, with the relative value when Example 2 was set to 100 being 90 to 110 before and after the energization test. The relative value when the barrier properties were also Example 2 and 1.0, 0.95
~ 1.05, which was a good range.

【0080】これに対して接合作業温度が870〜89
0℃(比較例3)の場合では、通電軸の温度上昇特性の
平均値は(評価B)で良好であるが、最大値は(評価
X)を示し、大幅なバラツキを示した。表面観察の結
果、通電軸の端部表面の合金層は、端部から不要な部分
への流出が認められた。これは合金層の厚さの不均一性
を招き好ましくない。比較例3の接触抵抗特性は、90
〜110を示し良好な範囲にあるが、通電テスト後では
90〜230に劣化した。遮断特性は実施例2を1.0
とした場合の相対値が、0.95〜1.05を示し良好
な範囲であった。
On the other hand, the joining operation temperature was 870-89.
In the case of 0 ° C. (Comparative Example 3), the average value of the temperature rise characteristics of the current-carrying shaft was good in (Evaluation B), but the maximum value was (Evaluation X), showing a large variation. As a result of surface observation, it was found that the alloy layer on the end surface of the current-carrying shaft flowed out from the end to an unnecessary portion. This leads to non-uniformity in the thickness of the alloy layer, which is not preferable. The contact resistance characteristic of Comparative Example 3 is 90
110110, which is in a good range, but deteriorated to 90〜230 after the energization test. The cutoff characteristic was 1.0 in Example 2.
And the relative value was 0.95 to 1.05, which was a good range.

【0081】一方、接合作業温度が750〜780℃
(比較例4)の場合では、通電軸の温度上昇特性の平均
値は(評価C)で良好であるが、最大値は(評価X)を
示し大幅なバラツキを示した。接触抵抗特性は、通電テ
スト前では100〜180を示し良好な範囲にあるが、
通電テスト後では100〜275に劣化した。遮断特性
は実施例2を1.0とした場合の相対値が、0.8〜
0.9に劣化した。作業温度が低すぎる為の合金層の形
成不良が原因である。
[0081] On the other hand, the junction working temperature is 750~780 ℃
In the case of (Comparative Example 4), the average value of the temperature rise characteristics of the current-carrying shaft was good in (Evaluation C), but the maximum value was (Evaluation X), indicating a large variation. The contact resistance characteristic is 100 to 180 before the energization test and is in a good range,
It deteriorated to 100 to 275 after the energization test. The relative value when the blocking characteristic is 1.0 in Example 2 is 0.8 to
Degraded to 0.9. This is due to poor formation of the alloy layer due to too low a working temperature.

【0082】以上から、通電軸の端部表面にAg−Cu
−In合金層を形成させる時の接合作業温度は780〜
840℃の範囲が適切であることが確認された。
As described above, the Ag-Cu
The bonding operation temperature when forming the -In alloy layer is 780 to
It was confirmed that the range of 840 ° C. was appropriate.

【0083】<実施例6〜7、比較例5〜6>上記実施
例1〜5、比較例1〜4では、通電軸の端面に形成させ
る合金層の厚さを95〜105μmに一定とした場合に
ついて示したが、ここでは、この合金層の厚さを変更し
て通電特性、接触抵抗特性、遮断特性について調査し
た。
<Examples 6 to 7, Comparative Examples 5 to 6> In Examples 1 to 5 and Comparative Examples 1 to 4, the thickness of the alloy layer formed on the end surface of the conducting shaft was fixed at 95 to 105 μm. Although the case was shown, here, the thickness of the alloy layer was changed, and the current-carrying characteristics, the contact resistance characteristics, and the breaking characteristics were investigated.

【0084】図1の評価条件に示すように、実施例6で
は厚さを1.0〜3.0μm、実施例7では195〜2
00μm、比較例5では0.1μm未満、比較例6では
400〜500μmでそれぞれ一定とした。なお、いず
れもAgとCuとの比率は0.72、In量は7.4〜
7.6%、合金層の融解温度は646〜748℃、接合
作業温度は820〜830℃とした。
As shown in the evaluation conditions of FIG. 1, the thickness was 1.0 to 3.0 μm in the sixth embodiment, and 195 to 2 μm in the seventh embodiment.
00 μm, less than 0.1 μm in Comparative Example 5, and 400 to 500 μm in Comparative Example 6, respectively. In each case, the ratio of Ag to Cu was 0.72, and the In content was 7.4 to 7.4.
7.6%, the melting temperature of the alloy layer was 646-748 ° C, and the joining temperature was 820-830 ° C.

【0085】図2の評価結果に示すように、通電軸の端
部表面に形成させる合金層の厚さが1.0〜3.0μm
(実施例6)の場合には、2000回開閉中の温度上昇
特性は、平均値が(評価B)、最大値が(評価C)を示
し良好な範囲であった。接触抵抗特性も実施例2を10
0とした場合の相対値が、通電テスト前後とも90〜1
10を示し良好な範囲であった。遮断特性も実施例2を
1.0とした場合の相対値が、0.95〜1.05を示
し良好な範囲であった。
As shown in the evaluation results of FIG. 2, the thickness of the alloy layer formed on the end surface of the current-carrying shaft is 1.0 to 3.0 μm.
In the case of (Example 6), the average value of the temperature rise characteristics during opening and closing 2000 times was (Evaluation B), and the maximum value was (Evaluation C), which was in a good range. The contact resistance characteristics were also 10 in Example 2.
The relative value when set to 0 is 90 to 1 before and after the energization test.
10 was a good range. The relative value when the blocking characteristic was set to 1.0 in Example 2 was 0.95 to 1.05, which was in a favorable range.

【0086】合金層の厚さが195〜200μm(実施
例7)の場合では、2000回開閉中の温度上昇特性
は、平均値、最大値ともに(評価A)を示し良好な範囲
であった。また、接触抵抗特性、遮断特性は実施例6と
同様に良好な範囲にあった。
When the thickness of the alloy layer was 195 to 200 μm (Example 7), the average and maximum values of the temperature rise characteristics during opening and closing 2,000 times (Evaluation A) were in a good range. Further, the contact resistance characteristics and the cutoff characteristics were in good ranges as in Example 6.

【0087】これに対して、合金層の厚さが0.1μm
未満(比較例5)の場合では、通電軸の温度上昇特性の
平均値は(評価C)で良好であるが、最大値は(評価
Z)を示し大幅なバラツキを示した。接触抵抗特性は、
通電テスト前では90〜120を示し良好な範囲にある
が、通電テスト後では90〜350に劣化した。通電テ
スト後の通電軸の端部表面は金属層の厚さ不足によっ
て、通電軸のCuの露出が見られ、このCu部分の局部
的酸化によって温度上昇特性、接触抵抗特性にバラツキ
が発生した。遮断特性は実施例2を1.0とした場合の
相対値が、0.95〜1.05を示し良好な範囲であっ
た。
On the other hand, when the thickness of the alloy layer is 0.1 μm
In the case of less than (Comparative Example 5), the average value of the temperature rise characteristics of the current-carrying shaft was good in (Evaluation C), but the maximum value was (Evaluation Z), indicating a large variation. Contact resistance characteristics
Before the energization test, it was 90 to 120, which is in a good range, but after the energization test, it deteriorated to 90 to 350. At the end surface of the current-carrying shaft after the current-carrying test, Cu was exposed on the current-carrying shaft due to the insufficient thickness of the metal layer, and local oxidation of the Cu portion caused variations in the temperature rise characteristics and the contact resistance characteristics. As for the cutoff characteristic, the relative value when Example 2 was set to 1.0 was 0.95 to 1.05, which was in a good range.

【0088】また、合金層の厚さが400〜500μm
(比較例6)の場合では、通電軸の温度上昇特性の平均
値は(評価B)で良好であるが最大値は(評価X)を示
し大幅なバラツキを示した。接触抵抗特性は、同様に9
0〜110を示し良好な範囲にあり、通電テスト後でも
90〜110を示し良好な範囲にある。遮断特性も実施
例2を1.0とした場合の相対値は、0.95〜1.0
5を示し良好な範囲にある。結局、通電軸の温度上昇特
性の最大値が(評価X)を示していることから、総合的
には「×」と判断される。
The thickness of the alloy layer is 400 to 500 μm.
In the case of (Comparative Example 6), the average value of the temperature rise characteristics of the current-carrying shaft was good in (Evaluation B), but the maximum value was (Evaluation X), indicating a large variation. The contact resistance characteristics were similarly 9
0 to 110, which is a good range, and 90 to 110 after the energization test, which is in a good range. The relative value when the blocking characteristic is 1.0 in Example 2 is 0.95 to 1.0.
5 is in a good range. After all, since the maximum value of the temperature rise characteristic of the energized shaft indicates (evaluation X), it is determined to be “x” overall.

【0089】以上から、通電軸の端部表面に形成させる
Ag−Cu−Inの合金層の厚さは、1〜200μmの
範囲が適切であることが確認された。
[0089] From the above, the thickness of the alloy layer of Ag-Cu-In to form the end surfaces of the current-carrying rod, it was confirmed range 1~200μm is appropriate.

【0090】<実施例8、比較例7〜8>上記実施例1
〜7、比較例1〜6では、通電軸の端部表面に形成させ
るAg−Cu−In合金層中の[(Ag)/(Ag+C
u)]比率を0.72で一定としたが、ここでは、この
比率を変更した場合について通電特性、接触抵抗特性、
遮断特性を調査した。
<Embodiment 8, Comparative Examples 7 to 8>
In Comparative Examples 1 to 6, [(Ag) / (Ag + C) in the Ag—Cu—In alloy layer formed on the end surface of the current-carrying shaft.
u)] The ratio is fixed at 0.72, but here, when the ratio is changed, the energization characteristics, the contact resistance characteristics,
The blocking characteristics were investigated.

【0091】図1の評価条件に示すように、実施例8で
はこの比率を0.65〜0.8、比較例7では0.4〜
0.5、比較例8では0.9〜0.95でそれぞれ一定
とした。
As shown in the evaluation conditions in FIG. 1, in Example 8, this ratio was 0.65 to 0.8, and in Comparative Example 7, it was 0.4 to 0.8.
0.5 and Comparative Example 8 were constant at 0.9 to 0.95.

【0092】図2の評価結果に示すように、[(Ag)
/(Ag+Cu)]比率が0.65〜0.8(実施例
8)の場合では、通電特性を示す温度上昇特性の平均値
は(評価A〜B)、最大値も(評価B〜C)を示し良好
な範囲であった。接触抵抗特性も実施例2を100とし
た場合の相対値が、通電テスト前では90〜180、通
電テスト後では100〜200を示しいずれも良好な範
囲であった。遮断特性も実施例2を1.0とした場合の
相対値が、0.9〜1.1を示し良好な範囲であった。
As shown in the evaluation results in FIG. 2, [(Ag)
/ (Ag + Cu)] ratio is 0.65 to 0.8 (Example 8), the average value of the temperature rise characteristics indicating the current-carrying characteristics is (Evaluation A to B), and the maximum value is also (Evaluation B to C). And was in a good range. The contact resistance characteristics also showed a relative value when the value of Example 2 was set to 100, which was 90 to 180 before the energization test and 100 to 200 after the energization test, all in good ranges. The relative value when the blocking characteristic was set to 1.0 in Example 2 was 0.9 to 1.1, which was a good range.

【0093】これに対して、[(Ag)/(Ag+C
u)]比率が0.4〜0.5(比較例7)の場合では、
通電軸の温度上昇特性の平均値は(評価A〜B)で良好
であるが、最大値は(評価D〜Y)を示し大幅なバラツ
キを示した。接触抵抗特性は、通電テスト前では380
を示し、通電テスト後では3500を示し大幅な劣化と
バラツキを示した。通電軸の端部表面には融解していな
い合金層の存在が見られるなど、一部に接合不良が生じ
たため遮断テストを中止した。
[0093] On the other hand, [(Ag) / (Ag + C
u)] When the ratio is 0.4 to 0.5 (Comparative Example 7),
The average value of the temperature rise characteristics of the current-carrying shaft was good in (Evaluation A to B), but the maximum value was (Evaluation D to Y), indicating a large variation. The contact resistance characteristic was 380 before the energization test.
It is shown, in after the energization test showed significant deterioration and variation indicates 3500. The interrupting test was stopped because a part of the joint was defective, such as the presence of an unmelted alloy layer on the end surface of the conducting shaft.

【0094】また、[(Ag)/(Ag+Cu)]比率
が0.9〜0.95(比較例8)の場合では、通電軸の
温度上昇特性の平均値は(評価A〜B)で良好である
が、最大値は(評価D〜Z)を示し、更に大幅なバラツ
キを示した。接触抵抗特性は、通電テスト前では450
を示し、通電テスト後では5000以上を示し大幅な劣
化とバラツキを示した。通電軸の端部表面には融解して
いない合金層の存在が見られるなど、接合不良が生じた
ため遮断テストを中止した。
[0094] Further, favorable in the case [(Ag) / (Ag + Cu)] ratio of 0.9 to 0.95 (Comparative Example 8), the average value of the temperature rise characteristic of the current axis (Evaluation A-B) However, the maximum value showed (Evaluation D to Z), and further showed a significant variation. Contact resistance characteristics were 450 before the energization test.
After the energization test, the value was 5,000 or more, indicating significant deterioration and variation. The breaking test was stopped due to poor bonding such as the presence of an unmelted alloy layer on the end surface of the conducting shaft.

【0095】以上から、通電軸の端部表面に形成させる
Ag−Cu−In合金層の中の[(Ag)/(Ag+C
u)]比率は0.65〜0.8の範囲が適切であること
が確認された。
From the above, [(Ag) / (Ag + C) in the Ag—Cu—In alloy layer formed on the end surface of the conducting shaft
u)] It was confirmed that the ratio was appropriately in the range of 0.65 to 0.8.

【0096】[0096]

【発明の効果】以上説明したように、本発明によれば、
外部導体に接続される側の各通電軸の端部の表面に、A
gが60〜75重量%、Inが0.1〜15重量%、そ
の残部がCuよりなるAg−Cu−In合金層を形成す
るようにしたことで、真空バルブの通電軸と真空遮断器
へつなげるための外部導体との連結部分の接触抵抗特性
が改善されるので、真空遮断器の通電特性および遮断特
性の双方を向上させることができる。
As described above, according to the present invention,
The surface of the end of each energized shaft on the side connected to the external conductor
g is 60 to 75% by weight, In is 0.1 to 15% by weight, and the rest is formed of an Ag-Cu-In alloy layer made of Cu, so that the current can be applied to the current-carrying shaft of the vacuum valve and the vacuum circuit breaker Since the contact resistance characteristics of the connection portion with the external conductor for connection are improved, both the current-carrying characteristics and the breaking characteristics of the vacuum circuit breaker can be improved.

【0097】また、本発明によれば、Ag−Cu−In
合金層の固相線温度を630℃以上780℃未満、液相
線温度を680℃以上780℃未満としたことで、通常
の72%Ag−28%Cu合金を用いたときの適切な接
合作業温度(820〜830℃)でAg−Cu−In合
金層を通電軸の端部表面に形成させた場合に、端部表面
上に合金層の未融解領域が生じることを防ぎ、均一の厚
さを得て安定した接触抵抗特性が得られるので、真空遮
断器の通電特性および遮断特性の双方を向上させること
ができる。
[0097] Further, according to the present invention, Ag-Cu-In
By setting the solidus temperature of the alloy layer to 630 ° C or more and less than 780 ° C and the liquidus temperature to 680 ° C or more and less than 780 ° C, appropriate joining work when using a normal 72% Ag-28% Cu alloy When the Ag—Cu—In alloy layer is formed on the end surface of the current-carrying shaft at a temperature (820-830 ° C.), an unmelted region of the alloy layer is prevented from being formed on the end surface, and the thickness is uniform. As a result, stable contact resistance characteristics can be obtained, so that both the current-carrying characteristics and the breaking characteristics of the vacuum circuit breaker can be improved.

【0098】また、本発明によれば、Ag−Cu−In
合金層の厚さを1〜200μmの範囲としたことで、各
通電軸と外部導体との間の接触抵抗特性が改善されるの
で、真空遮断器の通電特性および遮断特性の双方を向上
させることができる。
Further, according to the present invention, Ag—Cu—In
By setting the thickness of the alloy layer in the range of 1 to 200 μm, the contact resistance characteristics between each current-carrying shaft and the external conductor are improved, so that both the current-carrying characteristics and the breaking characteristics of the vacuum circuit breaker are improved. Can be.

【0099】また、本発明によれば、Ag−Cu−In
合金層中のAgとCuとの比率[(Ag)/(Ag+C
u)]を0.65〜0.8の範囲としたことで、各通電
軸と外部導体との間の接触抵抗特性が改善されるので、
真空遮断器の通電特性および遮断特性の双方を向上させ
ることができる。
Further, according to the present invention, Ag-Cu-In
Ratio of Ag and Cu in alloy layer [(Ag) / (Ag + C
u)] is set in the range of 0.65 to 0.8, so that the contact resistance characteristics between each energized shaft and the external conductor are improved.
Both the current-carrying characteristics and the breaking characteristics of the vacuum circuit breaker can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】代表的な真空バルブの構成を示す断面図であ
る。
FIG. 1 is a cross-sectional view showing a configuration of a typical vacuum valve.

【図2】代表的な真空バルブの別の構成を示す断面図で
ある。
FIG. 2 is a cross-sectional view showing another configuration of a typical vacuum valve.

【図3】真空バルブの通電軸が真空遮断器につなげるた
めの外部導体に接続された状態を示す図である。
FIG. 3 is a diagram showing a state in which an energizing shaft of a vacuum valve is connected to an external conductor for connecting to a vacuum circuit breaker.

【図4】通電特性、遮断特性等を調べるためのAg−C
u−In合金層の評価条件をまとめた表を示す図であ
る。
FIG. 4 is an Ag-C for examining a current-carrying characteristic, a breaking characteristic, and the like
It is a figure which shows the table | surface which put together the evaluation conditions of the u-In alloy layer.

【図5】Ag−Cu−In合金層の評価結果をまとめた
表を示す図である。
FIG. 5 is a diagram showing a table summarizing evaluation results of an Ag—Cu—In alloy layer.

【符号の説明】[Explanation of symbols]

40…電極(接点41の背面) 41…固定接点 50…電極(接点51の背面) 51…可動接点 M…通電軸107の移動方向 101…絶縁容器 102a…金属蓋体(固定側) 102b…金属蓋体(可動側) 103…真空容器 104…固定接点 105…可動接点 106…通電軸(固定側) 107…通電軸(可動側) 108…ベローズ 109…アークシールド 121…外部導体(固定側) 122…外部導体(可動側) 123…固定側通電軸106の上端表面の接続部 124…可動側通電軸107の下端外周の接続部 125…環状導体 126…可撓導体 Reference numeral 40: electrode (back of contact 41) 41: fixed contact 50: electrode (back of contact 51) 51: movable contact M: moving direction of conducting shaft 107 101: insulating container 102a: metal cover (fixed side) 102b: metal the lid (movable side) 103 ... vacuum chamber 104 ... fixed contact 105 ... movable contact 106 ... energizing shaft (fixed side) 107 ... energizing shaft (movable side) 108 ... bellows 109 ... arc shield 121 ... external conductor (fixed side) 122 ... outer conductor (movable side) 123 ... connection part on the upper end surface of fixed side conduction shaft 106 124 ... connection part on the outer periphery of the lower end of movable side conduction shaft 107 125 ... annular conductor 126 ... flexible conductor

───────────────────────────────────────────────────── フロントページの続き (72)発明者 草野 貴史 東京都府中市東芝町1番地 株式会社東芝 府中事業所内 (72)発明者 鴛海 勝美 東京都府中市東芝町1番地 株式会社東芝 府中事業所内 (72)発明者 山本 敦史 東京都府中市東芝町1番地 株式会社東芝 府中事業所内 Fターム(参考) 5G023 AA03 BA01 CA11 5G026 BA07 BB02 BB04 BB30 BC02 BC03 BC06 5G050 AA01 AA13 AA19 BA04 CA01 CA04 DA06 DA10 EA13 FA01 ────────────────────────────────────────────────── ─── front page of the continuation (72) inventor Takashi Kusano Fuchu, Tokyo Toshiba-cho, address, Ltd. Toshiba Fuchu business premises (72) inventor Katsumi Oshiumi Fuchu, Tokyo Toshiba-cho, address, Ltd. Toshiba Fuchu business premises ( 72) Inventor Atsushi Yamamoto 1 Toshiba-cho, Fuchu-shi, Tokyo F-term in the Fuchu office of Toshiba Corporation 5G023 AA03 BA01 CA11 5G026 BA07 BB02 BB04 BB30 BC02 BC03 BC06 5G050 AA01 AA13 AA19 BA04 CA01 CA04 DA06 DA10 EA13 FA01

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 気密封止された絶縁容器の内部に一対の
接点材料が設けられ、絶縁容器の両端から挿入された各
通電軸の端部が各接点材料にそれぞれ接続され、各通電
軸の他方の端部が絶縁容器の外側で真空遮断器につなげ
るための外部導体にそれぞれ接続される真空バルブにお
いて、 前記外部導体に接続される側の各通電軸の端部の表面
に、Agが60〜75重量%、Inが0.1〜15重量
%、その残部がCuよりなるAg−Cu−In合金層を
形成したことを特徴とする真空バルブ。
1. A pair of contact materials are provided inside an airtightly sealed insulating container, and the ends of respective energized shafts inserted from both ends of the insulating container are connected to the respective contact materials, respectively. In the vacuum valve, the other end of which is connected to an external conductor for connecting to a vacuum circuit breaker outside the insulating container, the surface of the end of each energized shaft on the side connected to the external conductor has Ag of 60%. 75% by weight, 0.1 to 15% by weight of In, and the rest of the vacuum valve is formed of an Ag-Cu-In alloy layer made of Cu.
【請求項2】 前記Ag−Cu−In合金層は、その固
相線温度を630℃以上780℃未満とし、かつ液相線
温度を680℃以上780℃未満としたことを特徴とす
る請求項1記載の真空バルブ。
2. The Ag—Cu—In alloy layer has a solidus temperature of 630 ° C. or more and less than 780 ° C., and a liquidus temperature of 680 ° C. or more and less than 780 ° C. The vacuum valve according to 1.
【請求項3】 前記Ag−Cu−In合金層は、その厚
さを1〜200μmの範囲としたことを特徴とする請求
項1又は2記載の真空バルブ。
3. The vacuum valve according to claim 1, wherein the thickness of the Ag—Cu—In alloy layer is in a range of 1 to 200 μm.
【請求項4】 前記Ag−Cu−In合金層は、Agと
Cuとの比率[(Ag)/(Ag+Cu)]を0.65
〜0.8の範囲としたことを特徴とする請求項1乃至3
のいずれかに記載の真空バルブ。
4. The Ag—Cu—In alloy layer has a ratio of Ag to Cu [(Ag) / (Ag + Cu)] of 0.65.
4. The method according to claim 1, wherein the range is from 0.8 to 0.8.
The vacuum valve according to any one of the above.
【請求項5】 前記Ag−Cu−In合金層は、AgC
u合金を主成分とするマトリックスと、Ag又は/及び
Cuを含むIn化合物とで構成されたものであって、前
記In化合物をマトリックスに分散させたことを特徴と
する請求項1乃至4のいずれかに記載の真空バルブ。
5. The Ag—Cu—In alloy layer is made of AgC
5. A matrix comprising a matrix mainly composed of a u alloy and an In compound containing Ag and / or Cu, wherein the In compound is dispersed in the matrix. A vacuum valve as described in Crab.
【請求項6】 気密封止された絶縁容器の内部に一対の
接点材料が設けられ、絶縁容器の両端から挿入された各
通電軸の端部が各接点材料にそれぞれ接続され、各通電
軸の他方の端部が絶縁容器の外側で真空遮断器につなげ
るための外部導体にそれぞれ接続される真空バルブを製
造する製造方法において、 前記外部導体に接続される側の各通電軸の端部の表面
に、Agが60〜75重量%、Inが0.1〜15重量
%、その残部がCuよりなるAg−Cu−In合金層を
780℃以上840℃未満の接合作業温度で形成させる
ことを特徴とする真空バルブの製造方法。
6. A pair of contact materials is provided inside an airtightly sealed insulating container, and ends of each energized shaft inserted from both ends of the insulating container are connected to each contact material, respectively. in the manufacturing method of the other end to produce a vacuum valve which is connected to the outer conductor for connecting the vacuum circuit breaker outside of the insulating container, the surface of the end of each current-carrying rod of the side connected to the outer conductor An Ag-Cu-In alloy layer comprising 60 to 75% by weight of Ag, 0.1 to 15% by weight of In and the balance of Cu is formed at a joining temperature of 780 ° C or more and less than 840 ° C. Manufacturing method of a vacuum valve.
【請求項7】 Agが60〜75重量%、Inが0.1
〜15重量%、その残部がCuよりなる厚さ1〜200
μmのAg−Cu−In合金箔を、前記各通電軸の端部
の表面に接触配置させる工程と、 780℃以上840℃未満の接合作業温度で前記各通電
軸の端部の表面に前記合金箔を接合させる工程と、 を有することを特徴とする請求項6記載の真空バルブの
製造方法。
7. Ag is 60 to 75% by weight and In is 0.1% by weight.
1515% by weight, the balance being made of Cu
The Ag-Cu-In alloy foil [mu] m, the the step of contacting disposed on the surface of the end of each current-carrying rod, the alloy wherein the surface of the end of each current-carrying rod at the junction working temperature of less than 780 ° C. or higher 840 ° C. The method for manufacturing a vacuum valve according to claim 6, comprising: bonding a foil.
【請求項8】 Agが60〜75重量%、Inが0.1
〜15重量%、その残部がCuとなるようにそれぞれ厚
さを調整したAg、In、Cuの単体箔を、前記各通電
軸の端部の表面に積層させる工程と、 780℃以上840℃未満の接合作業温度で前記各通電
軸の端部の表面に前記単体箔を接合させる工程と、 を有することを特徴とする請求項6記載の真空バルブの
製造方法。
8. Ag is 60 to 75% by weight and In is 0.1% by weight.
A step of laminating Ag, In, and Cu single foils each having a thickness adjusted so that the remaining portion becomes Cu on the surface of the end portion of each of the energized shafts, from 780 ° C to less than 840 ° C. 7. The method for manufacturing a vacuum valve according to claim 6, further comprising: bonding the single foil to a surface of an end portion of each of the energized shafts at a bonding operation temperature of (c).
【請求項9】 Ag、In、Cuのいずれか2種よりな
る合金箔と残りの1種よりなる単体箔とを、Agが60
〜75重量%、Inが0.1〜15重量%、その残部が
Cuとなるように前記各通電軸の端部の表面に厚さを調
整して積層させる工程と、 780℃以上840℃未満の接合作業温度で前記各通電
軸の端部の表面に前記合金箔および前記単体箔を接合さ
せる工程と、 を有することを特徴とする請求項6記載の真空バルブの
製造方法。
9. An alloy foil made of any two of Ag, In, and Cu and a single foil made of the remaining one are mixed with Ag of 60%.
Adjusting the thickness on the surface of the end portion of each of the current-carrying shafts so that the thickness becomes 75% by weight, the content of In becomes 0.1 to 15% by weight, and the remainder becomes Cu; 7. The method for manufacturing a vacuum valve according to claim 6, further comprising: bonding the alloy foil and the single foil to the surface of the end of each of the energized shafts at the bonding operation temperature.
【請求項10】 AgとCuとの比率[(Ag)/(A
g+Cu)]を0.65〜0.8の範囲とする工程を有
することを特徴とする請求項6乃至9のいずれかに記載
の真空バルブの製造方法。
10. The ratio of Ag to Cu [(Ag) / (A
g + Cu)] in the range of 0.65 to 0.8. 10. The method of manufacturing a vacuum valve according to claim 6, further comprising:
【請求項11】 請求項1乃至5のいずれかに記載の真
空バルブを用いたことを特徴とする真空遮断器。
11. A vacuum circuit breaker using the vacuum valve according to claim 1.
【請求項12】 請求項6乃至10のいずれかに記載の
製造方法により製造された真空バルブを用いたことを特
徴とする真空遮断器。
12. A vacuum circuit breaker using a vacuum valve manufactured by the manufacturing method according to claim 6. Description:
JP2001076927A 2001-03-16 2001-03-16 Vacuum valve, its manufacturing method and vacuum circuit breaker Pending JP2002279867A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001076927A JP2002279867A (en) 2001-03-16 2001-03-16 Vacuum valve, its manufacturing method and vacuum circuit breaker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001076927A JP2002279867A (en) 2001-03-16 2001-03-16 Vacuum valve, its manufacturing method and vacuum circuit breaker

Publications (1)

Publication Number Publication Date
JP2002279867A true JP2002279867A (en) 2002-09-27

Family

ID=18933772

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001076927A Pending JP2002279867A (en) 2001-03-16 2001-03-16 Vacuum valve, its manufacturing method and vacuum circuit breaker

Country Status (1)

Country Link
JP (1) JP2002279867A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011108386A (en) * 2009-11-13 2011-06-02 Toshiba Corp Vacuum valve, and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011108386A (en) * 2009-11-13 2011-06-02 Toshiba Corp Vacuum valve, and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US4640999A (en) Contact material of vacuum interrupter and manufacturing process therefor
US5687472A (en) Method of manufacturing a vacuum interrupter
EP0155322A1 (en) Electrode of vacuum breaker
US4547639A (en) Vacuum circuit breaker
JPH0561338B2 (en)
JP2002279867A (en) Vacuum valve, its manufacturing method and vacuum circuit breaker
JP2000235825A (en) Electrode member for vacuum circuit-breaker and manufacture thereof
JP2006228684A (en) Contact point material for vacuum valve, the vacuum valve, and manufacturing method thereof
JP4515696B2 (en) Contact materials for vacuum circuit breakers
JP4515695B2 (en) Contact materials for vacuum circuit breakers
JPS60180026A (en) Electrode material of vacuum interrupter and method of producing same
JP2001357760A (en) Vacuum valve
JPS6215716A (en) Contact for vacuum breaker electrode
JP2000226631A (en) Vacuum valve and vacuum opening/closing device
GB2166161A (en) Manufacture of vacuum interrupter contacts
JPH04132127A (en) Contact point for vacuum bulb
JP4156867B2 (en) Contact and vacuum circuit breaker equipped with the same
JPS5914218A (en) Contact material for vacuum breaker
JPH0471286B2 (en)
JP2001243857A (en) Vacuum valve
JPH09231884A (en) Vacuum valve
JPH0443521A (en) Contact or vacuum valve
JPH076671A (en) Contact material and manufacture thereof for vacuum valve
JPH1092276A (en) Vacuum valve and its manufacture
JPH0474810B2 (en)

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070918

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071101

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080715