JPH10238938A - Vacuum heat insulation panel, its manufacture and refrigerator using the panel - Google Patents

Vacuum heat insulation panel, its manufacture and refrigerator using the panel

Info

Publication number
JPH10238938A
JPH10238938A JP4336397A JP4336397A JPH10238938A JP H10238938 A JPH10238938 A JP H10238938A JP 4336397 A JP4336397 A JP 4336397A JP 4336397 A JP4336397 A JP 4336397A JP H10238938 A JPH10238938 A JP H10238938A
Authority
JP
Japan
Prior art keywords
vacuum
heat insulating
plate
complex
vacuum heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4336397A
Other languages
Japanese (ja)
Other versions
JP3897850B2 (en
Inventor
Yoshio Nishimoto
芳夫 西本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP04336397A priority Critical patent/JP3897850B2/en
Publication of JPH10238938A publication Critical patent/JPH10238938A/en
Application granted granted Critical
Publication of JP3897850B2 publication Critical patent/JP3897850B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/04Arrangements using dry fillers, e.g. using slag wool which is added to the object to be insulated by pouring, spreading, spraying or the like

Abstract

PROBLEM TO BE SOLVED: To obtain a vacuum heat insulation panel having excellent effect of suppressing heat transfer and radiant heat by holding a core material of the panel in a shape of a packaging material, and constituting it by a complex obtained by laminating a radiant heat shielding member having excellent shielding effect of radiant heat on a surface of a glass wool mat. SOLUTION: The vacuum heat insulation panel 3 used as a heat insulator for a refrigerator comprises a packaging material 14 having a function of maintaining vacuum thereby shutting off invasion of the atmospheric air, and a core material 15 contained in the material 14 and formed of a complex obtained by laminating a radiant heat shielding member having an excellent shielding effect of radiant heat on a surface of glass wool mat. To manufacture the material 15, there are provided the steps of forming the complex by disposing a tabular piece on the mat, drying to remove moisture of the complex, impregnating the material with resin solution, and compression cure molding it. In the molding step, the complex is cured while giving a predetermined applied pressure and molded.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、例えば冷蔵庫や保
冷車などの断熱を要する壁面の金属製薄板および樹脂成
形品で構成された間隙に断熱材として用いる真空断熱パ
ネルに関するものであり、さらに詳しくは真空断熱パネ
ルの外殻を形成して外気の侵入を遮断して内部の真空を
維持する機能を保有する包装材の内部にあって、主に大
気圧による加圧から形状を維持する機能を付与された芯
材に関するものであり、その材料構成とそれを得るため
の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vacuum heat insulating panel used as a heat insulating material in a gap formed of a thin metal plate and a resin molded product on a wall of a refrigerator or a refrigerator car which requires heat insulation. Is inside a packaging material that has the function of forming the outer shell of a vacuum insulation panel to block the intrusion of outside air and maintain the vacuum inside, and has the function of maintaining its shape mainly from pressurization by atmospheric pressure. The present invention relates to a core material provided, and relates to a material configuration thereof and a manufacturing method for obtaining the same.

【0002】[0002]

【従来の技術】近年、地球環境を保護するため、オゾン
層破壊速度を抑制するためのクロロフルオロカーボン
類、さらにはそれの1/10以下にまで抑制できるハイ
ドロクロロフルオロカーボン類まで対象となった使用規
制が実施され、将来技術として発泡剤を用いずにより一
層の断熱性能向上と用いた材料が容易に回収と再利用が
可能な断熱システムが社会的に要求されている。
2. Description of the Related Art In recent years, in order to protect the global environment, chlorofluorocarbons for suppressing the destruction rate of the ozone layer and hydrochlorofluorocarbons which can be suppressed to 1/10 or less thereof have been targeted. As a technology in the future, there is a social demand for a heat insulation system capable of further improving the heat insulation performance without using a foaming agent and easily recovering and reusing the used material.

【0003】従来、冷蔵庫や保冷車などの断熱体の壁面
は、その外郭を鉄板などの金属製薄板、内面部分を樹脂
成形品で形成され、その間隙を断熱性に優れた硬質ポリ
ウレタンフォームを注入発泡して充填させたものが用い
られてきた。
Conventionally, the wall surface of a heat insulator such as a refrigerator or an insulated car is made of a thin metal plate such as an iron plate, the inner surface is formed of a resin molded product, and the gap is filled with a rigid polyurethane foam having excellent heat insulating properties. What has been foamed and filled has been used.

【0004】断熱材である硬質ウレタンフォーム(PU
F)の発泡剤には優れた断熱性が得られるハイドロクロ
ロフルオロカーボン類である1,1−ジクロロ−1−フ
ルオロエタンが用いられてきたが、近年、オゾン層破壊
の原因となる塩素を分子中に含まないハイドロフルオロ
カーボン類やハイドロカーボン類を用いることが提案さ
れている。例えば、特開平2−235982号公報で
は、1,1,2,2,3-ペンタフルオロプロパン(以後、HFC-24
5fa という。)や、1,1,1,4,4,4-ヘキサフルオロブタン
(以後、HFC-356mffm という。)などのハイドロフルオ
ロカーボン類を、特開平3−152160号公報ではシ
クロペンタンなどの可燃性物質を、各々、発泡剤に適用
した硬質ポリウレタンフォームの製造方法について述べ
られている。しかし、これら硬質ウレタンフォームの冷
蔵庫などへの適用品で最も優れた断熱性は17〜20mw
/mK である。
[0004] Rigid urethane foam (PU)
As the foaming agent of F), 1,1-dichloro-1-fluoroethane, which is a hydrochlorofluorocarbon that provides excellent heat insulating properties, has been used. It has been proposed to use hydrofluorocarbons and hydrocarbons that are not included in the above. For example, in Japanese Patent Application Laid-Open No. 2-235982, 1,1,2,2,3-pentafluoropropane (hereinafter referred to as HFC-24
5fa. ) And hydrofluorocarbons such as 1,1,1,4,4,4-hexafluorobutane (hereinafter referred to as HFC-356mffm), and a combustible substance such as cyclopentane in JP-A-3-152160. Each describes a method for producing a rigid polyurethane foam applied to a blowing agent. However, the most excellent heat insulation properties of these rigid urethane foams applied to refrigerators and the like are 17 to 20 mw.
/ mK.

【0005】オゾン層破壊の原因物質を用いないこと、
リサイクルなどの資源の有効活用、これにに併せて消費
電力の低減が求められている冷蔵庫などでは、断熱材で
ある硬質ウレタンフォームに対する断熱性能向上が限界
にあることから、図1の各断熱材の性能比較図に示す如
く、硬質ウレタンフォームの2倍以上の断熱性能が得ら
れる真空断熱パネルを応用する技術が新たに提案されて
いる。例えば、特開昭60−243471号公報ではP
UF粉砕品を合成樹脂袋に投入してボード状に真空パッ
クしたものを壁内に配設した断熱箱体があり、特開昭6
0−60483号公報では側板のフランジ側にPUFが
流動する隙間を設けた真空断熱パネルの設置方法を提案
している。
[0005] not to use substances causing ozone depletion,
In refrigerators, etc., which require effective use of resources such as recycling and reduction of power consumption, there is a limit to improving the heat insulation performance of rigid urethane foam, which is a heat insulating material. As shown in the performance comparison diagram, a technique for applying a vacuum heat insulating panel capable of obtaining heat insulation performance twice or more that of a rigid urethane foam has been newly proposed. For example, Japanese Patent Application Laid-Open No. 60-243471 discloses P
There is an insulated box in which a UF crushed product is put into a synthetic resin bag and vacuum-packed in a board shape is disposed in a wall.
Japanese Patent Publication No. 0-60483 proposes a method of installing a vacuum heat insulating panel in which a gap through which a PUF flows is provided on a flange side of a side plate.

【0006】以上の提案をはじめとする多くの真空断熱
パネルの形状は、厚さが10〜20mmの板状であり、図
2に示す工程を経て図3の断面図の如く状態で冷蔵庫の
壁に組み込んだ状態で作られる。このため、真空断熱パ
ネルの芯材には、真空状態のパネル形状を保持する機能
を満足するために所定の強度を有することが必要とな
る。
Many of the vacuum insulation panels including the above-mentioned proposals have a plate shape with a thickness of 10 to 20 mm. After the steps shown in FIG. It is made in a state of being incorporated in. For this reason, the core material of the vacuum insulation panel needs to have a predetermined strength in order to satisfy the function of maintaining the panel shape in a vacuum state.

【0007】一方、真空断熱パネルの断熱性能向上に
は、構成する材料に熱が伝達し難い物質を用いること、
材料間の接触面積を少なくすること、熱伝達を断熱方向
と直角の面方向に制御することが重要になる。これによ
って断熱(厚さ)方向に物質を伝達する熱量を抑制、更
に輻射伝熱を抑制する物質を介在させたり、空隙の大き
さを小さくすることが輻射伝熱を抑制するうえで有効と
なる。
On the other hand, in order to improve the heat insulating performance of the vacuum heat insulating panel, it is necessary to use a material that does not easily transmit heat to the constituent materials.
It is important to reduce the contact area between the materials and to control the heat transfer in a plane direction perpendicular to the direction of heat insulation. Accordingly, it is effective to suppress the amount of heat that transfers a substance in the direction of heat insulation (thickness), to interpose a substance that suppresses radiant heat transfer, and to reduce the size of a void in suppressing radiant heat transfer. .

【0008】上記条件を満たすものとして多くの提案が
あり、例えば特開昭60−205164号公報では連通
気泡の硬質ウレタンフォームを、特開昭60−7188
1号公報ではパーライト粉末を、特開平4−21854
0号公報では熱可塑性のウレタン樹脂粉体を型内で焼結
させた板状成形品、特開平7−96580号公報ではグ
ラスの長繊維と無機微粉末をフィビリル化した樹脂繊維
により固化保持したボードを各々、真空断熱パネルのコ
ア材として応用している。
There have been many proposals for satisfying the above-mentioned conditions. For example, Japanese Patent Application Laid-Open No. Sho 60-205164 discloses the use of rigid urethane foam having open cells.
In Japanese Patent Application Laid-Open No. 1-218, pearlite powder is disclosed in
No. 0 discloses a plate-like molded product obtained by sintering a thermoplastic urethane resin powder in a mold. In Japanese Patent Application Laid-Open No. Hei 7-96580, a glass long fiber and an inorganic fine powder are solidified and held by a fibrillated resin fiber. Each board is applied as a core material of a vacuum insulation panel.

【0009】これら物質の適用に関し、断熱性能の向上
を達成するために断熱方向と直角に繊維を配設して熱伝
達量を抑制した特開昭60−208696号公報や特開
昭58−106292号公報、輻射熱の遮蔽効果に優れ
る金属箔または金属蒸着フィルムを埋設するした特開昭
62−13979号公報やケイ酸カルシウム等の微粉末
を混合したPUFを用いる特開昭63−135694号
公がある。
Regarding the application of these materials, Japanese Patent Application Laid-Open Nos. 60-208696 and 58-106292 disclose fibers at right angles to the direction of heat insulation to suppress the amount of heat transfer in order to achieve an improvement in heat insulation performance. JP-A-62-13979 in which a metal foil or a metal vapor-deposited film having an excellent radiation heat shielding effect is embedded, and JP-A-63-135694 using a PUF mixed with a fine powder such as calcium silicate. is there.

【0010】[0010]

【発明が解決しようとする課題】断熱性能の向上には、
構成する材料に熱伝導の低い物質を用いること、材料間
の接触面積を少なくすること、熱伝達を断熱方向と直角
の面方向に制御することにより断熱(厚さ)方向に物質
を伝達する熱量を抑制、さらに熱の反射能力の高い物質
を混入させて輻射伝熱の減少を両立させて伝熱と輻射熱
を抑制する断熱機構が必要となる。しかし、従来の方法
ではこれら真空断熱パネルの芯材として必要な断熱機構
を一部しか応用していない芯材構造であるため、真空断
熱パネルとしての断熱性能が不十分であった。
SUMMARY OF THE INVENTION In order to improve the heat insulation performance,
The amount of heat that transfers a substance in the direction of heat insulation (thickness) by using a substance with low thermal conductivity as a constituent material, reducing the contact area between the materials, and controlling heat transfer in a plane direction perpendicular to the direction of heat insulation. It is necessary to provide a heat insulation mechanism that suppresses heat transfer and radiant heat by suppressing a radiant heat transfer by mixing a substance having a high heat reflection ability. However, the conventional method has a core material structure in which only a part of a heat insulating mechanism required as a core material of the vacuum heat insulating panel is applied, and thus the heat insulating performance of the vacuum heat insulating panel is insufficient.

【0011】つまり、ケイ酸カルシウムやパーライト等
の粒状物質やグラス繊維で代表される繊維状物質をその
まま板状に成形するなどして真空断熱パネルの芯材に用
いると、物質間の接触を減らすことによって熱伝達の抑
制が達成できるものの、物質が無配向であることによっ
て断熱方向にも物質を伝わる伝熱が抑制できなかった
り、繊維を配向させたとしても輻射断熱の抑制がその物
質の熱反射にのみ依存するなど、必ずしも上述した断熱
機構を十分に応用した芯材構造を得ていない。
That is, if a granular material such as calcium silicate or perlite or a fibrous material represented by glass fiber is directly formed into a plate shape and used as a core material of a vacuum insulation panel, contact between the materials is reduced. Although the heat transfer can be suppressed by this, the heat transfer of the material in the adiabatic direction cannot be suppressed due to the non-orientation of the material. A core material structure that fully utilizes the above-described heat insulating mechanism, such as relying only on reflection, has not been obtained.

【0012】一方、輻射伝熱の抑制を目的に金属箔を配
設した芯材であっても、伝熱が面方向に展開するのみで
減衰することがないから、物質間の伝熱に対する抑制を
得た構造ではない。
On the other hand, even with a core material provided with a metal foil for the purpose of suppressing radiant heat transfer, the heat transfer is developed only in the surface direction and does not attenuate. It is not the structure that gained.

【0013】しかも、粒子(粉末)状や繊維状の物質を
そのままで用いようとするならば、芯材の変形を無くす
ために圧縮強度を向上させる工夫や嵩密度を上げる為の
処理を十分に行う必要がある。つまり、これら処理を行
わずにそのままの状態であれば、真空断熱パネルへの挿
入および所望する形状が容易に得られないうえ、包装用
の袋内を真空状態にした後の体積減少が大きいために、
取り扱いが固化された材料のように簡易に行うことが困
難となる。しかも、この体積減少に伴う変形によって包
装材が折れ曲がり、亀裂発生などの欠陥の発生によって
真空が維持できなくなる可能性もある。
In addition, if a particle (powder) or fibrous substance is to be used as it is, a device for improving the compressive strength in order to eliminate deformation of the core material and a treatment for increasing the bulk density are sufficiently performed. There is a need to do. In other words, if the state is left as it is without performing these treatments, insertion into the vacuum insulation panel and the desired shape cannot be easily obtained, and the volume reduction after the inside of the packaging bag is vacuumed is large. To
It is difficult to handle the material as easily as a solidified material. In addition, the packaging material may be bent due to the deformation caused by the decrease in the volume, and a vacuum may not be maintained due to generation of defects such as cracks.

【0014】この発明は、構成する物質の熱伝導が低く
く、物質間の接触面積が少なく、断熱(厚さ)方向に物
質を伝達する熱量を抑制し、さらに伝熱と輻射熱を抑制
する断熱機構を具備した真空断熱パネルを提供すること
を目的とする。また、上記のような真空断熱パネルに用
いる芯材の製造方法を提供することを目的とする。さら
に、上記のような真空断熱パネルを断熱材として用いる
冷蔵庫を提供することを目的とする。
According to the present invention, the thermal conductivity of the constituent materials is low, the contact area between the materials is small, the amount of heat transmitted to the material in the heat insulating (thickness) direction is suppressed, and the heat transfer and radiant heat are further suppressed. An object of the present invention is to provide a vacuum insulation panel provided with a mechanism. It is another object of the present invention to provide a method for manufacturing a core material used for the above-described vacuum insulation panel. Still another object of the present invention is to provide a refrigerator using the above vacuum heat insulating panel as a heat insulating material.

【0015】[0015]

【課題を解決するための手段】この発明は上記問題点を
解決するために、真空断熱パネルの芯材を、包装材の形
状を保持し、グラスウールマットの面上に輻射熱の遮蔽
効果に優れた輻射熱遮蔽部材を積層した複素体で構成し
た。また、グラスウールマットを、断熱方向に直角な面
方向にグラスウールを堆積させて構成した。また、輻射
熱遮蔽部材を板状片で構成した。また、板状片をはマイ
カフレークで構成した。また、板状片を金属箔で構成し
た。また、板状片をプラスチックフィルムに金属の薄膜
を被覆したもので構成した。また、板状片の密着を抑制
する密着抑制剤を用いた。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention provides a vacuum insulation panel with a core material which retains the shape of a packaging material and has an excellent radiant heat shielding effect on the surface of a glass wool mat. It was composed of a complex body in which radiant heat shielding members were laminated. Further, the glass wool mat was formed by depositing glass wool in a plane direction perpendicular to the heat insulating direction. Further, the radiation heat shielding member was constituted by a plate-like piece. Further, the plate-like piece was composed of mica flake. Further, the plate-like piece was made of metal foil. Further, the plate-like piece was constituted by a plastic film coated with a thin metal film. Further, an adhesion suppressant for suppressing the adhesion of the plate-like piece was used.

【0016】また、真空断熱パネルの芯材を、グラスウ
ールマット上に板状片を配設して複素体を作製する複素
体作製工程と、複素体作製工程で得られた複素体の水分
の除去を行う乾燥工程と、乾燥工程で乾燥した複素体を
樹脂の溶液中に浸漬する含浸工程と、含浸工程で樹脂を
含浸させた複素体を一定の加圧力を付与しながら硬化さ
せて成形する圧縮硬化成形工程とにより製造するもので
ある。また、複素体作製工程で、板状片を均一分散させ
たスラリー液をグラスウールマットで抄きあげるように
した。また、複素体作製工程で、板状片を均一分散させ
たスラリー液をグラスウールマット上に散布するように
した。
Further, a core body of the vacuum insulation panel is provided with a plate-shaped piece on a glass wool mat to form a complex body, and a step of removing moisture of the complex body obtained in the complex body manufacturing step. Drying step, an impregnation step of immersing the complex dried in the drying step in a resin solution, and a compression step of curing and molding the complex impregnated with the resin in the impregnation step while applying a constant pressure. It is manufactured by a curing molding process. Further, in the complex body preparation step, a slurry liquid in which the plate-like pieces were uniformly dispersed was prepared using a glass wool mat. Further, in the complex body preparation step, a slurry liquid in which plate-like pieces were uniformly dispersed was sprayed on a glass wool mat.

【0017】また、スラリー液に、板状片の他に板状片
同士を固定化し、板状片同士の密着を抑制する結合材
と、グラスウールマットの表面に結合材の一部を結合さ
せ易くする凝集剤とを含有させた。また、凝集剤にアク
リルアミドを用いた。。また、結合材にミクロフィブリ
ル化したセルロース繊維を用いた。また、含浸工程にお
ける樹脂に、半硬化状態の熱硬化性樹脂または熱可塑性
樹脂を用いた。また、圧縮硬化成形工程で、含浸工程で
樹脂を含浸させた複素体を4〜12層重ねて成形した。
また、圧縮硬化成形工程における加圧力を0.7〜1.
5kg/cm2とした。
[0017] Further, it is easy to bond the plate-shaped pieces to the slurry liquid in addition to the plate-shaped pieces to prevent the plate-shaped pieces from adhering to each other, and to easily bond a part of the binder to the surface of the glass wool mat. A flocculant. Acrylamide was used as a coagulant. . Microfibrillated cellulose fibers were used as the binder. Further, a thermosetting resin or a thermoplastic resin in a semi-cured state was used as the resin in the impregnation step. Further, in the compression hardening molding step, 4 to 12 layers of the complex body impregnated with the resin in the impregnation step were laminated and molded.
Further, the pressing force in the compression hardening molding step is set to 0.7 to 1.
It was 5 kg / cm2.

【0018】また、冷蔵庫の外箱と内箱とを嵌合して形
成される間隙部に、この発明の真空断熱パネルを配設し
て断熱材として用いた。さらに、間隙部において真空断
熱パネルが配設されていない他の空隙部に硬質ポリウレ
タンフォ−ムを充填した。
Further, the vacuum heat insulating panel of the present invention is disposed in a gap formed by fitting an outer case and an inner case of a refrigerator, and used as a heat insulating material. Further, a hard polyurethane foam was filled in the other space where the vacuum insulation panel was not provided in the space.

【0019】[0019]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

実施の形態1.以下、この発明の実施の形態1を図及び
表を用いて説明する。 1.芯材の作成方法 以下に、グラスマット上に輻射熱遮蔽部材である板状片
としてマイカを配設させた芯材を例として、その作成方
法を述べる。図4は真空断熱パネルの製造工程図であ
り、この製造工程図に芯材の作成方法の概念を示し、方
法の詳細を以下に述べる。 (1)板状片(板状充填材)の調整 この発明における輻射熱遮蔽部材である板状片(板状充
填材)に必要な機能は熱反射性に優れていることが重要
であり、従って、金属または無機物などの高密度な物質
が好ましい。板状片(フレーク)形成の容易性から反映
される価格から鑑みても、アルミ箔又はマイカを用いる
ことが最も好ましい。また、低密度物質であるプラスチ
ックのフィルムであっても、表面にアルミなどの金属薄
膜を被覆して用いれば、同様の効果を得ることができ
る。ここではマイカをフレーク状にして用いた例を用い
て説明する。マイカは粉砕器を用いて直径が0.1mm以
上、好ましくは5〜0.5mm、更に好ましくは2mm程度
の大きさに粉砕する。このときの粉砕にはウオータージ
ェットによる高速水流を応用すれば、層間の引き剥がし
も同時に行われて、より薄いフレーク状のマイカが得ら
れるので好ましい。
Embodiment 1 FIG. Hereinafter, Embodiment 1 of the present invention will be described with reference to the drawings and tables. 1. Hereinafter, a method of preparing a core material in which mica is disposed as a plate-like piece that is a radiation heat shielding member on a glass mat will be described. FIG. 4 is a manufacturing process diagram of the vacuum insulation panel. The manufacturing process diagram shows the concept of the method of manufacturing the core material, and the details of the method will be described below. (1) Adjustment of plate-shaped piece (plate-shaped filler) It is important that the function required for the plate-shaped piece (plate-shaped filler) as the radiation heat shielding member in the present invention is excellent in heat reflection. , A high-density substance such as a metal or an inorganic substance is preferable. It is most preferable to use aluminum foil or mica from the viewpoint of the price reflected from the ease of forming plate-like pieces (flakes). Further, even with a plastic film which is a low-density substance, the same effect can be obtained by coating the surface with a metal thin film such as aluminum. Here, an example using mica in a flake shape will be described. The mica is crushed using a crusher to a size of 0.1 mm or more, preferably 5 to 0.5 mm, more preferably about 2 mm. It is preferable to apply a high-speed water jet by a water jet for the pulverization at this time, since the peeling between the layers is performed at the same time, and a thinner flake-like mica is obtained.

【0020】(2)スラリー液の作製 マイカは10wt%以下、好ましくは0.1〜5wt%、更
に好ましくは0.5〜3wt%の濃度で水中で撹拌しなが
ら分散させる。このときの撹拌の強さは、マイカが沈降
して濃度に不均一が生じさせないことは当然であるが、
他にもマイカの粉砕が進行しないように調整することが
好ましい。次に、結合材であるミクロフィビリル化した
セルロース繊維(略称;MFC)をマイカの投入量に対
して0.5〜5wt%、好ましくは1〜3wt%を投入、均
一分散させる。この場合の投入量は、一般にミクロフィ
ビリル化したセルロース繊維が5〜10wt%の濃度で水
に分散させた高粘度スラリー状のものが販売されてお
り、これを乾燥させた固体量にて換算することが必要で
ある。ここで、ミクロフィビリル化したセルロース繊維
を用いたのは、極めて少量の添加によってマイカ同士を
固定化させると共に、直径が1ミクロン以下の繊維がマ
イカの層間に介在することになるので、マイカ同志の密
着が抑制できる。しかも、そこで形成される多くの微小
空間が固体伝熱を遮断し、より輻射熱の断熱効果が得ら
れるためである。マイカ同志の密着を抑制する効果は、
密着抑制剤である微粒子をマイカ表面に付着させること
によって、マイカ同志の密着防止と空間形成を行うこと
でより有効な効果が得られる。このときに用いる微粒子
の大きさは100ミクロン以下が好ましく、更に好まし
くは10ミクロン以下である。最後に、凝集剤をマイカ
の投入量に対して0.01〜1wt%、好ましくは0.05
〜0.2wt%を投入する。この凝集剤の投入によって、
マイカの表面にミクロフィビリル化したセルロース繊維
の端部が十分に結合する結果となり、マイカ同志または
グラス繊維との固定をより強固なものとすることができ
る。凝集剤としては、アクリルアミドが一般的で最も好
ましいが、このほかにもポリエチレンイミンやキト酸、
デンプンなどが利用できる。もし、ミクロフィビリル化
したセルロース繊維を使用しなければグラスマットとマ
イカおよびマイカ同志などの充填材の固定が不十分とな
り、すぐにグラスマットとマイカとの複素体が分解する
など、取り扱い性に極めて劣るものしか得られない。ま
た、ここで凝集剤を使用しなければ、スラリー液内でミ
クロフィビリル化したセルロース繊維と、グラスマット
とマイカおよびシリカなどの粒子との結合が不十分にな
るので、充填材の固定が不十分で不均一なものしか得ら
れなくなるという問題が発生する。
(2) Preparation of Slurry Mica is dispersed in water at a concentration of 10% by weight or less, preferably 0.1 to 5% by weight, more preferably 0.5 to 3% by weight in water with stirring. The intensity of the stirring at this time is, of course, that the mica does not settle and the concentration does not become uneven,
In addition, it is preferable to adjust so that the mica pulverization does not progress. Next, microfibrillated cellulose fiber (abbreviation: MFC), which is a binder, is added in an amount of 0.5 to 5% by weight, preferably 1 to 3% by weight, based on the amount of mica to be uniformly dispersed. In this case, the input amount is generally in the form of a high-viscosity slurry in which microfibrillated cellulose fibers are dispersed in water at a concentration of 5 to 10% by weight. It is necessary to. Here, the microfibrillated cellulose fiber was used because the addition of a very small amount fixes the mica to each other, and the fiber having a diameter of 1 micron or less intervenes between the layers of the mica. Can be suppressed. In addition, many minute spaces formed there block the solid-state heat transfer, so that a more radiant heat insulating effect can be obtained. The effect of suppressing the adhesion of comrades is
By adhering the fine particles as the adhesion suppressant to the mica surface, more effective effects can be obtained by preventing adhesion of the mica and forming a space. The size of the fine particles used at this time is preferably 100 microns or less, more preferably 10 microns or less. Finally, the coagulant is added in an amount of 0.01 to 1% by weight, preferably 0.05%, based on the amount of mica added.
0.20.2 wt%. By adding this flocculant,
As a result, the ends of the microfibrillated cellulose fibers are sufficiently bonded to the surface of the mica, and the fixation between the mica and the glass fibers can be further strengthened. As a flocculant, acrylamide is generally and most preferable, but in addition, polyethyleneimine, chito acid,
Starch etc. can be used. If microfibrillated cellulose fibers are not used, the glass mat and the filler such as mica and mica will be insufficiently fixed, and the complex between the glass mat and the mica will be immediately decomposed. Only very poor ones can be obtained. Further, if no coagulant is used, the bonding between the microfibrillated cellulose fibers in the slurry liquid and the glass mat and the particles such as mica and silica becomes insufficient, so that the fixing of the filler is not possible. There arises a problem that only a sufficient and non-uniform product can be obtained.

【0021】(3)スラリー液の抄きあげ グラスマットは1kg/cm2の圧縮荷重を付加させたときの
厚さが20mm以下、好ましくは10mm以下、更に好まし
くは2〜5mmの厚さのものを用い、しかも、みかけの厚
さに対する寸法変化率が1/20以上、好ましくは1/
5程度の密度のもの選択する。スラリー液の抄きあげは
図5に示す如く、筒状容器9の底部に配置したグラスマ
ット上に、マイカなどを分散させたスラリー液6を投
入、マイカが沈降して液上部が透明になるまで1〜3分
間の静置の後、容器下部のドレン抜き8から排水するこ
とによって、グラスマット5上にマイカと並行して配設
させた複素体が得られる。このとき、排水を真空ポンプ
などを用いて強制的に行えば、短時間に残存水分の少な
い効率的な排水となるうえ、直径の小さなマイカのみが
上部に堆積することによって剥がれやすくなるという不
具合も防止できる。図4の製造工程では、図5に示すス
ラリー液の抄きあげにより複素体を得たが、板状片を均
一分散させたスラリー液をグラスウールマット上に散布
することでも同様の効果が得られる。
(3) Preparation of slurry liquid A glass mat having a thickness of 20 mm or less, preferably 10 mm or less, more preferably 2 to 5 mm when a compressive load of 1 kg / cm 2 is applied. Used, and the dimensional change rate with respect to the apparent thickness is 1/20 or more, preferably 1/20.
Select one with a density of about 5. As shown in FIG. 5, a slurry liquid 6 in which mica or the like is dispersed is put on a glass mat arranged at the bottom of a cylindrical container 9 as shown in FIG. 5, and the mica settles and the upper part of the liquid becomes transparent. After standing for 1 to 3 minutes, the complex is disposed on the glass mat 5 in parallel with the mica by draining from the drain 8 at the bottom of the container. At this time, if the drainage is forcibly performed using a vacuum pump or the like, efficient drainage with a small amount of residual water can be achieved in a short period of time, and only the mica with a small diameter accumulates on the upper part, and it is easy to peel off. Can be prevented. In the manufacturing process of FIG. 4, the complex was obtained by forming the slurry shown in FIG. 5, but the same effect can be obtained by spraying a slurry on which plate-like pieces are uniformly dispersed on a glass wool mat. .

【0022】(4)乾燥 得られた複素体は、以降の工程における品質を安定化さ
せる為、高温雰囲気下に放置して水分の除去を十分に行
う。このときの乾燥温度は、ミクロフィビリル化したセ
ルロース繊維のマイカおよびグラス繊維との結合力に劣
化が生じ得ない150℃以下、好ましくは100〜12
0℃の雰囲気下で乾燥させ、しかも圧縮によって複素体
の嵩密度が小さくすることができる回転ドラムの表面に
張り付けた後、乾燥初期の重さによって試料が落下する
のを防止するために固定用ベルトやロールの間を通過さ
せるようなヤンキードライヤー式が有効である。これ以
外にも、乾燥炉を用いたり、併用することも有効であ
る。
(4) Drying The obtained complex is left in a high-temperature atmosphere to sufficiently remove water in order to stabilize the quality in the subsequent steps. The drying temperature at this time is 150 ° C. or less, preferably 100 to 12 ° C., at which the bonding strength of the microfibrillated cellulose fiber to the mica and the glass fiber cannot be deteriorated.
After drying in an atmosphere of 0 ° C and pasting it on the surface of a rotating drum that can reduce the bulk density of the complex by compression, it is used for fixing to prevent the sample from falling due to the initial weight of drying. It is effective to use a Yankee dryer that passes between belts and rolls. In addition to this, it is also effective to use a drying oven or to use it together.

【0023】(5)樹脂の含浸 乾燥した複素体は、熱硬化性樹脂の溶液中に浸漬後、引
き上げて十分に過剰な樹脂を滴下、除去させ、更に乾燥
を行うことによって樹脂の溶剤を除去させる。このと
き、用いる熱硬化性樹脂は成型時に溶融する半硬化状態
が制御可能な、エポキシ樹脂が最も好ましく、これ以外
にもポリエステルやポリイミドを用いることも可能であ
る。又、熱硬化性樹脂に変えて、熱可塑性樹脂を用いる
ことも有効である。一方、含浸させる樹脂の量は、圧縮
硬化成形後にグラス繊維やマイカ堆積層表面に樹脂が完
全に覆うことによって真空脱気に支障が来さないように
することが重要である反面、圧縮による変形を維持でき
る量を確保することも必要であるから、その範囲を限定
することとなる。含浸させる樹脂の量は、複素体の重量
に対し、1〜20wt%が好ましく、5〜10wt%が更に
好ましい。この、含浸させる樹脂の量は樹脂液中の樹脂
濃度と樹脂液の粘度によって経験的に調整する。
(5) Impregnation of Resin The dried complex is immersed in a solution of a thermosetting resin, pulled up, dripped and removed a sufficient amount of the resin, and further dried to remove the solvent of the resin. Let it. At this time, the thermosetting resin to be used is most preferably an epoxy resin capable of controlling a semi-cured state of melting at the time of molding, and it is also possible to use polyester or polyimide. It is also effective to use a thermoplastic resin instead of a thermosetting resin. On the other hand, the amount of resin to be impregnated is important to prevent the vacuum degassing from being hindered by completely covering the glass fiber or mica deposited layer surface after compression-curing molding, but on the other hand, deformation by compression It is also necessary to secure an amount that can maintain the above, so that the range is limited. The amount of the resin to be impregnated is preferably 1 to 20% by weight, more preferably 5 to 10% by weight, based on the weight of the complex. The amount of the resin to be impregnated is adjusted empirically according to the resin concentration in the resin liquid and the viscosity of the resin liquid.

【0024】(6)圧縮硬化成形 半硬化状態の樹脂を含浸させた複素体は、樹脂の反応に
適した硬化条件、つまり温度と時間、さらに一定の圧力
を保持した熱板の間に挟んで、ボード状に成形される。
このときの硬化条件は樹脂の種類によって異なるが、エ
ポキシ樹脂の場合は120〜180℃で1時間以内の硬
化、つまり成形が完了するように調整する。この工程で
最も重要なのは圧縮力であり、圧縮によって繊維同志の
点接触機会を増して固化を充実させる必要がある反面、
グラスやマイカそれに樹脂などの固体成分量が増えると
断熱性の低下が大きくなる。そのために、圧縮荷重には
範囲が限定され、0.5〜3kg/cm2が好ましく、0.8〜
1.5kg/cm2 が更に好ましい。試料となる芯材は、所定
厚さを得るために、樹脂を含浸させた複素体の複数枚を
重ねて合わせて調整した圧縮成形品を用いた。
(6) Compression-Curing Molding The complex impregnated with the resin in a semi-cured state is cured under a curing condition suitable for the reaction of the resin, that is, a temperature and a time, and further a board is sandwiched between hot plates holding a constant pressure. Molded into a shape.
The curing conditions at this time vary depending on the type of the resin, but in the case of an epoxy resin, the curing is adjusted at 120 to 180 ° C. within one hour, that is, the molding is completed. The most important thing in this process is the compressive force, which needs to increase the chance of point-to-point contact between the fibers by compression to enhance solidification.
As the amount of solid components such as glass, mica, and resin increases, the heat insulating property is greatly reduced. For this reason, the range of the compressive load is limited, preferably 0.5 to 3 kg / cm2, and 0.8 to 3 kg / cm2.
More preferably, it is 1.5 kg / cm2. As a core material to be a sample, a compression-molded article prepared by stacking and adjusting a plurality of resin-impregnated complex bodies to obtain a predetermined thickness was used.

【0025】2.真空断熱パネルの作成方法 図4の製造工程図を用いて、真空断熱パネルの形成方法
を述べる。予め3方向を熱シールした包装材内に芯材を
挿入した後、図6に示す装置を用いて所定の真空度の雰
囲気中で残った1方向を熱シールすることによって図7
に示す内部構造を有する真空断熱パネルが得られる。こ
のとき、包装材のシール面には熱溶着が可能な熱可塑性
樹脂が用いられ、中間層には外気の侵入を完全に遮断す
るためのアルミ箔などの金属箔などが用いられ、更に最
外層には傷つきなどに耐性のある樹脂が用いられてい
る。このように、単一のフィルムではなく、3層以上で
構成された多層シートを用いることが好ましい。試料に
は、所定の大きさを得るために芯材を裁断して調整し
た。
2. Method for Forming Vacuum Insulated Panel A method for forming the vacuum insulated panel will be described with reference to the manufacturing process diagram of FIG. After inserting the core material into the packaging material heat-sealed in three directions in advance, the remaining one direction is heat-sealed in an atmosphere of a predetermined degree of vacuum using the apparatus shown in FIG.
The vacuum insulation panel having the internal structure shown in FIG. At this time, a thermoplastic resin that can be thermally welded is used for the sealing surface of the packaging material, and a metal foil such as an aluminum foil for completely blocking the invasion of outside air is used for the intermediate layer. Is made of a resin that is resistant to scratches and the like. Thus, it is preferable to use not a single film but a multilayer sheet composed of three or more layers. The sample was prepared by cutting the core material to obtain a predetermined size.

【0026】2.評価の方法 芯材の評価は上述したようにして得られた真空断熱パネ
ルを用いて、断熱性能と形状の経時変化を含む特性につ
いて行った。試料である真空断熱パネルは芯材として厚
さが20mm、面の大きさが180*180mmに調整した
ものを用い、包装材としてナイロン、アルミ箔、ポリエ
ステル、さらにアルミ箔の上下面がポリエステル系の接
着剤の介在で構成された5層シートを用いた。真空断熱
パネル内の真空度は101〜10−3Torrの間の任意の
値とし、断熱性能の評価は栄光精機(株)社製の「オー
トラムダ」を用いて熱伝導率で行った。
2. Evaluation Method The core material was evaluated using the vacuum heat insulating panel obtained as described above, with respect to heat insulating performance and characteristics including temporal changes in shape. The vacuum insulation panel used as the sample is a core material whose thickness has been adjusted to 20 mm and its surface size has been adjusted to 180 * 180 mm. Nylon, aluminum foil, polyester, and the upper and lower surfaces of the aluminum foil have polyester as the packaging material. A five-layer sheet composed of an adhesive was used. The degree of vacuum in the vacuum insulation panel was set to an arbitrary value between 101 and 10 -3 Torr, and the evaluation of the insulation performance was performed based on the thermal conductivity using “Auto Lambda” manufactured by Eiko Seiki Co., Ltd.

【0027】[0027]

【実施例】【Example】

実施例1.以下に本発明の実施の形態の具体的な実施例
の断熱性能の向上効果を確認した結果について述べる。
まず、グラスマットと板状充填材の複素体に接着剤を塗
布したプリプレグの主たる成分の組成を表1に示す。
Embodiment 1 FIG. Hereinafter, results of confirming the effect of improving the heat insulating performance of specific examples of the embodiment of the present invention will be described.
First, Table 1 shows the composition of main components of a prepreg obtained by applying an adhesive to a complex of a glass mat and a plate-like filler.

【0028】[0028]

【表1】 [Table 1]

【0029】図5の装置を用いてグラスマット上に板状
充填材であるマイカ又はアルミ箔に、MFCと少量のア
クリルアミドを分散させたスラリー液投入、5分間の静
置後に強制吸引して水を除去して抄きあげたグラスマッ
トと板状充填材の複素体をオーブン中の100℃×20
分間の条件で乾燥させた。ここで用いたグラスマットの
厚さは、1kg/cm2の荷重下で5mmの厚さになるものを選
択した。また、フレーク状マイカは平均直径が3mmのも
の、アルミ箔は20μm厚さで平均直径が5mmに裁断し
たもの、密着防止の為に用いるシリカ粒子は平均粒径が
5μmのものである。
Using the apparatus shown in FIG. 5, a slurry liquid in which MFC and a small amount of acrylamide are dispersed on a mica or aluminum foil as a plate-like filler is placed on a glass mat, and is left for 5 minutes. The complex of the glass mat and the plate-like filler that was removed and made into a glass mat was placed in an oven at 100 ° C x 20.
It was dried under the condition of minutes. The thickness of the glass mat used here was selected to be 5 mm under a load of 1 kg / cm2. The flake mica has an average diameter of 3 mm, the aluminum foil has a thickness of 20 μm and is cut to an average diameter of 5 mm, and the silica particles used for preventing adhesion have an average diameter of 5 μm.

【0030】以上の方法で得たグラスマットと板状充填
材の複素体は、樹脂原料のビスフェノールAとエピクロ
ルヒドリンに、溶剤としてメチルセルソルブを用いて成
るエポキシ樹脂液に含浸した後、網上に約30分間の放
置によって過剰のエポキシ樹脂液を滴下させた。その
後、125℃のオーブン中で1時間の加熱・乾燥を行う
ことによって溶剤の除去と反応の進行による半硬化状態
のエポキシ樹脂重合体をグラスマットの繊維および板状
充填物の表面に被覆させたプリプレグを得た。
The complex of the glass mat and the plate-like filler obtained by the above method is impregnated with bisphenol A and epichlorohydrin, which are resin raw materials, in an epoxy resin liquid using methylcellosolve as a solvent, and then is put on a net. The excess epoxy resin liquid was dropped by leaving it to stand for about 30 minutes. Thereafter, by heating and drying in an oven at 125 ° C. for 1 hour, the epoxy resin polymer in a semi-cured state due to the removal of the solvent and the progress of the reaction was coated on the surface of the glass mat fiber and the plate-like filler. I got a prepreg.

【0031】以上のプリプレグを180×180mmの大
きさに裁断した後、同一の大きさを有する平板金型内に
4枚を金型内にて重ねて配設し、120℃で10−1To
rrの真空雰囲気下で10分の放置をした後、加圧下にて
180℃まで10分で昇温、さらに40分の放置によっ
て完全硬化、室温付近まで降温後、成型品である芯材を
取り出した。このとき、プリプレグにかかる荷重は、金
型の重量の含めて1.2kg/cm2とした。
After the above prepreg is cut into a size of 180 × 180 mm, four prepregs are placed in a flat plate mold having the same size in an overlapping manner in a mold, and are placed at 120 ° C. at 10-1 To
After leaving for 10 minutes in a vacuum atmosphere of rr, the temperature was raised to 180 ° C. under pressure for 10 minutes, completely cured by leaving for 40 minutes, and cooled to around room temperature. Was. At this time, the load applied to the prepreg was 1.2 kg / cm2 including the weight of the mold.

【0032】上記方法によって得られた芯材を用いて、
包装材の内部が101〜10−3Torrの間の任意の真空
度である真空断熱パネルを作製し、これの熱伝導率を測
定した。得られた図8に示すような真空度と熱伝導率の
関係曲線から、0.1Torr に相当する真空度の熱伝導率
と、急激に熱伝導率が上昇する臨界真空度を求め、その
結果を表2に示す。一方、真空断熱パネルの大気圧によ
る変形は、目視によって確認した。
Using the core material obtained by the above method,
A vacuum insulation panel was prepared in which the inside of the packaging material had an arbitrary degree of vacuum between 101 and 10-3 Torr, and the thermal conductivity of the panel was measured. From the obtained relationship curve between the degree of vacuum and the thermal conductivity as shown in FIG. 8, the thermal conductivity at a degree of vacuum corresponding to 0.1 Torr and the critical vacuum at which the thermal conductivity rapidly increases were obtained. Are shown in Table 2. On the other hand, deformation of the vacuum insulation panel due to atmospheric pressure was visually confirmed.

【0033】また、従来品に相当するグラスマット単体
および連通硬質ポリウレタンフォ−ムを芯材に用いた真
空断熱パネルを従来品として比較試料1および比較試料
2として示した。比較試料2として示した連通硬質ポリ
ウレタンフォ−ムは気泡を形成するセル膜に穴があいて
おり、これによって内部に残存する空気を容易に排出で
きる構造になっており、これの同等品を芯材に用いた真
空断熱パネルは現在、冷蔵庫などに用いられている。
Also, a vacuum heat insulating panel using a glass mat alone and a communicating rigid polyurethane foam as a core material corresponding to a conventional product is shown as a comparative sample 1 and a comparative sample 2 as a conventional product. The communicating rigid polyurethane foam shown as Comparative Sample 2 has a structure in which the cell membrane for forming air bubbles has holes so that the air remaining inside can be easily exhausted. The vacuum insulation panel used for the material is currently used for refrigerators and the like.

【0034】[0034]

【表2】 [Table 2]

【0035】以上の結果から、本実施例による試料1〜
4の真空断熱パネルは従来品に相当する比較試料として
示したグラスマット単体および連通硬質ポリウレタンフ
ォ−ムと比較して、熱伝導率で示される断熱性能が格段
に向上していることが明白である。
From the above results, it is found that Samples 1 to 5 according to the present embodiment
It is apparent that the vacuum insulation panel of No. 4 has significantly improved heat insulation performance indicated by the thermal conductivity as compared with the glass mat alone and the communicating rigid polyurethane foam shown as comparative samples corresponding to conventional products. is there.

【0036】また、臨界真空度が従来品と比較して高い
ことから、包装材などを通して真空断熱パネル系内に侵
入してくるガスなどによる真空度低下がもたらす断熱性
能劣化の耐力にも優れていると言える。さらに、変形に
対しても実用上、十分な抑制力を有している。
Further, since the critical vacuum degree is higher than that of the conventional product, it has excellent resistance to deterioration of heat insulation performance caused by a decrease in vacuum degree due to gas or the like entering the vacuum heat insulation panel system through a packaging material or the like. It can be said that there is. Furthermore, it has a practically sufficient suppressing force against deformation.

【0037】上記方法によって芯材の低熱伝導率化の機
構は定かではないが、恐らく以下のごとき要因を有して
いるものと推測する。グラスマットは、ほぼ面方向に堆
積させた数ミリから数十ミリの長さのグラス繊維で構成
されており、不規則に絡んだ構造を有しているから、繊
維同志の接触間には多くの空隙が確保できるという特徴
を有している。これによって、軽量化を確保できるとと
もに、繊維同志の接触部分が微小な面積に抑制できるこ
とから、面方向と直角にある伝熱を抑制でき、断熱効果
を得ることができる。
Although the mechanism for lowering the thermal conductivity of the core material by the above method is not clear, it is presumed to have the following factors. The glass mat is composed of glass fibers of several millimeters to several tens of millimeters length deposited almost in the plane direction, and has an irregularly entangled structure. The feature is that the void can be secured. Thereby, the weight reduction can be ensured, and the contact portion between the fibers can be suppressed to a small area, so that the heat transfer perpendicular to the plane direction can be suppressed, and the heat insulating effect can be obtained.

【0038】一方、輻射熱の遮蔽効果に優れた板状物質
を、それ同志が微粒子等により直接接触しないように積
層してグラスマットの上に重ねた様な構造である複素構
造を成すことにより、輻射熱の断熱を有効に確保でき
る。しかも、板状物質がグラスマットの伝熱係数より大
きくとも、極めて薄い層であるから、厚さ方向への板状
物質を伝わる熱がもたらす断熱効果悪化への影響もほと
んどない。この結果、従来のグラスマットのみを芯材に
用いた場合と比較して、板状物質の配設による伝熱の増
加よりも輻射伝熱量の低下が有意に上回るので、真空断
熱パネルに用いたときの断熱性能向上が達成できるもの
と推測する。
On the other hand, a plate-like substance having an excellent radiation heat shielding effect is laminated so that the particles do not come into direct contact with each other due to fine particles or the like, thereby forming a complex structure such as a layered structure on a glass mat. Insulation of radiant heat can be effectively secured. Moreover, even if the plate-like substance is larger than the heat transfer coefficient of the glass mat, it is an extremely thin layer, so that heat transmitted through the plate-like substance in the thickness direction hardly affects the heat insulation effect. As a result, compared to the case where only the conventional glass mat was used as the core material, the decrease in the amount of radiant heat transfer was significantly greater than the increase in heat transfer due to the arrangement of the plate-like material, so that it was used for vacuum insulation panels. It is presumed that the improved heat insulation performance can be achieved.

【0039】実施例2.次に、板状充填材と微粒子を併
用する効果を確認した。主たる成分の組成を表3に示
す。
Embodiment 2 FIG. Next, the effect of using both the plate-like filler and the fine particles was confirmed. Table 3 shows the composition of the main components.

【0040】[0040]

【表3】 [Table 3]

【0041】板状充填材であるマイカとマイカ同士の密
着防止の為に用いるシリカ微粒子とミクロフィブリル化
したセルロース繊維の混合・分散させたスラリー液を、
1kg/cm2の荷重下で5mmの厚さになるグラスマット上
に、図5に示す装置を用いて散布、下部より過剰の水分
を強制吸引して除去して抄きあげた。なお、ここで用い
たフレーク状マイカは平均直径が3mm、シリカ粒子は平
均粒径が10μmのものである。このようして得たグラ
スマットを100℃×20分間の乾燥条件にてオーブン
中に放置、水分を完全に除去し、これと板状充填材の複
素体は、樹脂原料のビスフェノールAとエピクロルヒド
リンに溶剤としてメチルセルソルブを用いて成るエポキ
シ樹脂液に含浸後、網上に約30分間の放置によって過
剰のエポキシ樹脂液を滴下させた。その後、125℃の
オーブン中で1時間の加熱・乾燥によって溶剤の除去と
反応の進行による半硬化状態の重合物をグラスマットの
繊維および板状充填物の表面に被覆させたプリプレグを
得た。
A slurry liquid obtained by mixing and dispersing microparticles of silica and microfibrillated cellulose fibers, which is used to prevent adhesion between mica, which is a plate-like filler, and mica is used.
Using a device shown in FIG. 5, the material was sprayed on a glass mat having a thickness of 5 mm under a load of 1 kg / cm 2, and excess water was forcibly removed from the lower portion to remove the water. The flake mica used herein has an average diameter of 3 mm, and the silica particles have an average particle diameter of 10 μm. The glass mat thus obtained was left in an oven under drying conditions of 100 ° C. for 20 minutes to completely remove water, and this and the complex of the plate-like filler were converted into bisphenol A and epichlorohydrin as resin raw materials. After impregnating with an epoxy resin liquid using methylcellosolve as a solvent, excess epoxy resin liquid was dropped on the net by leaving it for about 30 minutes. Thereafter, by heating and drying in an oven at 125 ° C. for one hour, a prepreg was obtained in which the surface of the glass mat fiber and the plate-like filler were coated with a semi-cured polymer due to the removal of the solvent and the progress of the reaction.

【0042】以上のプリプレグを180×180mmの大
きさに裁断した後、同一の大きさを有する平板金型内に
4枚を重ねて配設し、120℃で10−1Torrの真空雰
囲気下で10分の放置後、180℃まで10分で昇温、
さらに40分の放置によって完全硬化後、室温付近まで
降温後、取り出した。このとき、プリプレグにかかる荷
重は、金型の重量の含めて1.2kg/cm2とした。
After the above prepreg is cut into a size of 180 × 180 mm, four prepregs are stacked and placed in a plate mold having the same size, and the prepreg is cut at 120 ° C. under a vacuum atmosphere of 10 -1 Torr. After standing for minutes, the temperature is raised to 180 ° C in 10 minutes,
Further, after being completely cured by leaving for 40 minutes, the temperature was lowered to around room temperature, and then taken out. At this time, the load applied to the prepreg was 1.2 kg / cm2 including the weight of the mold.

【0043】上記方法によって得た芯材を用い、包装材
の内部が101〜10−3Torrの任意の真空度で真空断
熱パネルを作製、これを室温で5日間放置した後に熱伝
導率を測定し、得られた真空度と熱伝導率の関係曲線か
ら0.1Torr に相当する真空度の熱伝導率と、急激に熱
伝導率が上昇する臨界真空度を求めた。その結果を表4
に示す。また、マイカの層間に固定されて板状充填材で
あるマイカ同士が密着しないようにする役割を担うシリ
カ粒子を用いないものと、マイカと同重量添加した組成
の場合を各々、比較試料3および比較試料4に示した。
Using the core material obtained by the above-described method, a vacuum insulation panel was prepared at an arbitrary degree of vacuum of 101 to 10 -3 Torr inside the packaging material, and after leaving it at room temperature for 5 days, the thermal conductivity was measured. From the obtained relationship curve between the degree of vacuum and the thermal conductivity, the thermal conductivity at a degree of vacuum corresponding to 0.1 Torr and the critical vacuum at which the thermal conductivity rapidly increased were determined. Table 4 shows the results.
Shown in Further, Comparative Sample 3 and Comparative Sample 3 were used without silica particles fixed between the layers of mica and serving to prevent the mica being a plate-like filler from adhering to each other, and having the same composition as that of the mica. This is shown in Comparative Sample 4.

【0044】[0044]

【表4】 [Table 4]

【0045】以上の結果から、本実施例による真空断熱
パネルの芯材における板状充填材であるマイカに微粒子
であるシリカ粒子を併用する効果を試料4〜7に示し
た。この添加範囲におけるシリカ微粒子の効果に差異は
ないが、比較例として示したマイカのみを使用した比較
試料3と比較すれば、臨界真空度に差異はないものの、
熱伝導率で示される断熱性能が有意に優れている。これ
は、板状充填材どうしが密着して単一層として作用する
ことによるものと考えられ、微粒子を板状充填材の層間
に固定して空隙を設けることの有効性が確認できた。
From the above results, the effects of using silica particles, which are fine particles, in combination with mica, which is a plate-like filler, in the core material of the vacuum insulation panel according to the present embodiment were shown in Samples 4 to 7. Although there is no difference in the effect of the silica fine particles in this addition range, when compared with Comparative Sample 3 using only mica shown as a comparative example, although there is no difference in the critical vacuum degree,
The heat insulation performance indicated by thermal conductivity is significantly better. This is considered to be due to the fact that the plate-like fillers adhere to each other and act as a single layer, confirming the effectiveness of fixing the fine particles between the layers of the plate-like filler and providing voids.

【0046】一方、板状充填材の過剰添加は比較試料4
との比較において確認できるものであり、シリカ微粒子
の25部添加による臨界真空度の差異がない反面、熱伝
導率で示される断熱性能の低下が認められた。これは、
シリカ微粒子の過剰量が凝集し、その凝集で作られた空
間をエポキシ樹脂が被うことによって、独立した空間を
形成、この空間内に残存した溶剤のメチルセルソルブや
空気などが後に、真空断熱パネル内の真空度を低下させ
る要因を生むことによるものと予測する。
On the other hand, the excessive addition of the plate-like filler
In comparison with the above, it was confirmed that there was no difference in the critical vacuum degree due to the addition of 25 parts of silica fine particles, but a decrease in the heat insulation performance indicated by the thermal conductivity was observed. this is,
The excess amount of silica fine particles aggregates, and the space created by the aggregation is covered with epoxy resin to form an independent space. The solvent remaining in this space, such as methylcellosolve or air, is later vacuum-insulated. It is predicted that this is due to a factor that lowers the degree of vacuum in the panel.

【0047】実施例3.次に、プリプレグの圧縮成型時
にかける荷重についてその効果を確認した。主たる成分
は表1および表3にて示した試料4を用いた。プリプレ
グの作成は、すでに述べた実施例1および実施例2で述
べた内容と同様の方法で行った。つまり、表面に付着し
たフレーク状マイカを1kg/cm2の荷重下で5mmの厚さに
なるグラスマット上に配設した複素体をエポキシ樹脂液
に含浸後、加熱・乾燥による半硬化状態の重合物をグラ
スマットの繊維および板状充填物であるマイカの表面に
被覆させたプリプレグを得る。得られたプリプレグを1
80×180mmの大きさに裁断後、平板金型内に4枚を
重ねて配設した状態で120℃で10−1Torrの真空雰
囲気下で10分間放置後、任意の荷重をかけて180℃
まで10分間で昇温後、さらに40分間保持して完全硬
化後、室温付近まで降温させて取り出すことにより、真
空断熱パネルの芯材を作成した。
Embodiment 3 FIG. Next, the effect of the load applied during compression molding of the prepreg was confirmed. Sample 4 shown in Tables 1 and 3 was used as a main component. The preparation of the prepreg was performed in the same manner as the contents described in the first and second embodiments. In other words, the epoxy resin liquid impregnates the complex body, which is placed on a glass mat with a thickness of 5 mm under a load of 1 kg / cm2, with the flake-like mica adhered to the surface, and then polymerized in a semi-cured state by heating and drying. Is coated on the surface of glass mat fiber and mica which is a plate-like filler. 1 prepreg
After cutting to a size of 80 × 180 mm, four plates were placed in a flat plate mold and left at 120 ° C. in a vacuum atmosphere of 10 -1 Torr for 10 minutes, and an arbitrary load was applied to 180 ° C.
After raising the temperature for 10 minutes, holding for another 40 minutes and completely curing, the temperature was lowered to around room temperature and taken out to prepare a core material of a vacuum heat insulating panel.

【0048】このとき、プリプレグにかかる荷重は、金
型の重量を含めて0.7〜1.5kg/cm2を好ましい範囲と
して試料に、プリプレグにかかる荷重が好ましい範囲よ
りも低い0.5kg/cm2のものと逆に高い1.8kg/cm2のも
のを比較試料とする芯材を用い、包装材の内部が101
〜10−3Torrの任意の真空度で真空断熱パネルを作
製、これの熱伝導率を測定した。真空度と熱伝導率の関
係曲線から、0. 1Torr相当の真空度における熱伝導率
と、急激に熱伝導率が上昇する臨界真空度を求め、その
結果を試料4および試料8〜10と比較試料5〜6とし
て表5に併記した。一方、大気圧による変形に対しては
目視によって確認した。
At this time, the load applied to the prepreg is preferably in the range of 0.7 to 1.5 kg / cm 2 including the weight of the mold, and the load applied to the prepreg is 0.5 kg / cm 2 lower than the preferable range. Contrary to that of the above, a core material of 1.8 kg / cm2, which is higher than that of
Vacuum insulation panels were prepared at an arbitrary degree of vacuum of 10 to 3 Torr, and the thermal conductivity of the panels was measured. From the relationship curve between the degree of vacuum and the thermal conductivity, the thermal conductivity at a vacuum degree equivalent to 0.1 Torr and the critical vacuum degree at which the thermal conductivity rises sharply are determined, and the results are compared with Samples 4 and 8 to 10. Table 5 also shows samples 5 and 6. On the other hand, deformation due to atmospheric pressure was visually confirmed.

【0049】[0049]

【表5】 [Table 5]

【0050】以上の結果から、真空断熱パネルの芯材成
形にかかる圧縮成形荷重の違いは、試料8〜10で示し
た0.7〜1.5kg/cm2の範囲内における圧縮成形荷重の
影響による熱伝導率、臨界真空度に差異を生じない。し
かし、比較試料5として示した低圧縮成形荷重では臨界
真空度と断熱性能の指標である熱伝導率と同等であるも
のの、冷蔵庫などに搭載した場合に意匠性を損なうよう
な変形を確認した。
From the above results, the difference in the compression molding load applied to the molding of the core material of the vacuum insulation panel is due to the influence of the compression molding load in the range of 0.7 to 1.5 kg / cm 2 shown in Samples 8 to 10. No difference in thermal conductivity and critical vacuum. However, with the low compression molding load shown as Comparative Sample 5, although it was equivalent to the critical vacuum degree and the thermal conductivity as an index of heat insulation performance, a deformation that impaired the design when mounted in a refrigerator or the like was confirmed.

【0051】逆に、比較試料6として示した高圧縮荷重
では変形がないものの、熱伝導率を有意に大きくして断
熱性能が劣ることを確認した。
On the contrary, it was confirmed that the heat conductivity was significantly increased and the heat insulation performance was inferior, though there was no deformation under the high compressive load shown as Comparative Sample 6.

【0052】これは、各充填材の間隔が必要以上に小さ
くなり、過剰となった樹脂が空隙を部分的にあっても埋
めて密閉空間を形成してしまう。その結果として、この
中に残存した溶剤のメチルセルソルブや空気などが、後
に真空断熱パネル内の真空度を低下させて熱伝導率が悪
化する要因として作用するものと推測する。
In this case, the space between the fillers becomes unnecessarily small, and even if the excess resin partially fills the voids, it forms a closed space. As a result, it is presumed that the solvent remaining in this, such as methylcellosolve or air, acts as a factor that lowers the degree of vacuum in the vacuum insulation panel and deteriorates the thermal conductivity later.

【0053】実施例4.次に、真空断熱パネルの芯材と
成す際の積層に関する効果を確認した。主たる成分は表
1および表3にて示した試料4を適用した。つまり、マ
イカとシリカ粒子を1kg/cm2の荷重下で1〜5mmの任意
の厚さになるグラスマット上に配設した複素体をエポキ
シ樹脂液に含浸後、加熱・乾燥させることによって半硬
化状態の重合物をそれら表面に被覆させたプリプレグを
得る。このプリプレグを180×180mmに裁断後、平
板金型内に複数枚を重ねて配設した状態で120℃の加
温下で10−1Torrの真空の雰囲気下で10分間の放置
後、金型重量を含めて1.2kg/cm2の荷重をかけて18
0℃まで10分間で昇温、さらに40分間の放置によっ
て完全硬化させた後に室温付近まで降温させた状態で取
り出すことにより、真空断熱パネルの芯材を作成した。
Embodiment 4 FIG. Next, the effect on lamination when forming the core material of the vacuum insulation panel was confirmed. As a main component, sample 4 shown in Tables 1 and 3 was applied. In other words, the mica and silica particles are impregnated with an epoxy resin liquid under a load of 1 kg / cm2 and placed on a glass mat having an arbitrary thickness of 1 to 5 mm, and then heated and dried to obtain a semi-cured state. To obtain a prepreg coated on its surface with a polymer of the formula (1). After cutting this prepreg into 180 × 180 mm, a plurality of pieces were placed in a flat plate mold and left for 10 minutes in a vacuum atmosphere of 10-1 Torr under heating at 120 ° C. With a load of 1.2 kg / cm2 including
The core material of the vacuum insulation panel was prepared by raising the temperature to 0 ° C. in 10 minutes, leaving it for 40 minutes to completely cure it, and then taking it out at a temperature lowered to around room temperature.

【0054】このとき、グラスマットとマイカなどの充
填材を複素化させたプリプレグを金型内で重ねる数、つ
まりプリプレグ積層枚数が4〜12枚を好ましい範囲と
して試料4および試料11〜13、更にプリプレグ積層
枚数として好ましい積層数より少ない2枚と、逆に過剰
に積層した19枚のものについても試料7と比較試料8
として得た芯材を用い、包装材の内部が101〜10−
3Torrの任意の真空度で真空断熱パネルを作製、これの
熱伝導率を測定した。真空度と熱伝導率の関係曲線か
ら、0.1Torr の真空度における熱伝導率と、急激に熱
伝導率が上昇する臨界真空度を求めた。その結果を表6
に併記した。
At this time, the number of prepregs in which the glass mat and the filler such as mica are complexed in the mold, that is, the number of prepregs to be laminated is preferably 4 to 12, so that Samples 4 and 11 to 13, and Sample 7 and comparative sample 8 also have two prepregs, which are smaller than the preferable number of layers, and 19 sheets which are excessively stacked.
Using the core material obtained as above, the inside of the packaging material is 101-10-
A vacuum insulation panel was prepared at an arbitrary degree of vacuum of 3 Torr, and the thermal conductivity of the panel was measured. From the relationship curve between the degree of vacuum and the thermal conductivity, the thermal conductivity at a vacuum of 0.1 Torr and the critical vacuum at which the thermal conductivity rapidly increased were determined. Table 6 shows the results.
It was also described in.

【0055】[0055]

【表6】 [Table 6]

【0056】以上の結果から、試料4と試料11〜13
で示した4枚〜12枚の積層枚数の増加によって臨界真
空度がわずかに上昇する傾向を有するのみで、熱伝導率
には差異が認められなかった。しかし、積層枚数の少な
い比較試料7で熱伝導率にわずかな低下と臨界真空度の
明白な低下がみられた。さらに、比較試料8として示し
た積層枚数が多すぎる場合には臨界真空度がわずかに優
れる反面、熱伝導率が有意に高くなり、断熱性能の低下
を確認した。
From the above results, Sample 4 and Samples 11 to 13
With the increase in the number of laminated layers of 4 to 12 shown in the above, there was only a tendency that the critical vacuum degree slightly increased, and no difference was observed in the thermal conductivity. However, in Comparative Sample 7 with a small number of laminated layers, a slight decrease in the thermal conductivity and a clear decrease in the critical vacuum were observed. Further, when the number of laminated layers shown as Comparative Sample 8 was too large, although the critical vacuum degree was slightly superior, the thermal conductivity was significantly increased, and a decrease in heat insulation performance was confirmed.

【0057】これは、板状充填材であるマイカが真空下
での成型時に、芯材内部に残存した溶剤や空気などの排
出が容易に行われず、これら残存ガスが真空断熱パネル
となった状態で経時的に系内の真空度を低下させて、熱
伝導率の悪化要因になったものと予測する。
This is because when the mica as the plate-like filler is molded under vacuum, the solvent or air remaining in the core material is not easily discharged, and these residual gases form a vacuum insulation panel. It is predicted that the degree of vacuum in the system was reduced with time over time, thereby causing a deterioration in thermal conductivity.

【0058】実施例5.次に、本発明における真空断熱
材を用いた冷蔵庫の運転性能を測定し、その効果を確認
した。まず、アルミ箔を中間層に有する包装材を用いて
実施例1に示す試料4と同じ方法で作製した真空断熱パ
ネルを用い、薄板鋼板の折り曲げ加工によって得られた
外箱にABS樹脂の真空成型によって得られた内箱を勘
合して形成される間隙に、図3に示す如く、天井面、冷
凍室および冷蔵室の左右側面、背面の合計6枚を外箱側
に貼り付けて配設した後、残りの空隙に硬質ウレタンフ
ォームを注入・発泡して充填させることで完全固定させ
た。
Embodiment 5 FIG. Next, the operation performance of the refrigerator using the vacuum heat insulating material of the present invention was measured, and the effect was confirmed. First, using a vacuum insulating panel produced by the same method as in Sample 4 shown in Example 1 using a packaging material having an aluminum foil in the intermediate layer, vacuum molding ABS resin into an outer box obtained by bending a thin steel plate. As shown in FIG. 3, a total of six sheets of the ceiling surface, the left and right side surfaces of the freezing room and the refrigerator room, and the rear surface are attached to the outer box side in the gap formed by fitting the inner box obtained by the above. Thereafter, rigid urethane foam was injected, foamed, and filled into the remaining voids to completely fix them.

【0059】上記方法で作製した断熱箱体を用いて冷媒
回路などを配設し、400Lクラスの冷蔵庫を組み立
て、これを試作冷蔵庫とした。一方、実施例1に示した
比較試料2と同じ方法で作製した芯材を連通気泡の硬質
ウレタンフォームを芯材とした真空断熱パネルを用い
て、同様に作製した断熱箱体を用いた冷蔵庫を比較冷蔵
庫1、内箱と外箱の間隙のすべてが硬質ウレタンフォー
ムで充填した断熱箱体を比較冷蔵庫2とし、これらすべ
ての冷蔵庫をJIS−C9607における消費電力B法
測定法に準拠して消費電力を求め、表7に併記した。
A refrigerant circuit and the like were arranged using the heat-insulating box produced by the above method, and a 400-liter class refrigerator was assembled. This was used as a prototype refrigerator. On the other hand, a refrigerator using a heat-insulating box made in the same manner using a vacuum heat-insulating panel using a hard urethane foam as a core and communicating with a core produced by the same method as Comparative Sample 2 shown in Example 1 was used. The comparative refrigerator 1 and the insulated box in which all the gaps between the inner box and the outer box were filled with rigid urethane foam were referred to as the comparative refrigerator 2, and all these refrigerators consumed power in accordance with the power consumption B method measurement method in JIS-C9607. And the results are shown in Table 7.

【0060】[0060]

【表7】 [Table 7]

【0061】以上の結果から、本発明によるグラスマッ
ト上にフレーク状マイカを積層した構造の芯材を有する
真空断熱パネルを配設した冷蔵庫は、硬質ウレタンフォ
−ムのみを断熱材とする比較冷蔵庫2に比べてはるかに
小さな消費電力量を示すのみならず、一般に用いられて
いる連通気法の硬質ウレタンフォ−ムを芯材とする真空
断熱パネルを用いた比較冷蔵庫1と比較しても優位に優
れた消費電力量を醸し出すことが解った。
From the above results, the refrigerator in which the vacuum insulation panel having the core material of the structure in which the flake mica is laminated on the glass mat according to the present invention is provided is a comparative refrigerator using only rigid urethane foam as the insulation material. Not only does it exhibit much lower power consumption compared to 2, but also superior to the comparative refrigerator 1 using a vacuum insulation panel with a hard urethane foam as the core material of the commonly used open-air method. It was found that the power consumption was excellent.

【0062】これは、実施例1にて示されたように、こ
の発明の真空断熱パネルの断熱性能が従来の真空断熱パ
ネルと比較しても有意に優れていることに基づくもので
ある。
This is based on the fact that the heat insulation performance of the vacuum heat insulation panel of the present invention is significantly superior to that of the conventional vacuum heat insulation panel, as shown in Example 1.

【0063】以上、冷蔵庫への適用を模擬した真空断熱
パネルの構造と、それを得るための組成ならびにその製
造方法に関する実施例の断熱特性の指標となる熱伝導率
と、安定した断熱性能が確保できる臨界真空度と、外観
変形の有無について評価した。その結果、従来のグラス
マットや連通気泡硬質ポリウレタンフォームを芯材に用
いた真空断熱パネルに対し、本発明によるグラスマット
に熱反射特性に優れた板状充填材を積層したうえ含浸さ
せた樹脂によって固化して得られる複素構造体を芯材に
適用することによって、冷蔵庫などの断熱材として用い
るうえで優れた断熱特性と外装面の変形を抑制するうえ
で適しているといえる。
As described above, the structure of the vacuum heat insulating panel simulating the application to the refrigerator, the composition for obtaining the same, the thermal conductivity as an index of the heat insulating property of the embodiment relating to the manufacturing method thereof, and the stable heat insulating performance are secured. The critical vacuum degree that could be achieved and the presence or absence of external deformation were evaluated. As a result, a conventional glass mat or a vacuum insulation panel using open-celled rigid polyurethane foam as the core material, and a glass mat according to the present invention laminated with a plate-like filler excellent in heat reflection properties and then impregnated with a resin By applying the solidified complex structure to the core material, it can be said that it is suitable for use as a heat insulating material for refrigerators and the like in terms of excellent heat insulating properties and suppressing deformation of the exterior surface.

【0064】実施の形態2.以上述べた実施の形態1で
は、実施例として冷蔵庫とその扉などに真空断熱パネル
を用いるものを示したが、冷蔵庫に限定されるものでは
なく、例えば車載用の小型冷蔵庫やプレハブ式簡易冷蔵
庫、保冷車やパイプや建築物の保温材など、保温および
/または保冷用製品の部品としても応用が可能であり、
その要旨を脱し得ない範囲で種々変形して実施すること
ができる。
Embodiment 2 In the first embodiment described above, the refrigerator and the door using the vacuum insulation panel for the door and the like are shown as examples. However, the present invention is not limited to the refrigerator. For example, a small refrigerator for a vehicle or a simple prefabricated refrigerator, It can also be applied as a component of heat insulation and / or cold insulation products, such as cold insulation vehicles, pipes, and insulation materials for buildings.
Various modifications can be made without departing from the scope of the invention.

【0065】[0065]

【発明の効果】以上のように、この発明の真空断熱パネ
ルによれば、グラスウールマット上に積層した輻射熱遮
蔽部材により、輻射伝熱を減少させる効果を奏する。ま
た、マイカフレークや金属箔は、板状片の形成が容易で
ある。また、板状片の表面に密着抑制剤を付加させるこ
とで、板状片同志の密着を抑制減少して、断熱性能が向
上する。また、この発明の真空断熱パネルの芯材は、樹
脂を含浸させた複素体を一定の加圧力を付与しながら硬
化させて成形しているので、真空断熱パネル内を真空に
しても、包装材内が使用中に変形することもない。ま
た、板状片を均一分散させたスラリー液をグラスウール
マットで抄きあげるのみで、板状片をグラスウールマッ
ト上に容易に配設することができる。また板状片を含む
スラリー液をグラスウールでの上に散布するのみで、板
状片をグラスウールマット上に容易に配設することがで
きる。また、凝集剤と結合材により、スラリー液をグラ
スウール上に捕捉しやすくしているうえに、結合材によ
って固定化させることができるので、樹脂含浸でも剥が
れることもなく、安定して保持できるので、取扱いが容
易である。また、この発明の真空断熱パネルを断熱材と
して用いた冷蔵庫は、断熱材が従来の硬質ウレタンフォ
−ムのみ、さらには連通気泡の発泡ウレタンを芯材に用
いた真空断熱パネルを配設した冷蔵庫に比較して有意に
消費電力が少なく、断熱性に優れている。さらに、隙間
部の余った空隙が硬質ウレタンフォームで保持されてい
るので強固に固定され、従来の冷蔵庫となんら変わりの
ない外観が確保できる。
As described above, according to the vacuum heat insulating panel of the present invention, the radiation heat shielding member laminated on the glass wool mat has the effect of reducing the radiation heat transfer. Further, mica flakes and metal foils are easy to form plate-like pieces. Further, by adding the adhesion suppressant to the surface of the plate-like pieces, the adhesion between the plate-like pieces is suppressed and reduced, and the heat insulation performance is improved. Further, since the core material of the vacuum insulation panel of the present invention is formed by curing the complex impregnated with the resin while applying a constant pressing force, even if the inside of the vacuum insulation panel is evacuated, the packaging material The inside does not deform during use. Further, the plate-shaped piece can be easily disposed on the glass wool mat simply by forming a slurry liquid in which the plate-shaped piece is uniformly dispersed on a glass wool mat. Further, the plate-shaped piece can be easily arranged on the glass wool mat simply by spraying the slurry liquid containing the plate-shaped piece on the glass wool mat. In addition, since the slurry liquid is easily captured on the glass wool by the coagulant and the binder, and can be fixed by the binder, the slurry can be stably held without being peeled off even by resin impregnation. Easy to handle. Further, a refrigerator using the vacuum heat insulating panel of the present invention as a heat insulating material is a refrigerator provided with a vacuum heat insulating panel using only a conventional hard urethane foam as a heat insulating material and further using urethane foam having open cells as a core material. The power consumption is significantly lower than that of, and the heat insulation is excellent. Further, since the remaining space in the gap is held by the hard urethane foam, it is firmly fixed, and an appearance similar to that of a conventional refrigerator can be secured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 各断熱材の断熱性能比較図である。FIG. 1 is a comparison diagram of the heat insulating performance of each heat insulating material.

【図2】 真空断熱パネルを搭載した冷蔵庫の製造工程
図である。
FIG. 2 is a manufacturing process diagram of a refrigerator equipped with a vacuum insulation panel.

【図3】 冷蔵庫断面における真空断熱パネルの配設図
である。
FIG. 3 is an arrangement diagram of a vacuum heat insulating panel in a cross section of a refrigerator.

【図4】 この発明の真空断熱パネルの製造工程図であ
る。
FIG. 4 is a manufacturing process diagram of the vacuum heat insulating panel of the present invention.

【図5】 この発明の板状物質をグラスマット上に配設
させるための抄造装置の概念図である。
FIG. 5 is a conceptual diagram of a papermaking apparatus for disposing a plate-like substance of the present invention on a glass mat.

【図6】 真空雰囲気下で端辺を融着させる真空断熱パ
ネル製造装置の概念図である。
FIG. 6 is a conceptual diagram of a vacuum heat insulating panel manufacturing apparatus for fusing the edges in a vacuum atmosphere.

【図7】 真空断熱パネルの断面図である。FIG. 7 is a sectional view of a vacuum heat insulating panel.

【図8】 真空度と熱伝導率の関係の一例を示すグラフ
図である。
FIG. 8 is a graph showing an example of the relationship between the degree of vacuum and the thermal conductivity.

【符号の説明】[Explanation of symbols]

1 冷蔵庫の外箱、2 冷蔵庫の内箱、3 真空断熱パ
ネル、4 硬質ポリウレタンフォ−ム、5 グラスマッ
ト、6 スラリー液、7 ドレン液、8 ドレン抜き
(金網)、9 筒状容器、11 真空パネル成形機、1
4 包装材、15芯材。
1 outer box of refrigerator, 2 inner box of refrigerator, 3 vacuum insulation panel, 4 rigid polyurethane foam, 5 glass mat, 6 slurry liquid, 7 drain liquid, 8 drain drain (wire mesh), 9 cylindrical container, 11 vacuum Panel forming machine, 1
4 Packaging material, 15 core material.

Claims (18)

【特許請求の範囲】[Claims] 【請求項1】 外殻を形成し、外気の侵入を遮断して内
部を真空に維持する機能を有する包装材と、 この包装材に収納され、該包装材の形状を保持し、グラ
スウールマットの面上に、輻射熱の遮蔽効果に優れた輻
射熱遮蔽部材を積層した複素体で構成された芯材と、を
備えたことを特徴とする真空断熱パネル。
1. A packaging material having a function of forming an outer shell, blocking the invasion of outside air and maintaining the inside of the packaging material at a vacuum, and being housed in the packaging material, maintaining the shape of the packaging material, and forming a glass wool mat. A vacuum heat insulating panel, comprising: a core member formed of a complex body on which a radiant heat shielding member excellent in radiant heat shielding effect is laminated.
【請求項2】 前記グラスウールマットは、断熱方向に
直角な面方向にグラスウールを堆積させて構成されたこ
とを特徴とする請求項1記載の真空断熱パネル。
2. The vacuum heat insulating panel according to claim 1, wherein the glass wool mat is formed by depositing glass wool in a plane direction perpendicular to a heat insulating direction.
【請求項3】 前記輻射熱遮蔽部材は、板状片で構成さ
れたことを特徴とする請求項1記載の真空断熱パネル。
3. The vacuum heat insulating panel according to claim 1, wherein the radiation heat shielding member is formed of a plate-like piece.
【請求項4】 前記板状片は、マイカフレークで構成さ
れたことを特徴とする請求項3記載の真空断熱パネル。
4. The vacuum heat insulating panel according to claim 3, wherein the plate-like piece is formed of mica flake.
【請求項5】 前記板状片は、金属箔で構成されたこと
を特徴とする請求項3記載の真空断熱パネル。
5. The vacuum heat insulating panel according to claim 3, wherein the plate-like piece is made of a metal foil.
【請求項6】 前記板状片は、プラスチックフィルムに
金属の薄膜を被覆したもので構成されたことを特徴とす
る請求項3記載の真空断熱パネル。
6. The vacuum heat insulating panel according to claim 3, wherein said plate-like piece is formed by coating a plastic film with a metal thin film.
【請求項7】 前記板状片は、密着を抑制する密着抑制
剤を含むことを特徴とする請求項3記載の真空断熱パネ
ル。
7. The vacuum heat insulating panel according to claim 3, wherein the plate-like piece contains an adhesion suppressing agent for suppressing adhesion.
【請求項8】 グラスウールマット上に板状片を配設し
て複素体を作製する複素体作製工程と、 前記複素体作製工程で得られた前記複素体の水分の除去
を行う乾燥工程と、 前記乾燥工程で乾燥した前記複素体を樹脂の溶液中に浸
漬する含浸工程と、 前記含浸工程で樹脂を含浸させた前記複素体を一定の加
圧力を付与しながら硬化させて成形する圧縮硬化成形工
程と、を備えたことを特徴とする真空断熱パネルの芯材
の製造方法。
8. A complex forming step of arranging a plate-like piece on a glass wool mat to form a complex, a drying step of removing moisture of the complex obtained in the complex forming step, An impregnation step of immersing the complex dried in the drying step in a resin solution; and compression-hardening molding by curing the complex impregnated with the resin in the impregnation step while applying a constant pressure. And a method for manufacturing a core material of a vacuum heat insulating panel.
【請求項9】 前記複素体作製工程は、前記板状片を均
一分散させたスラリー液を前記グラスウールマットで抄
きあげることを特徴とする請求項8に記載の真空断熱パ
ネルの芯材の製造方法。
9. The manufacturing of a core material of a vacuum heat insulating panel according to claim 8, wherein in the complex forming step, a slurry liquid in which the plate-like pieces are uniformly dispersed is made up with the glass wool mat. Method.
【請求項10】 前記複素体作製工程は、前記板状片を
均一分散させたスラリー液を前記グラスウールマット上
に散布することを特徴とする請求項8に記載の真空断熱
パネルの芯材の製造方法。
10. The production of a core material for a vacuum insulation panel according to claim 8, wherein in the complex forming step, a slurry liquid in which the plate-like pieces are uniformly dispersed is sprayed on the glass wool mat. Method.
【請求項11】 前記スラリー液は、前記板状片同士を
固定化し、前記板状片同士の密着を抑制する結合材と、
前記グラスウールマットの表面に前記結合材の一部を結
合させ易くする凝集剤とを含むことを特徴とする請求項
9記載の真空断熱パネルの芯材の製造方法。
11. The bonding material according to claim 1, wherein the slurry liquid fixes the plate-like pieces together and suppresses the close contact between the plate-like pieces;
The method for manufacturing a core material for a vacuum insulation panel according to claim 9, further comprising a coagulant for facilitating the binding of a part of the binder to the surface of the glass wool mat.
【請求項12】 前記凝集剤が、アクリルアミドである
ことを特徴とする請求項11記載の真空断熱パネルの芯
材の製造方法。
12. The method according to claim 11, wherein the coagulant is acrylamide.
【請求項13】 前記結合材が、ミクロフィブリル化し
たセルロース繊維であることを特徴とする請求項11に
記載の真空断熱パネルの芯材の製造方法。
13. The method according to claim 11, wherein the binder is a microfibrillated cellulose fiber.
【請求項14】 前記含浸工程における樹脂が、半硬化
状態の熱硬化性樹脂または熱可塑性樹脂であることを特
徴とする請求項8記載の真空断熱パネルの芯材の製造方
法。
14. The method according to claim 8, wherein the resin in the impregnation step is a thermosetting resin or a thermoplastic resin in a semi-cured state.
【請求項15】 前記圧縮硬化成形工程が、前記含浸工
程で樹脂を含浸させた前記複素体を4〜12層、積層し
て成形することを特徴とする請求項8記載の真空断熱パ
ネルの芯材の製造方法。
15. The core of a vacuum heat insulating panel according to claim 8, wherein in the compression-hardening molding step, 4 to 12 layers of the complex impregnated with the resin in the impregnation step are laminated and molded. The method of manufacturing the material.
【請求項16】 前記圧縮硬化成形工程において、加圧
力が0.7〜1.5kg/cm2であることを特徴とする請求
項8記載の真空断熱パネルの芯材の製造方法。
16. The method for producing a core material of a vacuum heat insulating panel according to claim 8, wherein a pressure is 0.7 to 1.5 kg / cm 2 in the compression hardening molding step.
【請求項17】 薄板鋼板の折り曲げ加工によって作製
された外箱と、 樹脂の成型によって作製された内箱と、 前記外箱と前記内箱とを嵌合して形成される間隙部と、
を備え、前記間隙部に請求項1記載の真空断熱パネルを
配設して断熱材として用いることを特徴とする冷蔵庫。
17. An outer box made by bending a thin steel plate, an inner box made by molding resin, a gap formed by fitting the outer box and the inner box,
A refrigerator, wherein the vacuum heat insulating panel according to claim 1 is disposed in the gap portion and used as a heat insulating material.
【請求項18】 前記真空断熱パネルを前記間隙部の前
記内箱または前記外箱に貼り付け、前記間隙部の他の空
隙部に硬質ポリウレタンフォ−ムを充填して保持された
ことを特徴とする請求項17記載の冷蔵庫。
18. The vacuum insulation panel is attached to the inner box or the outer box of the gap, and the other gap of the gap is filled with a rigid polyurethane foam and held. The refrigerator according to claim 17, wherein
JP04336397A 1997-02-27 1997-02-27 VACUUM INSULATION PANEL, CORE MANUFACTURING METHOD, AND REFRIGERATOR USING VACUUM INSULATION PANEL Expired - Fee Related JP3897850B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04336397A JP3897850B2 (en) 1997-02-27 1997-02-27 VACUUM INSULATION PANEL, CORE MANUFACTURING METHOD, AND REFRIGERATOR USING VACUUM INSULATION PANEL

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04336397A JP3897850B2 (en) 1997-02-27 1997-02-27 VACUUM INSULATION PANEL, CORE MANUFACTURING METHOD, AND REFRIGERATOR USING VACUUM INSULATION PANEL

Publications (2)

Publication Number Publication Date
JPH10238938A true JPH10238938A (en) 1998-09-11
JP3897850B2 JP3897850B2 (en) 2007-03-28

Family

ID=12661782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04336397A Expired - Fee Related JP3897850B2 (en) 1997-02-27 1997-02-27 VACUUM INSULATION PANEL, CORE MANUFACTURING METHOD, AND REFRIGERATOR USING VACUUM INSULATION PANEL

Country Status (1)

Country Link
JP (1) JP3897850B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007107877A (en) * 2006-12-04 2007-04-26 Matsushita Refrig Co Ltd Refrigerator
US7485352B2 (en) 2003-07-04 2009-02-03 Panasonic Corporation Vacuum heat insulator and apparatus using the same
US9671055B2 (en) 2014-11-13 2017-06-06 Panasonic Intellectual Property Management Co., Ltd. Vacuum heat insulating material
EP3998446A3 (en) * 2020-10-20 2022-07-06 Whirlpool Corporation Insulation materials for a vacuum insulated structure and methods of forming

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5923095B2 (en) 2010-09-22 2016-05-24 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Fixing vacuum insulation panels in cooling equipment

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7485352B2 (en) 2003-07-04 2009-02-03 Panasonic Corporation Vacuum heat insulator and apparatus using the same
JP2007107877A (en) * 2006-12-04 2007-04-26 Matsushita Refrig Co Ltd Refrigerator
US9671055B2 (en) 2014-11-13 2017-06-06 Panasonic Intellectual Property Management Co., Ltd. Vacuum heat insulating material
EP3998446A3 (en) * 2020-10-20 2022-07-06 Whirlpool Corporation Insulation materials for a vacuum insulated structure and methods of forming
US11691908B2 (en) 2020-10-20 2023-07-04 Whirlpool Corporation Insulation materials for a vacuum insulated structure and methods of forming

Also Published As

Publication number Publication date
JP3897850B2 (en) 2007-03-28

Similar Documents

Publication Publication Date Title
US20210354420A1 (en) Laminates comprising reinforced aerogel composites
JP3876491B2 (en) Vacuum insulation panel, method for manufacturing the same, and refrigerator using the same
US11702346B2 (en) Aerogel-based components and systems for electric vehicle thermal management
CA3160322A1 (en) Components and systems to manage thermal runaway issues in electric vehicle batteries
EP1716198A1 (en) Noise suppression structure and method of making the same
EP3037261A1 (en) Insulating member and its attaching method
JP2004520452A (en) Composite material with microsphere particles
WO2003057466A2 (en) Structurally enhanced sound and heat energy absorbing liner and related method
JP2006194559A (en) Heat insulating box body using vacuum heat insulating material
JP2005036975A (en) Heat insulation material, method for manufacturing the same, and device using the heat insulation material
KR20130011465A (en) Expanded perlite insulation, vacuum insulation panel using it and its manufacturing method
JPH10238938A (en) Vacuum heat insulation panel, its manufacture and refrigerator using the panel
JP2008215492A (en) Vacuum heat insulation material
JPH08174732A (en) Honeycomb composite molded article and production thereof
CN114559707A (en) Broadband noise reduction structure from low frequency to high frequency of composite expanded graphite and manufacturing method thereof
JPH08174731A (en) Honeycomb composite molded article and production thereof
JP2002201729A (en) Thermal insulating material
JP2007315092A (en) Heat-insulating board
JPH10238691A (en) Vacuum heat insulation panel, manufacture thereof, and refrigerator using vacuum heat insulation panel
JP2003226268A (en) Truck parts, and manufacturing method thereof
JP3163373B2 (en) Fire resistant composite board
JP2004011707A (en) Vacuum heat insulating material, refrigerator using vacuum heat insulating material, and manufacturing method of core material of vacuum heat insulating material
JP2000507340A (en) Vacuum insulation panel covered on both sides with metal-containing composite film or metal outer layer
JP2000158574A (en) High strength lightweight plate material
JP3163372B2 (en) Fire resistant composite board

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060711

A521 Written amendment

Effective date: 20060830

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Effective date: 20061010

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20061219

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061220

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110105

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120105

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20130105

LAPS Cancellation because of no payment of annual fees