JPH10237624A - Casting member excellent in molten al resistance, and its production - Google Patents

Casting member excellent in molten al resistance, and its production

Info

Publication number
JPH10237624A
JPH10237624A JP4574197A JP4574197A JPH10237624A JP H10237624 A JPH10237624 A JP H10237624A JP 4574197 A JP4574197 A JP 4574197A JP 4574197 A JP4574197 A JP 4574197A JP H10237624 A JPH10237624 A JP H10237624A
Authority
JP
Japan
Prior art keywords
coating layer
resistance
alloy
atomic
casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4574197A
Other languages
Japanese (ja)
Other versions
JP3691623B2 (en
Inventor
Kenji Yamamoto
兼司 山本
Fumio Yuse
文雄 湯瀬
Takenori Nakayama
武典 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP04574197A priority Critical patent/JP3691623B2/en
Publication of JPH10237624A publication Critical patent/JPH10237624A/en
Application granted granted Critical
Publication of JP3691623B2 publication Critical patent/JP3691623B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a casting member excellent in molten Al resistance, improved in erosion resistance to Al alloy without deteriorating heat retaining property, wear resistance, and heat cycle resistance, by regulating the amount of oxygen in a coating layer containing Cr and N to a specific percentage or below, at least in the outermost surface. SOLUTION: The amount of oxygen in a coating layer is regulated, at least in the outermost surface, to <=10 atomic %. When it exceeds the above percentage, the formation of an A/N reaction layer is inhibited and also a Cr oxide formed by incorporation of oxygen becomes deteriorated in thermal stability and liable to be decomposed. The amount of N in the coating layer is regulated, at least in the outermost surface, to 30-55 atomic %. The thickness of the coating layer is regulated to 5-20μm. It is preferable that a part or the whole of a base material is made of Ti alloy. The amount of oxygen in the coating layer can be regulated to <=10 atomic % by forming the coating layer on the surface of the base material by a PVD process at >=2μm/hr film-forming rate. It is preferable to use an arc ion plating process as the PVD process.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ダイカスト法を初
めとする金型鋳造法において、溶融Al合金と接触する
部分に用いられる鋳造部材(例えば、金型、プランジャ
ースリーブ、プランジャーチップ、中子ピン、湯口等)
およびそのような鋳造用部材を製造するための有用な方
法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a casting member (for example, a mold, a plunger sleeve, a plunger tip, Child pin, gate, etc.)
And a useful method for producing such castings.

【0002】[0002]

【従来の技術】金型鋳造法には、重力金型鋳造法、低圧
力鋳造法(差圧鋳造法)、高圧鋳造法(溶湯鍛造法)、
ダイカスト法等がある。この中でも、Al合金鋳物の製
造には、ダイカスト法が多く使用されている。
2. Description of the Related Art Die casting methods include gravity die casting, low pressure casting (differential pressure casting), high pressure casting (melt forging),
There is a die casting method and the like. Among them, the die casting method is often used for manufacturing an Al alloy casting.

【0003】ダイカスト法は、溶融金属を加圧下で金型
内に噴射して成型するものである。また、高圧鋳造法
は、金型内に噴射された溶融金属をさらに加圧して成型
するものである。これらの方法に用いられる鋳造用部材
は、他の重力金型鋳造法、低圧力鋳造法に用いられる鋳
造用部材よりも、厳しい環境下で使用されることにな
る。
[0003] In the die casting method, a molten metal is injected into a metal mold under pressure and molded. In the high-pressure casting method, a molten metal injected into a mold is further pressed to mold. Casting members used in these methods are used under more severe environments than casting members used in other gravity mold casting methods and low pressure casting methods.

【0004】このような、溶融金属と接触する部分に用
いられる鋳造用部材には、(イ)溶融金属との接触によ
る溶損が発生しないこと、(ロ)高温摺動条件下で摩耗
が発生しないこと、(ハ)加熱冷却の熱サイクルの条件
下でヒートクラックが発生しないこと、等の特性が要求
される。すなわち、鋳造用部材は、耐溶損性、耐摩耗性
および耐熱サイクル性に優れていることが必要である。
[0004] Such a casting member used in a portion that comes into contact with the molten metal does not suffer from (a) melting damage due to contact with the molten metal, and (b) wear occurs under high temperature sliding conditions. (C) heat cracks do not occur under the conditions of the heat cycle of heating and cooling. That is, the casting member needs to be excellent in erosion resistance, wear resistance, and heat cycle resistance.

【0005】ところで、Alのダイカスト法で用いられ
る鋳造用部材としては、従来からSKD61に代表され
るダイス鋼が用いられてきたが、近年では熱伝導率が小
さく溶融金属の保温性に優れることから、前記ダイス鋼
に代わってTi−6Al−4V等のTi合金も有望視さ
れるようになっている。しかしながら、このTi合金を
用いた場合においても、耐溶損性および耐摩耗性につい
ては十分な特性を有しているとは言えなかった。
[0005] By the way, as a casting member used in the Al die-casting method, a die steel represented by SKD61 has been conventionally used. However, in recent years, since the heat conductivity is small and the molten metal is excellent in heat insulation, In place of the die steel, a Ti alloy such as Ti-6Al-4V is also expected to be promising. However, even when this Ti alloy was used, it could not be said that it had sufficient characteristics for erosion resistance and wear resistance.

【0006】こうしたことから、特にTi合金を母材と
した鋳造用部材の特性を改善するための各種の技術も提
案されてきた。例えば、特開昭64−44256号公報
には、窒化処理による窒化チタン皮膜や酸化処理による
酸化皮膜等を、母材表面上に形成する方法が提案されて
いる。また特開平4−224069号公報や同4−25
1650号公報には、プランジャースリーブ等の部材の
内側に、Ti又はTi合金とセラミックスとの複合材料
からなる内筒を嵌入し、この内筒の内側はホウ化処理に
よってホウ化チタン層を形成したり、ガス侵炭法によっ
て炭化チタンを形成する等の方法が提案されている。さ
らに、特開平4−224067号には、Ti合金製のス
リーブ内面に、セラミックス含有率が内面側になるにつ
れて増加するようなTi合金とセラミックスの複合材料
からなる内筒を挿入する方法が提案されてきた。
[0006] For these reasons, various techniques have been proposed for improving the characteristics of a casting member using a Ti alloy as a base material. For example, Japanese Patent Application Laid-Open No. 64-44256 proposes a method of forming a titanium nitride film by a nitriding treatment, an oxide film by an oxidation treatment, etc. on the surface of a base material. Also, Japanese Patent Application Laid-Open Nos. H4-222469 and 4-25
In Japanese Patent No. 1650, an inner cylinder made of a composite material of Ti or a Ti alloy and ceramics is fitted inside a member such as a plunger sleeve, and a titanium boride layer is formed inside the inner cylinder by a boring treatment. For example, a method of forming titanium carbide by a gas carburizing method has been proposed. Further, Japanese Patent Application Laid-Open No. H4-222467 proposes a method of inserting an inner cylinder made of a composite material of a Ti alloy and a ceramic into a sleeve made of a Ti alloy such that the ceramic content increases toward the inner surface side. Have been.

【0007】しかしながら、これらの提案されてきた方
法は、拡散処理によってTi合金製母材表面に被覆層を
形成する表面処理法が主流を占めているのである。そし
てこれらの方法においては、各種元素のTi合金への拡
散係数が小さいことから、900℃を越えるような高温
までの拡散処理を施すことがよぎなくされている。例え
ば、前記特開昭64−44256号公報では、窒化チタ
ン皮膜形成する際における窒化処理温度は930℃であ
る。また、特開平4−224069号や同4−2516
50号に記載されたホウ化処理(975℃)や炭化処理
(1000℃)においても、いずれも処理温度は900
℃を上回るものである。
[0007] However, these methods have been dominated by a surface treatment method in which a coating layer is formed on the surface of a Ti alloy base material by diffusion treatment. In these methods, since the diffusion coefficients of various elements into the Ti alloy are small, it is necessary to perform a diffusion treatment up to a high temperature exceeding 900 ° C. For example, in JP-A-64-44256, the nitriding temperature at the time of forming a titanium nitride film is 930 ° C. In addition, Japanese Patent Application Laid-Open Nos.
In the boring process (975 ° C.) and the carbonization process (1000 ° C.) described in No. 50, the processing temperature is 900
It is higher than ° C.

【0008】また、熱伝導率が小さく鋳造用部材として
の適用が有望視されている前記Ti−6Al−4V合金
では、結晶構造の変態点であるβ変態点が純Tiのβ変
態点の950℃より低くなって800〜900℃程度で
の温度領域にあり、900℃を越えるような温度範囲で
熱処理を行うと、部材の熱歪みの発生や強度低下が著し
くなってしまう。したがって、上記のように900℃を
越える温度範囲で熱処理した鋳造用部材は、スリーブ等
の寸法制度が要求される部材には適用できないという問
題がある。
In the Ti-6Al-4V alloy, which has low thermal conductivity and is expected to be used as a casting member, the β transformation point of the crystal structure is 950 which is the β transformation point of pure Ti. When the heat treatment is performed in a temperature range of about 800 to 900 ° C. below 900 ° C. and exceeding 900 ° C., the occurrence of thermal strain and a decrease in strength of the member become remarkable. Therefore, the casting member heat-treated at a temperature exceeding 900 ° C. as described above has a problem that it cannot be applied to a member requiring a dimensional accuracy such as a sleeve.

【0009】一方、特開平4−224067号公報に開
示された技術では、部材の熱歪みの発生という問題は生
じないものの、スリーブの構造が複雑になり、セラミッ
クスを使用することによる強度低下の問題がある。また
構造が複雑になることによって、コストが上昇するとい
う問題も生じる。
On the other hand, in the technique disclosed in Japanese Patent Application Laid-Open No. Hei 4-224067, although the problem of occurrence of thermal distortion of the member does not occur, the structure of the sleeve becomes complicated, and the strength is reduced due to the use of ceramics. There is. In addition, there is a problem that the cost increases due to the complicated structure.

【0010】なお、前記特開昭64−44256号公報
には、900℃を越えるような温度範囲での熱処理に代
わる方法として、スパッタリング法、イオンプレーティ
ング法あるいはイオン注入法の適用を示唆する記載も認
められるが、蒸発源からコーティング物質がコーティン
グ面に直接的に飛来するこれらの方法を適用して、スリ
ーブや湯口等の円筒形状部材の内面に如何にして均一な
皮膜を形成するかという点についても具体的に記載され
ているとは言えないものであった。
The above-mentioned Japanese Patent Application Laid-Open No. 64-44256 discloses a method suggesting the application of a sputtering method, an ion plating method or an ion implantation method as a method instead of the heat treatment in a temperature range exceeding 900 ° C. However, the point is how to apply these methods in which the coating substance directly comes from the evaporation source to the coating surface to form a uniform film on the inner surface of a cylindrical member such as a sleeve or a sprue. Was not specifically described.

【0011】以上の技術的課題を解決するため、特開平
8−109331号公報では、溶融金属と接触する部分
に用いられる鋳造用部材(ダイカスト用部材)は、母材
表面上にCrとNを含む被覆層を形成するものであり、
好ましい条件として、この被覆層中のN量が被覆層の少
なくとも最表面で30〜55原子%であり、母材はその
一部または全部がTi合金製であることを開示してい
る。この鋳造用部材は、900℃以下でCrとNを含む
被覆層を形成できることにより、保温性に優れたTi合
金を母材に使用が可能となった。さらに、このTi合金
の表面上に、CrとNを含む被覆層を形成することによ
り、耐溶損性、耐摩耗性および耐熱サイクル性のいずれ
にも優れた鋳造用部材を得られた。
In order to solve the above-mentioned technical problems, Japanese Patent Application Laid-Open No. 8-109331 discloses that a casting member (die-casting member) used for a portion that comes into contact with a molten metal has Cr and N on a base material surface. Forming a coating layer containing
As a preferred condition, it discloses that the N content in the coating layer is 30 to 55 atomic% at least on the outermost surface of the coating layer, and that the base material is partially or entirely made of a Ti alloy. This casting member was able to form a coating layer containing Cr and N at 900 ° C. or lower, so that a Ti alloy excellent in heat retention could be used as a base material. Further, by forming a coating layer containing Cr and N on the surface of this Ti alloy, a casting member excellent in all of erosion resistance, wear resistance and heat cycle resistance was obtained.

【0012】また、鋳造用部材の製造方法は、円筒状の
母材及び棒状のCr製蒸発源を用いると共に、Cr製蒸
発源を母材に挿入した状態とし、N2 雰囲気によりアー
クイオンプレーティング(AIP)法を実施することに
よって、前記母材の内壁面に前記被覆層を形成すること
により、均一な皮膜を付き回り性良く形成できることを
開示している。
Further, the method of manufacturing the casting member uses a cylindrical base material and a rod-shaped Cr evaporation source, and inserts the Cr evaporation source into the base material, and performs arc ion plating in an N 2 atmosphere. It discloses that a uniform film can be formed with good throwing power by forming the coating layer on the inner wall surface of the base material by performing the (AIP) method.

【0013】[0013]

【発明が解決しようとする課題】特開平8−10933
1号公報でのTi−6Al−4V合金を母材とした鋳造
用部材は、保温性に優れ、耐溶損性、耐摩耗性および耐
熱サイクル性のいずれにも優れた鋳造用部材である。し
かしながら、このような、鋳造用部材でも、長時間Al
合金の鋳造に使用する場合には、鋳造用部材に溶損を生
じる場合がでてきた。さらに、鋳造温度の上昇、鋳造時
の加圧力の上昇、Al合金の組成の変化によっても、鋳
造用部材に溶損を生じる場合がある。このため、溶損が
生じた鋳造用部材の交換を余儀なくされ、鋳造工程での
生産性が低下する問題がある。そこで本発明は、溶融A
l合金と接触する部分に用いられる鋳造部材であって、
保温性、耐摩耗性および耐熱サイクル性を損なうことな
く、Al合金における耐溶損性がさらに改善された、耐
溶融Al性に優れる鋳造用部材を提供するとともに、こ
の鋳造用部材を製造するための有用な方法を提供するも
のである。
Problems to be Solved by the Invention
The casting member in which the Ti-6Al-4V alloy is used as a base material in Japanese Patent Publication No. 1 is a casting member excellent in heat retention, excellent in erosion resistance, wear resistance and heat cycle resistance. However, even with such a casting member, the Al
When used for casting alloys, there have been cases in which the casting members are eroded. Further, the casting member may be melted by the rise of the casting temperature, the rise of the pressure during casting, or the change of the composition of the Al alloy. For this reason, there is a problem that the casting member in which the erosion has occurred must be replaced, and the productivity in the casting process decreases. Therefore, the present invention provides
(1) a cast member used for a part in contact with the alloy,
To provide a casting member excellent in molten Al resistance, in which the erosion resistance of an Al alloy is further improved without impairing heat retention, abrasion resistance and heat cycle resistance, and for producing this casting member. It provides a useful method.

【0014】[0014]

【課題を解決するための手段】前述した目的を達成する
ために、発明者らは、溶融Al合金と接触する部分に用
いられる鋳造部材の耐溶損性をさらに改善するために鋭
意検討を行った。CrとNを含む被覆層のAl溶湯中に
おける耐溶損性を調査した結果、CrとNを含む被覆層
とAl溶湯の界面にAlN反応層が形成されており、こ
の反応層がAl溶湯で保護皮膜として作用し、Al溶湯
に対する優れた耐溶損性を示すがことを明らかになっ
た。さらに、このAlN反応層が形成にはCrとNを含
む被覆層中の酸素量が大きき関与する、すなわち、前記
被覆層中の酸素量の増加とともに保護皮膜であるAlN
反応層の形成を阻害するという考えをもとに、CrとN
を含む被覆層中の酸素量が10原子%以下にすることに
より、溶融Al合金と接触する部分に用いられる鋳造部
材の耐溶損性を改善できるという知見を得て、本発明を
完成した。
Means for Solving the Problems In order to achieve the above-mentioned object, the present inventors have made intensive studies to further improve the erosion resistance of a cast member used for a portion in contact with a molten Al alloy. . As a result of investigating the erosion resistance of the coating layer containing Cr and N in the molten aluminum, an AlN reaction layer was formed at the interface between the coating layer containing Cr and N and the molten aluminum, and this reaction layer was protected by the molten aluminum. It has been found that it acts as a film and exhibits excellent erosion resistance to molten aluminum. Further, the amount of oxygen in the coating layer containing Cr and N greatly contributes to the formation of the AlN reaction layer. That is, as the amount of oxygen in the coating layer increases, the protective film AlN
Based on the idea of inhibiting the formation of a reaction layer, Cr and N
By finding that the oxygen content in the coating layer containing 10% by mass or less can improve the erosion resistance of the cast member used in the portion in contact with the molten Al alloy, the present invention has been completed.

【0015】本発明のうちで請求項1記載の発明は、母
材表面上に、CrとNを含む被覆層を形成してなる、溶
融Al合金と接触する部分に用いられる鋳造用部材であ
って、前記被覆層中の酸素量が少なくとも最表面で10
原子%以下であることを特徴とするものである。被覆層
中の酸素量が少なくとも最表面で10原子%以下とする
ことによって、鋳造部材の耐溶損性を改善できる。被覆
層中の酸素量が10原子%以上になると、AlN反応層
の形成が阻害されるとともに、酸素の含有により形成さ
れるクロム酸化物が熱的安定性に劣り、分解されやすい
為ではないかと考えられる。さらに、過度の酸素含有量
は被覆層の硬度を低下させることになり、耐摩耗性の面
よりも望ましくない。また、鋳造部材の耐溶損性をさら
に改善するために、CrとNを含む被覆層中の酸素量は
5原子%以下にすることが好ましい。
[0015] The invention according to claim 1 of the present invention is a casting member used for a portion in contact with a molten Al alloy, wherein a coating layer containing Cr and N is formed on the surface of a base material. The amount of oxygen in the coating layer is at least 10 at the outermost surface.
Atomic% or less. When the oxygen content in the coating layer is at least 10 atomic% at the outermost surface, the erosion resistance of the cast member can be improved. If the amount of oxygen in the coating layer is 10 atomic% or more, the formation of the AlN reaction layer is hindered, and the chromium oxide formed by containing oxygen has poor thermal stability and is likely to be decomposed. Conceivable. In addition, an excessive oxygen content will reduce the hardness of the coating layer, which is less desirable than the wear-resistant aspect. Further, in order to further improve the erosion resistance of the cast member, the amount of oxygen in the coating layer containing Cr and N is preferably set to 5 atomic% or less.

【0016】なお、「被覆層の少なくとも最表面」とし
たのは、被覆層全体が必ずしも酸素量が10原子%以下
とする必要はなく、溶融金属と接触する最表面が少なく
とも酸素量が10原子%以下であれば、その効果が発揮
されるからである。したがって、最表面以外の部分が酸
素量が10原子%を越えた被覆層を形成しても良いのは
もちろんである。ただし、被覆層全体が酸素量が10原
子%以下、より好ましくは5原子%以下であることが好
ましい。これにより被覆層の欠陥を少なくでき、被覆層
の品質を安定することができる。
The term "at least the outermost surface of the coating layer" means that the oxygen content of the entire coating layer does not necessarily need to be 10 atomic% or less, and the outermost surface in contact with the molten metal has an oxygen content of at least 10 atomic%. %, The effect is exhibited. Therefore, it is a matter of course that a coating layer having an oxygen content exceeding 10 atomic% may be formed in a portion other than the outermost surface. However, the oxygen content of the entire coating layer is preferably 10 atomic% or less, more preferably 5 atomic% or less. Thereby, defects of the coating layer can be reduced and the quality of the coating layer can be stabilized.

【0017】また請求項2記載の発明は、請求項1記載
の発明の構成に、前記被覆層中のN量が少なくとも最表
面で30〜55原子%にするものである。被覆層中のN
量が少なくとも最表面で30〜55原子%にすることに
よって、鋳造部材の耐溶損性をさらに改善できる。被覆
層中のN量が30〜55原子%の範囲で化学的安定性を
有する岩塩構造の結晶であるCrN単相の被覆層を形成
でき、このCrN単相の被覆層がAl溶湯に対する耐溶
損性をより改善させる。被覆層中のN量は40原子%で
あることが好ましい。N量は40原子%以上にすること
により、CrN被覆層のAl溶湯に対する耐溶損性を著
しく改善できる。また、被覆層中のN量を40原子%以
上にすることにより、被覆層の硬度が増加し、被覆層の
耐摩耗性も向上できる。
According to a second aspect of the present invention, in the constitution of the first aspect, the N content in the coating layer is at least 30 to 55 atomic% at the outermost surface. N in coating layer
When the amount is at least 30 to 55 atomic% at the outermost surface, the erosion resistance of the cast member can be further improved. When the N content in the coating layer is in the range of 30 to 55 atomic%, a coating layer of a single phase of CrN, which is a crystal having a rock salt structure and having chemical stability, can be formed. Improve the quality. The N content in the coating layer is preferably 40 atomic%. By setting the N content to 40 atomic% or more, the erosion resistance of the CrN coating layer to molten Al can be remarkably improved. Further, by setting the N content in the coating layer to 40 atomic% or more, the hardness of the coating layer increases, and the wear resistance of the coating layer can be improved.

【0018】また請求項3記載の発明は、請求項1又は
2記載の発明の構成に、前記被覆層の厚さを5〜20μ
mにするものである。被覆層の厚さを5〜20μmにす
ることによって、鋳造部材の被覆層の耐溶損性を安定す
ることができる。被覆層の厚さについては、特に限定さ
れるものではないが、5〜20μmが最適である。すな
わち、被覆層の厚さがあまり薄いと、被覆層に不可避的
に存在するピンホール等の母材に達する欠陥によって母
材が溶損する場合があるので、少なくとも5μm以上で
あることが好ましい。上記欠陥は厚さの増加とともに減
少する傾向にあり、厚さが8μm以上では実用上問題の
ない程度まで上記欠陥が減少するので、その厚さは8μ
m以上であることがより好ましい。一方、この厚さあま
り厚くなり過ぎても、その効果が飽和するばかりか、被
覆層を形成するのに要する時間が長くなるので、厚さは
20μm以下、好ましくは15μm以下が適当である。
According to a third aspect of the present invention, the thickness of the coating layer is 5 to 20 μm.
m. By setting the thickness of the coating layer to 5 to 20 μm, the erosion resistance of the coating layer of the cast member can be stabilized. The thickness of the coating layer is not particularly limited, but is most preferably 5 to 20 μm. That is, if the thickness of the coating layer is too small, the base material may be melted due to defects reaching the base material such as pinholes inevitably existing in the coating layer. Therefore, the thickness is preferably at least 5 μm or more. The above-mentioned defects tend to decrease as the thickness increases, and when the thickness is 8 μm or more, the number of the defects decreases to a level where there is no practical problem.
m is more preferable. On the other hand, if the thickness is too large, the effect is not only saturated, but also the time required for forming the coating layer becomes long. Therefore, the thickness is suitably 20 μm or less, preferably 15 μm or less.

【0019】また請求項4記載の発明は、請求項1又は
2又は3記載の発明の構成に、前記母材を、その一部ま
たは全部がTi合金製にするものである。母材を、その
一部または全部がTi合金製にすることによって、鋳造
部材の保温性及び熱サイクル性を改善できる。
According to a fourth aspect of the present invention, in the configuration of the first or second or third aspect, the base material is partially or entirely made of a Ti alloy. By making the base material partially or entirely made of a Ti alloy, the heat retaining property and the heat cycle property of the cast member can be improved.

【0020】被覆層が形成される母材の種類について
は、特に限定されるものではないが、母材を従来、用い
られているダイス鋼からTi合金にすることにより、鋳
造部材の保温性および耐熱サイクル性をさらに向上させ
ることができる。
The type of the base material on which the coating layer is formed is not particularly limited. However, by changing the base material from a conventionally used die steel to a Ti alloy, the heat retaining property and the heat retaining property of the cast member can be improved. The heat cycle resistance can be further improved.

【0021】すなわち、SKD61の熱伝導率は28.
9W/m・Kであるのに対し、Ti−6Al−4Vの熱
伝導率は7.1W/m・KとSKD61の1/4以下で
あり、母材にTi合金を適用することによって、従来の
ダイス鋼を用いた場合に比べて保温性が良好になるので
ある。
That is, the thermal conductivity of SKD61 is 28.
The thermal conductivity of Ti-6Al-4V is 7.1 W / m · K, which is less than 1/4 of SKD61, whereas the thermal conductivity of Ti-6Al-4V is 9 W / m · K. The heat retention becomes better as compared with the case where the die steel is used.

【0022】また、Ti合金は熱膨張率がSKD61等
のFe基合金と比べて、CrNの熱膨張率に近く、例え
ば、Ti−6Al−4V、SKD61およびCrNの各
々の熱膨張率は、各々8.8×10-6/K、11.3×
10-6/Kおよび2.39×10-6/Kである。したが
って、母材にTi合金を適用することによって、熱サイ
クル下で使用しても、被覆層と母材の熱膨張率の差に起
因する熱応力はSKD等を用いた場合に比べて小さくな
り、被覆層に亀裂が発生しにくくなるのである。なお、
Ti合金を適用する部分として「一部」を含めたのは、
鋳造用部材はそのすべてがTi合金が用いられるとは限
らず、その一部についてTi合金を適用するのがむしろ
一般的であるので、このような場合を想定したからであ
る。
The Ti alloy has a thermal expansion coefficient closer to that of CrN than that of an Fe-based alloy such as SKD61. For example, the thermal expansion coefficients of Ti-6Al-4V, SKD61 and CrN are each 8.8 × 10 −6 / K, 11.3 ×
10 −6 / K and 2.39 × 10 −6 / K. Therefore, by applying the Ti alloy to the base material, even when used under a thermal cycle, the thermal stress caused by the difference in the thermal expansion coefficient between the coating layer and the base material becomes smaller than when SKD or the like is used. In addition, cracks are less likely to occur in the coating layer. In addition,
The part to which the Ti alloy is applied includes "part"
This is because such a case is assumed because not all of the casting members use a Ti alloy, and it is rather common to apply a Ti alloy to some of them.

【0023】また請求項5記載の発明は、請求項1乃至
4のいずれかに記載の耐溶融Al性に優れる鋳造部材を
製造するに当たり、PVD法により、2μm/hr以上
の成膜速度で母材表面上に前記被覆層を形成することを
特徴とするものである。PVD法により、2μm/hr
以上の成膜速度で母材表面上に被覆層を形成することに
より、被覆層中の酸素量を10原子%以下にすることが
でき、しかも成膜装置中に残留する酸素や成膜装置壁に
吸着している酸素の被覆層への混入を抑制することがで
きる。
According to a fifth aspect of the present invention, there is provided a cast member having excellent molten Al resistance according to any one of the first to fourth aspects, wherein the casting member is formed by a PVD method at a film forming rate of 2 μm / hr or more. The method is characterized in that the coating layer is formed on a material surface. 2 μm / hr by PVD method
By forming the coating layer on the surface of the base material at the above-described film forming rate, the amount of oxygen in the coating layer can be reduced to 10 atomic% or less, and oxygen remaining in the film forming apparatus and the wall of the film forming apparatus can be reduced. Of oxygen adsorbed on the coating layer can be suppressed.

【0024】PVD法に、アークイオンプレーティング
(AIP)法、ホローカソード法、スパッタリング法等
があり、本発明の方法にはAIP法を用いることが好ま
しい。AIP法は、成膜速度を最大10μm/hr程度
まで早めることができ、さらに酸素量の少ない被覆層を
得ることができる。
The PVD method includes an arc ion plating (AIP) method, a hollow cathode method, a sputtering method and the like, and it is preferable to use the AIP method in the method of the present invention. The AIP method can increase the film forming rate to a maximum of about 10 μm / hr and can obtain a coating layer with a small amount of oxygen.

【0025】[0025]

【発明の実施の形態】本発明の実施例を表1により説明
する。表1は本発明の鋳造用部材の製造方法と、鋳造用
部材の試験結果を示すものである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described with reference to Table 1. Table 1 shows the production method of the casting member of the present invention and the test results of the casting member.

【0026】Ti−6Al−4VまたはSKD61を機
械加工した後洗浄したものを母材として用い、これを表
1に示す被覆層を形成して各種鋳造用部材を製造した。
被覆層の形成にはAIP法、スパッタリング法及び比較
としてイオン窒化法を用いた。供試材1と供試材3〜5
は、図1に示す円筒状の供試材の内面に被覆層を形成し
た。また、供試材2と供試材6〜12は平板状の供試材
の上面に被覆層を形成した。なお、円筒状の供試材の内
面に被覆層を形成には、AIP法のみ使用した。スパッ
タリング法では円筒状の供試材の内面に均一な被覆層を
形成するのは困難だからである。
A machined Ti-6Al-4V or SKD61 washed and used as a base material was used to form a coating layer shown in Table 1 to produce various casting members.
The AIP method, the sputtering method, and the ion nitriding method for comparison were used for forming the coating layer. Test material 1 and test materials 3-5
Formed a coating layer on the inner surface of the cylindrical test material shown in FIG. Further, the test material 2 and the test materials 6 to 12 each formed a coating layer on the upper surface of the flat test material. In addition, only the AIP method was used for forming the coating layer on the inner surface of the cylindrical test material. This is because it is difficult to form a uniform coating layer on the inner surface of the cylindrical test material by the sputtering method.

【0027】[0027]

【表1】 [Table 1]

【0028】供試材1と供試材3〜3と5は、円筒状の
供試材の内面にCrN被覆層を形成する方法は、図1に
示すように、円筒状の母材1に棒状のCr製蒸発源3を
挿入すると共に、母材1を対極2にして、N2 雰囲気中
で成膜速度を0.3〜10μm/hrに変化させてAI
P法を実施した。供試材2、8、9は、平板状の供試材
の上面に、Crターゲット(平板状)を使用してN2
反応ガスとして成膜速度を変化させてAIP法でCrN
被覆層を形成した。供試材6、7、10、11は、平板
状の供試材の上面に、Crターゲット(平板状)を使用
してN2 を反応ガスとして反応性DCスパッタリングで
CrN被覆層を形成した。供試材12のSKD61母材
に窒化処理(550℃)を行って、Feの窒化皮膜を形
成した。
The method of forming the CrN coating layer on the inner surface of the cylindrical test material is as follows. As shown in FIG. While inserting a rod-shaped evaporation source 3 made of Cr, using the base material 1 as the counter electrode 2 and changing the film formation rate in the N 2 atmosphere to 0.3 to 10 μm / hr,
The P method was performed. Samples 2, 8, and 9 were formed on the upper surface of a plate-like test material by using a Cr target (plate-like) with N 2 as a reaction gas and changing the film formation rate by AIP method.
A coating layer was formed. For the test materials 6, 7, 10, and 11, a CrN coating layer was formed on the upper surface of the flat test material by reactive DC sputtering using a Cr target (flat) with N 2 as a reaction gas. The SKD61 base material of the test material 12 was subjected to a nitriding treatment (550 ° C.) to form a Fe nitride film.

【0029】得られた上記各供試材については、皮膜層
組成(最表面)、皮膜厚さおよび耐溶損性を調査した。
この結果を表1に示す。皮膜層組成はEPMAおよびA
ESを併用して測定し、皮膜層の結晶構造はX線回析に
より調査し、さらに皮膜厚さはSEMにより測定した。
耐溶損性は、Al合金(JIS規格AC8C)溶湯にお
ける浸漬試験により評価した。試験温度は750℃で、
浸漬時間は3hrと6hrの2水準で、試験前後の膜厚
変化より溶損量を測定して下記の規準で評価した。 ◎ :溶損なし ○ :被覆層20%未満溶損 △ :被覆層20%以上溶損 × :被覆層100%溶損 ××:母材の溶損あり
With respect to each of the obtained test materials, the composition of the coating layer (outermost surface), the thickness of the coating, and the erosion resistance were examined.
Table 1 shows the results. The coating layer composition is EPMA and A
It was measured by using ES together, the crystal structure of the film layer was investigated by X-ray diffraction, and the film thickness was measured by SEM.
The erosion resistance was evaluated by an immersion test in a molten Al alloy (JIS standard AC8C). The test temperature was 750 ° C,
The immersion time was measured at two levels of 3 hr and 6 hr, and the amount of erosion was measured from the change in film thickness before and after the test, and evaluated according to the following criteria. ◎: no erosion: erosion of less than 20% of coating layer △: erosion of 20% or more of coating layer ×: 100% erosion of coating layer XX: erosion of base material

【0030】供試材12以外の供試材1〜11の被覆層
の結晶構造は、何れもCrN単相であり、被覆層のN量
は40〜53.5原子%で本発明の好ましいN量の範囲
にあることを確認した。
The crystal structures of the coating layers of the test materials 1 to 11 other than the test material 12 are all CrN single phase, and the N content of the coating layer is 40 to 53.5 atomic%, which is a preferable N of the present invention. It was confirmed that the amount was within the range.

【0031】被覆層の酸素量は成膜速度が速いほど減少
していることを確認した(供試材1〜6参照)。本実施
例の成膜速度が2μm/hr以上の供試材は、いずれも
被覆層の酸素量は10原子%以下となり、成膜速度を2
μm/hr以上にすることにより、母材表面上の被覆層
の酸素量は10原子%以下にできることがあきらかであ
る。また、被覆層の酸素量を5原子%以下にするには、
成膜速度を5μm/hr以上にする必要がある。
It was confirmed that the oxygen content of the coating layer decreased as the film formation speed increased (see Test Materials 1 to 6). In each of the test materials having a film formation rate of 2 μm / hr or more in this example, the oxygen content of the coating layer was 10 atom% or less, and the film formation rate was 2 μm / hr or less.
It is clear that the amount of oxygen in the coating layer on the surface of the base material can be reduced to 10 atomic% or less by setting it to at least μm / hr. In order to reduce the oxygen content of the coating layer to 5 atomic% or less,
The film forming speed needs to be 5 μm / hr or more.

【0032】次に、耐溶損性の測定結果について説明す
る。被覆層の酸素量が10原子%以下の供試材1〜4、
8〜10の場合は3hrの浸漬時間では溶損が観察され
ず、良好な耐溶損性を示す。6hrの浸漬時間では、供
試材1〜3は溶損が観察されず、供試材8も実用上問題
のない溶損量であった。被覆層の酸素量の好ましい範囲
は5原子%以下であり、より好ましい範囲は1原子%以
下であることが判明した。
Next, the measurement results of the erosion resistance will be described. Test materials 1 to 4 in which the oxygen content of the coating layer is 10 atomic% or less,
In the case of 8 to 10, no erosion was observed after 3 hours of immersion, and good erosion resistance was exhibited. With the immersion time of 6 hours, no erosion was observed in the test materials 1 to 3, and the test material 8 also had a practically problematic erosion amount. It has been found that the preferable range of the oxygen content of the coating layer is 5 atomic% or less, and the more preferable range is 1 atomic% or less.

【0033】また、本実施例から被覆層の厚さは5μm
以上あれば、耐溶損性の問題がないことはあきらかであ
る。
Further, according to the present embodiment, the thickness of the coating layer is 5 μm.
Above, it is clear that there is no problem of erosion resistance.

【0034】さらに、耐溶損性に優れているTi−6A
l−4V合金を母材に用いた供試材1、3、4につい
て、耐摩耗性、耐熱サイクル性、および付き回り性につ
いて調査した。耐摩耗性試験は、ピンオンディスク型の
摺動摩擦試験機を使用して、相手材のピンとして窒化処
理を施したSKD61を使用し、温度:400℃、荷
重:10kg/cm2 で1000m摺動後の摩耗量を測
定した。耐熱サイクル性試験は、高温槽(650℃)お
よび低温槽(冷水)を有する熱サイクル試験機を用い、
1回のサイクルが約2分となるように両槽の繰り返し往
復試験を行い、供試材に熱サイクルを負荷した。そし
て、クラックが発生するサイクル回数によって評価し
た。付き回り性は被覆層の被覆率で評価した。
Furthermore, Ti-6A which is excellent in erosion resistance
For the test materials 1, 3, and 4 using the l-4V alloy as the base material, the wear resistance, the heat cycle resistance, and the throwing power were examined. The abrasion resistance test was performed by using a pin-on-disk type sliding friction tester, using SKD61, which had been subjected to nitriding treatment, as a pin of a mating material, and sliding 1000 m at a temperature of 400 ° C. and a load of 10 kg / cm 2. The subsequent wear was measured. The heat cycle resistance test was performed using a heat cycle tester having a high temperature bath (650 ° C.) and a low temperature bath (cold water).
A reciprocating test of both tanks was repeated so that one cycle was about 2 minutes, and a heat cycle was applied to the test material. The evaluation was made based on the number of cycles at which cracks occurred. The throwing power was evaluated by the coverage of the coating layer.

【0035】いずれの供試材とも被覆層の摩耗が認めら
れず、熱サイクルが1000回ではクラック発生も認め
られなっかた。さらに、被覆率も100%であった。以
上の結果より、Ti−6Al−4V合金を母材に用いた
供試材1、3、4は、耐摩耗性、耐熱サイクル性、およ
び付き回り性に優れていることを確認した。
No wear of the coating layer was observed in any of the test materials, and no cracks were observed after 1000 thermal cycles. Further, the coverage was 100%. From the above results, it was confirmed that the test materials 1, 3, and 4 using the Ti-6Al-4V alloy as the base material had excellent wear resistance, heat cycle resistance, and throwing power.

【0036】本発明の耐溶融Al性に優れる鋳造用部材
およびその製造方法は本実施例に限定されることない。
鋳造用部材として、実施例で説明したダイカスト法だけ
でなく、他の金型鋳造法、例えば、重力金型鋳造法、低
圧力鋳造法(差圧鋳造法)、高圧鋳造法(溶湯鍛造法)
に用いることができる。また、鋳造用部材の被覆層の形
成方法として、実施例のAIP法とスパッタリング法に
限定されることなく、他のPVD法でもよい。さらに、
鋳造用部材の母材に使用する材質によっては、CVD法
等の900℃以上で被覆層を形成する方法を用いて被覆
層の酸素量を10原子%以下にしても良い。被覆層の酸
素量を10原子%以下することにより、鋳造用部材の耐
溶損性を改善できる。
The casting member of the present invention having excellent resistance to molten Al and the method for producing the same are not limited to the present embodiment.
As a casting member, in addition to the die casting method described in the embodiment, other die casting methods such as a gravity die casting method, a low pressure casting method (differential pressure casting method), and a high pressure casting method (a molten metal forging method).
Can be used. Further, the method of forming the coating layer of the casting member is not limited to the AIP method and the sputtering method of the embodiment, but may be another PVD method. further,
Depending on the material used for the base material of the casting member, a method of forming the coating layer at 900 ° C. or higher, such as a CVD method, may be used to reduce the oxygen content of the coating layer to 10 atomic% or less. By reducing the oxygen content of the coating layer to 10 atomic% or less, the erosion resistance of the casting member can be improved.

【0037】[0037]

【発明の効果】以上の説明したように、本発明の鋳造部
材は保温性、耐摩耗性および耐熱サイクル性を損なうこ
となく、Al合金における耐溶損性をさらに改善するこ
とを可能とするものである。また、本発明の方法によ
り、被覆層の酸素量を低減できその結果、Al合金にお
ける耐溶損性の優れた鋳造部材を製造することを可能と
するものである。
As described above, the cast member of the present invention makes it possible to further improve the erosion resistance of an Al alloy without impairing the heat retention, abrasion resistance and heat cycle resistance. is there. Further, the method of the present invention can reduce the amount of oxygen in the coating layer, and as a result, makes it possible to manufacture a cast member having excellent erosion resistance in an Al alloy.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例の被覆層を形成する一方法を説
明するための概略図である。
FIG. 1 is a schematic view for explaining one method of forming a coating layer according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 円筒状の母材 2 対極 3 Cr製蒸発源 DESCRIPTION OF SYMBOLS 1 Cylindrical base material 2 Counter electrode 3 Cr evaporation source

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 母材表面上に、CrとNを含む被覆層を
形成してなる、溶融Al合金と接触する部分に用いられ
る鋳造用部材であって、前記被覆層中の酸素量が少なく
とも最表面で10原子%以下であることを特徴とする耐
溶融Al性に優れる鋳造用部材。
A casting member comprising a coating layer containing Cr and N formed on a surface of a base material and used in a portion coming into contact with a molten Al alloy, wherein the amount of oxygen in the coating layer is at least A casting member having excellent resistance to molten Al, characterized by being 10 atomic% or less at the outermost surface.
【請求項2】 前記被覆層中のN量が少なくとも最表面
で30〜55原子%である請求項1記載の耐溶融Al性
に優れる鋳造用部材。
2. The casting member according to claim 1, wherein the N content in the coating layer is at least 30 to 55 atomic% at the outermost surface.
【請求項3】 前記被覆層の厚さが5〜20μmである
請求項1又は2記載の耐溶融Al性に優れる鋳造用部
材。
3. The casting member according to claim 1, wherein said coating layer has a thickness of 5 to 20 μm.
【請求項4】 前記母材は、その一部または全部がTi
合金製である請求項1又は2又は3記載の耐溶融Al性
に優れる鋳造用部材。
4. The base material is partially or entirely made of Ti.
The casting member according to claim 1, 2 or 3, which is made of an alloy.
【請求項5】 請求項1乃至4のいずれかに記載の耐溶
融Al性に優れる鋳造部材を製造するに当たり、PVD
法により、2μm/hr以上の成膜速度で母材表面上に
前記被覆層を形成することを特徴とする耐溶融Al性に
優れる鋳造用部材の製造方法。
5. A method for producing a cast member having excellent resistance to molten Al according to claim 1, wherein
Forming a coating layer on the surface of the base material at a deposition rate of 2 μm / hr or more by a method.
JP04574197A 1997-02-28 1997-02-28 Casting member having excellent resistance to melting Al and method for producing the same Expired - Lifetime JP3691623B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04574197A JP3691623B2 (en) 1997-02-28 1997-02-28 Casting member having excellent resistance to melting Al and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04574197A JP3691623B2 (en) 1997-02-28 1997-02-28 Casting member having excellent resistance to melting Al and method for producing the same

Publications (2)

Publication Number Publication Date
JPH10237624A true JPH10237624A (en) 1998-09-08
JP3691623B2 JP3691623B2 (en) 2005-09-07

Family

ID=12727752

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04574197A Expired - Lifetime JP3691623B2 (en) 1997-02-28 1997-02-28 Casting member having excellent resistance to melting Al and method for producing the same

Country Status (1)

Country Link
JP (1) JP3691623B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170033353A (en) 2014-08-20 2017-03-24 히타치 긴조쿠 가부시키가이샤 Method for manufacturing coated mold for die casting

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170033353A (en) 2014-08-20 2017-03-24 히타치 긴조쿠 가부시키가이샤 Method for manufacturing coated mold for die casting

Also Published As

Publication number Publication date
JP3691623B2 (en) 2005-09-07

Similar Documents

Publication Publication Date Title
US20060032602A1 (en) Member used for casting
EP4083554A1 (en) Nickel-base alloy, heat-resistant and corrosion resistant component, and component for heat-treatment furnace
JP2015024625A (en) Molding die for production method thereof
US7601389B2 (en) Metal material and method for production thereof
JP2001503816A (en) Coated wear-resistant parts of internal combustion engines, in particular piston rings and methods for their production
JP2000038653A (en) Die or mold having surface film
JPH10237624A (en) Casting member excellent in molten al resistance, and its production
JP3029642B2 (en) Casting molds or molten metal fittings with excellent erosion resistance to molten metal
JP4154024B2 (en) Casting member for Al or Al alloy melts with excellent melt resistance
JP3438444B2 (en) Die casting member and method of manufacturing the same
WO2019039225A1 (en) Aluminum die-casting mold part
JP3978116B2 (en) Die casting machine member and manufacturing method thereof
JPH1190611A (en) Die for die casting and manufacture thereof
JPS61143547A (en) Cylinder for plastic molding apparatus
US5645944A (en) Application of molybdenum alloys
JPH04258356A (en) Al die casting die
JPH08229657A (en) Member for casting and its production
JP7059731B2 (en) Parts for aluminum die casting dies
JP5053961B2 (en) Sputtering target
KR100672839B1 (en) Heat resistant and high oxidation resistant mold material for Cu-alloy die casting and hot-working
JPH08144043A (en) Member for die casting and its production
JP6236031B2 (en) Die casting mold
JP2005008920A (en) Chromium based nitride film deposition method
JP2006075867A (en) Member for casting
WO2021070344A1 (en) Die and method for producing die

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050308

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050415

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050607

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050616

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080624

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090624

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100624

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100624

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110624

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120624

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130624

Year of fee payment: 8

EXPY Cancellation because of completion of term