JP4154024B2 - Casting member for Al or Al alloy melts with excellent melt resistance - Google Patents

Casting member for Al or Al alloy melts with excellent melt resistance Download PDF

Info

Publication number
JP4154024B2
JP4154024B2 JP06132098A JP6132098A JP4154024B2 JP 4154024 B2 JP4154024 B2 JP 4154024B2 JP 06132098 A JP06132098 A JP 06132098A JP 6132098 A JP6132098 A JP 6132098A JP 4154024 B2 JP4154024 B2 JP 4154024B2
Authority
JP
Japan
Prior art keywords
film
coating
resistance
density
casting member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP06132098A
Other languages
Japanese (ja)
Other versions
JPH11256309A (en
Inventor
兼司 山本
俊樹 佐藤
龍哉 安永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP06132098A priority Critical patent/JP4154024B2/en
Publication of JPH11256309A publication Critical patent/JPH11256309A/en
Application granted granted Critical
Publication of JP4154024B2 publication Critical patent/JP4154024B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、金属溶湯と接触する部分に使用される鋳造用部材(例えば、鋳型、プランジャースリーブ、プランジャーチップ、中子ピン、湯口等)に関するもので、特に、AlおよびAl合金溶湯に用いる耐溶損性に優れる鋳造用部材に関するものである。
【0002】
【従来の技術】
ダイカスト法や重力鋳造法等において、金属溶湯(例えば、AlおよびAl合金溶湯)と接触して使用される鋳造用部材には熱間工具鋼(JIS SKD61等)が主に使用されている。このような、金属溶湯と接触する部分に用いられる鋳造用部材には、(イ)溶融金属との接触による溶損が発生しないこと、(ロ)高温摺動条件下で摩耗が発生しないこと、(ハ)加熱冷却の熱サイクルの条件下でヒートクラックが発生しないこと、等の特性が要求される。すなわち、鋳造用部材は、耐溶損性、高温摺動条件下での耐摩耗性および耐熱サイクル性に優れていることが必要である。特に、鋳造用部材の寿命に影響を与える耐溶損性に優れていることが要求される。
【0003】
この耐溶損性を改善するために、浸炭処理や窒化処理等の表面処理が行われており、最近ではコーティング法による表面処理が施されることが多くなっきた。コーティング法では、耐溶損性に優れたセラミックス膜を鋳造用部材の表面に成膜することができ、鋳造用部材の耐摩耗性も改善できるからである。
【0004】
浸炭処理や窒化処理において、さらに、耐溶損性改善する目的で、クロム含有鋼に浸炭処理後、窒化処理を行うこと(特開平8−144039号公報参照)が提案されている。この方法により、クロム含有鋼の表層部に炭化物を緻密に析出させるとともに、窒化クロムを成膜させることにより、さらに耐溶損性を改善するというものである。
【0005】
一方、コーティング法には、イオンプレーティング法、スパッタリング法等が用いられており、そのコーティング膜として、窒化チタン皮膜(特開昭64−44256号公報参照)、窒化チタンアルミ(TiAlN)皮膜(特開平7−112266号公報参照)、Cr−N皮膜(特開平8−226541号公報、特開平8−209331号公報参照)等のセラミックス膜を用いることが提案されている。
これらセラミックス膜を鋳造用部材の表面に設ける場合、耐溶損性とともに、コーティング膜の耐剥離性が要求されることとなる。すなわち、コーティング膜が剥離すると母材と溶湯が接触することとなり、耐溶損性を著しく低下させることとなるからである。
【0006】
Cr−N皮膜は耐剥離性、耐溶損性に優れていることが報告されている。
例えば、特開平8−226541号公報には、内燃機関用ピストンリングを対象にしているが、CrN2 型窒化クロムとCrN型窒化クロムの混合物からなるコーティング膜に気孔(気孔率:0.5〜20.0%)を設けたCr−N皮膜は、高温での摺動時の耐剥離性に優れていることが記載されている。
鋳造用部材のコーティング膜についても、高温摺動下でのコーティング膜の剥離は、耐溶損性を悪化させることとなるので、コーティング膜にある程度の気孔をもつことが望ましいこととなる。
また、特開平8−209331号公報には、鋳造用部材の表面にN量を30〜55原子%となるCr−N皮膜を成膜し、このCr−N皮膜を有する鋳造用部材が、従来の窒化処理した鋳造用部材よりも優れた耐溶損性を有することが報告されている。
【0007】
また、近年、前述のSKD61に代表されるダイス鋼に代わって、金属溶湯の保温性を向上させるために、Ti−6Al−4V等のTi合金も使用されるようになってきた。Ti合金はダイス鋼に比べて熱伝導率が小さいという特性を利用するもので、このTi合金に前述のCr−N皮膜を成膜した鋳造用部材も優れた耐溶損性を有することが報告されている(特開平8−209331号公報参照)。
【0008】
【発明が解決しようとする課題】
特開平8−209331号公報に記載されているように、SKD61やTi合金(Ti−6Al−4V)の表面上にCr−N皮膜を成膜した鋳造用部材は優れた耐溶損性を示している。そして、これら鋳造用部材に成膜されたCr−N皮膜には、気孔が存在していていることが多く、前述の高温摺動下での耐剥離性の向上にも効果があるものと考えられる。
しかしながら、このような、鋳造用部材でも、溶湯と接触時間が長くなると、鋳造用部材に溶損を生じる場合がでてきた。さらに、鋳造温度の上昇、加圧鋳造時の加圧力の上昇、溶湯の組成によっては、これら鋳造用部材に溶損を生じる場合がある。このため、溶損が生じた鋳造用部材の交換を余儀なくされ、鋳造工程での生産性が低下する問題がある。
【0009】
また、特開平8−144039号公報に記載のクロム含有鋼の表層部に炭化物とともに窒化クロムを成膜する方法では、含有クロム量に限界(25%)があり、クロム含有鋼の表層部には、熱的安定性および耐溶損性に劣るFe窒化物、炭化物も形成されることとなり、かならずしも、満足な耐溶損性を得られない場合がある。
さらに、この方法は、900〜1000℃で浸炭および窒化処理を行うので、熱歪みによる寸法精度の問題も生ずる。さらに、この処理温度では、保温性に優れたTi又はTi合金を母材に用いることができない問題がある。すなわち、Ti又はTi合金のβ変態点が800〜950℃程度の温度領域にあり、熱歪みの発生とともに母材の強度を著しく低下させることとなる。
【0010】
そこで、本発明は、Al又はAl合金溶湯と接触する部分に使用される鋳造用部材の耐溶損性をさらに改善するとともに、保温性にも優れた鋳造用部材を提供することを目的とするものである
【0011】
【課題を解決するための手段】
前述した目的を達成するために、発明者らは、金属溶湯と接触する部分に用いられる鋳造部材の耐溶損性をさらに改善するために鋭意検討を行った。例として、Al溶湯とCr−N皮膜との界面反応を詳細に調査した結果を説明する。Cr−N皮膜がAl溶湯と接したとき、Cr−N皮膜中へAlが拡散し、それに伴い窒化クロムとAlが反応して、Cr −N皮膜が消費されて溶損が生じることが判明した。このとき、Cr−N皮膜の溶損速度(反応速度)はCr−N皮膜中へのAlの拡散速度の増加とともに速くなる。
【0012】
このCr−N皮膜中のAlの拡散速度は、Cr−N皮膜の密度が低いほど、速くなることが判明した。この現象は、Al溶湯がCr−N皮膜中に存在する気孔等の空隙が、Al元素の侵入経路となり、Cr−N皮膜中へのAlの拡散速度が速くなるものと考えられる。さらには、この気孔にAl溶湯が侵入して、Al溶湯とCr−N皮膜との接触面積が増加してCr−N皮膜中へのAlの拡散速度が速くなるものと考えられる。
これに加えて、前記気孔に侵入したAl溶湯がCr−N皮膜直下の母材を溶損するメカニズムも考えられる。
従来、Cr−N皮膜中に気孔が存在していていることが多く、前述したように高温摺動下での耐剥離性の向上には気孔が効果あるものと考えられており、Cr−N皮膜中に気孔が存在することは容認されていた。特開平8−209331号公報に記載のCr−N皮膜についても、同様に、気孔が存在する可能性が高く、密度の低いCr−N皮膜が用いられていた。
そして、この特開平8−209331号公報は、Cr−N皮膜のN量を限定することにより耐溶損性を改善するもので、Cr−N皮膜の密度を高めることにより、耐溶損性を改善するという認識をもっていなかった。
【0013】
発明者らは、逆に、Cr−N皮膜の密度を高めること、すなわち、Cr−N皮膜を緻密化して、Cr−N皮膜中の気孔等の空隙を減少させることにより、このCr−N皮膜を有する鋳造用部材の耐溶損性をさらに改善できるという知見を得て、本発明を完成した。
本発明は、金属溶湯と接触する部分に使用される鋳造用部材の母材表面上に成膜するCr−N皮膜の密度を高めることにより、このCr−N皮膜の金属溶湯に対する保護膜の効果をさらに改善して、Alをはじめとし、Zn、Cu又はこれらの合金等の金属溶湯から溶損をさらに抑制できるものである。
このCr−N皮膜の密度を高めるために、AIP法を用い、成膜時の印加電圧(バイアス電圧)を負電圧側に高めることにより可能であるという知見も得た。
【0014】
本発明のうちで請求項1記載の発明は、Al又はAl合金溶湯と接触する部分に使用される鋳造用部材であって、前記鋳造用部材が母材とこの母材表面にカソード放電型AIP法(アークイオンプレーティング法)により成膜されたCr−N皮膜からなり、このCr−N皮膜の密度が6.40〜6.80g/cm 3 であり、このCr−N皮膜中のN量が30〜55原子%であることを特徴とする耐溶損性に優れるAl又はAl合金溶湯用の鋳造用部材である。
Cr−N皮膜の密度を6.40〜6.80g/cm 3 にすることにより、金属溶湯を構成する元素(Al、Zn、Cu等)のCr−N皮膜中への拡散を抑制でき、このCr−N皮膜を有する鋳造用部材の耐溶損性をさらに改善できる
Cr−N皮膜の密度の上限を6.80g/cm 3 としたのは、Cr−N皮膜の密度は高いほど、耐溶損性に優れるが、6.80g/cm3 を越える密度のCr−N皮膜を成膜することは、成膜コストが高くなるととともに、技術的にも困難であるからである。
また、前記Cr−N皮膜中のN量を30〜55原子%にすることによって、化学的安定性を有する岩塩構造の結晶であるCrN単相のCr−N皮膜にすることができ、耐溶損性を改善することができる。さらに、Cr−N皮膜中のN量を40原子%以上にすることにより、Al溶湯に対する耐溶損性をさらに改善し、Cr−N皮膜の硬度を高め耐摩耗性を向上させるので好ましい。
また、Cr−N皮膜をカソード放電型AIP法で成膜することにより、以下の作用効果が奏される。すなわち、カソード放電型AIP法は、ターゲットと対極の間に電場を印加することによってアークを発生してターゲット(蒸発源)から蒸発を行うと共に、雰囲気を形成する反応ガス(N 2 ガス)によって、基板に蒸着させるものである。大電流のアークによりターゲットを蒸発、イオン化させるのでイオン化効率が高く、緻密で、密着性(耐剥離性)に優れたCr−N皮膜を得ることができる。さらに、反応ガスの圧力調整によって皮膜中のNの調整が容易に達成できる。これに加えて、成膜温度が300〜500℃程度であるので、TiまたはTi合金のβ変態点(800〜950℃程度)より低いので、TiまたはTi合金を母材に用いても熱歪みの発生がなく、母材の強度が低下することもない。また、固体蒸発源を使用することから、ターゲットの配置が自由であり、3次元形状の部品への成膜が容易となる。
そして、Al又はAl合金溶湯用の鋳造用部材として用いることにより、耐溶損性の改善がより発揮できる。Al又はAl合金溶湯に対しては、Al又はAl合金溶湯とCr−N皮膜との界面にAlN層が形成され、これが保護膜となって、さらに、鋳造用部材の耐溶損性を向上することができる。
【0015】
Cr−N皮膜の密度測定は、Cr−N皮膜の成膜前後における母材の重量増加と成膜した皮膜の膜厚より算出する。すなわち、Cr−N皮膜の密度は、
Cr−N皮膜の密度(g/cm3 )=重量増加分(g)/膜厚(cm)/コーティング面積(cm2 )...(1)
で求める。
なお、本願発明のCr−N皮膜の密度(6.40〜6.80g/cm3 )は、CrNの理論密度(6.2g/cm3 )よりも大きくなっている。
この理由として、AIP法の場合に、ターゲットを電流密度の非常に高いアークにより蒸発させるため、ターゲット表面にクロムイオンと共に中性のドロップレットと呼ばれる溶融したクロムの液滴が形成される。このドロップレットが窒素と反応することなく、ほぼ金属状態のままでCr−N皮膜中に取り込まれることが考えられる。金属クロムの密度は7.2g/cm3 でCrNの理論密度(6.2g/cm3 )よりも大きいために、Cr−N皮膜全体の密度を測定した場合、CrNの理論密度より大きくなったと考えられる。
このCr−N皮膜中に取り込まれたドロップレットの正確な量の定量は困難であり、少なくともAIP法で膜を成膜する限り、窒化クロムと金属粒子を分離して密度を測定することはほとんど不可能であるので、本発明では、Cr−N皮膜の密度は(1) 式により求めている。
このときのCrドロプレットのCr−N皮膜中の存在形態は、SEM,EPMA等の観察から皮膜中に埋没した形態であった。
【0017】
また請求項記載の発明は、請求項記載の発明の構成に、前記母材をTiまたはTi合金製にするものである。母材をTiまたはTi合金製にすることによって、鋳造部材の保温性及び耐熱サイクル性を改善できる。
【0018】
コーティング膜が成膜される母材の種類については、特に限定されるものではないが、母材を従来、用いられているダイス鋼からTiまたはTi合金にすることにより、鋳造部材の保温性および耐熱サイクル性をさらに向上させることができる。
【0019】
すなわち、SKD61の熱伝導率は28.9W/m・Kであるのに対し、Ti−6Al−4Vの熱伝導率は7.1W/m・KとSKD61の1/4以下であり、母材にTi合金を適用することによって、従来のダイス鋼を用いた場合に比べて保温性が良好になるのである。
【0020】
また、Ti合金は熱膨張率がSKD61等のFe基合金と比べて、CrNの熱膨張率に近く、例えば、Ti−6Al−4V、SKD61およびCrNの各々の熱膨張率は、各々8.8×10-6/K、11.3×10-6/Kおよび2.39×10-6/Kである。したがって、母材にTi合金を適用することによって、熱サイクル下で使用しても、コーティング膜と母材の熱膨張率の差に起因する熱応力はSKD等を用いた場合に比べて小さくなり、コーティング膜に亀裂が発生しにくくなるのである。
【0023】
【発明の実施の形態】
(第1実施例)
本発明の第1実施例を表1により説明する。表1は本発明の鋳造用部材の製造方法と、鋳造用部材の試験結果を示すものである。
JIS SKD61(調質後HRC46)を母材として用い、この母材の表面上にAIP法およびスパッタリング法によりCr−N皮膜を成膜して供試材とした。さらに、AIP法によりTiN皮膜と、プラズマ浸炭+イオン窒化処理による皮膜を前記母材の表面上に形成した。
表1の備考に示すように、AIP法によりCr−N皮膜を成膜して供試材
(No.4〜7)が本発明例であり、他は比較例である。
このときの母材の形状は、密度測定用は50×50×1mm、耐溶損性評価は765℃の純アルミニューム溶湯中において調査した。耐溶損性調査用供試材は60×15×5mmである。
【0024】
本発明例のAIP法によるCr−N皮膜の成膜は、Crをターゲットにして、基板(SKD61)温度:400℃、窒素ガス圧:20mtorr、成膜厚さ:約10μm、基板へのバイアス電圧(印加電圧):0〜−100Vの成膜条件で行った。
次に、比較例の皮膜の成膜方法を説明する。
スパッタリング法によるCr−N皮膜の成膜は、AIP法と同じ基板温度、基板へのバイアス電圧である。Ar−N2 混合ガス(Ar:N2 比が5:1で、混合ガスが圧力3mtorr)中で、Crターゲットをスパッタリングして、母材の表面上にCr−N皮膜を約10μm成膜した。
そして、AIP法によるTiN皮膜の成膜は、Tiのターゲットを用いて、バイアス電圧:−50Vとしたことである。
プラズマ浸炭+イオン窒化処理による皮膜の形成は、SKD61をプラズマ浸炭(950℃−2時間)を行った後、イオン窒化(520℃−15時間)により行った。
【0025】
次に、上述した成膜条件により製造した供試材の皮膜の密度測定と耐溶損性評価結果を表1に示す。
皮膜の密度測定は成膜前後における母材の重量増加と成膜した皮膜の膜厚より、前述の(1) 式により算出した。
本実施例では、成膜前の母材を予め0.1mgの単位まで重量測定した。その後、母材の片面のみのコーティングを実施した。このとき、母材の他の片面は蒸着粒子を遮断する処置を行った。
次に、コーティング後の重量を測定し、このときの重量増加を計算した。今回、母材の側面へのコーティング量は全体重量の1/100以下程度となるので無視した。
重量測定後、成膜した皮膜の膜厚を測定した。この皮膜の膜厚の測定は母材を切断して、断面から顕微鏡観察により皮膜の膜厚を測定した。そして、(1) 式により皮膜の密度を算出した。
【0026】
【表1】

Figure 0004154024
【0027】
表1に示すように、AIP法で成膜したCr−N皮膜(供試材:No.1〜7)の密度は、スパッタリング法のCr−N皮膜(供試材:No.8〜14)比べて高くなるこが判明した。AIP法では、バイアス電圧を−30V以下にすることにより、皮膜の密度を6.40g/cm3 以上にすることができることが明らかとなった。
Cr−N皮膜の密度が6.40g/cm3 以上となる供試材(No.4〜8)は、この皮膜と母材との密着性が十分にあることを確認した。
一方、スパッタリング法ではCr−N皮膜の密度は、AIP法のように高くすることができず、6.2g/cm3 以下である。
スパッタリング法ではCr−N皮膜の密度が低いのは、AIP法に比較して、イオン化効率が低いため、基板へのバイアス電圧が有効に作用せず、バイアス電圧をAIP法と同程度あげても、緻密な皮膜が成膜されなかったためと考えられる。
【0028】
次に、耐溶損性評価結果を説明する。耐溶損性評価は765℃の純アルミニューム溶湯中に2時間浸漬して、浸漬試験後の皮膜の消失面積より各皮膜の耐溶損性を評価した。
AIP法で成膜したCr−N皮膜の場合、皮膜密度が6.40g/cm3 以上(No.4〜8)で耐溶損性に優れた結果を示した。この優れた耐溶損性の表面にはCr−N皮膜の剥離も観察されなかった。
一方、スパッタリング法で成膜したCr−N皮膜は、本耐溶損性評価の条件では、Cr−N皮膜が全部消失し、耐溶損性が劣ることは明らかとなった。
さらに、AIP法で成膜したTiN皮膜や、プラズマ浸炭+イオン窒化を行った皮膜も、全部消失し、耐溶損性が劣ることが判明した。
【0029】
(第2実施例)
次に、耐溶損性に及ぼすCr−N皮膜中のN量の影響を調査した。この結果を表2に示す。
Cr−N皮膜中のN量を変化させるために、第2実施例では、バイアス電圧を−5、−50V、窒素ガス圧力を1、5と20mtorrにして(他の条件は第1実施例と同じ)、AIP法によりSKD61表面上にCr−N皮膜を成膜した。製造した供試材のN量、密度測定および耐溶損性評価結果を表2に示す。密度測定および耐溶損性評価の方法は第1実施例と同じ条件である。
【0030】
【表2】
Figure 0004154024
【0031】
AIP法により、Cr−N皮膜中のN量を26〜54原子%に容易に調整することができた。
本実施例より、Cr−N皮膜の密度が6.40g/cm3 以上で、Cr−N皮膜中の窒素量が30〜55原子%の範囲となる供試材(No.21〜24)が、耐溶損性に優れていることを確認した。
【0032】
(第3実施例)
さらに、Cr−N皮膜を成膜した鋳造用部材熱サイクル性評価を行ったので、この結果を表3に示す。
【0033】
【表3】
Figure 0004154024
【0034】
第3実施例は、母材をSKD61およびTi合金(Ti−6Al−4V)の表面上にAIP法によりCr−N皮膜を成膜したものである。成膜条件は、バイアス電圧:−50V、窒素ガス圧力:1、20mtorrで、他の成膜条件は第1実施例と同じ条件である。
耐熱サイクル性評価は、供試材(寸法:60×15×5mm)を大気中で650℃まで加熱後、水冷し、これを1サイクルとし、1000回まで熱サイクルを繰り返した。その後、Cr−N皮膜に発生したクラック数を、単位長さ当たりのクラック数として評価した。
【0035】
Ti合金の表面上に,密度が6.72g/cm3 、N量が0.54原子%のCr−N皮膜を成膜した供試材(No.28)は、密度、N量がほぼ同じCr−N皮膜をSKD61の表面上に成膜した供試材(No.26:本発明の範囲)に比べて、Cr−N皮膜に発生するクラックの数が半減しており、優れた耐熱サイクル性を示すことが判明した。
すなわち、Ti合金の表面上に成膜するCr−N皮膜の密度を6.40g/cm3 以上にし、Cr−N皮膜中のN量を30〜55原子%の範囲にすることにより、優れた耐熱サイクル性を得えることができる。
【0036】
本発明の耐溶損性に優れる鋳造用部材に適用されるCr−N皮膜はAIP法により成膜されるので、Cr−N皮膜の密度を6.40g/cm3 以上で、かつ、Cr−N皮膜中のN量を30〜55原子%の範囲に容易に調整することができ、このCr−N皮膜と母材との密着性も良好である。
この鋳造用部材を金属溶湯と接触する部分に使用することにより、前述の鋳造用部材に要求される特性、(イ)の耐溶損性だけでなく、(ロ)の高温摺動条件下での耐摩耗性、(ハ)の耐熱サイクル性をも満足できるものである。
このとき、耐溶損性評価試験後に表面に付着したAlを機械的に除去したが、皮膜の剥離が認められず、十分な密着性を有していることを確認した。
【0037】
なお、本発明の耐溶損性に優れる鋳造用部材は本実施例に限定されるものではない。すなわち、鋳造用部材の母材は、JIS SKD61、Ti合金に限定されず、他の金属材料、例えば、Cu基合金、Ni基合金等を用いることができる。
さらに、本発明の鋳造用部材は、Cr−N皮膜の密度を高めることにより、Cr−N皮膜が金属溶湯からの溶損に対しての保護皮膜の働きが強化されるものであり、Al溶湯だけでなく、他の金属溶湯、例えば、Cu、Zn溶湯等に対しても優れた耐溶損性を有する。
すなわち、他の金属溶湯においても、Cr−N皮膜の気孔部より溶湯が侵入して母材を溶損するメカニズムはAl溶湯と同様であり、皮膜の密度を高めることで、他の金属溶湯に対しても耐溶損性に優れた皮膜となる。
【0038】
【発明の効果】
以上に説明したように、本発明の鋳造用部材は、Cr−N皮膜の密度とCr−N皮膜の窒素量を限定することにより、耐溶損性に優れるAl又はAl合金溶湯用の鋳造用部材を得ることを可能とするものである。
また、AIP法によりCr−N皮膜を成膜することにより、皮膜中のN量の調整が容易に達成でき、緻密で、密着性に優れたCr−N皮膜を得ることを可能とするものである。
さらに、鋳造用部材の母材にTi合金を用いることにより、金属溶湯の保温性を高めるとともに、耐熱サイクル性に優れた鋳造用部材を得ることを可能とするものである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a casting member (for example, a mold, a plunger sleeve, a plunger tip, a core pin, a gate, etc.) used in a portion that comes into contact with a molten metal, and particularly used for molten Al and Al alloys. The present invention relates to a casting member having excellent melt resistance.
[0002]
[Prior art]
In a die casting method, a gravity casting method, or the like, hot tool steel (JIS SKD61 or the like) is mainly used as a casting member used in contact with a molten metal (for example, Al and Al alloy molten metal). In such a casting member used for the portion that contacts the molten metal, (a) no melting damage due to contact with the molten metal, (b) no wear occurs under high temperature sliding conditions, (C) Characteristics such as the absence of heat cracks under the conditions of the heat cycle of heating and cooling are required. That is, the casting member is required to have excellent resistance to melting loss, wear resistance under high temperature sliding conditions, and heat cycle resistance. In particular, it is required to have excellent resistance to erosion that affects the life of the casting member.
[0003]
In order to improve the resistance to melting, surface treatments such as carburizing treatment and nitriding treatment are performed, and recently surface treatment by a coating method has been frequently performed. This is because, in the coating method, a ceramic film having excellent melt resistance can be formed on the surface of the casting member, and the wear resistance of the casting member can be improved.
[0004]
In carburizing and nitriding treatment, further, for the purpose of improving the melting loss resistance, after carburizing the chromium-containing steels, to perform the nitriding treatment (see JP-A-8-144039) have been proposed. By this method, carbide is densely deposited on the surface layer portion of the chromium-containing steel, and chromium nitride is formed into a film, thereby further improving the erosion resistance.
[0005]
On the other hand, an ion plating method, a sputtering method, or the like is used for the coating method. As the coating film, a titanium nitride film (see Japanese Patent Application Laid-Open No. 64-44256), a titanium nitride aluminum (TiAlN) film (special It has been proposed to use ceramic films such as Kaihei 7-112266 and Cr-N coatings (see JP-A-8-226541 and JP-A-8-209331).
When these ceramic films are provided on the surface of the casting member, it is required to have resistance to peeling of the coating film as well as resistance to melting. That is, when the coating film is peeled off, the base material and the molten metal come into contact with each other, and the resistance to melting loss is significantly reduced.
[0006]
It has been reported that the Cr—N film is excellent in peel resistance and melt resistance.
For example, Japanese Patent Laid-Open No. 8-226541 is directed to a piston ring for an internal combustion engine. However, the coating film made of a mixture of CrN 2 type chromium nitride and CrN type chromium nitride has pores (porosity: 0.5 to It is described that the Cr-N film provided with 20.0% is excellent in peeling resistance when sliding at high temperature.
Also for the coating film of the casting member, peeling of the coating film under high-temperature sliding deteriorates the resistance to melting loss, so it is desirable that the coating film has a certain amount of pores.
JP-A-8-209331, the N amount in the surface of the casting member thereby forming a Cr-N coating a 30 to 55 atomic%, casting member having the Cr-N coating, conventional It has been reported that the material has better erosion resistance than the nitriding cast member.
[0007]
In recent years, Ti alloys such as Ti-6Al-4V have come to be used instead of the die steel typified by SKD61 as described above, in order to improve the heat retaining property of the molten metal. The Ti alloy uses the characteristic that its thermal conductivity is lower than that of the die steel, and it has been reported that the casting member in which the above - mentioned Cr—N film is formed on this Ti alloy also has excellent resistance to melting. (See JP-A-8-209331).
[0008]
[Problems to be solved by the invention]
As described in JP-A-8-209331, a casting member having a Cr-N film formed on the surface of SKD61 or Ti alloy (Ti-6Al-4V) exhibits excellent resistance to melting. Yes. The Cr-N coatings formed on these casting members often have pores, and are considered effective for improving the peeling resistance under high temperature sliding described above. It is done.
However, even in such a casting member, when the contact time with the molten metal becomes long, the casting member may be melted. Further, depending on the increase in casting temperature, the increase in pressure during pressure casting, and the composition of the molten metal, the casting member may be melted. For this reason, there is a problem that the casting member in which melting damage has occurred must be replaced, and productivity in the casting process is lowered.
[0009]
Further, in the method of forming chromium nitride together with carbide on the surface layer portion of the chromium-containing steel described in JP-A-8-144039, there is a limit (25%) in the chromium content, and the surface layer portion of the chromium-containing steel has Further, Fe nitrides and carbides that are inferior in thermal stability and erosion resistance are also formed, and satisfactory erosion resistance may not always be obtained.
Further, since this method performs carburizing and nitriding at 900 to 1000 ° C., there is a problem of dimensional accuracy due to thermal strain. Furthermore, at this processing temperature, there is a problem that Ti or Ti alloy having excellent heat retention cannot be used as a base material. That is, the β transformation point of Ti or Ti alloy is in the temperature range of about 800 to 950 ° C., and the strength of the base material is significantly reduced with the occurrence of thermal strain.
[0010]
Accordingly, the present invention aims to provide a casting member that is further improved in resistance to erosion of a casting member used in a portion that comes into contact with Al or Al alloy molten metal and that has excellent heat retention. It is .
[0011]
[Means for Solving the Problems]
In order to achieve the above-described object, the inventors have intensively studied in order to further improve the melt resistance of the cast member used in the portion in contact with the molten metal. As an example, the results of detailed investigation of the interfacial reaction between the molten Al and the Cr—N film will be described. It was found that when the Cr-N coating was in contact with the Al melt, Al diffused into the Cr-N coating , and as a result, chromium nitride and Al reacted to consume the Cr- N coating and cause melting damage. . At this time, erosion rate (reaction rate) of the Cr-N coating increases with increasing diffusion rate of Al into Cr-N coating.
[0012]
Diffusion rate of Cr-N film in Al, the more the density of the Cr-N coating is low, was found to be faster. This phenomenon, voids pores such that molten Al is present in the Cr-N coating, will route of entry Al element, it is believed that the diffusion rate of Al to Cr-N film in increases. Furthermore, it is considered that the molten Al enters the pores, the contact area between the molten Al and the Cr—N coating increases, and the diffusion rate of Al into the Cr—N coating increases.
In addition to this, a mechanism in which the molten Al that has penetrated into the pores melts the base material directly under the Cr—N film is also conceivable.
Conventionally, often have existed pores in Cr-N coating, it has been considered that the pores is effective in improving the peeling resistance at high temperature sliding as mentioned above, Cr-N The presence of pores in the film was accepted. Similarly, the Cr—N coating described in JP-A-8-209331 is also likely to have pores and has a low density Cr—N coating .
Then, the JP-A-8-209331 discloses is intended to improve the melting loss resistance by limiting the amount of N Cr-N coating by increasing the density of the Cr-N coating, for improving the melting loss resistance I did not have the recognition.
[0013]
We, on the contrary, to increase the density of the Cr-N coating, i.e., by densifying the Cr-N coating, by reducing the air gap of pores like in the Cr-N coating, the Cr-N coating The present invention was completed by obtaining the knowledge that the melting resistance of the casting member having the above can be further improved.
The present invention increases the density of the Cr—N film formed on the surface of the base material of the casting member used for the portion in contact with the molten metal, so that the effect of the protective film against the molten metal of this Cr—N film is achieved. Thus, it is possible to further suppress melting damage from molten metal such as Al, Zn, Cu or alloys thereof.
In order to increase the density of the Cr—N film , it was also found that the AIP method can be used to increase the applied voltage (bias voltage) during film formation to the negative voltage side.
[0014]
The invention according to claim 1 of the present invention is a casting member used in a portion in contact with Al or Al alloy molten metal, and the casting member is formed on a base material and a cathode discharge type AIP on the surface of the base material. Law (arc ion plating) by made the formed Cr-N coating, Ri density 6.40 ~6.80g / cm 3 der of the Cr-N coating, N of the Cr-N coating in It is a member for casting for molten Al or Al alloy having excellent melt resistance, characterized in that the amount is 30 to 55 atomic% .
By setting the density of the Cr—N coating to 6.40 to 6.80 g / cm 3 , diffusion of elements (Al, Zn, Cu, etc.) constituting the molten metal into the Cr—N coating can be suppressed. It is possible to further improve the erosion resistance of the casting member having the Cr—N coating .
Cr-N The upper limit of the density of the film was 6.80 g / cm 3, the more the density is higher in the Cr-N coating, is excellent in melting loss resistance, the density exceeding 6.80g / cm 3 Cr-N This is because it is difficult to form a film as well as to increase the film formation cost and technically.
Moreover, by making the amount of N in the Cr—N coating 30 to 55 atomic%, a CrN single-phase Cr—N coating which is a crystal having a rock salt structure having chemical stability can be obtained, and resistance to melting Can improve sex. Furthermore, it is preferable that the N content in the Cr—N coating is 40 atomic% or more, since this further improves the erosion resistance against the molten Al, increases the hardness of the Cr—N coating and improves the wear resistance.
Further, by forming a Cr—N film by the cathode discharge type AIP method, the following effects can be obtained. That is, the cathode discharge type AIP method generates an arc by applying an electric field between a target and a counter electrode, evaporates from the target (evaporation source), and uses a reaction gas (N 2 gas) that forms an atmosphere , It is deposited on the substrate. Since the target is evaporated and ionized by a high-current arc, it is possible to obtain a Cr—N coating that has high ionization efficiency, is dense, and has excellent adhesion (peeling resistance). Furthermore, the adjustment of N in the film can be easily achieved by adjusting the pressure of the reaction gas. In addition to this, since the film forming temperature is about 300 to 500 ° C., it is lower than the β transformation point of Ti or Ti alloy (about 800 to 950 ° C.), so even if Ti or Ti alloy is used as a base material, thermal strain is caused. And the strength of the base material does not decrease. In addition, since a solid evaporation source is used, the target can be arranged freely, and film formation on a three-dimensional shaped component is facilitated.
And by using it as a casting member for Al or Al alloy molten metal, the improvement of melt resistance can be exhibited more. For Al or Al alloy molten metal, an AlN layer is formed at the interface between the Al or Al alloy molten metal and the Cr-N coating, and this serves as a protective film, and further improves the erosion resistance of the casting member. Can do.
[0015]
The density measurement of the Cr—N film is calculated from the increase in the weight of the base material before and after the formation of the Cr—N film and the film thickness of the formed film. That is, the density of the Cr-N film is
Cr-N coating density (g / cm 3 ) = weight increase (g) / film thickness (cm) / coating area (cm 2 ) (1)
Ask for.
The density of the CrN film of the present invention (6.40~6.80g / cm 3) is larger than the theoretical density of CrN (6.2g / cm 3).
This is because, in the case of the AIP method, since the target is evaporated by an arc having a very high current density, molten chromium droplets called neutral droplets are formed on the target surface together with chromium ions. It is conceivable that the droplets are incorporated into the Cr—N film in a substantially metal state without reacting with nitrogen. The density of metallic chromium is 7.2 g / cm 3, which is larger than the theoretical density of CrN ( 6.2 g / cm 3 ). Therefore, when the density of the entire Cr—N film is measured, it is greater than the theoretical density of CrN. Conceivable.
It is difficult to accurately determine the amount of droplets incorporated into the Cr-N film, and it is almost impossible to measure the density by separating chromium nitride and metal particles at least as long as the film is formed by the AIP method. Since this is impossible, in the present invention, the density of the Cr—N film is obtained by the equation (1).
The existence form of Cr droplets in the Cr-N film at this time was a form embedded in the film from observation of SEM, EPMA, and the like.
[0017]
According to a second aspect of the present invention, in the structure of the first aspect of the present invention, the base material is made of Ti or a Ti alloy. By making the base material made of Ti or Ti alloy, it is possible to improve the heat retention and heat cycle resistance of the cast member.
[0018]
The type of the base material on which the coating film is formed is not particularly limited, but by changing the base material from conventionally used die steel to Ti or Ti alloy, the heat retaining property of the cast member and The heat cycle property can be further improved.
[0019]
That is, while the thermal conductivity of SKD61 is 28.9 W / m · K, the thermal conductivity of Ti-6Al-4V is 7.1 W / m · K, which is less than 1/4 of SKD61. By applying the Ti alloy to the steel, the heat retention is improved as compared with the case of using conventional die steel.
[0020]
Further, the Ti alloy has a thermal expansion coefficient close to that of CrN as compared with an Fe-based alloy such as SKD61. For example, Ti-6Al-4V, SKD61, and CrN have a thermal expansion coefficient of 8.8. × a 10 -6 /K,11.3×10 -6 / K and 2.39 × 10 -6 / K. Therefore, by applying a Ti alloy to the base material, the thermal stress due to the difference in the coefficient of thermal expansion between the coating film and the base material becomes smaller even when used under a thermal cycle than when SKD or the like is used. This makes it difficult for cracks to occur in the coating film.
[0023]
DETAILED DESCRIPTION OF THE INVENTION
(First embodiment)
A first embodiment of the present invention will be described with reference to Table 1. Table 1 shows the manufacturing method of the casting member of the present invention and the test results of the casting member.
JIS SKD61 (HRC46 after tempering) was used as a base material, and a Cr—N film was formed on the surface of the base material by the AIP method and the sputtering method to prepare a test material. Further, a TiN film and a film formed by plasma carburizing + ion nitriding treatment were formed on the surface of the base material by the AIP method.
As shown in the remarks of Table 1, a Cr—N film is formed by the AIP method, and specimens (Nos. 4 to 7) are examples of the present invention, and others are comparative examples.
The shape of the base material at this time was investigated in a pure aluminum melt of 50 × 50 × 1 mm for density measurement and evaluation of melt resistance for 765 ° C. The sample material for investigating the erosion resistance is 60 × 15 × 5 mm.
[0024]
Film formation of the Cr—N film by the AIP method of the present invention is performed using Cr as a target, substrate (SKD61) temperature: 400 ° C., nitrogen gas pressure: 20 mtorr, film thickness: about 10 μm, bias voltage to the substrate (Applied voltage): Performed under film forming conditions of 0 to -100V.
Next, a film forming method of a comparative example will be described.
The film formation of the Cr—N film by the sputtering method is the same substrate temperature and bias voltage to the substrate as in the AIP method. A Cr target was sputtered in an Ar—N 2 mixed gas (Ar: N 2 ratio was 5: 1, and the mixed gas was 3 mtorr) to form a Cr—N film on the surface of the base material with a thickness of about 10 μm. .
The TiN film is formed by the AIP method using a Ti target and a bias voltage of -50V.
Formation of the film by plasma carburizing + ion nitriding treatment was performed by ion nitriding (520 ° C.-15 hours) after plasma carburizing (950 ° C.-2 hours) of SKD61.
[0025]
Next, Table 1 shows the density measurement of the film of the test material manufactured under the above-described film forming conditions and the evaluation results of the resistance to melting damage.
The density measurement of the film was calculated by the above formula (1) from the increase in the weight of the base material before and after the film formation and the film thickness of the formed film.
In this example, the weight of the base material before film formation was measured in advance to a unit of 0.1 mg. Thereafter, coating on only one side of the base material was performed. At this time, the other surface of the base material was treated to block the vapor deposition particles.
Next, the weight after coating was measured, and the weight increase at this time was calculated. This time, the coating amount on the side surface of the base material was ignored because it was about 1/100 or less of the total weight.
After the weight measurement, the film thickness of the formed film was measured. The film thickness of this film was measured by cutting the base material and observing the film thickness from the cross section by microscopic observation. And the density of the film was calculated by the equation (1).
[0026]
[Table 1]
Figure 0004154024
[0027]
As shown in Table 1, the density of the Cr—N film (test material: No. 1 to 7) formed by the AIP method is the same as the Cr—N film of the sputtering method (test material: No. 8 to 14). It turned out to be higher than that. In the AIP method, it became clear that the density of the film can be made 6.40 g / cm 3 or more by making the bias voltage -30 V or less.
It was confirmed that the specimens (No. 4 to 8) in which the density of the Cr—N coating was 6.40 g / cm 3 or more had sufficient adhesion between the coating and the base material.
On the other hand, in the sputtering method, the density of the Cr—N film cannot be increased as in the AIP method, and is 6.2 g / cm 3 or less.
In the sputtering method, the density of the Cr—N film is low because the ionization efficiency is low compared to the AIP method, so that the bias voltage to the substrate does not act effectively, and even if the bias voltage is increased to the same level as the AIP method. This is probably because a dense film was not formed.
[0028]
Next, the evaluation results of the resistance to melting damage will be described. The melt resistance was evaluated by immersing in a pure aluminum melt at 765 ° C. for 2 hours, and evaluating the melt resistance of each coating from the disappearance area of the coating after the immersion test.
In the case of the Cr—N film formed by the AIP method, the film density was 6.40 g / cm 3 or more (No. 4 to 8), and the result of excellent resistance to melting was shown. No peeling of the Cr—N film was observed on this excellent melt-resistant surface.
On the other hand, the formed Cr-N coating by sputtering, in the conditions of this melting loss resistance evaluation, Cr-N coating had disappeared entirely, became clear that melting loss resistance is poor.
Furthermore, it has been found that the TiN film formed by the AIP method and the film formed by plasma carburization + ion nitriding disappeared and the resistance to erosion is poor.
[0029]
(Second embodiment)
Next, the influence of the amount of N in the Cr—N coating on the erosion resistance was investigated. The results are shown in Table 2.
In order to change the amount of N in the Cr—N film , in the second embodiment, the bias voltage is −5, −50 V, the nitrogen gas pressure is 1, 5 and 20 mtorr (other conditions are the same as in the first embodiment). The same), and a Cr—N film was formed on the surface of SKD61 by the AIP method. Table 2 shows the N content, density measurement, and evaluation results of the resistance to erosion of the manufactured specimens. The method of density measurement and the evaluation of resistance to erosion resistance is the same as in the first example.
[0030]
[Table 2]
Figure 0004154024
[0031]
By the AIP method, the amount of N in the Cr—N film could be easily adjusted to 26 to 54 atomic%.
From this example, the specimens (Nos. 21 to 24) in which the density of the Cr—N coating is 6.40 g / cm 3 or more and the amount of nitrogen in the Cr—N coating is in the range of 30 to 55 atomic%. It was confirmed that it was excellent in resistance to melting.
[0032]
(Third embodiment)
Furthermore, since the thermal cycle property evaluation of the casting member which formed the Cr-N film was performed, this result is shown in Table 3.
[0033]
[Table 3]
Figure 0004154024
[0034]
In the third example, a Cr—N film is formed by the AIP method on the surface of SKD61 and a Ti alloy (Ti-6Al-4V) as a base material. The film forming conditions are bias voltage: −50 V, nitrogen gas pressure: 1, 20 mtorr, and other film forming conditions are the same as those in the first embodiment.
The heat cycle resistance evaluation was performed by heating a test material (dimensions: 60 × 15 × 5 mm) to 650 ° C. in the air, cooling with water, setting this as one cycle, and repeating the heat cycle up to 1000 times. Thereafter, the number of cracks generated in the Cr—N film was evaluated as the number of cracks per unit length.
[0035]
The specimen (No. 28) in which a Cr—N film having a density of 6.72 g / cm 3 and an N amount of 0.54 atomic% is formed on the surface of the Ti alloy has almost the same density and N amount. cr-N coating the test materials were then deposited onto the surface of the SKD61: as compared to (No.26 scope of the present invention), and half the number of cracks generated in the Cr-N coating, excellent heat cycle It was found to show sex.
That is, the density of the Cr—N film formed on the surface of the Ti alloy is 6.40 g / cm 3 or more, and the N amount in the Cr—N film is in the range of 30 to 55 atomic%. Heat cycle resistance can be obtained.
[0036]
Since the Cr—N coating applied to the casting member having excellent melt resistance of the present invention is formed by the AIP method, the density of the Cr—N coating is 6.40 g / cm 3 or more, and Cr—N The amount of N in the film can be easily adjusted to a range of 30 to 55 atomic%, and the adhesion between the Cr-N film and the base material is also good.
By using this casting member in contact with the molten metal, not only the characteristics required for the above-mentioned casting member, (b) resistance to melting damage, but also (b) high temperature sliding conditions Abrasion resistance and (c) heat cycle performance can also be satisfied.
At this time, Al adhering to the surface was mechanically removed after the erosion resistance evaluation test, but peeling of the film was not observed, and it was confirmed that the film had sufficient adhesion.
[0037]
In addition, the member for casting excellent in the melt resistance of the present invention is not limited to this example. That is, the base material of the casting member is not limited to JIS SKD61 and Ti alloy, and other metal materials such as Cu-based alloy and Ni-based alloy can be used.
Furthermore, the member for casting of the present invention is one in which the Cr—N coating is strengthened by increasing the density of the Cr—N coating , whereby the action of the protective coating against melting damage from the molten metal is increased. In addition, it has excellent melt resistance against other metal melts such as Cu and Zn melts.
That is, even in other metal melts, the mechanism by which the molten metal penetrates from the pores of the Cr-N coating and melts the base metal is the same as that of the Al melt, and by increasing the coating density, However, the film is excellent in resistance to melting.
[0038]
【The invention's effect】
As described above, the casting member of the present invention is a casting member for Al or Al alloy molten metal having excellent resistance to melting damage by limiting the density of the Cr—N coating and the amount of nitrogen in the Cr—N coating. It is possible to obtain.
In addition, by forming a Cr—N film by the AIP method, adjustment of the amount of N in the film can be easily achieved, and it is possible to obtain a dense and excellent Cr—N film with excellent adhesion. is there.
Furthermore, by using a Ti alloy as the base material of the casting member, it is possible to improve the heat retaining property of the molten metal and to obtain a casting member excellent in heat cycle resistance.

Claims (2)

Al又はAl合金溶湯と接触する部分に使用される鋳造用部材であって、前記鋳造用部材が母材とこの母材表面にカソード放電型AIP法(アークイオンプレーティング法)により成膜されたCr−N皮膜からなり、このCr−N皮膜の密度が6.40〜6.80g/cm 3 であり、このCr−N皮膜中のN量が30〜55原子%であることを特徴とする耐溶損性に優れるAl又はAl合金溶湯用の鋳造用部材。A casting member used for a portion in contact with molten Al or Al alloy, wherein the casting member is formed on a base material and a surface of the base material by a cathode discharge type AIP method (arc ion plating method) . It consists cr-N film, and wherein the density of the Cr-N coating 6.40 ~6.80g / cm 3 der Ri, N amount of cr-N film in is 30 to 55 atomic% A casting member for molten Al or Al alloy that is excellent in resistance to melting. 前記母材がTi又はTi合金製である請求項記載の耐溶損性に優れるAl又はAl合金溶湯用の鋳造用部材。The base material is cast member for Al or Al alloy melt excellent melting loss of claim 1 wherein the steel Ti or Ti alloy.
JP06132098A 1998-03-12 1998-03-12 Casting member for Al or Al alloy melts with excellent melt resistance Expired - Lifetime JP4154024B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06132098A JP4154024B2 (en) 1998-03-12 1998-03-12 Casting member for Al or Al alloy melts with excellent melt resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06132098A JP4154024B2 (en) 1998-03-12 1998-03-12 Casting member for Al or Al alloy melts with excellent melt resistance

Publications (2)

Publication Number Publication Date
JPH11256309A JPH11256309A (en) 1999-09-21
JP4154024B2 true JP4154024B2 (en) 2008-09-24

Family

ID=13167741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06132098A Expired - Lifetime JP4154024B2 (en) 1998-03-12 1998-03-12 Casting member for Al or Al alloy melts with excellent melt resistance

Country Status (1)

Country Link
JP (1) JP4154024B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5434055B2 (en) * 2008-12-01 2014-03-05 トヨタ自動車株式会社 Thermal insulation sleeve and method of conveying metal to be processed

Also Published As

Publication number Publication date
JPH11256309A (en) 1999-09-21

Similar Documents

Publication Publication Date Title
JP4311803B2 (en) Surface coating mold and manufacturing method thereof
EP1626104A1 (en) Member with coating layers used for casting
JP5435326B2 (en) Die-casting coating mold and manufacturing method thereof
Dingremont et al. Application of duplex coatings for metal injection moulding
EP0774525B1 (en) Copper alloy mold for casting aluminium or aluminium alloy
Joshi et al. Dissolution and soldering behavior of nitrided hot working steel with multilayer LAFAD PVD coatings
JP4154024B2 (en) Casting member for Al or Al alloy melts with excellent melt resistance
JP3390776B2 (en) Surface modification method for steel using aluminum diffusion dilution
JP4515692B2 (en) Sputtering target
Birol et al. AlTiN and AlTiON-coated hot work tool steels for tooling in steel thixoforming
JP3154403B2 (en) Coating mold
JP3638332B2 (en) Coated hard alloy
JP4408649B2 (en) Dipping member for hot metal plating baths with excellent dross resistance
JP3691623B2 (en) Casting member having excellent resistance to melting Al and method for producing the same
WO2019039225A1 (en) Aluminum die-casting mold part
JP4579706B2 (en) Articles with improved zinc erosion resistance
JP7396018B2 (en) Targets and hard coatings for forming hard coatings
JPH09195069A (en) Metal mold made of copper alloy for casting aluminium or aluminium alloy
JPH08229657A (en) Member for casting and its production
JPH04258356A (en) Al die casting die
JP3438444B2 (en) Die casting member and method of manufacturing the same
JPH0860340A (en) High hardness coated member
JP2021025132A (en) Coated member and manufacturing method of the same
JP2008150712A (en) Die or mold having surface coating film
Nguyen et al. Increase in corrosion resistance of carbon steel surface due to plasma surface modification with powder mixtures of NiCrBSi alloy and chrome carbide

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050308

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050415

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050711

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050725

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20050826

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080522

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080606

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080707

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110711

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110711

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120711

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130711

Year of fee payment: 5

EXPY Cancellation because of completion of term