JPH10237504A - Metallic porous body - Google Patents

Metallic porous body

Info

Publication number
JPH10237504A
JPH10237504A JP3804197A JP3804197A JPH10237504A JP H10237504 A JPH10237504 A JP H10237504A JP 3804197 A JP3804197 A JP 3804197A JP 3804197 A JP3804197 A JP 3804197A JP H10237504 A JPH10237504 A JP H10237504A
Authority
JP
Japan
Prior art keywords
metal
flat
fine powder
porous body
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3804197A
Other languages
Japanese (ja)
Inventor
Jinsuke Takada
仁輔 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHINKO RES KK
Original Assignee
SHINKO RES KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHINKO RES KK filed Critical SHINKO RES KK
Priority to JP3804197A priority Critical patent/JPH10237504A/en
Publication of JPH10237504A publication Critical patent/JPH10237504A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Filtering Materials (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a metallic porous body easy to be produced as compared to the case of metallic fiber, capable of using inexpensive metal powder and excellent in permeability by forming it into metal flat fine powder in which the average value of the flattening degree is regulated to a specified range. SOLUTION: An assembled body of metal flat fine powder in which the average value of the flattening degree (the thickness of the flat part in the flat powder/the maximum length of the flat powder) lies in the range of 0.05 to 0.5 is formed. In this way, the porosity of the metallic porous body is improved, so that the permeability of the metallic porous body can be improved. In the case the average value of the flattening degree exceeds 0.5, the porosity reduces to drastically deteriorate its permeability. Furthermore, in the case the average value of the flattening degree is <=0.05, good permeability can be obtd., but, there is a limitation on flattening working to the metal fine powder, and furthermore, the working cost is made drastically high. Moreover, the average grain size of the metal flat fine powder is regulated to the range of 3 to 20μm. By using this metallic porous body for a filter for gas in particular, fine impurity grains can be removed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、フィルター、触媒
体、プラスチック用成型金型などに用いられる金属多孔
質体に関するものであり、特に、ガス用フィルター部材
に用いられる金属多孔質体に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a metal porous body used for a filter, a catalyst, a molding die for plastics, and more particularly to a metal porous body used for a gas filter member. is there.

【0002】[0002]

【従来の技術】金属多孔質体は、フィルター、触媒体、
プラスチック用金型等に用いられている。フィルターは
各種流体を濾過、精製するために使用されるもので、そ
の濾過孔径は2〜100μmである。フィルターには、
金属多孔質体の他に、金属繊維複合体、高分子材料(例
えば、ポリプロピレン系)、セラミックス多孔質体等が
用いられている。
2. Description of the Related Art Porous metal bodies include filters, catalyst bodies,
Used in plastic molds and the like. The filter is used for filtering and purifying various fluids, and has a filtration pore size of 2 to 100 μm. Filters include
In addition to the metal porous body, a metal fiber composite, a polymer material (for example, polypropylene), a ceramic porous body, and the like are used.

【0003】半導体製造プロセスに用いられるフィルタ
ーについて説明する。半導体製造プロセスにおいては、
集積素子の集積度の高度化が急激に進み、集積素子のパ
ターン幅はサブミクロンという微小間隔になってきた。
このため、集積素子製造に用いられるプロセスガス(A
r、N2 、H2 、HCl、HF等)を高性能の濾過用フ
ィルターの使用により、集積素子のパターン幅の1/1
0以上の径の不純物粒子(例えば、0.01μm程度以
上の粒子)を除去して配線のショートを防止することが
不可欠となる。さらに、プロセスガスの超高純度化の要
望から、操業前に濾過用フィルターに吸着している有害
な水分や不純ガスの除去するために、濾過用フィルター
を300℃以上に加熱するベーキング処理が必要であ
る。
[0003] A filter used in a semiconductor manufacturing process will be described. In the semiconductor manufacturing process,
The degree of integration of integrated elements has been rapidly increasing, and the pattern width of integrated elements has become a sub-micron interval.
For this reason, the process gas (A
r, N 2 , H 2 , HCl, HF, etc.) by using a high-performance filtration filter to reduce the pattern width of the integrated device to 1/1.
It is indispensable to remove impurity particles having a diameter of 0 or more (for example, particles having a size of about 0.01 μm or more) to prevent a short circuit of a wiring. In addition, due to the demand for ultra-high purity of the process gas, a baking process is required to heat the filter to 300 ° C or higher in order to remove harmful moisture and impurity gas adsorbed on the filter before operation. It is.

【0004】このため、半導体製造プロセスに用いられ
るフィルターは、従来、フィルターに使用されてきた高
分子材料等のフィルターでは耐熱性に問題があるため、
金属材料のフィルターが使用されるようになってきた。
微細な不純物粒子を除去するためには、フィルターの孔
径を小さくする必要があり、粒径の小さな金属粉を用い
た金属多孔質体や、繊維径の小さい金属繊維を用いた金
属繊維複合体が開発されてきた。
[0004] For this reason, filters used in the semiconductor manufacturing process are not suitable for filters made of a polymer material or the like which have been conventionally used for filters because of their heat resistance.
Metallic material filters have come into use.
In order to remove fine impurity particles, it is necessary to reduce the pore size of the filter, and a metal porous body using a metal powder with a small particle size and a metal fiber composite using a metal fiber with a small fiber diameter are required. Has been developed.

【0005】金属多孔質体のフィルターを用い、前述の
0.01μm程度以上の粒子を気体から捕捉するには、
例えばミクロンオーダの金属粉を用いる必要がある。し
かしながら、金属粉は球形の場合が多く、特に金属合金
粉末はアトマイズ法で製造されるので球形となる。この
ため、金属多孔質体の空隙率は極めて小さくなり、圧力
損失が使用に耐えない程度に大きくなり、通気性が著し
く低下する問題がある。
[0005] In order to trap the above-mentioned particles of about 0.01 µm or more from gas using a filter made of a porous metal body,
For example, it is necessary to use micron-order metal powder. However, the metal powder often has a spherical shape, and in particular, the metal alloy powder has a spherical shape because it is produced by an atomizing method. For this reason, the porosity of the metal porous body becomes extremely small, the pressure loss becomes so large that it cannot withstand use, and there is a problem that the air permeability is significantly reduced.

【0006】このため、微細な不純物粒子を除去するた
めに、金属繊維複合体のフィルターが多く用いられてい
る。例えば、特開平5−277312号公報に開示され
ている金属繊維複合体のフィルターなどである。これ
は、直径が0.5〜10μmでアスペクト比が2〜20
の範囲にある柱状を呈する金属短繊維を焼結した金属繊
維複合体である。
Therefore, in order to remove fine impurity particles, a metal fiber composite filter is often used. For example, a metal fiber composite filter disclosed in Japanese Patent Application Laid-Open No. 5-27712 is used. This means that the diameter is 0.5-10 μm and the aspect ratio is 2-20.
Is a metal fiber composite obtained by sintering short metal fibers having a columnar shape in the range of (1).

【0007】金属多孔質体のフィルター以外の用途とし
て、触媒体、プラスチック用成型金型などがある。触媒
体としては、自動車の排気ガス中のNOxを酸化して無
害化する浄化器に多孔質の触媒体が使用されている。ま
た、プラスチック用金型への適用例は、射出成形時に金
型の端部までプラスチックを充填するために金属多孔質
体が用いられている。射出成形時、金型の先端部はガス
圧が高くなり充填できない場合が生じるので、ガス抜き
のために、通気性を有する金型が開発されている。
[0007] Applications other than the filter of the porous metal body include a catalyst body and a molding die for plastic. As a catalyst, a porous catalyst is used in a purifier that oxidizes NOx in exhaust gas of an automobile to make it harmless. Further, in an application example to a plastic mold, a metal porous body is used to fill the plastic to the end of the mold at the time of injection molding. At the time of injection molding, the gas pressure becomes high at the tip of the mold, so that filling may not be possible. Therefore, a mold having air permeability has been developed for degassing.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、金属繊
維複合体の原料である金属繊維は、金属粉に比べ高価な
ものであり、要求される形状の金属繊維の製造が困難な
場合がある。特に、繊維径の小さな金属短繊維はさらに
高価となり、製造が不可能な場合も生ずる。例えば、微
細径の金属短繊維を得るための方法として、切削法では
高価となるためステンレス鋼繊維を粒界選択腐食により
切断することが特公昭63−63645号公報に開示さ
れている。だが、この方法でも高価であり、さらに粒界
選択腐食法を用いることができない金属繊維も多い。ま
た、金属繊維複合体は繊維がからまり易いため、均一な
充填が困難な場合が多く、フィルターとして均一な空隙
分布を得ることが難しい場合がある。
However, the metal fibers, which are the raw materials of the metal fiber composite, are more expensive than the metal powder, and it may be difficult to produce metal fibers having the required shape. In particular, metal short fibers having a small fiber diameter are more expensive, and sometimes cannot be produced. For example, Japanese Patent Publication No. 63-63645 discloses a method for obtaining short metal fibers having a fine diameter, which involves cutting a stainless steel fiber by grain boundary selective corrosion because the cutting method is expensive. However, even this method is expensive, and many metal fibers cannot use the grain boundary selective corrosion method. In addition, since the metal fiber composite is likely to be entangled with fibers, uniform filling is often difficult, and it may be difficult to obtain a uniform pore distribution as a filter.

【0009】一方、金属粉は要求される組成、粒子径の
金属をアトマイズ法で容易に得ることができ、金属繊維
に比べて安価である。さらに、均一な充填が容易なため
均一な空隙分布を持つ金属多孔質体を得ることが可能で
ある。しかしながら、前述したように、微細な金属粉を
用いた金属多孔質体は通気性が著しく低下する問題があ
る。
On the other hand, metal powder can easily obtain a metal having a required composition and particle size by an atomizing method, and is less expensive than metal fibers. Furthermore, since uniform filling is easy, it is possible to obtain a porous metal body having a uniform void distribution. However, as described above, a porous metal body using fine metal powder has a problem that air permeability is significantly reduced.

【0010】また、触媒体として、通気性、接触面積の
増大が要求されているが、これまでの金属多孔質体で
は、満足な特性が得られていない問題がある。プラスチ
ック用金型についても、これまでの金属多孔質体では通
気性が十分でない。なお、金型については、通気性、強
度、製作容易性等の問題より、金属多孔質体の金型が開
発が進められている。
[0010] In addition, the catalyst body is required to have increased air permeability and contact area, but there has been a problem that satisfactory properties have not been obtained with conventional porous metal bodies. As for the metal mold for plastic, the air permeability is not sufficient with the conventional porous metal body. Regarding the mold, a mold made of a porous metal body is being developed due to problems such as air permeability, strength, and ease of production.

【0011】そこで本発明は、金属繊維に比べて製造が
容易で、安価な金属粉を用いて、通気性に優れた金属多
孔質体を提供することを目的とするものである。特に、
微細な不純物粒子を除去可能なガス用フィルターに用い
る金属多孔質体を提供することを目的とするものであ
る。
It is an object of the present invention to provide a porous metal body which is easy to produce as compared to metal fibers and has excellent air permeability using inexpensive metal powder. Especially,
It is an object of the present invention to provide a metal porous body used for a gas filter capable of removing fine impurity particles.

【0012】[0012]

【課題を解決するための手段】発明者は、前述した従来
技術における問題点を解決すべく、金属多孔質体の通気
性に及ぼす要因について、鋭意研究を重さねた。その結
果、偏平微粉を充填した集合体は空隙率が大きくなり、
この集合体は優れた通気性を有するようになることが判
明した。また、偏平化処理により偏平微粉の実質的な粒
子径は小さくなり、得られる集合体の孔径は小さくなる
ことも判明した。。さらに、偏平微粉の比表面積が大き
くなり、不純物粒子の捕捉率が向上し、寿命の向上も可
能となる。
Means for Solving the Problems In order to solve the above-mentioned problems in the prior art, the present inventors have intensively studied the factors affecting the air permeability of a porous metal body. As a result, the aggregate filled with the flat fine powder has a high porosity,
This aggregate was found to have excellent air permeability. It was also found that the flattening treatment reduced the substantial particle size of the flat fine powder, and reduced the pore size of the obtained aggregate. . Further, the specific surface area of the flat fine powder is increased, the trapping rate of the impurity particles is improved, and the life can be improved.

【0013】本発明は、金属偏平微粉による壁構造によ
り空間を仕切って形成された微細孔を有する多孔質体
が、通気性に優れ、微細な不純物粒子の捕捉を可能と
し、さらに高寿命が得られるという知見に基づき本発明
を完成したものである。
According to the present invention, a porous body having fine pores formed by partitioning a space by a wall structure made of metal flat fine powder is excellent in air permeability, enables capture of fine impurity particles, and provides a longer life. The present invention has been completed based on the finding that the present invention can be performed.

【0014】本発明のうちで請求項1記載の発明の金属
多孔質体は、偏平度(偏平粉の偏平部の厚さ/偏平粉の
最大長さ)の平均値が0.05〜0.5の範囲となる金
属偏平微粉により形成されてなる集合体であり、かつ通
気性を持つ空孔を有することを特徴とするものである。
偏平度(偏平粉の偏平部の厚さ/偏平粉の最大長さ)の
平均値が0.05〜0.5の範囲となる金属偏平微粉の
集合体とすることによって、金属多孔質体の空隙率を向
上させ、その結果、金属多孔質体の通気性を改善する。
偏平度の平均値が0.5を越えると、空隙率が減少して
通気性が著しく悪化する。また、偏平度の平均値が0.
5以下であれば良好な通気性が得られるが、金属微粉の
偏平加工に限界があるとともに、加工コストが著しく高
くなることより、偏平度の平均値は0.05以上が好ま
しい。
In the metal porous body according to the first aspect of the present invention, the average value of the flatness (the thickness of the flat portion of the flat powder / the maximum length of the flat powder) is 0.05 to 0.1. An aggregate formed of the metal flat fine powder having a range of 5 and having air-permeable pores.
By forming an aggregate of metal flat fine powder having an average value of flatness (thickness of flat portion of flat powder / maximum length of flat powder) in the range of 0.05 to 0.5, the metal porous material The porosity is improved, and as a result, the air permeability of the porous metal body is improved.
If the average value of the flatness exceeds 0.5, the porosity decreases and the air permeability deteriorates remarkably. Further, the average value of the flatness is 0.
If it is 5 or less, good air permeability can be obtained, but the flattening of the metal fine powder is limited and the processing cost becomes extremely high. Therefore, the average value of the flatness is preferably 0.05 or more.

【0015】また請求項2記載の発明は、請求項1記載
の発明の構成に加えて、前記金属偏平微粉の平均粒子径
が3〜20μmの範囲とするものである。金属偏平微粉
の平均粒子径が3〜20μmの範囲とすることによっ
て、微細な不純物粒子の捕捉が可能となる。このとき、
金属偏平微粉の平均粒子径は体積粒子径を用いる。体積
粒子径とは、ある体積を有する粒子を球形と仮定したと
きに、この体積となる粒子径を求めたものである。金属
偏平微粉の平均粒子径が3μm未満では充填性が著しく
低下し、さらにこの多孔質体の空隙の閉空隙の比率が高
まり通気性を著しく低下する。また、金属偏平微粉の平
均粒子径が20μmを越えると、比表面積評面積が減少
し、微細な不純物粒子の捕捉率が低下する。
According to a second aspect of the present invention, in addition to the configuration of the first aspect, the average particle diameter of the metal flat fine powder is in a range of 3 to 20 μm. By setting the average particle diameter of the metal flat fine powder in the range of 3 to 20 μm, fine impurity particles can be captured. At this time,
The volume particle diameter is used as the average particle diameter of the metal flat fine powder. The volume particle diameter is a value obtained by assuming that a particle having a certain volume is spherical, the particle diameter corresponding to this volume. If the average particle diameter of the metal flat fine powder is less than 3 μm, the filling property is remarkably reduced, and the ratio of the closed voids of the porous body is increased, whereby the air permeability is significantly reduced. On the other hand, when the average particle diameter of the metal flat fine powder exceeds 20 μm, the specific surface area decreases, and the capture rate of fine impurity particles decreases.

【0016】また請求項3記載の発明は、請求項1又は
2記載の発明の構成に加えて、前記金属多孔質体の平均
空隙率が40〜55%の範囲とするものである。金属多
孔質体の平均空隙率が40〜55%の範囲では、金属多
孔質体全体で均一な空孔径分布となり、不純物粒子の捕
捉のバラツキが少なくなり品質の安定化に役立つ。さら
に、安定した通気度を得ることができるとともに、不純
物粒子の捕捉率を高めことができる。
According to a third aspect of the present invention, in addition to the configuration of the first or second aspect, the average porosity of the porous metal body is in the range of 40 to 55%. When the average porosity of the metal porous body is in the range of 40 to 55%, the pore size distribution becomes uniform throughout the metal porous body, and the dispersion of the capture of the impurity particles is reduced, which contributes to stabilization of quality. Further, a stable air permeability can be obtained, and the trapping rate of the impurity particles can be increased.

【0017】また請求項4記載の発明は、請求項1又は
2又は3記載の発明の構成に加えて、前記金属偏平微粉
の偏平部を、金属多孔質体のガスが通過する一方の面か
ら他方の面に通じる方向に平行に配列されてなる平行層
を備えるものである。、前記平行層に沿って、一方の面
から他方の面に、ガスを通過させることによって、より
微細な不純物粒子の捕捉が可能となり、さらに通気性を
改善できる。
According to a fourth aspect of the present invention, in addition to the configuration of the first or second or third aspect, the flat portion of the metal flat fine powder is moved from one surface through which the gas of the metal porous body passes. It has a parallel layer arranged in parallel to the direction leading to the other surface. By passing the gas from one surface to the other surface along the parallel layer, finer impurity particles can be captured, and the air permeability can be further improved.

【0018】また請求項5記載の発明は、請求項1記載
の発明の構成に加えて、前記金属偏平微粉にアスペクト
比(長さ/直径)が2〜20の範囲にある金属短繊維を
質量比で5〜30%添加するものである。金属短繊維を
添加することによって通気性を改善できる。添加する金
属短繊維の量は5〜30%であることが好ましい。5%
未満では、通気性を改善に効果がなく、30%を越える
と孔径が大きくなり、微細な不純物粒子の捕捉率が低下
する。また、金属短繊維の直径は0.5〜10μmの範
囲にあることが好ましい。直径は0.5〜10μmの範
囲の微細径の金属短繊維を用いることにより、微細な不
純物粒子の捕捉率を向上できる。なお、金属短繊維の直
径は微細径ほどよいが、直径が0.5μm未満の金属短
繊維の製造が困難又は高コストになるため、使用する金
属短繊維の直径は0.5μm以上が好ましい。
According to a fifth aspect of the present invention, in addition to the constitution of the first aspect of the present invention, the metal flat fine powder contains a short metal fiber having an aspect ratio (length / diameter) in the range of 2 to 20 by mass. 5 to 30% by weight. The air permeability can be improved by adding short metal fibers. The amount of the short metal fiber to be added is preferably 5 to 30%. 5%
If it is less than 30%, there is no effect on improving the air permeability, and if it exceeds 30%, the pore size becomes large, and the trapping rate of fine impurity particles decreases. Further, the diameter of the short metal fiber is preferably in the range of 0.5 to 10 μm. By using short metal fibers having a fine diameter in the range of 0.5 to 10 μm, the capture rate of fine impurity particles can be improved. The diameter of the short metal fiber is preferably as small as possible, but it is difficult or expensive to produce a short metal fiber having a diameter of less than 0.5 μm. Therefore, the diameter of the short metal fiber used is preferably 0.5 μm or more.

【0019】また請求項6記載の発明は、請求項1乃至
5のいずれかに記載の金属多孔質体に用いられるガス用
フィルター部材である。本発明の金属多孔質体をガス用
フィルター部材に用いることにより、通気性が向上し、
微細な不純物粒子の捕捉が可能となり、耐久性の向上が
可能となる。
According to a sixth aspect of the present invention, there is provided a gas filter member used for the metal porous body according to any one of the first to fifth aspects. By using the metal porous body of the present invention for a gas filter member, air permeability is improved,
Fine impurity particles can be trapped, and durability can be improved.

【0020】[0020]

【発明の実施の形態】次に、本発明の第1実施例を説明
する。本実施例の供試材は、アトマイズ法で製造した、
平均粒子径11μm(体積径)のステンレス鋼微粉(S
US316L)を原料により製造した。ステンレス鋼微
粉の偏平度を変化させるために、ボールミル中にステン
レス鋼微粉を装入して、酸化防止のためN2 雰囲気中
で、ステンレス鋼球を用いて乾式混合を行い、偏平化処
理をおこなった。ボールミルでの処理時間を変えること
により、表1に示すように、偏平度が0.03〜0.8
1に変化させたステンレス鋼偏平微粉を得た。表1は供
試材の偏平度、空隙率、平均孔径及び濾過差圧の測定結
果を示す。なお、偏平度0.81のステンレス鋼微粉は
偏平化処理を施していない原料粉である。
Next, a first embodiment of the present invention will be described. The test material of this example was manufactured by the atomizing method,
Fine powder of stainless steel (S) having an average particle diameter of 11 μm (volume diameter)
US316L) from the raw materials. In order to change the flatness of the stainless steel fine powder, the stainless steel fine powder is charged into a ball mill, and dry mixing is performed using stainless steel balls in an N 2 atmosphere to prevent oxidation, and flattening is performed. Was. By changing the processing time in the ball mill, as shown in Table 1, the flatness was 0.03 to 0.8.
A stainless steel flat fine powder changed to 1 was obtained. Table 1 shows the measurement results of the flatness, porosity, average pore diameter, and filtration pressure difference of the test material. The stainless steel fine powder having a flatness of 0.81 is a raw material powder that has not been subjected to flattening treatment.

【0021】[0021]

【表1】 [Table 1]

【0022】なお、偏平化処理には、ボールミル処理だ
けでなく、他のボール式混合器等(例えば、アトライタ
ー)を用いることができる。使用するボールはステンレ
ス鋼球だけでなく、市販されている他の鋼球、さらに超
硬合金ボールも使用できる。本実施例では、偏平化処理
中にステンレス鋼微粉がボールの摩耗により汚染される
のを防止するため、ステンレス鋼微粉の成分に近い成分
のステンレス鋼球を用いた。また、ボール式混合器での
混合による偏平化処理は、乾式だけだなく、有機溶媒を
用いた湿式混合でもよい。さらに、粉末を圧延すること
によっても偏平化処理ができる。
In the flattening process, not only a ball mill process but also other ball type mixers (for example, an attritor) can be used. Not only stainless steel balls but also other commercially available steel balls and hard metal balls can be used. In this embodiment, stainless steel balls having a composition close to that of the stainless steel fine powder were used in order to prevent the stainless steel fine powder from being contaminated by ball wear during the flattening process. The flattening treatment by mixing in the ball mixer may be not only dry but also wet mixing using an organic solvent. Further, the flattening treatment can also be performed by rolling the powder.

【0023】偏平度の測定は、走査型電子顕微鏡によ
り、偏平化処理したステンレス鋼微粉の写真撮影を行
い、この写真を基に、各微粉の100粒子について、偏
平微粉の偏平部の厚さと偏平微粉の最大長さの測定し
て、これらの平均の偏平度(偏平微粉の偏平部の厚さ/
偏平微粉の最大長さ)を求めた。このとき、ステンレス
鋼微粉は偏平度が増加することにより、ステンレス鋼微
粉の比表面積が増加することも観察された。
The flatness was measured by taking a photograph of the flattened stainless steel fine powder with a scanning electron microscope, and based on this photograph, for 100 particles of each fine powder, the thickness and flatness of the flat part of the flat fine powder were measured. By measuring the maximum length of the fine powder, these average flatness (thickness of flat portion of flat fine powder /
The maximum length of the flat fine powder) was obtained. At this time, it was also observed that the specific surface area of the stainless steel fine powder was increased by increasing the flatness of the stainless steel fine powder.

【0024】次に、偏平度を変えたステンレス鋼偏平微
粉を金型に充填してステンレス鋼偏平微粉の集合体を製
造した。この集合体の形状は長さ40mm、外径20m
m、内径18mmの円筒形状である。この金型に充填し
たままの前記集合体をN2 雰囲気中で予備焼結した後、
ステンレス鋼偏平微粉の集合体を金型から離型した。こ
の集合体を、真空中で焼結(1100℃−2時間)し
て、金属多孔質体を製造した。このとき金型にはステン
レス鋼(SUS304)を用いたが、他の耐熱金属材
料、セラミックス等を用いることができる。焼結雰囲気
は、真空だけでなく、、非酸化性雰囲気、不活性雰囲
気、還元性雰囲気を使用してもよい。
Next, a stainless steel flat fine powder having a different degree of flatness was filled in a mold to produce an aggregate of stainless steel flat fine powder. The shape of this assembly is 40 mm long and 20 m outside diameter
m, 18 mm in inner diameter. After pre-sintering the assembly as filled in the mold in an N 2 atmosphere,
The aggregate of stainless steel flat fine powder was released from the mold. This aggregate was sintered in vacuum (1100 ° C. for 2 hours) to produce a porous metal body. At this time, stainless steel (SUS304) was used for the mold, but other heat-resistant metal materials, ceramics, and the like can be used. As the sintering atmosphere, not only a vacuum but also a non-oxidizing atmosphere, an inert atmosphere, or a reducing atmosphere may be used.

【0025】これら金属多孔質体の空隙率、平均孔径お
よび流量特性として濾過差圧を測定し、この結果を表1
と図1および図2に示す。空隙率は金属多孔質体の寸法
と重量を測定して、寸法からもとめた体積と重量より計
算したものである。平均孔径は水銀圧入法により求め
た。濾過差圧は円筒形状の集合体の円筒内部と外部との
濾過差圧より求めた。図1は、空隙率、平均粒子径およ
び濾過差圧に及ぼす偏平度の影響を示し、図2は、ガス
流量と濾過差圧との関係を示す図である。なお、図1の
濾過差圧は図2の濾過差圧の内で、N2 流量2Nl/c
2 ・minの場合を示したものである。
The porosity, average pore size, and flow rate characteristics of these porous metal bodies were measured as filtration differential pressures.
And FIG. 1 and FIG. The porosity is obtained by measuring the size and weight of the porous metal body and calculating from the volume and weight obtained from the size. The average pore size was determined by a mercury intrusion method. The filtration pressure difference was determined from the filtration pressure difference between the inside and outside of the cylinder of the cylindrical assembly. FIG. 1 shows the effect of flatness on the porosity, average particle diameter and filtration pressure difference, and FIG. 2 shows the relationship between gas flow rate and filtration pressure difference. Incidentally, filtration differential pressure of 1 within the filtration pressure difference of FIG. 2, N 2 flow rate of 2 Nl / c
This shows the case of m 2 · min.

【0026】図1は横軸に金属多孔質体の偏平度、縦軸
に空隙率、平均孔径および濾過差圧の測定結果を図示し
たものである。金属多孔質体の空隙率は、偏平度の減少
とともに増加し、空隙率が0.1以下では変化がすくな
い。一方、平均孔径は偏平度の減少とともに減少する。
この平均孔径が小さくなることにより、捕捉可能な不純
物粒子の寸法が小さくなる。通気性の尺度となる金属多
孔質体の濾過差圧は、偏平度の減少に伴い著しく減少
し、偏平度が0.5以下では、濾過差圧は0.35×1
5 Pa以下となり優れた通気性を示すことが判明し
た。
FIG. 1 shows the measurement results of the flatness of the porous metal body on the horizontal axis and the porosity, average pore diameter and filtration pressure difference on the vertical axis. The porosity of the porous metal body increases as the flatness decreases, and changes little when the porosity is 0.1 or less. On the other hand, the average pore diameter decreases as the flatness decreases.
By reducing the average pore diameter, the size of the impurity particles that can be captured is reduced. The filtration pressure difference of a porous metal body, which is a measure of air permeability, decreases significantly with the decrease in flatness. When the flatness is 0.5 or less, the filtration pressure difference is 0.35 × 1.
0 5 Pa or less, which proved to exhibit excellent air permeability.

【0027】次に、本発明の第2実施例を表2により説
明する。表2は供試材の製造条件、偏平度、空隙率、平
均孔径及び濾過差圧の測定結果を示す。本実施例は偏平
化処理したステンレス鋼偏平微粉C(偏平度:0.1
1)と原料のステンレス鋼微粉F(偏平度:0.81)
をV型ミキサーで表2に示す比率で乾式混合したもので
ある。そのときの加重平均した偏平度は混合粉G(偏平
微粉C:70質量%、微粉F:30質量%)では0.3
2、混合粉H(偏平微粉C:30質量%、微粉F:70
質量%)では0.60となった。
Next, a second embodiment of the present invention will be described with reference to Table 2. Table 2 shows the manufacturing conditions, flatness, porosity, average pore size, and measurement results of the filtration pressure difference of the test materials. In this embodiment, flattened stainless steel flat fine powder C (flatness: 0.1
1) and stainless steel fine powder F as raw material (flatness: 0.81)
Were dry-mixed in a ratio shown in Table 2 with a V-type mixer. The weighted average flatness at that time was 0.3 for the mixed powder G (flat fine powder C: 70% by mass, fine powder F: 30% by mass).
2. Mixed powder H (flat fine powder C: 30% by mass, fine powder F: 70)
Mass%) was 0.60.

【0028】[0028]

【表2】 [Table 2]

【0029】これらの混合粉を第1実施例と同じ製造条
件で金属多孔質体を製造した。表2に示すように、偏平
度が0.32の混合粉Gを用いた金属多孔質体の濾過差
圧は0.31×105 Paで優れた通気性を有するが、
偏平度が0.60の混合粉Hを用いた金属多孔質体の濾
過差圧は0.49×105 Paとなった。このように、
偏平度が異なる金属微粉の混合粉においても、この混合
粉の加重平均により求めた偏平度の平均値が0.05〜
0.5の範囲となる金属偏平微粉の集合体は優れた通気
性を有することが判明した。
From these mixed powders, a porous metal body was manufactured under the same manufacturing conditions as in the first embodiment. As shown in Table 2, although the filtration differential pressure of the porous metal body using the mixed powder G having the flatness of 0.32 is 0.31 × 10 5 Pa, which has excellent air permeability,
The filtration differential pressure of the porous metal body using the mixed powder H having a flatness of 0.60 was 0.49 × 10 5 Pa. in this way,
Even in mixed powders of metal fine powders having different degrees of flatness, the average value of the degrees of flatness obtained by the weighted average of the mixed powder is 0.05 to
It was found that the aggregate of the metal flat fine powder having a range of 0.5 had excellent air permeability.

【0030】さらに、偏平微粉の金型への充填条件を変
えてた第3実施例を表3により説明する。表3は供試材
の製造条件、偏平度、空隙率、平均孔径及び濾過差圧の
測定結果を示す。第1実施例で使用した金型を超音波振
動振動装置にセットした後、第1実施例で用いたステン
レス鋼偏平微粉C(偏平度:0.11)をこの金型に充
填した。その後、超音波振動装置を作動させて、金型に
振動を加え、それと同時に偏平微粉Cをさらに金型に充
填して、偏平微粉Cの集合体の充填密度を高めた。この
時の振動を作動させた時間は20秒と60秒である。
Further, a third embodiment in which the filling condition of the flat fine powder into the mold is changed will be described with reference to Table 3. Table 3 shows the manufacturing conditions, flatness, porosity, average pore size, and measurement results of the filtration pressure difference of the test materials. After the mold used in the first example was set in an ultrasonic vibration device, the stainless steel flat fine powder C (flatness: 0.11) used in the first example was filled in the mold. Thereafter, the ultrasonic vibrator was operated to apply vibration to the mold, and at the same time, the flat fine powder C was further charged into the mold, thereby increasing the packing density of the aggregate of the flat fine powder C. At this time, the vibration was activated for 20 seconds and 60 seconds.

【0031】[0031]

【表3】 [Table 3]

【0032】これら集合体を、第1実施例と同じ条件で
真空焼結して、金属多孔質体を製造した。これら金属多
孔質体の空隙率、平均孔径および濾過差圧の測定結果を
表3に示す。充填時に振動を20秒与えて製造した金属
多孔質体Iは、充填時に振動を与えなかった金属多孔質
体Cに比べて、空隙率と平均孔径が小さい値となった。
しかしながら、金属多孔質体Iは空隙率が低くなったに
もかかわらず、金属多孔質体Cの濾過差圧より低い値
で、優れた通気性を有することが判明した。これは偏平
粉が金型への充填時の振動により、金型の底面に平行、
すなわち円筒状の集合体の中心軸に対して径方向に並び
変えられ、円筒状集合体の内部から外部へのガスの流れ
に平行に、金属偏平微粉の偏平部が配列された平行層が
できたことによるものである。
These assemblies were vacuum-sintered under the same conditions as in the first embodiment to produce a porous metal body. Table 3 shows the measurement results of the porosity, average pore diameter, and filtration pressure difference of these metal porous bodies. The porosity and the average pore diameter of the metal porous body I manufactured by giving vibration for 20 seconds at the time of filling were smaller than those of the metal porous body C not given vibration at the time of filling.
However, it was found that the porous metal body I had excellent air permeability at a value lower than the filtration pressure difference of the porous metal body C, despite the reduced porosity. This is due to the vibration of the flat powder filling the mold, parallel to the bottom of the mold,
That is, a parallel layer in which the flat portions of the metal flat fine powder are arranged in the radial direction with respect to the central axis of the cylindrical assembly and parallel to the gas flow from the inside to the outside of the cylindrical assembly is formed. It is because of that.

【0033】さらに、充填時に振動時間を60秒に増加
させた金属多孔質体Jは、さらに空隙率が小さくなり、
その結果、濾過差圧が著しく増大した。
Further, the metal porous body J whose vibration time is increased to 60 seconds at the time of filling has a further smaller porosity,
As a result, the filtration pressure difference increased significantly.

【0034】最後に、偏平微粉に金属短繊維を混合して
製造した繊維複合金属多孔質体の第4実施例を表4によ
り説明する。表4は供試材の製造条件、偏平度、空隙
率、平均孔径及び濾過差圧の測定結果を示す。使用した
金属短繊維は直径2μm、長さ30μmのステンレス鋼
(SUS316L)短繊維である。この金属短繊維とス
テンレス鋼偏平微粉C(偏平度:0.11)を表4の条
件でV型ミキサーで混合し、第1実施例と同じ金型に超
音波振動を与えながら、混合粉および金属短繊維をそれ
ぞれ充填して、その後第1実施例と同じく真空焼結によ
り繊維複合金属多孔質体および金属繊維複合体を製造し
た。これら金属多孔質体等の空隙率、平均孔径および濾
過差圧の測定結果は表1に示されている。なお、超音波
振動を与えながら充填したのは、金属短繊維の充填性が
悪いためである。
Finally, a fourth embodiment of a fiber composite metal porous body produced by mixing short metal fibers with flat fine powder will be described with reference to Table 4. Table 4 shows the production conditions, flatness, porosity, average pore size, and measurement results of the filtration pressure difference of the test materials. The short metal fibers used are stainless steel (SUS316L) short fibers having a diameter of 2 μm and a length of 30 μm. This short metal fiber and stainless steel flat fine powder C (flatness: 0.11) were mixed by a V-type mixer under the conditions shown in Table 4, and the mixed powder and fine powder were given while applying ultrasonic vibration to the same mold as in the first embodiment. Each of the metal short fibers was filled, and thereafter, a fiber composite metal porous body and a metal fiber composite were manufactured by vacuum sintering as in the first example. Table 1 shows the measurement results of the porosity, the average pore diameter, and the filtration pressure difference of these metal porous bodies. The reason why the filling was performed while applying the ultrasonic vibration was that the filling property of the short metal fibers was poor.

【0035】[0035]

【表4】 [Table 4]

【0036】金属短繊維を配合した繊維複合金属多孔質
体の空隙率および平均孔径のいずれも増大した。繊維の
配合量が30質量%の場合は平均孔径の増加は少なかっ
たが、繊維の配合量が70質量%のときは平均孔径が著
しく増大して、微細な不純物粒子の捕捉には問題が生じ
ることが判明した。
Both the porosity and the average pore diameter of the fiber composite metal porous body containing short metal fibers increased. When the blending amount of the fiber was 30% by mass, the increase in the average pore diameter was small, but when the blending amount of the fiber was 70% by mass, the average pore size increased remarkably, and there was a problem in capturing fine impurity particles. It has been found.

【0037】本発明の金属多孔質体は本実施例に限定さ
れることなく他の方法でも製造可能である。例えば、ス
リップキャスティング、射出成形、金型への加圧成形等
の焼結法により本発明の金属多孔質体を製造することが
できる。また、焼結法以外の方法で金属多孔質体を製造
してもよい。例えば、金属粉同志を樹脂で接着して金属
多孔質体を作ることができる。さらに、金属粉の組成に
ついても、本実施例に限定されることなく、用途により
変えることができる。例えば、耐食性を要求される用途
では、本実施例のステンレス鋼粉だけでなく、Ti粉、
Ni粉等を用いることができる。
The porous metal body of the present invention can be produced by other methods without being limited to this embodiment. For example, the metal porous body of the present invention can be manufactured by a sintering method such as slip casting, injection molding, and pressure molding into a mold. Further, the metal porous body may be manufactured by a method other than the sintering method. For example, a metal porous body can be made by bonding metal powders with a resin. Further, the composition of the metal powder is not limited to this embodiment, but can be changed depending on the application. For example, in applications requiring corrosion resistance, not only the stainless steel powder of this embodiment, but also Ti powder,
Ni powder or the like can be used.

【0038】[0038]

【発明の効果】以上説明したように、本発明は、金属繊
維に比べて製造が容易で、安価な金属粉を用いることを
可能とし、かつ通気性に優れた金属多孔質体を得ること
を可能とするものである。特に、ガス用フィルターに本
発明の金属多孔質体を用いることにより、微細な不純物
粒子を除去を可能とするものである。これは、本発明の
金属多孔質体が、金属偏平微粉による壁構造により空間
を仕切って形成された微細孔を有することにより、通気
性、微細な不純物粒子の捕捉率の向上、および高寿命を
可能とするものである。
As described above, according to the present invention, it is possible to obtain a metal porous body which is easier to manufacture than metal fibers, enables use of inexpensive metal powder, and has excellent air permeability. It is possible. In particular, by using the metal porous body of the present invention for a gas filter, fine impurity particles can be removed. This is because the porous metal body of the present invention has fine pores formed by partitioning a space by a wall structure made of metal flat fine powder, thereby improving air permeability, an improvement in the capture rate of fine impurity particles, and a long life. It is possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施例の金属多孔質体の空隙率、
平均粒子径および濾過差圧に及ぼす偏平度の影響を示す
図である
FIG. 1 shows a porosity of a porous metal body according to a first embodiment of the present invention;
FIG. 3 is a diagram showing the influence of flatness on average particle diameter and filtration differential pressure.

【図2】本発明の実施例における金属多孔質体ガス流量
と濾過差圧との関係を示す図である。
FIG. 2 is a diagram showing a relationship between a gas flow rate of a porous metal body and a filtration pressure difference in an example of the present invention.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 偏平度(偏平粉の偏平部の厚さ/偏平粉
の最大長さ)の平均値が0.05〜0.5の範囲となる
金属偏平微粉により形成されてなる集合体であり、かつ
通気性を持つ空孔を有する金属多孔質体
An aggregate formed of metal flat fine powder having an average value of flatness (thickness of flat portion of flat powder / maximum length of flat powder) of 0.05 to 0.5. Metal porous body having pores with air permeability
【請求項2】 前記金属偏平微粉の平均粒子径が3〜2
0μmの範囲にある請求項1記載の金属多孔質体
2. An average particle diameter of the metal flat fine powder is 3 to 2.
2. The metal porous body according to claim 1, which is in a range of 0 μm.
【請求項3】 前記金属多孔質体の空隙率が40〜55
%の範囲にある請求1又は2記載の金属多孔質体
3. The porosity of the porous metal body is 40 to 55.
% Of the metal porous body according to claim 1 or 2 in the range of
【請求項4】 金属偏平微粉の偏平部が、前記多孔質体
の一方の面から他方の面に通じる方向に平行に配列され
てなる平行層を備えてなる請求項1又は2又は3記載の
金属多孔質体
4. The flat portion of claim 1, wherein the flat portion of the metal flat fine powder is provided with a parallel layer arranged in parallel to a direction from one surface of the porous body to the other surface. Metal porous body
【請求項5】 金属偏平微粉にアスペクト比(長さ/直
径)が2〜20の範囲にある金属短繊維を質量比で5〜
30%添加してなる請求項1記載の金属多孔質体
5. A short metal fiber having an aspect ratio (length / diameter) in the range of 2 to 20 is added to the metal flat fine powder in a mass ratio of 5 to 5.
2. The metal porous body according to claim 1, which is added by 30%.
【請求項6】 ガス用フィルター部材に用いられる請求
項1乃至5のいずれかに記載の金属多孔質体
6. The metal porous body according to claim 1, which is used for a gas filter member.
JP3804197A 1997-02-21 1997-02-21 Metallic porous body Pending JPH10237504A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3804197A JPH10237504A (en) 1997-02-21 1997-02-21 Metallic porous body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3804197A JPH10237504A (en) 1997-02-21 1997-02-21 Metallic porous body

Publications (1)

Publication Number Publication Date
JPH10237504A true JPH10237504A (en) 1998-09-08

Family

ID=12514460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3804197A Pending JPH10237504A (en) 1997-02-21 1997-02-21 Metallic porous body

Country Status (1)

Country Link
JP (1) JPH10237504A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002316957A (en) * 2001-04-17 2002-10-31 Daikin Ind Ltd Method for continuously producing perfluoroalkyl iodide teromer
US7297271B2 (en) 2001-02-16 2007-11-20 Sumitomo Titanium Corporation Titanium powder sintered compact
JP2014510836A (en) * 2011-02-04 2014-05-01 インテグリス・インコーポレーテッド Sintered powder and metal fiber porous metal membrane
CN113275576A (en) * 2021-05-20 2021-08-20 上海天阳钢管有限公司 Method for manufacturing metal porous layer by ultrasonic wave

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7297271B2 (en) 2001-02-16 2007-11-20 Sumitomo Titanium Corporation Titanium powder sintered compact
JP2002316957A (en) * 2001-04-17 2002-10-31 Daikin Ind Ltd Method for continuously producing perfluoroalkyl iodide teromer
JP2014510836A (en) * 2011-02-04 2014-05-01 インテグリス・インコーポレーテッド Sintered powder and metal fiber porous metal membrane
CN113275576A (en) * 2021-05-20 2021-08-20 上海天阳钢管有限公司 Method for manufacturing metal porous layer by ultrasonic wave

Similar Documents

Publication Publication Date Title
CN107200599B (en) Porous alumina ceramic and preparation method and application thereof
EP2670508B1 (en) Porous metal body of sintered metal powders and metal fibers
JP4979156B2 (en) Composite porous media
WO2006089761A1 (en) A method for fabricating an open-porous metal foam body, a metal foam body fabricated this way as well as its applications
KR20200106970A (en) Titanium porous body and its manufacturing method
JP3698143B2 (en) Porous Si3N4 for filter and manufacturing method thereof
JPH10237504A (en) Metallic porous body
KR100550398B1 (en) Sintered, highly porous body and method for the production thereof
JP3566637B2 (en) Manufacturing method of sintered titanium filter
WO1993005190A1 (en) Process for producing porous metallic body
JP3761551B2 (en) Sintered titanium filter
JP3593535B2 (en) Porous body and method for producing the same
JP3481962B2 (en) Method for manufacturing porous metal filter
JP4381011B2 (en) Silicon carbide honeycomb structure and ceramic filter using the same
US20050023736A1 (en) Method for producing a silicon nitride honeycomb filter
JP4092017B2 (en) Hollow metal porous body
JP4187154B2 (en) Metal porous sintered body and filter
JPH07238302A (en) Sintered titanium filter and production thereof
US11752471B2 (en) Porous sintered membranes and methods of preparing porous sintered membranes
JP2958472B2 (en) High strength porous member and method of manufacturing the same
JP3784314B2 (en) Ceramic filter for dust collection and manufacturing method thereof
JP2791737B2 (en) Manufacturing method of sintered filter
US20240157309A1 (en) Sintered porous body with multiple layers
JP2005336539A (en) Porous sintered compact and its production method
JP2004149842A (en) Method for manufacturing titanium sintered compact

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040216

A711 Notification of change in applicant

Effective date: 20040216

Free format text: JAPANESE INTERMEDIATE CODE: A711

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040216

A711 Notification of change in applicant

Effective date: 20051019

Free format text: JAPANESE INTERMEDIATE CODE: A711

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20051024

A977 Report on retrieval

Effective date: 20051028

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20051019

A521 Written amendment

Effective date: 20051024

Free format text: JAPANESE INTERMEDIATE CODE: A821

A131 Notification of reasons for refusal

Effective date: 20051213

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060613

RD02 Notification of acceptance of power of attorney

Effective date: 20061004

Free format text: JAPANESE INTERMEDIATE CODE: A7422

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20061005