JPH10237211A - Manufacture of non-crosslinked polyethylene resin prefoamed beads - Google Patents

Manufacture of non-crosslinked polyethylene resin prefoamed beads

Info

Publication number
JPH10237211A
JPH10237211A JP9042128A JP4212897A JPH10237211A JP H10237211 A JPH10237211 A JP H10237211A JP 9042128 A JP9042128 A JP 9042128A JP 4212897 A JP4212897 A JP 4212897A JP H10237211 A JPH10237211 A JP H10237211A
Authority
JP
Japan
Prior art keywords
expanded particles
crosslinked polyethylene
particles
polyethylene resin
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9042128A
Other languages
Japanese (ja)
Inventor
Takeshi Obayashi
毅 御林
Kenji Mogami
健二 最上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP9042128A priority Critical patent/JPH10237211A/en
Publication of JPH10237211A publication Critical patent/JPH10237211A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To manufacture non-crosslinked polyethyene resin prefoamed beads having desired properties only using foaming agents which will not cause global environmental pollution. SOLUTION: Non-crosslinked polyethylene resin beads are dispersed in an aqueous medium in a tightly closed vessel, then an inorganic gas contg. nitrogen is introduced into the vessel to make the pressure in the vessel to 0.1-30kg/cm<2> G. Then the content is heated to not lower than the softening temp of the non- crosslinked polyethylene, and by releasing the content to an atmosphere with a lower pressure than the inner pressure of the tightly closed vessel through an orifice to obtain a low multiplicity foamed beads. These prefoamed beads are obtd. by giving foaming ability to the low multiplicity foamed beads and expanding their volume by heating, while the max. value αmax of circumference stress acting per unit cell membrane thickness is kept not greater than 10 [kg/cm<2> /μm].

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、無架橋ポリエチレ
ン系樹脂予備発泡粒子の製造方法に関する。さらに詳し
くは、たとえば型内発泡成形品の原料として好適に使用
しうる無架橋ポリエチレン系樹脂予備発泡粒子の製造方
法に関する。
The present invention relates to a method for producing non-crosslinked polyethylene resin pre-expanded particles. More particularly, the present invention relates to a method for producing non-crosslinked polyethylene resin pre-expanded particles which can be suitably used as a raw material of an in-mold foam molded article.

【0002】[0002]

【従来の技術および発明が解決しようとする課題】従来
より、ポリオレフィン系樹脂予備発泡粒子を製造するば
あい、樹脂粒子を密閉容器内で水系分散媒に分散させ、
さらに揮発性有機発泡剤を導入し、ついで前記樹脂粒子
をポリオレフィン系樹脂粒子の軟化温度以上の温度に加
熱し、前記密閉容器の内圧よりも低圧の雰囲気中に放出
させて発泡させる方法はよく知られている。
2. Description of the Related Art Conventionally, when producing polyolefin resin pre-expanded particles, the resin particles are dispersed in an aqueous dispersion medium in a closed container,
Further, a method of introducing a volatile organic foaming agent, heating the resin particles to a temperature equal to or higher than the softening temperature of the polyolefin-based resin particles, and releasing the resin particles into an atmosphere at a pressure lower than the internal pressure of the closed container to form the foam is well known. Have been.

【0003】また、この方法により用いられる揮発性有
機発泡剤として、たとえばプロパン、ブタン、ペンタ
ン、ヘキサンなどの脂肪族炭化水素や、塩化メチル、ト
リクロロフルオロメタン、ジクロロジフルオロメタンな
どのハロゲン化炭化水素が使用されている。
As volatile organic blowing agents used by this method, for example, aliphatic hydrocarbons such as propane, butane, pentane and hexane, and halogenated hydrocarbons such as methyl chloride, trichlorofluoromethane and dichlorodifluoromethane are used. It is used.

【0004】しかしながら、これら揮発性有機発泡剤
は、あるものは毒性や可燃性のため危険を有する、ある
いは大気中に放出したばあい、オゾン層を破壊するなど
地球環境汚染の問題を生じるものであり、また、あるも
のは高価である。したがって、これらの欠点を克服した
発泡剤として二酸化炭素を代替発泡剤として使用した製
造方法が提案されている(たとえば特公昭62−612
27号公報など)。
[0004] However, these volatile organic foaming agents are dangerous due to toxicity and flammability, or cause problems of global environmental pollution such as destruction of the ozone layer when released into the atmosphere. Yes, and some are expensive. Therefore, a production method using carbon dioxide as an alternative foaming agent as a foaming agent overcoming these disadvantages has been proposed (for example, Japanese Patent Publication No. 62-612).
27 publication).

【0005】確かに、二酸化炭素は前記揮発性有機発泡
剤と比べると安価であり、かつ毒性も可燃性も持たず、
代替発泡剤としては比較的適性の高いものであるが、そ
れでも大気中に大量に放出したばあいには地球温暖化を
進行させうるものであり、地球環境汚染に関する課題を
残しているうえ、高圧の密閉容器中の水性媒体に容易に
溶解し、酸性となるため、容器の腐食に対する対策を講
じる必要があり、結果として設備コストが高くなるとい
う欠点をも有している。
[0005] Certainly, carbon dioxide is inexpensive compared to the volatile organic blowing agent, and has neither toxicity nor flammability,
Although it is relatively suitable as an alternative foaming agent, it can still promote global warming if released into the atmosphere in large quantities, and it has issues related to global environmental pollution, It easily dissolves in an aqueous medium in a closed container and becomes acidic, so that it is necessary to take measures against corrosion of the container, and as a result, there is also a disadvantage that the equipment cost is increased.

【0006】そこで、空気に代表されるチッ素含有無機
ガスあるいは水を発泡剤として用いる方法も提案されて
いる(たとえば特公昭49−2183号公報、特公平4
−64334号公報など)。
Accordingly, a method has been proposed in which a nitrogen-containing inorganic gas typified by air or water is used as a foaming agent (for example, Japanese Patent Publication No. 49-2183, Japanese Patent Publication No. Hei 4 (Kokai)).
-64334).

【0007】ところが、とくにポリエチレン系樹脂の予
備発泡粒子を製造するに際し、チッ素含有無機ガスや水
を発泡剤として使用したばあいには、樹脂粒子に吸収・
吸着させうる量が少ないために、あるいは発泡適性条件
範囲における発泡剤の蒸気圧が低いために、あるいは樹
脂膜に対する透過性が大きく、発泡途中で樹脂粒子外に
発泡剤が急速に逸散してしまうために、発泡倍率5倍程
度以下の発泡倍率の低い予備発泡粒子しかえられていな
い。
However, in the case of using a nitrogen-containing inorganic gas or water as a foaming agent in the production of pre-expanded particles of a polyethylene resin, the resin particles absorb and absorb the particles.
Because the amount that can be adsorbed is small, or the vapor pressure of the foaming agent in the range of suitable foaming conditions is low, or the permeability to the resin membrane is large, and the foaming agent rapidly escapes outside the resin particles during foaming. For this reason, only pre-expanded particles having a low expansion ratio of about 5 or less are obtained.

【0008】さらに、こうした課題を解決するためにポ
リオレフィン系樹脂の低倍率予備発泡粒子を製造してお
き、これを段階的に膨張させて目標発泡倍率の発泡粒子
をうる方法も知られている(たとえば特公昭61−11
253号公報、特開平4−372630号公報など)。
Further, in order to solve such a problem, there is known a method in which low-expansion pre-expanded particles of a polyolefin resin are produced, and the expanded particles are expanded stepwise to obtain expanded particles having a target expansion ratio (FIG. 1). For example, Japanese Patent Publication No. 61-11
253, JP-A-4-372630, etc.).

【0009】しかし、こうした従来公知の技術は、ある
ものは前述の揮発性有機発泡剤あるいは二酸化炭素を発
泡剤として用いるものであり、またあるものは架橋した
樹脂を用いるものである。
However, some of these conventional techniques use the above-mentioned volatile organic blowing agent or carbon dioxide as a blowing agent, and others use a crosslinked resin.

【0010】また、無架橋ポリオレフィン系樹脂は、た
とえばポリスチレン系樹脂や架橋ポリオレフィン系樹脂
に比べて一般にセル膜の強度が弱く、予備発泡粒子の製
造時に前記のごとき多段発泡法を用いるばあい、発泡速
度が遅いために体積膨張中にセル膜が破断し、結果とし
てえられる予備発泡粒子の連泡率が高くなり、成形体の
機械的強度が著しく低下するなどの問題がある。それゆ
え、無架橋ポリオレフィン系樹脂予備発泡粒子を製造す
るばあい、低倍率発泡粒子の物性および多段発泡条件を
明確に規定する必要があるが、この物性、多段発泡条件
の双方を明確に規定し、かかる問題を解決した技術は存
在しない。
In addition, non-crosslinked polyolefin resins generally have a lower cell membrane strength than polystyrene resins and crosslinked polyolefin resins, and when a multi-stage foaming method as described above is used during the production of pre-expanded particles, foaming is not possible. Due to the low speed, the cell membrane breaks during volume expansion, resulting in an increase in the open cell ratio of the pre-expanded particles and a significant decrease in the mechanical strength of the molded article. Therefore, when producing non-crosslinked polyolefin resin pre-expanded particles, it is necessary to clearly define the physical properties of the low-magnification expanded particles and the multi-stage expansion conditions. There is no technology that has solved this problem.

【0011】したがって、近年、空気および(または)
水といった地球環境汚染のおそれのない発泡剤のみを使
用し、発泡倍率が高く、かつ連泡率の低い無架橋ポリエ
チレン系樹脂予備発泡粒子を製造しうる方法の開発が望
まれている。
Therefore, in recent years, air and / or
There is a demand for the development of a method capable of producing non-crosslinked polyethylene resin pre-expanded particles having a high expansion ratio and a low open cell ratio by using only a foaming agent which does not cause environmental pollution such as water.

【0012】[0012]

【課題を解決するための手段】本発明は、前記従来技術
に鑑み、地球環境汚染のおそれのない発泡剤のみを使用
し、所望の物性を有する無架橋ポリエチレン系樹脂予備
発泡粒子を製造することができる方法を提供するために
なされたものであり、無架橋ポリエチレン系樹脂粒子を
密閉容器内で水系分散媒に分散させ、ついでチッ素含有
無機ガスを密閉容器内に導入して密閉容器内の圧力を
0.1〜30kg/cm2Gとしたのち、無架橋ポリエ
チレン系樹脂粒子の軟化温度以上の温度に加熱し、オリ
フィスを介して密閉容器の内圧よりも低圧の雰囲気中に
放出させて低倍率発泡粒子をえたのち、該低倍率発泡粒
子に発泡能を付与し、加熱体積膨張させることにより、
予備発泡粒子を製造する方法であって、加熱による体積
膨張中に発泡粒子の単位セル膜厚あたりにはたらく周応
力の最大値αmaxを10[kg/cm2/μm]以下にす
ることを特徴とする無架橋ポリエチレン系樹脂予備発泡
粒子の製造方法(請求項1)、および低倍率発泡粒子の
製造時に用いるオリフィスが円形であり、その直径Dと
長さLとの比L/Dが1.5以上である請求項1記載の
無架橋ポリエチレン系樹脂予備発泡粒子の製造方法(請
求項2)に関する。
DISCLOSURE OF THE INVENTION In view of the above prior art, the present invention provides a method for producing non-crosslinked polyethylene resin pre-expanded particles having desired physical properties using only a foaming agent which does not cause global environmental pollution. It is made in order to provide a method that can be performed, non-crosslinked polyethylene resin particles are dispersed in an aqueous dispersion medium in a closed container, then nitrogen-containing inorganic gas is introduced into the closed container, and After the pressure is adjusted to 0.1 to 30 kg / cm 2 G, the mixture is heated to a temperature equal to or higher than the softening temperature of the non-crosslinked polyethylene resin particles, and is discharged through an orifice into an atmosphere having a pressure lower than the internal pressure of the closed container. After obtaining the expanded foam particles, by imparting foaming ability to the low-expanded foam particles, by heating and volume expansion,
A method for producing pre-expanded particles, wherein the maximum value α max of the circumferential stress acting on a unit cell film thickness of expanded particles during volume expansion by heating is set to 10 [kg / cm 2 / μm] or less. The method for producing non-crosslinked polyethylene resin pre-expanded particles (Claim 1), and the orifice used for producing low-magnification expanded particles are circular, and the ratio L / D of diameter D to length L is 1. The present invention relates to a method for producing pre-expanded particles of a non-crosslinked polyethylene resin according to claim 1 which is 5 or more (claim 2).

【0013】[0013]

【発明の実施の形態】本発明においては、まず無架橋ポ
リエチレン系樹脂粒子を密閉容器内で水系分散媒に分散
させ、ついでチッ素含有無機ガスを密閉容器内に導入し
て密閉容器内の圧力を0.1〜30kg/cm2Gとし
たのち、無架橋ポリエチレン系樹脂粒子の軟化温度以上
の温度に加熱し、オリフィスを介して密閉容器の内圧よ
りも低圧の雰囲気中に放出させて低倍率発泡粒子が製造
される。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, first, non-crosslinked polyethylene resin particles are dispersed in an aqueous dispersion medium in a closed container, and then a nitrogen-containing inorganic gas is introduced into the closed container and the pressure in the closed container is increased. Is adjusted to 0.1 to 30 kg / cm 2 G, heated to a temperature equal to or higher than the softening temperature of the non-crosslinked polyethylene-based resin particles, and discharged through an orifice into an atmosphere at a pressure lower than the internal pressure of the sealed container to obtain a low magnification. Expanded particles are produced.

【0014】前記無架橋ポリエチレン系樹脂粒子は、通
常、無架橋ポリエチレン系樹脂、充填剤および必要によ
り使用される酸化防止剤、分散剤、滑剤、帯電防止剤、
染料、顔料などからなる無架橋ポリエチレン系樹脂組成
物から形成されており、その大きさとしては0.5〜1
0mg/粒、さらには0.5〜5mg/粒程度の粒子が
使用される。
The non-crosslinked polyethylene resin particles generally contain a non-crosslinked polyethylene resin, a filler and optionally used antioxidants, dispersants, lubricants, antistatic agents,
It is formed from a non-crosslinked polyethylene resin composition comprising a dye, a pigment, and the like, and has a size of 0.5 to 1
Particles of 0 mg / grain, more preferably about 0.5 to 5 mg / grain are used.

【0015】前記無架橋ポリエチレン系樹脂は、通常、
MIとしては190℃で0.5〜30g/10分、さら
には1〜5g/10分のものが好ましく、また曲げ剛性
率(ASTM D747)としては1000〜8000
kgf/cm2、さらには2000〜5000kgf/
cm2、融点としては100〜140℃、さらには11
5〜130℃のものが好ましい。前記MIが0.5g/
10分未満のばあい、溶融粘度が高すぎて高発泡倍率の
予備発泡粒子がえられにくくなり、30g/10分をこ
えるばあい、発泡時の樹脂の伸びに対する溶融粘度が低
く破泡しやすくなり、高発泡倍率の予備発泡粒子がえら
れにくくなる傾向にある。また、曲げ剛性率が1000
kgf/cm2未満のばあい、えられる成形体の機械的
強度が不充分となり、8000kgf/cm2をこえる
ばあい、えられる成形体の柔軟性、緩衝性が不充分とな
る傾向にある。融点が100℃未満のばあい、えられる
成形体の耐熱性が不充分となり、140℃をこえるばあ
い、成形圧が高くなり好ましくなくなる傾向にある。
The non-crosslinked polyethylene resin is usually
The MI is preferably 0.5 to 30 g / 10 min at 190 ° C., more preferably 1 to 5 g / 10 min, and the flexural rigidity (ASTM D747) is 1000 to 8000.
kgf / cm 2 , and even 2000-5000 kgf /
cm 2 , melting point of 100 to 140 ° C., and further 11
Those having a temperature of 5 to 130 ° C are preferred. The MI is 0.5 g /
In the case of less than 10 minutes, the melt viscosity is too high to obtain pre-expanded particles having a high expansion ratio, and in the case of more than 30 g / 10 minutes, the melt viscosity with respect to the elongation of the resin during foaming is low and the foam is easily broken. This tends to make it difficult to obtain pre-expanded particles having a high expansion ratio. In addition, the flexural rigidity is 1000
When it is less than kgf / cm 2 , the mechanical strength of the obtained molded article tends to be insufficient, and when it exceeds 8000 kgf / cm 2 , the flexibility and cushioning property of the obtained molded article tend to be insufficient. When the melting point is less than 100 ° C., the heat resistance of the obtained molded body becomes insufficient, and when it exceeds 140 ° C., the molding pressure tends to be high, which is not preferable.

【0016】前記無架橋ポリエチレン系樹脂の具体例と
しては、前記特性を有する、たとえば低密度ポリエチレ
ン、中密度ポリエチレン、高密度ポリエチレン、直鎖状
低密度ポリエチレン、エチレン−酢酸ビニル共重合体、
エチレン−メチルメタクリレート共重合体などがあげら
れる。これらの樹脂は、単独で用いてもよく、2種以上
を併用してもよい。これらの無架橋ポリエチレン系樹脂
の中では、とくに密度0.910〜0.935g/cm
3の直鎖状低密度ポリエチレンが発泡性が良好である点
から好ましい。
Specific examples of the non-crosslinked polyethylene resin include those having the above properties, such as low-density polyethylene, medium-density polyethylene, high-density polyethylene, linear low-density polyethylene, ethylene-vinyl acetate copolymer,
Examples include an ethylene-methyl methacrylate copolymer. These resins may be used alone or in combination of two or more. Among these non-crosslinked polyethylene resins, a density of 0.910 to 0.935 g / cm is particularly preferable.
The straight-chain low-density polyethylene of 3 is preferred from the viewpoint of good foamability.

【0017】前記充填剤は、無架橋ポリエチレン系樹脂
粒子を低倍率で発泡させ、ついで高倍率で発泡させて予
備発泡粒子にする際に、均一な気泡をえやすくするため
に用いられる成分である。とくに低倍率発泡粒子の発泡
倍率および平均セル径に影響を及ぼし、これらの物性を
通じて単位セル膜厚あたりにはたらく周応力の値に関与
する。このことについては後述する。
The filler is a component used to easily form uniform bubbles when foaming the non-crosslinked polyethylene resin particles at a low magnification and then at a high magnification to obtain pre-expanded particles. . In particular, it affects the expansion ratio and average cell diameter of the low-expansion expanded particles, and affects the value of the circumferential stress acting per unit cell thickness through these physical properties. This will be described later.

【0018】前記充填剤の平均粒子径は、均一な気泡を
有する予備発泡粒子をつくり、また該予備発泡粒子から
機械的強度や柔軟性などのすぐれた成形体をつくる点か
ら、50μm以下、なかんづく20μm以下であるのが
好ましい。下限は2次凝集による分散不良の防止、取扱
作業性の点から0.1μm以上が好ましい。
The average particle diameter of the filler is preferably 50 μm or less, from the viewpoint of producing pre-expanded particles having uniform cells and producing a molded article having excellent mechanical strength and flexibility from the pre-expanded particles. It is preferably 20 μm or less. The lower limit is preferably 0.1 μm or more from the viewpoint of prevention of poor dispersion due to secondary aggregation and workability.

【0019】前記充填剤の使用量は、通常、無架橋ポリ
エチレン系樹脂100部(重量部、以下同様)に対して
0.001部以上、なかんづく0.005部以上であ
り、また予備発泡粒子を成形する際に、すぐれた融着性
を発現させ、該予備発泡粒子から機械的強度や柔軟性な
どにすぐれた成形体をうる点から、無架橋ポリエチレン
系樹脂100部に対して10部以下、なかんずく5部以
下である。
The amount of the filler is usually 0.001 part or more, preferably 0.005 part or more, based on 100 parts (parts by weight, the same applies hereinafter) of the non-crosslinked polyethylene resin. In molding, from the viewpoint of exhibiting excellent fusibility and obtaining a molded article excellent in mechanical strength and flexibility from the pre-expanded particles, 10 parts or less based on 100 parts of the non-crosslinked polyethylene resin, Above all, less than 5 parts.

【0020】前記充填剤は無機充填剤と有機充填剤とに
大別され、前記無機充填剤の具体例としては、たとえば
タルク、カオリン、クレー、マイカ、炭酸カルシウム、
水酸化カルシウムなどがあげられる。これらの無機充填
剤は、単独で用いてもよく、また2種以上を併用しても
よい。これらの無機充填剤のなかでは、タルクが比較的
安価であるうえに、気泡が均一な低倍率予備発泡粒子が
えられやすいので、本発明においてはとくに好適に使用
されうる。
The filler is roughly classified into an inorganic filler and an organic filler. Specific examples of the inorganic filler include talc, kaolin, clay, mica, calcium carbonate, and the like.
Calcium hydroxide and the like. These inorganic fillers may be used alone or in combination of two or more. Among these inorganic fillers, talc is relatively inexpensive, and low-magnification pre-expanded particles having uniform air bubbles are easily obtained. Therefore, the talc can be particularly preferably used in the present invention.

【0021】前記有機充填剤は、発泡時の加熱温度であ
る(無架橋ポリエチレン系樹脂の軟化温度+50℃)以
下の温度で固体形状のものであれば使用することがで
き、このようなものであるかぎりとくに限定はない。前
記有機充填剤の具体例としては、たとえばフッ素樹脂粉
末、シリコーン樹脂粉末、熱可塑性ポリエステル樹脂粉
末などがあげられる。これらの有機充填剤は、単独で用
いてもよく、また2種以上を併用してもよい。
The organic filler can be used as long as it is in the form of a solid at a temperature not higher than the heating temperature at the time of foaming (the softening temperature of the non-crosslinked polyethylene resin + 50 ° C.). There is no particular limitation as far as there is. Specific examples of the organic filler include a fluororesin powder, a silicone resin powder, and a thermoplastic polyester resin powder. These organic fillers may be used alone or in combination of two or more.

【0022】前記無架橋ポリエチレン系樹脂および充填
剤などを含有する無架橋ポリエチレン系樹脂組成物は、
通常、押出機、ニーダー、バンバリーミキサー、ロール
などを用いて溶融混練し、ついで円柱状、楕円柱状、球
状、立方体状、直方体状など、発泡に利用しやすい所望
の粒子形状に形成される。
The non-crosslinked polyethylene resin composition containing the non-crosslinked polyethylene resin and a filler, etc.
Usually, the mixture is melt-kneaded using an extruder, a kneader, a Banbury mixer, a roll, or the like, and then formed into a desired particle shape that can be easily used for foaming, such as a columnar shape, an elliptical columnar shape, a spherical shape, a cubic shape, and a rectangular solid shape.

【0023】前記チッ素含有無機ガスとは、チッ素、空
気およびチッ素と地球環境を汚染しない範囲内の無機ガ
ス(たとえばヘリウム、アルゴンなど)とを混合したも
のであり、とくに原料コストおよび地球環境を汚染しな
い点から、チッ素または空気が好適に用いられる。
The nitrogen-containing inorganic gas is a mixture of nitrogen, air, and nitrogen and an inorganic gas (for example, helium, argon, etc.) within a range that does not pollute the global environment. From the viewpoint of not polluting the environment, nitrogen or air is preferably used.

【0024】本発明においては、無架橋ポリエチレン系
樹脂粒子を密閉容器内で水系分散媒に分散させ、加熱を
開始するまでの間にチッ素含有無機ガスを密閉容器内に
導入して0.1〜30kg/cm2Gにしたのち、無架
橋ポリエチレン系樹脂粒子の軟化温度以上の温度に加熱
せしめられるが、このようにすることによって、そのの
ちの加熱時間中に無架橋ポリエチレン系樹脂粒子に水系
分散媒以外にチッ素含有無機ガスを充分に吸収・吸着さ
せることができ、これらの2種の発泡剤によって、えら
れる低倍率発泡粒子の発泡倍率をコントロールすること
ができる。
In the present invention, the non-crosslinked polyethylene resin particles are dispersed in an aqueous dispersion medium in a closed container, and a nitrogen-containing inorganic gas is introduced into the closed container until the heating is started. After the pressure is reduced to about 30 kg / cm 2 G, the non-crosslinked polyethylene resin particles can be heated to a temperature higher than the softening temperature thereof. The nitrogen-containing inorganic gas can be sufficiently absorbed and adsorbed in addition to the dispersion medium, and the expansion ratio of the obtained low-expansion expanded particles can be controlled by these two types of blowing agents.

【0025】前記密閉容器内で無架橋ポリエチレン系樹
脂粒子が水系分散媒に分散せしめられる際に、分散剤と
して、第三リン酸カルシウム、塩基性炭酸マグネシウ
ム、塩基性炭酸亜鉛、炭酸カルシウムなどや、界面活性
剤、たとえばドデシルベンゼンスルホン酸ソーダ、n−
パラフィンスルホン酸ソーダ、αオレフィンスルホン酸
ソーダなどが、一般に使用される量使用されうる。
When the non-crosslinked polyethylene resin particles are dispersed in the aqueous dispersion medium in the closed container, as a dispersing agent, tribasic calcium phosphate, basic magnesium carbonate, basic zinc carbonate, calcium carbonate, etc. Agents such as sodium dodecylbenzenesulfonate, n-
Sodium paraffin sulfonate, sodium α-olefin sulfonate and the like can be used in commonly used amounts.

【0026】なお、前記水系分散媒は、その代表的なも
のとして水があげられるが、地球環境に影響を与えない
範囲において、かかる水に必要により、アセトン、エチ
レングリコール、エチルアルコール、t−ブチルアルコ
ール、グリセリンなどが少量含有されたものであっても
よい。
As the aqueous dispersion medium, water is a typical example, but acetone, ethylene glycol, ethyl alcohol, t-butyl and the like may be used as necessary as long as they do not affect the global environment. It may contain a small amount of alcohol, glycerin and the like.

【0027】チッ素含有無機ガス導入後の密閉容器内の
圧力は、放出時の密閉容器内外の圧力差により決定さ
れ、一般に圧力差が大きいほど発泡粒子の発泡倍率が大
きくなるが、前述のごとく0.1〜30kg/cm
2G、さらには1.0〜30kg/cm2Gである。30
kg/cm2Gをこえて加圧するばあいには、加熱後の
密閉容器内圧が高くなりすぎ、容器に過剰な負担がかか
るうえ、容器加圧による発泡倍率の改善効果が小さくな
るため好ましくない。また、えられる低倍率発泡粒子の
発泡倍率のコントロールのために、放出の直前にチッ素
含有無機ガスにより放出圧力を調整するのが好ましい。
放出は、一般に、無架橋ポリエチレン系樹脂粒子の軟化
温度以上、融点+20℃以下で行なわれ、密閉容器内外
の圧力差は一般に5〜50kg/cm2G、さらには6
〜35kg/cm2G程度で行なわれる。
The pressure in the closed vessel after the introduction of the nitrogen-containing inorganic gas is determined by the pressure difference between the inside and the outside of the closed vessel at the time of release. Generally, the larger the pressure difference, the larger the expansion ratio of the expanded particles. 0.1-30 kg / cm
2 G, and more preferably 1.0 to 30 kg / cm 2 G. 30
When the pressure is applied in excess of kg / cm 2 G, the internal pressure of the closed container after heating becomes too high, which puts an excessive load on the container and reduces the effect of improving the expansion ratio by pressurizing the container, which is not preferable. . Further, in order to control the expansion ratio of the obtained low-expansion expanded particles, it is preferable to adjust the release pressure with a nitrogen-containing inorganic gas immediately before release.
Release, in general, the softening temperature or more non-crosslinked polyethylene-based resin particles, carried out at the melting point + 20 ° C. or less, the pressure difference between the sealed container and out is generally 5 to 50 kg / cm 2 G, more 6
It is performed at about 35 kg / cm 2 G.

【0028】なお、無架橋ポリエチレン系樹脂粒子の軟
化温度および融点は、通常、該粒子が無架橋ポリエチレ
ン系樹脂およびこれと相溶しない充填剤とからなる組成
物であるため、無架橋ポリエチレン系樹脂の軟化温度お
よび融点と実質的に同じになる。
The softening temperature and melting point of the non-crosslinked polyethylene resin particles are usually determined by the fact that the particles are composed of a non-crosslinked polyethylene resin and a filler that is incompatible with the resin. Are substantially the same as the softening temperature and melting point of

【0029】また、無架橋ポリエチレン系樹脂粒子を水
系媒体およびチッ素含有無機ガスとともに密閉容器から
放出する過程においては、放出による密閉容器内の気相
の体積分率の増大とともに密閉容器内圧力が低下し、え
られる低倍率予備発泡粒子の発泡倍率に分布が生じるた
め、放出中、チッ素含有無機ガスなどを導入することに
よりこの圧力低下分に相当する圧力を補充し、放出中の
圧力低下を防止し、もって低倍率発泡粒子の発泡倍率分
布のシャープ化をはかるのが好ましい。
In the process of releasing the non-crosslinked polyethylene resin particles from the closed vessel together with the aqueous medium and the nitrogen-containing inorganic gas, the pressure in the closed vessel increases as the volume fraction of the gas phase in the closed vessel increases due to the release. During the discharge, the pressure corresponding to this pressure drop is replenished by introducing a nitrogen-containing inorganic gas, etc., and the pressure drop during the discharge is reduced. It is preferred that the expansion ratio distribution of the low-expansion expanded particles be sharpened.

【0030】また、低倍率発泡粒子の製造時に用いるオ
リフィスが円形オリフィスのばあい、直径Dと長さLと
の比L/Dが1.5以上、さらには1.5以上で50以
下であるのが発泡倍率に比して平均セル径を大きくし、
セル膜を厚くすることができるため、同一加熱体積膨張
条件におけるαmaxを小さくする効果がある点から好ま
しい。
When the orifice used for producing the low-magnification expanded particles is a circular orifice, the ratio L / D of the diameter D to the length L is 1.5 or more, and more preferably 1.5 or more and 50 or less. Is to increase the average cell diameter compared to the expansion ratio,
Since the cell film can be made thicker, it is preferable in that it has the effect of reducing α max under the same heating volume expansion condition.

【0031】本発明においては、このようにしてえられ
た低倍率発泡粒子に発泡能を付与したのち、加熱するこ
とにより予備発泡粒子が製造される。
In the present invention, pre-expanded particles are produced by imparting expandability to the thus-obtained low-magnification expanded particles and then heating.

【0032】発泡能の付与とは、加熱により低倍率発泡
粒子が体積膨張を生じやすいように前もって処理を行な
うことをいい、低倍率発泡粒子を耐圧容器中でチッ素含
有無機ガスなどで加圧し、低倍率発泡粒子内圧を高める
ことなどをさし、具体的には低倍率発泡粒子を耐圧容器
中でチッ素含有無機ガスなどで1〜30kg/cm
2G、さらには1〜20kg/cm2Gの圧力で加圧し、
低倍率発泡粒子の内圧を1〜20kg/cm2G、さら
には1〜15kg/cm2G程度まで高めることをい
う。加圧は室温雰囲気で行なってもよいが、無架橋ポリ
エチレン系樹脂組成物の結晶特性に影響を与えない範囲
での加熱雰囲気下で行なうと、低倍率発泡粒子内圧が平
衡圧力に速く到達するため、この方法を用いてもよい。
The provision of the foaming ability means that the low-magnification expanded particles are preliminarily treated so as to easily cause volume expansion by heating. The low-magnification expanded particles are pressurized with a nitrogen-containing inorganic gas or the like in a pressure vessel. To increase the internal pressure of the low-magnification expanded particles. Specifically, the low-magnification expanded particles are mixed with a nitrogen-containing inorganic gas in a pressure vessel at 1 to 30 kg / cm.
2 G, further pressurized at a pressure of 1 to 20 kg / cm 2 G,
This means increasing the internal pressure of the low-magnification expanded particles to about 1 to 20 kg / cm 2 G, and more preferably about 1 to 15 kg / cm 2 G. Pressing may be performed in a room temperature atmosphere, but when performed in a heating atmosphere within a range that does not affect the crystal characteristics of the non-crosslinked polyethylene resin composition, the internal pressure of the low-magnification expanded particles quickly reaches an equilibrium pressure. This method may be used.

【0033】加熱の方法は従来公知であり、地球環境汚
染の懸念のない方法であればとくに限定はなく、たとえ
ば水蒸気加熱、温風加熱、赤外線加熱、超音波加熱など
があげられる。このうち、設備コストおよび加熱効率な
どの点から、水蒸気加熱が好適に用いられる。
The heating method is conventionally known, and is not particularly limited as long as there is no concern about global environmental pollution. Examples thereof include steam heating, hot air heating, infrared heating, and ultrasonic heating. Of these, steam heating is preferably used in terms of equipment cost and heating efficiency.

【0034】本発明における加熱体積膨張による高倍率
化は、加熱による体積膨張中に発泡粒子の単位セル膜厚
あたりにはたらく周応力の最大値αmaxが10[kg/
cm2/μm]以下、好ましくは7[kg/cm2/μ
m]以下、さらに好ましくは5[kg/cm2/μm]
以下にする条件で行なわれる。
The high magnification by heating volume expansion in the present invention, the maximum value of circumferential stress acting on the unit cell layer per thickness of the expanded beads in a volume expansion by heating alpha max is 10 [kg /
cm 2 / μm] or less, preferably 7 [kg / cm 2 / μ
m] or less, more preferably 5 [kg / cm 2 / μm]
It is performed under the following conditions.

【0035】前記αmaxが10[kg/cm2/μm]以
下である限り、前記過熱体積膨脹による高倍率化は何回
行なってもよいが、一般には加熱体積膨張を何度も繰り
返したばあいには、αmaxを10[kg/cm2/μm]
以下とすることが困難となる。
As long as the α max is 10 [kg / cm 2 / μm] or less, the magnification may be increased by the above-mentioned overheated volume expansion any number of times. Meanwhile, α max is 10 [kg / cm 2 / μm]
It is difficult to:

【0036】つぎに、前記単位セル膜厚あたりにはたら
く周応力の最大値αmaxについて説明する。
Next, the maximum value α max of the circumferential stress acting on the unit cell film thickness will be described.

【0037】加熱による低倍率発泡粒子の体積膨張は、
通常、ポリスチレン系樹脂予備発泡粒子または架橋ポリ
オレフィン系樹脂予備発泡粒子の製造方法として広く用
いられているが、無架橋ポリオレフィン系樹脂予備発泡
粒子、とくに無架橋ポリエチレン系樹脂予備発泡粒子の
製造方法として用いるばあいには、一般にポリスチレン
系樹脂予備発泡粒子、架橋ポリオレフィン系樹脂予備発
泡粒子のばあいと比べて、加熱体積膨張中にセルを構成
するセル膜が引張変形により破断しやすいため、えられ
る予備発泡粒子の連泡率が高くなり、その結果、えられ
る成形体の機械的強度が著しく低下しやすい。したがっ
て、加熱体積膨張に供する低倍率発泡粒子の物性、発泡
能の付与の程度、加熱の程度などを微妙にコントロール
することが必要である。ところが、従来公知の技術はこ
れらのいくつかの因子の固定を前提として、あるものは
低倍率発泡粒子物性について、またあるものは加熱の程
度についてのみを独立して条件開示をしているにすぎな
い。本発明では、こうした加熱体積膨張中におけるセル
膜破断を抑制するための全因子を加味した理論を新たに
構築し、これを無架橋ポリエチレン系樹脂のばあいに適
用したばあいについて以下に説明する。
The volume expansion of the low-magnification expanded particles due to heating is as follows:
Usually, it is widely used as a method for producing polystyrene-based resin pre-expanded particles or crosslinked polyolefin-based resin pre-expanded particles, but is used as a method for producing non-crosslinked polyolefin-based resin pre-expanded particles, particularly non-crosslinked polyethylene-based resin pre-expanded particles. In this case, the cell membrane constituting the cell is more likely to be broken by tensile deformation during the heating volume expansion than the case of the pre-expanded particles of polystyrene resin and the pre-expanded particles of cross-linked polyolefin resin. The open cell ratio of the expanded particles is increased, and as a result, the mechanical strength of the obtained molded article is liable to be remarkably reduced. Therefore, it is necessary to delicately control the physical properties of the low-magnification expanded particles subjected to the heating volume expansion, the degree of imparting the foaming ability, the degree of heating, and the like. However, conventionally known techniques are based on the premise that some of these factors are fixed, and some only disclose the conditions independently regarding the low-magnification expanded particle physical properties, and some only regarding the degree of heating. Absent. In the present invention, a new theory that takes into account all the factors for suppressing cell membrane breakage during such heating volume expansion is newly constructed, and the case where the theory is applied to the case of a non-crosslinked polyethylene resin will be described below. .

【0038】(αmaxの算出)発泡体のセルは厳密には
球ではないが、通常はこれを球とみなし、セルの大きさ
を平均セル径で示す。発泡体のセルがすべて球であると
みなしたばあい、式:
(Calculation of α max ) Although the cells of the foam are not strictly spheres, they are usually regarded as spheres, and the cell size is indicated by the average cell diameter. Assuming that all cells of the foam are spherical, the formula:

【0039】[0039]

【数1】 (Equation 1)

【0040】(式中、Vは樹脂(組成物)の体積分
率、ρ、ρ、ρはそれぞれ発泡体、セル内ガス、
樹脂の密度、dはセルである球の直径、tはセル膜厚)
が成り立つ(「プラスチックフォームハンドブック」日
刊工業新聞社、昭和48年2月28日初版、222
頁)。
(Where V s is the volume fraction of the resin (composition), ρ f , ρ g , and ρ s are the foam, the gas in the cell,
Resin density, d is the diameter of a sphere as a cell, t is the cell thickness)
("Plastic Form Handbook" Nikkan Kogyo Shimbun, February 28, 1973, first edition, 222
page).

【0041】式において、V≒ρ/ρとする
と、セル膜厚tは、式:
In the equation, if V s ≒ ρ f / ρ s , the cell thickness t is given by the following equation:

【0042】[0042]

【数2】 (Equation 2)

【0043】(式中、Kは発泡倍率(=ρ/ρ≒1
/V)、dは前記と同じ)で表わされる。
(Where K is the expansion ratio (= ρ s / ρ f ≒ 1)
/ V s ), and d is the same as described above).

【0044】また、内圧を受ける薄肉球殻にかかる周応
力の膜厚平均値σmは、式:
The average film thickness σ m of the circumferential stress applied to the thin spherical shell subjected to the internal pressure is given by the following equation:

【0045】[0045]

【数3】 (Equation 3)

【0046】(式中、Pはセル内圧力(ゲージ)、d、
tは前記と同じ)で与えられる(高圧ガス保安協会編、
「甲種化学機械製造保安責任者講習テキスト 高圧ガス
保安技術」平成6年4月8日 改訂版3刷、140
頁)。したがって、式、式から、σmは式:
(Where P is the pressure (gauge) in the cell, d,
t is the same as described above) (edited by the High Pressure Gas Safety Association,
"Class K Machinery Manufacturing Security Officer Training Text High-Pressure Gas Safety Technology" April 8, 1994, Revised Edition, 3rd edition, 140
page). Thus, from the equation, the equation, σ m is:

【0047】[0047]

【数4】 (Equation 4)

【0048】で表わされる。また、2段発泡中、セル内
ガスの逸散がないとすると式: K(P+1)=const. が成り立つ。
## EQU5 ## Further, assuming that there is no escape of gas in the cell during the two-stage foaming, the following equation is obtained: K (P + 1) = const. Holds.

【0049】また、加熱による体積膨張初期の加熱温度
の立ち上がりはステップ状であるとし、加熱開始と同時
に発泡粒子内の温度は所望とする温度になるとすると、
加熱による体積膨張開始時の発泡粒子内圧(ゲージ)P
inは式:
Further, it is assumed that the rise of the heating temperature in the initial stage of volume expansion due to heating is step-like, and that the temperature inside the expanded particles becomes a desired temperature simultaneously with the start of heating.
Internal pressure (gauge) P of expanded particles at the start of volume expansion by heating
in is the formula:

【0050】[0050]

【数5】 (Equation 5)

【0051】(式中、P0は発泡能付与後加熱開始直前
における発泡粒子内圧(室温;ゲージ)、Tは加熱温
度(℃)、Trは室温(℃))で表わされる。
(Where P 0 is the internal pressure of the expanded beads immediately after the start of heating after application of the foaming ability (room temperature; gauge), T s is the heating temperature (° C.), and Tr is room temperature (° C.)).

【0052】式によりPinが求められ、そののち発泡
粒子の体積膨張とともに発泡倍率Kが増大すると、式
からその時点での発泡粒子内圧P、式からσmがそれ
ぞれ求められ、加熱前の低倍率発泡粒子のセル径と体積
膨張比の1/3乗の積からセル径、さらに式からtが
求められる。
When the expansion ratio K increases with the volume expansion of the foamed particles, P in is obtained from the formula, and the internal pressure P of the foamed particles at that time is obtained from the formula, and σ m is obtained from the formula. The cell diameter is obtained from the product of the cell diameter of the expanded foam particles and the volume expansion ratio to the 1/3 power, and t is obtained from the formula.

【0053】ここで、単位セル膜厚あたりにはたらく周
応力αを式のように定義する。
Here, the circumferential stress α acting per unit cell film thickness is defined as in the following equation.

【0054】α=σm/t αは前述の手順によって、加熱体積膨張中の任意の時
間、発泡倍率について求めることができ、下記実施例の
ように各種パラメータを適切に設定し、αをKに対して
プロットしたばあい、ある特定の発泡倍率において極大
となり、そののち減少するという挙動を示す。このαの
極大値をαmとする。したがって、とくに良好な体積膨
張性を有する状態ではαmax=αmであるが、Kの増大に
伴ってαが極大となる前に体積膨張が停止してしまうば
あいもありうる。このばあいには、体積膨張が停止した
(最終的にえられた)予備発泡粒子の発泡倍率における
計算値αをもってαmaxとする。
Α = σ m / t α can be determined for the expansion ratio at any time during the heating volume expansion by the above-described procedure, and various parameters are appropriately set and α is set to K When plotted against, a behavior is shown in which the value is maximized at a specific expansion ratio and then decreases. Let the maximum value of α be α m . Therefore, α max = α m in a state having a particularly good volume expansion property. However, there is a case where the volume expansion stops before α becomes maximum as K increases. This case, the volume expansion is stopped (is finally e) with the calculated value alpha in the expansion ratio of the pre-expanded particles to alpha max.

【0055】以上により算出されたαmaxとえられた予
備発泡粒子の連泡率との関係について整理したところ、
この両者の間に明確な正の相関関係があることが見出さ
れた(図1)。すなわち、加熱体積膨張中に単位セル膜
厚あたりにはたらく周応力の最大値が大きいほど、加熱
体積膨張中のセル膜の破断を生じる部位が多くなり、え
られる予備発泡粒子の連泡率が高くなることが明かとな
った。αmaxは、低倍率発泡粒子の物性として発泡倍率
およびセル径;実験環境として室温;発泡能付与の程度
として加熱直前の発泡粒子内圧;加熱条件として加熱温
度がそれぞれ与えられたばあい、初めて算出することが
可能である。すなわち、以上の全因子が適切に設定され
たばあいに初めて、えられる予備発泡粒子の独立気泡構
造が保たれることが明確になった。
The relationship between α max calculated as described above and the open cell ratio of the pre-expanded particles obtained was summarized.
It was found that there was a clear positive correlation between the two (FIG. 1). That is, as the maximum value of the circumferential stress acting on the unit cell film thickness during the heating volume expansion is larger, the number of sites where the cell film breaks during the heating volume expansion increases, and the open cell rate of the obtained pre-expanded particles is higher. It became clear that it would be. α max is calculated for the first time when the expansion ratio and cell diameter are used as physical properties of the low-magnification expanded particles; room temperature is used as the experimental environment; the internal pressure of the expanded particles immediately before heating is used as the degree of foaming capability; It is possible to That is, it has been clarified that the closed cell structure of the obtained pre-expanded particles is maintained only when all the above factors are appropriately set.

【0056】そして、無架橋ポリエチレン系樹脂の低倍
率発泡粒子について、圧力単位をkg/cm2、セル径
およびセル膜厚の単位をμmとしてσ[kg/c
2]、t[μm]を算出し、式によりαを求め、前
述の手順にしたがってαmaxと連泡率との関係をグラフ
にプロットした結果、予備発泡粒子の連泡率を20%以
下とし、成形後の機械的強度の低下を防止するために
は、αmaxを10[kg/cm2/μm]以下とすること
が必要であることが見出されたのである。
Then, for the low-magnification expanded particles of the non-crosslinked polyethylene resin, the pressure unit is kg / cm 2 , the cell diameter and the cell thickness are μm, and σ m [kg / c
m 2 ], t [μm], α was obtained by the equation, and the relationship between α max and open cell rate was plotted on a graph according to the above-described procedure. As a result, the open cell rate of the pre-expanded particles was 20% or less. It has been found that it is necessary to set α max to 10 [kg / cm 2 / μm] or less in order to prevent a decrease in mechanical strength after molding.

【0057】以上述べたとおり、αmaxは加熱体積膨張
に関連する多くの因子により決定されるため、たとえば
これに好適な低倍率発泡粒子の発泡倍率およびセル径の
みを他の条件から独立して決定することはできないが、
本発明をさらに明確にするため、無架橋ポリエチレン系
樹脂として三井石油化学工業(株)製の「ウルトゼック
ス2022L」(密度0.920g/cm3)を用い、
加熱直前の発泡粒子内圧5[atm(abs)]、加熱
体積膨張を0.8kg/cm2Gの水蒸気(≒116
℃)を用いて行なったばあいに、αmaxが10[kg/
cm2/μm]となる低倍率発泡粒子の発泡倍率および
セル径の範囲を、室温を5℃および30℃に変化させた
ばあいについて図2に示す。本発明において、加熱体積
膨張性が良好で、予備発泡粒子の連泡率が低い範囲は、
図2に示す曲線の上側となる。このように、本発明によ
り開示される技術によって初めて、加熱体積膨張性が良
好な低倍率発泡粒子物性の範囲が定量的に明確に規定さ
れる。また、室温の変化により、発泡倍率10倍の低倍
率発泡粒子を加熱体積膨張させるばあい、冬期(室温5
℃)ではセル径は約300μm以上必要となるのに対
し、夏期(室温30℃)ではセル径は約260μm以上
でよいことがわかる。このように、加熱体積膨張性の季
節差についても説明することができる。
As described above, since α max is determined by many factors related to heating volume expansion, for example, only the expansion ratio and cell diameter of the low-expansion expanded particles suitable for this are independent of other conditions. I can't decide,
To further clarify the present invention, "Ultzex 2022L" (density 0.920 g / cm 3 ) manufactured by Mitsui Petrochemical Industries, Ltd. was used as a non-crosslinked polyethylene resin.
The internal pressure of the foamed particles immediately before heating is 5 [atm (abs)], and the heating volume expansion is 0.8 kg / cm 2 G steam (# 116
℃), when α max is 10 [kg /
The expansion ratio and the cell diameter range of cm 2 / [mu] m] become low magnification expanded particles, shown in FIG. 2 for the case of changing the room temperature 5 ° C. and 30 ° C.. In the present invention, the range in which the heating volume expansion property is good and the open cell ratio of the pre-expanded particles is low,
It is on the upper side of the curve shown in FIG. As described above, for the first time, the range disclosed in the present invention defines the range of the physical properties of the expanded low-expanded particles having a good heating volume expansion property quantitatively and clearly. In addition, when the low-expanded foamed particles having an expansion ratio of 10 are expanded by heating and volume expansion due to a change in room temperature, the winter time (room temperature
(° C.), the cell diameter needs to be about 300 μm or more, whereas in summer (room temperature 30 ° C.), the cell diameter may be about 260 μm or more. Thus, the seasonal difference in the heating volume expansion property can be explained.

【0058】また、加熱体積膨張を数回にわたって繰り
返し実施するばあいには、1回目の加熱体積膨張によ
り、セルの破泡合一が生じず、セル数が変化しないとす
ると、加熱体積膨張前後のセル径は、体積膨張比の1/
3乗に比例することになる。図2に示したとおり、本発
明において開示される技術では、好適に使用される範囲
の下限曲線は発泡倍率の約2.1乗に比例しているた
め、1回目の加熱体積膨張前では本発明において好適に
使用される物性の範囲内にある予備発泡粒子でも、加熱
体積膨張後には再度の加熱体積膨張には適さなくなるこ
とがある。このことは、たとえば図2の作成の際用いた
条件下において、発泡倍率5倍、セル径100μmで充
分本発明の範囲内にある低倍率発泡粒子を加熱体積膨脹
し、連泡せずに体積が2倍となったとすると、発泡倍率
10倍、セル径126μmとなり、再度の加熱体積膨脹
には適さなくなることからも理解することができる。
When the heating volume expansion is repeated several times, if the first heating volume expansion does not cause cell union and the number of cells does not change, if the heating volume expansion does not change, Cell diameter is 1 / the volume expansion ratio
It will be proportional to the cube. As shown in FIG. 2, in the technique disclosed in the present invention, the lower limit curve of the range preferably used is proportional to the expansion ratio to about the 2.1 power, so that the curve before the first heating volume expansion is obtained. Even if the pre-expanded particles are in the range of physical properties suitably used in the present invention, they may not be suitable for re-heating volume expansion after heating volume expansion. This means that, for example, under the conditions used in the preparation of FIG. 2, the low-expanded foamed particles having a foaming ratio of 5 times and a cell diameter of 100 μm sufficiently within the range of the present invention are heated and expanded in volume, and the volume is not expanded. Can be understood from the fact that the expansion ratio becomes 10 times and the cell diameter becomes 126 μm, which is not suitable for the heating volume expansion again.

【0059】以上の説明からも明らかなとおり、加熱体
積膨張条件が決定されたばあい、原料となる低倍率発泡
粒子の発泡倍率が一定のばあいには、平均セル径が大き
いものほど、加熱体積膨脹中のαmaxが小さくなる。こ
の平均セル径を大きくするためには、添加する充填剤の
種類、量の調整など、従来公知の方法がいずれも適用可
能であるが、こうした配合処方を変更したばあい、本発
明によりえられる予備発泡粒子を用いて成形体を作製し
たばあいの表面性や緩衝特性、機械的強度などに影響を
及ぼすことがあるため、本発明においては、低倍率発泡
粒子の製造時に用いるオリフィスとして円形オリフィス
を用い、直径Dと長さLとの比L/Dを1.5以上とす
ることが好ましい。このように、L/Dの値の大きい円
形オリフィスを使用したばあい、とくに本発明のよう
に、水および(または)チッ素含有無機ガスを発泡剤と
して用いたばあいには、圧力の解放速度と樹脂中からの
発泡剤の溶出、気化速度との相性がいいためか、発泡倍
率は同等かやや低下するものの、とくに平均セル径を大
きくする効果が大きく、結果として加熱体積膨脹の原料
として、より適した低倍率発泡粒子がえられるため、加
熱体積膨脹条件幅が広くなり、あるいは同一条件におけ
る予備発泡粒子の連泡率が小さくなるため好ましい。
As is clear from the above description, when the heating volume expansion condition is determined, and when the expansion ratio of the low-magnification expanded particles as the raw material is constant, the larger the average cell diameter, the larger the heating ratio. Α max during volume expansion becomes smaller. In order to increase the average cell diameter, any of conventionally known methods such as adjustment of the type and amount of the filler to be added can be applied, but if such a formulation is changed, the present invention can be obtained. In the present invention, a circular orifice is used as the orifice used in the production of the low-magnification expanded particles, since the surface properties, the cushioning properties, the mechanical strength, etc., of the molded body produced using the pre-expanded particles may be affected. Preferably, the ratio L / D of the diameter D to the length L is preferably 1.5 or more. As described above, when a circular orifice having a large value of L / D is used, particularly when water and / or a nitrogen-containing inorganic gas is used as a foaming agent as in the present invention, the pressure is released. Although the foaming ratio is the same or slightly lower because of the compatibility between the speed and the dissolution of the foaming agent from the resin and the vaporization rate, the effect of increasing the average cell diameter is particularly large, and as a result, it is used as a raw material for heating volume expansion. Since more suitable low-magnification expanded particles can be obtained, the range of the heating volume expansion condition is widened, or the open cell ratio of the pre-expanded particles under the same conditions is reduced, which is preferable.

【0060】[0060]

【実施例】つぎに、本発明の方法を実施例および比較例
に基づいて、さらに詳細に説明するが、本発明はかかる
実施例のみに限定されるものではない。
Next, the method of the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to only these Examples.

【0061】なお、以下の実施例における低倍率発泡粒
子および予備発泡粒子の発泡倍率、平均セル径、連泡率
は下記方法で求めた。
The expansion ratio, average cell diameter and open cell ratio of the low-ratio expanded particles and the pre-expanded particles in the following examples were determined by the following methods.

【0062】(発泡倍率)発泡粒子3〜10g程度をと
り、重量wを精秤後、100mlのメスシリンダー中の
エタノール液に浸漬し、浸漬前後のメニスカスから体積
vを測定し、発泡粒子の真比重ρ=w/vを求め、原
料樹脂組成物の密度ρとの比より、発泡倍率K=ρ
/ρを求めた。
(Expansion Ratio) Take about 3 to 10 g of expanded particles, precisely weigh the weight w, immerse them in an ethanol solution in a 100 ml measuring cylinder, measure the volume v from the meniscus before and after immersion, and determine the true volume of the expanded particles. The specific gravity ρ b = w / v is determined, and the expansion ratio K = ρ r is determined from the ratio with the density ρ r of the raw resin composition.
/ Ρ b was determined.

【0063】(平均セル径)発泡粒子から任意に30個
を取り出し、ASTM D 3576に準拠してセル径
を測定し、平均セル径dを算出した。
(Average Cell Diameter) Thirty cells were arbitrarily taken out of the expanded particles, the cell diameter was measured in accordance with ASTM D3576, and the average cell diameter d was calculated.

【0064】(連泡率)空気比較式比重計(東京サイエ
ンス(株)製、1000型)を用いて、えられた発泡粒
子の独立気泡体積を求め、別途水没法により求めたかみ
けの体積から独立気泡体積を差し引いたのち、見かけの
体積で除することによって算出した。
(Open cell ratio) The closed cell volume of the obtained expanded particles was determined using an air-comparison hydrometer (model 1000, manufactured by Tokyo Science Co., Ltd.), and the volume was determined separately by the submersion method. It was calculated by subtracting the closed cell volume and dividing by the apparent volume.

【0065】実施例1 直鎖状低密度ポリエチレン(三井石油化学工業(株)製
「ウルトゼックス3021F」、密度0.930g/c
3、MI 2.1g/10分、曲げ剛性率4000k
gf/cm2、軟化温度112℃、融点122℃)10
0部を無機充填剤であるタルク(林化成(株)製「TA
LCAN POWDER PKZ」、平均粒径約10μ
m)0.12部とともに混合用単軸押出機(50φ)に
供給し、直径2φの円筒ダイより押し出し、えられた円
筒状ストランドを水冷後カッティングし、円柱状の無架
橋ポリエチレン系樹脂ペレット(1.8mg/ペレッ
ト、軟化温度112℃、融点122℃)を製造した。
Example 1 Linear low-density polyethylene ("Ultzex 3021F" manufactured by Mitsui Petrochemical Industries, Ltd., density 0.930 g / c)
m 3 , MI 2.1 g / 10 min, flexural rigidity 4000 k
gf / cm 2 , softening temperature 112 ° C, melting point 122 ° C) 10
0 parts of talc (Hayashi Kasei Co., Ltd. “TA
LCAN POWDER PKZ ”, average particle size about 10μ
m) The mixture was fed together with 0.12 parts to a single screw extruder for mixing (50φ), extruded from a cylindrical die having a diameter of 2φ, and the obtained cylindrical strand was cooled with water and then cut to obtain a columnar non-crosslinked polyethylene resin pellet ( 1.8 mg / pellet, softening temperature 112 ° C, melting point 122 ° C).

【0066】つぎに、えられたペレット100部を、水
300部、第三リン酸カルシウム4.0部およびn−パ
ラフィンスルホン酸ソーダ0.8部とともに耐圧密閉容
器中(内容積10L)に投入し、室温(22℃)でチッ
素ガスによって15kg/cm2Gまで加圧した。その
のち、発泡温度の125℃にまで加熱したところ、密閉
容器内圧は約22kg/cm2Gとなった。さらにチッ
素ガスを加えて密閉容器内圧を35kg/cm2Gとし
たのち、直径4φ×60L(L/D=15)の円形オリ
フィスを通じて常圧雰囲気中に放出し、低倍率発泡粒子
をえた。放出中、容器内圧の低下が生じないように、チ
ッ素ガスを適宜導入し、圧力を保持した。えられた低倍
率発泡粒子は発泡倍率2.35倍、平均セル径96μm
の独立気泡構造を有するものであった。
Next, 100 parts of the obtained pellets together with 300 parts of water, 4.0 parts of tribasic calcium phosphate and 0.8 parts of n-paraffin sodium sulfonate were put into a pressure-resistant closed vessel (internal volume 10 L). At room temperature (22 ° C.), the pressure was increased to 15 kg / cm 2 G by nitrogen gas. Thereafter, when the mixture was heated to the foaming temperature of 125 ° C., the internal pressure of the sealed container became about 22 kg / cm 2 G. Further, nitrogen gas was added to adjust the internal pressure of the closed vessel to 35 kg / cm 2 G, and then discharged into a normal pressure atmosphere through a circular orifice having a diameter of 4 × 60 L (L / D = 15) to obtain low-magnification expanded particles. During the discharge, nitrogen gas was appropriately introduced and the pressure was maintained so that the internal pressure of the container did not decrease. The obtained low-magnification expanded particles had an expansion ratio of 2.35 and an average cell diameter of 96 μm.
Having a closed cell structure.

【0067】つぎに、えられた低倍率発泡粒子を別の耐
圧密閉容器中に移し、60℃の温度雰囲気下、空気で8
kg/cm2Gまで加圧し、3時間放置し、低倍率発泡
粒子に発泡能を付与した。約1時間冷却後圧力を解放
し、室温・常圧下で放置し、予め測定しておいた該発泡
粒子の内圧が5atm(abs)となる時間(約3分)
後さらに別の耐圧容器に供給し、密閉後水蒸気(0.8
kg/cm2G(≒116℃))を約30秒間導入し、
加熱体積膨脹させた。この際、室温は22℃であった。
えられた予備発泡粒子は、加熱体積膨脹終了後収縮した
ため、室温・8kg/cm2で約18時間さらに耐圧容
器中で空気加圧し、発泡粒子表面のシワがない状態にし
たのち常圧下に放置し、粒子内圧が安定した状態で、発
泡倍率・セル径および連泡率を測定した。その結果、該
予備発泡粒子は、発泡倍率6.2倍、平均セル径145
μm、連泡率1.1%の均一なセル構造を有する良好な
予備発泡粒子であった。また、以上の条件について、単
位セル膜厚あたりにはたらく周応力の最大値αmaxを計
算した結果、αmax=1.30[kg/cm2/μm]で
あった。
Next, the obtained low-magnification foamed particles were transferred into another pressure-resistant sealed container, and then exposed to air at a temperature of 60 ° C. and air.
The pressure was increased to kg / cm 2 G, and the mixture was allowed to stand for 3 hours to impart foaming power to the low-magnification foamed particles. After cooling for about 1 hour, release the pressure, leave at room temperature and normal pressure, and measure the internal pressure of the foamed particles beforehand measured at 5 atm (abs) (about 3 minutes).
After that, it is supplied to another pressure vessel, and after sealing, steam (0.8
kg / cm 2 G (≒ 116 ° C.)) for about 30 seconds,
Heat to volume expansion. At this time, the room temperature was 22 ° C.
The obtained pre-expanded particles contracted after the completion of the heating volume expansion. Therefore, the air was further pressurized in a pressure vessel at room temperature and 8 kg / cm 2 for about 18 hours so that the surface of the expanded particles was free of wrinkles, and then left at normal pressure. Then, while the internal pressure of the particles was stable, the expansion ratio, cell diameter and open cell ratio were measured. As a result, the pre-expanded particles had an expansion ratio of 6.2 times and an average cell diameter of 145.
The pre-expanded particles had a uniform cell structure of 1.1 μm and an open cell ratio of 1.1%. Under the above conditions, the maximum value α max of the circumferential stress acting per unit cell film thickness was calculated. As a result, α max = 1.30 [kg / cm 2 / μm].

【0068】実施例2 加熱体積膨脹時の水蒸気圧を1.1kg/cm2G(≒
121℃)にかえた以外は実施例1と同様にして、低倍
率発泡粒子および予備発泡粒子を製造した。えられた予
備発泡粒子は発泡倍率12.5倍、平均セル径159μ
m、連泡率0.8%であり、計算により求めたαmax
1.36[kg/cm2/μm]であった。
Example 2 The water vapor pressure during heating volume expansion was set to 1.1 kg / cm 2 G ( 2
Except that the temperature was changed to 121 ° C., low-expanded expanded particles and pre-expanded particles were produced in the same manner as in Example 1. The obtained pre-expanded particles had an expansion ratio of 12.5 times and an average cell diameter of 159 μm.
m, the open cell rate is 0.8%, and α max =
It was 1.36 [kg / cm 2 / μm].

【0069】実施例3 無架橋ポリエチレン系樹脂を直鎖状低密度ポリエチレン
(三井石油化学工業(株)製「ウルトゼックス2022
L」、密度0.920g/cm3、MI 2.1g/1
0分、曲げ剛性率3000kgf/cm2、軟化温度1
02℃、融点120℃)にかえ、低倍率発泡粒子製造の
発泡温度を124℃にかえた以外は実施例1と同様にし
て、低倍率発泡粒子および予備発泡粒子を製造した。な
お、えられた無架橋ポリエチレン系樹脂ペレットの軟化
温度は102℃、融点は120℃であった。えられた低
倍率発泡粒子は発泡倍率3.81倍、平均セル径97μ
m、予備発泡粒子は発泡倍率23.4倍、平均セル径1
74μm、連泡率9.8%であり、計算により求めたα
max=3.74[kg/cm2/μm]であった。
Example 3 A non-crosslinked polyethylene resin was replaced with linear low-density polyethylene ("Ultzex 2022" manufactured by Mitsui Petrochemical Industries, Ltd.).
L ", density 0.920 g / cm 3 , MI 2.1 g / 1
0 min, flexural rigidity 3000 kgf / cm 2 , softening temperature 1
02 ° C, melting point 120 ° C) and low-expanded foamed particles and pre-expanded particles were produced in the same manner as in Example 1 except that the foaming temperature for producing the low-expanded foamed particles was changed to 124 ° C. The obtained non-crosslinked polyethylene resin pellets had a softening temperature of 102 ° C and a melting point of 120 ° C. The obtained low-magnification expanded particles had an expansion ratio of 3.81 times and an average cell diameter of 97 μm.
m, pre-expanded particles: expansion ratio 23.4 times, average cell diameter 1
74 μm, open cell rate 9.8%, α calculated
max = 3.74 [kg / cm 2 / μm].

【0070】実施例4 添加タルク量を0.1部にかえた以外は実施例3と同様
にして低倍率発泡粒子および予備発泡粒子を製造した。
なお、えられた無架橋ポリエチレン系樹脂ペレットの軟
化温度は102℃、融点は120℃であった。えられた
低倍率発泡粒子は発泡倍率3.0倍、平均セル径80μ
m、予備発泡粒子は発泡倍率24.8倍、平均セル径1
63μm、連泡率4.5%であり、計算により求めたα
max=2.73[kg/cm2/μm]であった。
Example 4 Low magnification expanded particles and pre-expanded particles were produced in the same manner as in Example 3 except that the amount of talc added was changed to 0.1 part.
The obtained non-crosslinked polyethylene resin pellets had a softening temperature of 102 ° C and a melting point of 120 ° C. The obtained low-magnification expanded particles had an expansion ratio of 3.0 times and an average cell diameter of 80 μm.
m, pre-expanded particles: expansion ratio 24.8 times, average cell diameter 1
63 μm, open cell rate 4.5%, α calculated
max = 2.73 [kg / cm 2 / μm].

【0071】実施例5 添加タルク量を1.0部にかえた以外は、実施例3、4
と同様にして低倍率発泡粒子および予備発泡粒子を製造
した。なお、えられた無架橋ポリエチレン系樹脂ペレッ
トの軟化温度は102℃、融点は120℃であった。え
られた低倍率発泡粒子は発泡倍率3.4倍、平均セル径
37μm、予備発泡粒子は発泡倍率20.9倍、平均セ
ル径78μm、連泡率17.9%であり、計算により求
めたαmax=7.72[kg/cm2/μm]であった。
Example 5 Examples 3 and 4 were repeated except that the amount of talc added was changed to 1.0 part.
In the same manner as described above, low-magnification expanded particles and pre-expanded particles were produced. The obtained non-crosslinked polyethylene resin pellets had a softening temperature of 102 ° C and a melting point of 120 ° C. The obtained low-expanded foamed particles had an expansion ratio of 3.4 times and an average cell diameter of 37 μm, and the pre-expanded particles had an expansion ratio of 20.9 times, an average cell diameter of 78 μm and an open cell ratio of 17.9%, and were calculated. α max = 7.72 [kg / cm 2 / μm].

【0072】比較例1 低倍率発泡粒子を製造する際に使用する円形オリフィス
を、直径4φ×5L(L/D=1.25)とした以外は
実施例5と同様にして低倍率発泡粒子および予備発泡粒
子を製造した。えられた低倍率発泡粒子は発泡倍率3.
6倍、平均セル径26μm、予備発泡粒子は発泡倍率2
3.4倍、平均セル径63μmであったが、連泡率2
8.2%であり、良好な予備発泡粒子とはいえないもの
であった。また、計算されたαmax=12.42[kg
/cm2/μm]であった。
Comparative Example 1 The same procedure as in Example 5 was repeated except that the circular orifice used for producing the low-magnification expanded particles was 4φ × 5 L (L / D = 1.25). Pre-expanded particles were produced. The obtained low-expansion foamed particles have an expansion ratio of 3.
6 times, average cell diameter 26 μm, pre-expanded particles 2
It was 3.4 times and the average cell diameter was 63 μm.
8.2%, which was not a good pre-expanded particle. Also, the calculated α max = 12.42 [kg
/ Cm 2 / μm].

【0073】比較例2 実施例3においてえられた予備発泡粒子(発泡倍率2
3.4倍、平均セル径174μm、連泡率16.8%)
を原料として、水蒸気圧を0.8kg/cm2G(≒1
16℃)として、再度の加熱体積膨脹を実施した。えら
れた予備発泡粒子は発泡倍率36.9倍、平均セル径3
64μmであったが、連泡率50.7%であり、良好な
予備発泡粒子とはいえないものであった。また、計算に
より求めたαmax=78.08[kg/cm2/μm]で
あった。
Comparative Example 2 The pre-expanded particles obtained in Example 3 (expansion ratio 2
(3.4 times, average cell diameter 174 μm, open cell rate 16.8%)
And the steam pressure is 0.8 kg / cm 2 G (G1
16 ° C.) and another heating volume expansion was performed. The obtained pre-expanded particles had an expansion ratio of 36.9 times and an average cell diameter of 3
Although it was 64 μm, the open cell ratio was 50.7%, and it could not be said to be good pre-expanded particles. Further, α max = 78.08 [kg / cm 2 / μm] obtained by calculation.

【0074】図1に各実施例、比較例でえられた予備発
泡粒子の連泡率と計算により求めたαmaxとの相関関係
について示す。αmaxと予備発泡粒子の連泡率との間に
は強い正の相関関係があり、連泡率20%以下の予備発
泡粒子をうるためには、αmaxを10[kg/cm2/μ
m]以下とする必要があることがわかる。
FIG. 1 shows the correlation between the open cell ratio of the pre-expanded particles obtained in each Example and Comparative Example and α max obtained by calculation. There is a strong positive correlation between α max and the open cell rate of the pre-expanded particles. To obtain pre-expanded particles having an open cell rate of 20% or less, α max is set to 10 [kg / cm 2 / μ].
m] or less.

【0075】[0075]

【発明の効果】本発明によると、従来のブタンなどの脂
肪族炭化水素やハロゲン化炭化水素などの揮発性有機発
泡剤、および二酸化炭素などの発泡剤を使用せずとも、
独立気泡率が高く、倍率バラツキの少ない、無架橋ポリ
エチレン系樹脂予備発泡粒子がえられる。また、ブタン
などの可燃性ガスを使用しないので、火災・爆発の危険
がなく、フロンなどのハロゲン化炭化水素を使用しない
ので、オゾン層破壊や毒性の心配がなく、二酸化炭素な
どを使用しないので地球温暖化などの地球環境の破壊の
おそれがない。さらに、前記発泡剤と異なり、空気など
のチッ素含有無機ガスおよび水だけで無架橋ポリエチレ
ン系樹脂粒子を高発泡化できるので設備費・変動費など
が大幅に削減でき、経済性の面でも有利である。
According to the present invention, a volatile organic blowing agent such as a conventional aliphatic hydrocarbon such as butane or a halogenated hydrocarbon, and a blowing agent such as carbon dioxide are not used.
Non-crosslinked polyethylene resin pre-expanded particles having a high closed cell ratio and a small variation in magnification can be obtained. In addition, since flammable gas such as butane is not used, there is no danger of fire or explosion.Halogenated hydrocarbons such as chlorofluorocarbons are not used. There is no fear of destruction of the global environment such as global warming. Further, unlike the foaming agent, the non-crosslinked polyethylene resin particles can be highly foamed with only a nitrogen-containing inorganic gas such as air and water, so that equipment costs, variable costs, and the like can be significantly reduced, which is also advantageous in terms of economy. It is.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、各実施例、比較例でえられた予備発泡
粒子の連泡率と計算により求めたαmaxとの相関関係を
示すグラフである。
FIG. 1 is a graph showing the correlation between the open cell ratio of pre-expanded particles obtained in each of Examples and Comparative Examples and α max obtained by calculation.

【図2】図2は、無架橋ポリエチレン系樹脂として三井
石油化学工業(株)製「ウルトゼックス2022L」
(密度0.920g/cm3)を用い、加熱直前の発泡
粒子内圧5[atm(abs)]、加熱体積膨張を0.
8kg/cm2Gの水蒸気(≒116℃)を用いて行な
ったばあいに、αmaxが10[kg/cm2/μm]とな
る低倍率発泡粒子の発泡倍率およびセル径の関係を示す
グラフである。
FIG. 2 is an illustration of “Ultzex 2022L” manufactured by Mitsui Petrochemical Industries, Ltd. as a non-crosslinked polyethylene resin.
(Density 0.920 g / cm 3 ), the internal pressure of the expanded beads immediately before heating was 5 [atm (abs)], and the heating volume expansion was 0.1 mm.
A graph showing the relationship between the expansion ratio and cell diameter of low-expansion expanded particles having an α max of 10 [kg / cm 2 / μm] when performed using 8 kg / cm 2 G steam (G116 ° C.). It is.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 無架橋ポリエチレン系樹脂粒子を密閉容
器内で水系分散媒に分散させ、ついでチッ素含有無機ガ
スを密閉容器内に導入して密閉容器内の圧力を0.1〜
30kg/cm2Gとしたのち、無架橋ポリエチレン系
樹脂粒子の軟化温度以上の温度に加熱し、オリフィスを
介して密閉容器の内圧よりも低圧の雰囲気中に放出させ
て低倍率発泡粒子をえたのち、該低倍率発泡粒子に発泡
能を付与し、加熱体積膨張させることにより、予備発泡
粒子を製造する方法であって、加熱体積膨張中に発泡粒
子の単位セル膜厚あたりにはたらく周応力の最大値α
maxを10[kg/cm2/μm]以下にすることを特徴
とする無架橋ポリエチレン系樹脂予備発泡粒子の製造方
法。
A non-crosslinked polyethylene resin particle is dispersed in an aqueous dispersion medium in a closed container, and a nitrogen-containing inorganic gas is introduced into the closed container to reduce the pressure in the closed container to 0.1 to 1.
After heating to a temperature equal to or higher than the softening temperature of the non-crosslinked polyethylene resin particles after releasing to 30 kg / cm 2 G, the non-crosslinked polyethylene resin particles are discharged through an orifice into an atmosphere at a pressure lower than the internal pressure of the closed container to obtain low magnification expanded particles. A method of producing pre-expanded particles by imparting foaming ability to the low-magnification expanded particles and expanding the volume by heating, wherein the maximum of the circumferential stress acting per unit cell film thickness of the expanded particles during the heating volume expansion. Value α
A method for producing non-crosslinked polyethylene resin pre-expanded particles, wherein max is 10 [kg / cm 2 / μm] or less.
【請求項2】 低倍率発泡粒子の製造時に用いるオリフ
ィスが円形であり、その直径Dと長さLとの比L/Dが
1.5以上である請求項1記載の無架橋ポリエチレン系
樹脂予備発泡粒子の製造方法。
2. The non-crosslinked polyethylene resin according to claim 1, wherein the orifice used for producing the low-magnification expanded particles has a circular shape, and the ratio L / D of the diameter D to the length L is 1.5 or more. A method for producing expanded particles.
JP9042128A 1997-02-26 1997-02-26 Manufacture of non-crosslinked polyethylene resin prefoamed beads Pending JPH10237211A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9042128A JPH10237211A (en) 1997-02-26 1997-02-26 Manufacture of non-crosslinked polyethylene resin prefoamed beads

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9042128A JPH10237211A (en) 1997-02-26 1997-02-26 Manufacture of non-crosslinked polyethylene resin prefoamed beads

Publications (1)

Publication Number Publication Date
JPH10237211A true JPH10237211A (en) 1998-09-08

Family

ID=12627313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9042128A Pending JPH10237211A (en) 1997-02-26 1997-02-26 Manufacture of non-crosslinked polyethylene resin prefoamed beads

Country Status (1)

Country Link
JP (1) JPH10237211A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012121163A1 (en) 2011-03-08 2012-09-13 株式会社カネカ Polyethylene resin foam particles, polyethylene resin in-mold foam molded body, and method for producing polyethylene resin foam particles
WO2013031745A1 (en) * 2011-08-29 2013-03-07 株式会社カネカ Polyethylene resin foamed particles and molded articles thereof
CN112959590A (en) * 2021-02-09 2021-06-15 苏州申赛新材料有限公司 Foaming method capable of accurately controlling foaming ratio

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012121163A1 (en) 2011-03-08 2012-09-13 株式会社カネカ Polyethylene resin foam particles, polyethylene resin in-mold foam molded body, and method for producing polyethylene resin foam particles
US9309384B2 (en) 2011-03-08 2016-04-12 Kaneka Corporation Polyethylene resin foamed particles, polyethylene resin in-mold foam molded article, and method for producing polyethylene resin foamed particles
WO2013031745A1 (en) * 2011-08-29 2013-03-07 株式会社カネカ Polyethylene resin foamed particles and molded articles thereof
CN112959590A (en) * 2021-02-09 2021-06-15 苏州申赛新材料有限公司 Foaming method capable of accurately controlling foaming ratio

Similar Documents

Publication Publication Date Title
US4436840A (en) Process for producing pre-foamed particles of polyolefin resin
US6130266A (en) Pre-expanded particles of propylene resin, process for preparing the same and flow-restricting device
CN103249537A (en) Process for producing molded body of expanded polyolefin resin particles, and molded body of expanded polyolefin resin particles
JPH0686544B2 (en) Non-crosslinked linear low density polyethylene pre-expanded particles and molding method thereof
CN107057303A (en) A kind of blending and modifying aromatic polyester microcellular foam material and preparation method thereof
KR100258229B1 (en) Pre-expanded polyethlene beads and process for the production thereof
JP2000017079A (en) Expanded particle of uncrosslinked polyethylenic resin and its molding
US6166096A (en) Pre-expanded particles of polypropylene resin, process for producing the same and process for producing in-mold foamed articles therefrom
JP5253119B2 (en) Method for producing thermoplastic resin expanded particles
JPS6010047B2 (en) Non-crosslinked linear low density polyethylene pre-expanded particles and method for producing the same
JPH11209502A (en) Polypropylene-based resin preexpanded particle and production of polypropylene-based resin in-mold expansion molded product using the same
JPH10237211A (en) Manufacture of non-crosslinked polyethylene resin prefoamed beads
JPH10204203A (en) Production of prefoamed polyethylene-based resin particles
US5430069A (en) Pre-expanded particles of polyethylene resin
JP2011084593A (en) Method for producing styrene-modified polyethylene-based resin preliminary foamed particles
WO2009157374A1 (en) Pre-foamed particles of styrene modified polyethylene resin and foaming molded product formed of the pre-foamed particles of styrene modified polyethylene resin
JP4863542B2 (en) Method for producing polyolefin resin pre-expanded particles
JP2001151928A (en) Polypropylenic resin expanded particle for molding
JP2002248645A (en) Method for manufacturing thermoplastic resin foamed small piece molded object
JPH07116314B2 (en) Method for producing foamed polymer molded article
JPS62177038A (en) Production of pre-expanded particle of thermoplastic resin
JP3247000B2 (en) Method for producing foam
JP2011084610A (en) Polypropylene-based resin in-mold expansion molded product
JP2000226466A (en) Propylene based resin prefoamed particle and its production
JP2004238433A (en) Styrene-olefin resin mixture foamable particle and method for producing the same, and styrene-olefin resin mixture foamed molding