JPH10233520A - Method and device for manufacturing thin-film solar cell - Google Patents

Method and device for manufacturing thin-film solar cell

Info

Publication number
JPH10233520A
JPH10233520A JP9034799A JP3479997A JPH10233520A JP H10233520 A JPH10233520 A JP H10233520A JP 9034799 A JP9034799 A JP 9034799A JP 3479997 A JP3479997 A JP 3479997A JP H10233520 A JPH10233520 A JP H10233520A
Authority
JP
Japan
Prior art keywords
solar cell
film
chamber
heater
thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9034799A
Other languages
Japanese (ja)
Other versions
JP3531398B2 (en
Inventor
Shinji Fujikake
伸二 藤掛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP03479997A priority Critical patent/JP3531398B2/en
Publication of JPH10233520A publication Critical patent/JPH10233520A/en
Application granted granted Critical
Publication of JP3531398B2 publication Critical patent/JP3531398B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method and device for manufacturing a thin-film solar cell wherein a thin-film solar cell of high photoelectric conversion efficiency is manufactured at high operation rate. SOLUTION: A plurality of film-forming chambers comprising a reaction chamber 22 where film-forming reaction is performed and a heater chamber 32 provided with a heater 31 are provided. While, in the film-forming camber, a film substrate 1 of long size is step-transported, a thin-film which constitutes a thin-film solar cell is formed on a substrate 1, and the openings of a reaction chamber 22 and heater chamber 32 are sealed up with the substrate in between in film-forming. Here, the opening of the heater chamber 32 is covered with a shielding member 3p. By introducing hydrogen gas or material gas of film into the heater chamber 32, temperature control for the substrate 1 is performed. A material gas introduction opening 23, valves 41 and 42, and a vacuum pump 51 are provided.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、可とう性基板上に
アモルファスシリコン等の光電変換材料を主材料とした
光電変換層を形成してなる薄膜太陽電池の製造装置およ
び製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus and a method for manufacturing a thin-film solar cell in which a photoelectric conversion layer mainly composed of a photoelectric conversion material such as amorphous silicon is formed on a flexible substrate.

【0002】[0002]

【従来の技術】近年、薄膜光電変換装置として代表的
な、アモルファスシリコン(以下a-Siと記す)、a-Si合
金などのa-Si系材料を用いた薄膜太陽電池が注目されて
いる。薄膜太陽電池は、基板上に少なくとも第1の電極
層、光電変換層および第2の電極層の3層の薄膜が積層
されてなる薄膜太陽電池素子(またはセル)を有してい
る。薄膜太陽電池においては、大量生産によるコストダ
ウンが最大の課題となっており、単位時間当たりの製造
量の大幅な向上が望まれている。
2. Description of the Related Art In recent years, a thin-film solar cell using an a-Si-based material such as amorphous silicon (hereinafter referred to as a-Si) or an a-Si alloy, which is a typical thin-film photoelectric conversion device, has attracted attention. A thin-film solar cell has a thin-film solar cell element (or cell) in which at least three thin films of a first electrode layer, a photoelectric conversion layer, and a second electrode layer are stacked on a substrate. In thin-film solar cells, cost reduction by mass production is the biggest issue, and a significant increase in production per unit time is desired.

【0003】通常、a-Si薄膜太陽電池の量産性はa-Si系
薄膜の成膜工程に律速されている。ガラス等の剛性の高
い基板を用いた場合、基板を比較的熱容量の大きなトレ
ーに装着してロードロック式の製造装置で成膜する必要
があり、1)基板のトレーへの着脱、2)基板およびト
レーの加熱、3)ロードロック室の大気と真空の往復等
に起因して量産性の大幅な向上は困難である。量産性の
向上のため、可とう性のプラスチックフィルムやステン
レスフィルムを基板として用いる薄膜太陽電池の製造装
置がいくつか提案されている。そのひとつが、Y.Ichika
waらにより”IEEE 1st World Conference on Photovolt
aic Energy Conversion ”(1994),441〜444 頁に発表さ
れているステッピングロール方式の薄膜太陽電池の製造
装置である。
Usually, the mass productivity of a-Si thin film solar cells is limited by the process of forming an a-Si thin film. When a rigid substrate such as glass is used, it is necessary to mount the substrate on a tray having a relatively large heat capacity and form a film with a load-lock type manufacturing apparatus. It is difficult to greatly improve mass productivity due to heating of the tray and 3) reciprocation between the atmosphere and vacuum in the load lock chamber. In order to improve mass productivity, several thin-film solar cell manufacturing apparatuses using a flexible plastic film or a stainless steel film as a substrate have been proposed. One of them is Y.Ichika
"IEEE 1st World Conference on Photovolt"
aic Energy Conversion "(1994), pp. 441-444.

【0004】図5はステッピングロール方式の薄膜太陽
電池の製造装置の模式断面図である。製造装置は複数の
成膜室から構成されており、送りロール11から送られ
た基板1は、複数の成膜室Rを通り薄膜を成膜、積層さ
れ、巻き取りロール12に巻き取られる。a-Siのみを成
膜する場合でもp層、i層およびn層の3成膜室が必要
である。各成膜室の基板1より上側はヒータ31を内蔵
する昇降可能なヒータ室32であり、下側は薄膜成膜の
ための反応室22である。ヒータ室32と反応室22の
開口部はOリングを介して重ね合わせられる。反応室2
2にはスパッタ用あるいはプラズマCVD用等の電極2
1が設けられており、電極21は電源Wに接続されてい
る。ヒータ室32が上昇して開いているときは基板搬送
が可能であり、ヒータ室32が下降して成膜室Rが閉じ
ているときは成膜室は他の成膜室とは独立にガス圧を制
御できる気密状態であり成膜が可能である。成膜室閉→
ガス導入→圧力コントロール→成膜→ガス排気→成膜室
開→基板搬送からなる1ステップを組み合わせたシーケ
ンスとして、成膜中はガスの相互拡散がない状態で多層
膜を順次積層することが可能である。
FIG. 5 is a schematic sectional view of an apparatus for manufacturing a thin film solar cell of the stepping roll type. The manufacturing apparatus is composed of a plurality of film forming chambers, and the substrate 1 sent from the feed roll 11 forms a thin film through a plurality of film forming chambers R, is laminated, and is wound up by a winding roll 12. Even when only a-Si is formed, three p-layers, i-layers, and n-layers are required. Above the substrate 1 in each of the film forming chambers is a vertically movable heater chamber 32 containing a heater 31, and below is a reaction chamber 22 for forming a thin film. The opening of the heater chamber 32 and the opening of the reaction chamber 22 are overlapped via an O-ring. Reaction chamber 2
2 is an electrode 2 for sputtering or plasma CVD.
1 is provided, and the electrode 21 is connected to the power supply W. When the heater chamber 32 is raised and opened, the substrate can be transferred. When the heater chamber 32 is lowered and the film forming chamber R is closed, the film forming chamber is independent of other film forming chambers. It is in an airtight state where the pressure can be controlled, and film formation is possible. Deposition chamber closed →
Multi-layers can be sequentially stacked without any mutual diffusion of gas during film formation as a single step sequence consisting of gas introduction → pressure control → film formation → gas exhaust → film formation chamber opening → substrate transfer. It is.

【0005】例えば、a-Si薄膜太陽電池の成膜時には、
通常、ヒータ温度は150 〜300 ℃である。このような高
温になったヒータで直接成膜室をシールすると、1)フ
ッ素ゴム等のシール用のOリングがダメージを受ける、
2)ヒータ自身が熱と力の相互作用により変形するとい
った問題がある。その対策のため、成膜室は次の様な構
造とされていた。図6は従来のステッピングロール方式
の薄膜太陽電池の製造装置の成膜室の模式断面図であ
る。成膜室の基板1より下側は反応室22であり上側は
ヒータ室32である。反応室22は原料ガス(a-Siの場
合は、水素ガスとシランガスの混合ガスであり、スパッ
タの場合は雰囲気ガスである)が送り込まれるガス導入
口23と原料ガスを吹き出す孔を多数有するRF電極2
1を備えており、ガス圧はバルブ41と真空ポンプ51
によって制御される。反応室22の開口周縁部にはOリ
ング24が置かれ、ヒータ室32の下降時にその開口周
縁部と基板1を挟み、成膜室はシールされる。ヒータ室
32はヒータ31を囲み、その周囲には冷却パイプ33
が取り付けてある。
For example, when forming an a-Si thin film solar cell,
Usually, the heater temperature is 150-300 ° C. If the film forming chamber is directly sealed with such a high temperature heater, 1) the sealing O-ring such as fluoro rubber is damaged.
2) There is a problem that the heater itself is deformed by the interaction between heat and force. As a countermeasure, the film forming chamber has the following structure. FIG. 6 is a schematic sectional view of a film forming chamber of a conventional apparatus for manufacturing a thin film solar cell of a stepping roll system. The lower part of the film forming chamber than the substrate 1 is the reaction chamber 22 and the upper part is the heater chamber 32. The reaction chamber 22 has a gas inlet 23 into which a source gas (a mixed gas of hydrogen gas and silane gas in the case of a-Si, and an atmospheric gas in the case of sputtering) and an RF having a large number of holes for blowing the source gas. Electrode 2
The gas pressure is controlled by a valve 41 and a vacuum pump 51.
Is controlled by An O-ring 24 is placed on the periphery of the opening of the reaction chamber 22, and when the heater chamber 32 is lowered, the film formation chamber is sealed with the periphery of the opening and the substrate 1 interposed therebetween. The heater chamber 32 surrounds the heater 31, and a cooling pipe 33 surrounds the heater 31.
Is attached.

【0006】フィルム基板1がSCAF構造薄膜太陽電池
(薄膜太陽電池の異なる極性の電極と基板の反対側の個
別電極とをそれぞれ基板に開けられた孔の内壁面で導通
させることによって、薄膜太陽電池の直列接続が形成さ
れている。SCAFはSeries-Connection through Appertur
es formed on Film の略称であり、特開平6−3429
24号公報に開示されている)のような基板に孔の開け
られた構造をとる場合、孔を通過してヒータ室32内に
滞留した原料ガスが反応室32に拡散してきて、汚染源
となる問題がある。これを避けるためにフレキシブルな
配管34を真空ポンプ5に接続しバイパスラインとして
ヒータ室22から反応室32へガスが流れないようにし
ていた。
[0006] The film substrate 1 is connected to the SCAF-structured thin-film solar cell (an electrode of different polarity of the thin-film solar cell and an individual electrode on the opposite side of the substrate are electrically connected to each other on the inner wall surface of the hole formed in the substrate. SCAF stands for Series-Connection through Appertur.
es formed on Film.
(Disclosed in Japanese Patent Application Laid-Open No. 24 (1999)), the source gas passing through the hole and remaining in the heater chamber 32 diffuses into the reaction chamber 32 and becomes a contamination source. There's a problem. In order to avoid this, a flexible pipe 34 is connected to the vacuum pump 5 to prevent gas from flowing from the heater chamber 22 to the reaction chamber 32 as a bypass line.

【0007】[0007]

【発明が解決しようとする課題】ステッピングロール方
式の製造装置はロールの着脱時に成膜室内部を大気に晒
さなければならない。その際に成膜室内壁に吸着された
水分は、成膜時に放出され、不純物(酸素)としてデバ
イスの特性を低下させる原因となる。その対策として、
真空引き後に短時間で水分が除去できるように反応室内
部はなるべく高温にできる構造になっており、さらに、
ロールの装着直後にプレデポジションを行って成膜装置
内壁にa-Siの被膜を形成することにより、装置内壁から
の水分の放出を抑制していた。一方、ヒータ室はOリン
グの熱損傷を防止するため100 ℃以下に冷却していた。
すなわち、ヒータ室壁はコールドウオールになってお
り、またそのため成膜時にa-Si膜が付着することはな
い。従って、ヒータ室内壁からは長期にわたって水分が
離脱することになり、SCAF構造薄膜太陽電池のような孔
の開いた基板に成膜する場合、孔を通っての水分の拡散
が薄膜太陽電池の特性を低下させる原因となっていた。
In a stepping roll type manufacturing apparatus, the inside of a film forming chamber must be exposed to the atmosphere when the roll is attached or detached. At this time, the moisture adsorbed on the inner wall of the film formation chamber is released at the time of film formation, and causes impurities (oxygen) to degrade device characteristics. As a countermeasure,
The inside of the reaction chamber is designed to be as hot as possible so that moisture can be removed in a short time after evacuation.
Pre-deposition was performed immediately after the roll was mounted to form an a-Si coating on the inner wall of the film forming apparatus, thereby suppressing the release of moisture from the inner wall of the apparatus. On the other hand, the heater chamber was cooled to 100 ° C. or less to prevent thermal damage to the O-ring.
That is, the wall of the heater chamber is a cold wall, so that the a-Si film does not adhere during the film formation. Therefore, moisture will be released from the inner wall of the heater for a long time, and when a film is formed on a substrate with a hole such as a SCAF thin film solar cell, the diffusion of the moisture through the hole is a characteristic of the thin film solar cell. Was causing the decrease.

【0008】上記の問題点に鑑み、本発明の目的は、成
膜室壁からの水分の放出が少なく、光電変換効率の安定
までのステップ数(成膜回数)が少なく、光電変換効率
の高い薄膜太陽電池を、稼働率高く製造できる薄膜太陽
電池の製造装置および製造方法を提供することにある。
In view of the above problems, it is an object of the present invention to reduce the amount of water released from the film forming chamber wall, to reduce the number of steps (the number of times of film formation) until the photoelectric conversion efficiency is stabilized, and to increase the photoelectric conversion efficiency. An object of the present invention is to provide an apparatus and a method for manufacturing a thin-film solar cell capable of manufacturing a thin-film solar cell at a high operation rate.

【0009】[0009]

【課題を解決するための手段】上記の目的を達成するた
めに、成膜反応が行われる反応室とヒータを有するヒー
タ室からなる成膜室を複数有し、前記成膜室を長尺のフ
ィルム基板をステップ搬送しながら、前記基板上に薄膜
太陽電池を構成する薄膜を成膜し、前記反応室と前記ヒ
ータ室の開口部は成膜時には前記基板を挟んで密封され
る薄膜太陽電池の製造装置において、前記ヒータ室の開
口部を遮蔽部材により覆うこととする。
Means for Solving the Problems In order to achieve the above object, there are provided a plurality of film forming chambers including a reaction chamber in which a film forming reaction is performed and a heater chamber having a heater. While step-transporting a film substrate, a thin film constituting a thin-film solar cell is formed on the substrate, and the openings of the reaction chamber and the heater chamber are sealed with the substrate therebetween during film formation. In the manufacturing apparatus, the opening of the heater chamber is covered with a shielding member.

【0010】前記遮蔽部材は金属材料からなる薄板また
は箔、あるいは耐熱性高分子材料からなる薄板またはフ
ィルムであると良い。前記金属材料はアルミニウムまた
はステンレス鋼であると良い。前記耐熱性高分子材料は
ポリイミドまたはアラミドであると良い。前記遮蔽部材
の厚さは0.01ないし2mmであると良い。
The shielding member is preferably a thin plate or foil made of a metal material, or a thin plate or film made of a heat-resistant polymer material. The metal material is preferably aluminum or stainless steel. The heat-resistant polymer material is preferably polyimide or aramid. The thickness of the shielding member is preferably 0.01 to 2 mm.

【0011】前記遮蔽部材の成膜室側表面は凹凸処理が
施されていると良い。前記凹凸処理はサンドブラストで
あると良い。前記遮蔽部材は前記ヒータに密着している
と良い。前記遮蔽部材は前記ヒータと平行に設置されて
おり、前記ヒータ室にはガス導入口およびバルブを介し
て真空ポンプに接続されるガス排出口とが設けられてお
り、前記ヒータ室内の圧力は前記反応室内の圧力とは独
立して制御できると良い。
The surface of the shielding member on the film forming chamber side is preferably subjected to an unevenness treatment. The unevenness treatment is preferably sand blasting. The shielding member may be in close contact with the heater. The shielding member is installed in parallel with the heater, the heater chamber is provided with a gas inlet and a gas outlet connected to a vacuum pump via a valve, and the pressure in the heater chamber is It is desirable that the pressure can be controlled independently of the pressure in the reaction chamber.

【0012】前記距離は0.5ないし10mmであると良
い。前記遮蔽部材はアルミニウム、銀または金等からな
る高反射率コーティングが施されていると良い。前記高
反射率コーティングにはさらに二酸化ケイ素または窒化
ケイ素からなる高透過率薄膜が形成されていると良い。
Preferably, the distance is 0.5 to 10 mm. The shielding member is preferably provided with a high reflectance coating made of aluminum, silver, gold, or the like. It is preferable that a high transmittance thin film made of silicon dioxide or silicon nitride is further formed on the high reflectance coating.

【0013】上記の薄膜太陽電池の製造装置を用いる太
陽電池の製造方法において、前記成膜室を大気開放した
後は、前記遮蔽部材表面に各成膜室毎に、成膜室固有の
薄膜を成膜した後、太陽電池を構成する薄膜を成膜する
こととする。上記の薄膜太陽電池の製造装置を用いる太
陽電池の製造方法において、前記ヒータ室に導入される
ガスを水素ガスまたは成膜に用いる原料ガスとする。
In the method of manufacturing a solar cell using the above-described apparatus for manufacturing a thin film solar cell, after the film forming chamber is opened to the atmosphere, a thin film unique to the film forming chamber is provided on the surface of the shielding member for each film forming chamber. After the film formation, a thin film forming a solar cell is formed. In the method for manufacturing a solar cell using the above-described apparatus for manufacturing a thin film solar cell, the gas introduced into the heater chamber is a hydrogen gas or a source gas used for film formation.

【0014】上記の薄膜太陽電池の製造装置を用いる太
陽電池の製造方法において、前記ヒータ室内の圧力を制
御することにより、基板温度を調節することとする。前
記ヒータ室内の圧力は0.1 ないし100Pa であると良い。
本発明によれば、上記の遮蔽部材は反応室をヒータ室か
ら遮蔽しているので、従来あったヒータ室壁からの水分
の放出は遮られており、水分に起因する光電変換効率の
低下は生じないことが期待できる。また、SCAF構造太陽
電池のような孔の開いた基板も孔のない基板と同様に装
着することができる。
In the method of manufacturing a solar cell using the above-described apparatus for manufacturing a thin-film solar cell, the substrate temperature is adjusted by controlling the pressure in the heater chamber. The pressure in the heater chamber is preferably 0.1 to 100 Pa.
According to the present invention, since the above-described shielding member shields the reaction chamber from the heater chamber, the conventional release of moisture from the heater chamber wall is blocked, and the decrease in photoelectric conversion efficiency due to moisture is prevented. It can be expected that it will not occur. Also, a substrate having a hole such as a SCAF solar cell can be mounted in the same manner as a substrate having no hole.

【0015】また遮蔽部材は薄く、ヒータに密着してい
る場合もまたは離れている場合でも、このときはヒータ
室の圧力制御により遮蔽部材の温度制御を行い、遮蔽部
材自身をほぼ全面にわたってヒータ温度と同程度に加熱
することができるため、ロール装着後の遮蔽部材からの
水分放出は初期のみで長期にわたることはない。従っ
て、製造装置の稼働率は高いことを特徴とするが期待で
きる。
In addition, the temperature of the shield member is controlled by controlling the pressure of the heater chamber, and the temperature of the shield member is controlled over substantially the entire surface of the shield member, regardless of whether the shield member is in close contact with or away from the heater. Since the heating can be performed to the same extent as that described above, the release of moisture from the shielding member after the roll is attached is only in the initial stage and does not last for a long time. Therefore, although the operation rate of the manufacturing apparatus is characterized by being high, it can be expected.

【0016】また、遮蔽部材とヒータを離した場合に
は、遮蔽部材の赤外線の反射率を高めて、ヒータ室の水
素ガスを主とした熱容量の大きいガスの圧力によって遮
蔽部材の温度制御を幅広く素早く行うことが出来、製造
装置の稼働率の向上が期待できる。また、遮蔽部材の表
面を粗らしてあり、成膜された薄膜の剥離は起こらず、
太陽電池の歩留りは高いことが期待できる。
Further, when the shield member and the heater are separated, the infrared reflectance of the shield member is increased, and the temperature control of the shield member is broadly controlled by the pressure of the gas having a large heat capacity, mainly hydrogen gas, in the heater chamber. It can be performed quickly, and an improvement in the operation rate of the manufacturing apparatus can be expected. In addition, the surface of the shielding member is roughened, and the peeling of the formed thin film does not occur,
The yield of solar cells can be expected to be high.

【0017】[0017]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

実施例1 図1は本発明に係る実施例の薄膜太陽電池の製造装置の
成膜室の模式断面図である。大部分は従来の成膜室(図
5)と同じなので変更点のみを説明する。従来構造との
変更点は2ある。1はヒータ室32の内部が反応室22
と独立するように遮蔽部材3pを取り付けた点であり、
2はバイパスラインであるフレキシブルな配管8に反応
室側のバルブ41とは独立なバルブ42を挿入した点で
ある。
Example 1 FIG. 1 is a schematic cross-sectional view of a film forming chamber of an apparatus for manufacturing a thin-film solar cell according to an example of the present invention. Most of the configuration is the same as that of the conventional film forming chamber (FIG. 5), and thus only the differences will be described. There are two changes from the conventional structure. 1 is that the inside of the heater chamber 32 is the reaction chamber 22.
Is that the shielding member 3p is attached so as to be independent of
Reference numeral 2 denotes a point where a valve 42 independent of the valve 41 on the reaction chamber side is inserted into the flexible pipe 8 serving as a bypass line.

【0018】遮蔽部材3pとしてはアルミニウム箔やス
テンレス箔、あるいはポリイミドやアラミド等の耐熱性
高分子フィルムを用いることができる。またガス放出防
止のために、これらのフィルムに金属膜やSiO2膜等を形
成することは効果がある。遮蔽部材3pのヒータ室周縁
部32a近傍の温度を150 ℃以下に抑えるためには、遮
蔽部材3pの厚さは2mm 以下が必要である。遮蔽部材3
pの厚さが2mm 以下であれば、ヒータからの横方向の熱
伝導は十分小さく遮蔽部材3pの周縁部32a近傍の温
度上昇は抑えられる。この様な熱的効果の面からは厚さ
の下限はないが、基板との接触の多数回繰り返しに耐え
る必要があり、機械的強度または磨耗の面からは0.0
1mmが下限である。
As the shielding member 3p, an aluminum foil, a stainless steel foil, or a heat-resistant polymer film such as polyimide or aramid can be used. It is effective to form a metal film, a SiO 2 film, or the like on these films in order to prevent gas release. In order to keep the temperature of the shielding member 3p in the vicinity of the periphery 32a of the heater chamber at 150 ° C. or less, the thickness of the shielding member 3p needs to be 2 mm or less. Shielding member 3
When the thickness of p is 2 mm or less, the heat conduction in the lateral direction from the heater is sufficiently small, and the temperature rise near the peripheral portion 32a of the shielding member 3p can be suppressed. Although there is no lower limit of the thickness in terms of such a thermal effect, it is necessary to withstand many repetitions of contact with the substrate, and in terms of mechanical strength or abrasion, it is 0.0%.
1 mm is the lower limit.

【0019】また、SCAF構造太陽電池のような孔の開い
た基板に成膜する場合、遮蔽部材表面には孔を通してa-
Si膜が点状に成膜されることになり、場合によって膜が
剥離して太陽電池のピンホール発生の原因になることが
ある。膜剥離を防止するために、遮蔽部材3pの表面にサ
ンドブラストによる処理を施し、凹凸化しておくことは
効果がある。
When a film is formed on a perforated substrate such as a SCAF-structured solar cell, the surface of the shielding member is passed through a-
As a result, the Si film is formed in a dot-like manner, and in some cases, the film is peeled off, which may cause pinholes in the solar cell. In order to prevent film peeling, it is effective to apply sandblasting to the surface of the shielding member 3p to make the surface uneven.

【0020】以下、本実施例の成膜装置におけるa-Si成
膜の手順を簡単に説明する。先ず、ヒータ室32を降下
させ、成膜室をシールし、バルブ42を開けヒータ室3
2に原料ガスを導入する。圧力コントロールバルブ41
を制御して反応室22内の圧力が安定した後、バルブ4
2を閉じ、RF電極21に電力を供給して、基板1の上
にa-Si膜を成膜する。所定の膜厚を成膜した後、RF電
力供給と原料ガス導入を停止し、バルブ42を開けた後
に圧力コントロールバルブ41を全開にして真空引きす
る。成膜時は遮蔽部材3pとバルブ42によりヒータ室
内と反応室内は完全に仕切られ、かつ、遮蔽部材3p自
体ほぼ全面にわたってヒータ31により十分に加熱され
ているのでガス放出を抑制できる。遮蔽部材3pに予め
a-Si被膜をプレデポジションしておくとガス放出をさら
に抑えることが可能である。なお、本実施例では成膜に
原料ガスをヒータ側に導入したが、これはガスの熱伝導
によって遮蔽部材の温度をほぼヒータ温度まで上昇させ
るためである。ヒータ側の空間が真空状態の場合、条件
によっても異なるがヒータと遮蔽部材の温度差は数10℃
〜100 ℃になってしまい、遮蔽部材の温度制御の精度は
低下してしまう。
Hereinafter, a procedure of a-Si film formation in the film forming apparatus of this embodiment will be briefly described. First, the heater chamber 32 is lowered, the film forming chamber is sealed, the valve 42 is opened, and the heater chamber 3 is opened.
2 and a source gas is introduced. Pressure control valve 41
After the pressure in the reaction chamber 22 is stabilized by controlling
2 is closed, power is supplied to the RF electrode 21, and an a-Si film is formed on the substrate 1. After a predetermined film thickness is formed, the RF power supply and the introduction of the source gas are stopped, and after the valve 42 is opened, the pressure control valve 41 is fully opened to evacuate. During film formation, the heater chamber and the reaction chamber are completely separated by the shielding member 3p and the valve 42, and the heater 31 is sufficiently heated over substantially the entire surface of the shielding member 3p itself, so that gas emission can be suppressed. In advance to the shielding member 3p
Pre-deposition of the a-Si coating can further suppress outgassing. In this embodiment, the source gas is introduced to the heater side for the film formation, because the temperature of the shielding member is almost raised to the heater temperature by the heat conduction of the gas. When the space on the heater side is in a vacuum state, the temperature difference between the heater and the shielding member is several tens of degrees Celsius, depending on conditions.
-100 ° C, and the accuracy of the temperature control of the shielding member is reduced.

【0021】本実施例が実際にSCAF太陽電池の特性に及
ぼす効果について説明する。図2は本発明に係る薄膜太
陽電池の製造装置で製造したSCAF構造太陽電池の光電変
換効率の成膜ステップ数依存性のグラフである。SCAF構
造太陽電池のサイズは40cm×80cmである。図2には比較
のため、従来の成膜室により成膜したSCAF構造太陽電池
の場合を付記してある。遮蔽部材を用いプレデポジショ
ンを行った場合を■で、遮蔽部材を用いプレデポジショ
ンを行わなかった場合を白○で、従来の遮蔽部材を用い
ない場合を□で示してある。
The effect of this embodiment on the characteristics of the SCAF solar cell will be described. FIG. 2 is a graph showing the dependence of the photoelectric conversion efficiency of the SCAF-structure solar cell manufactured by the apparatus for manufacturing a thin-film solar cell according to the present invention on the number of deposition steps. The size of the SCAF solar cell is 40cm x 80cm. For comparison, FIG. 2 additionally shows the case of a SCAF-structured solar cell formed by a conventional film forming chamber. The symbol “■” indicates the case where pre-deposition was performed using the shielding member, the symbol “白” indicates the case where pre-deposition was not performed using the shielding member, and the symbol “□” indicates the case where no conventional shielding member was used.

【0022】図2より、遮蔽部材とプレデポジション、
遮蔽部材のみ、遮蔽部材なしの順に、変換効率の立ち上
がり時間が短く、また、安定化した時点での変換効率が
高くなっていることが判る。すなわち、本発明により、
薄膜太陽電池の量産性は向上し、薄膜太陽電池の特性も
向上したことを特徴とするが確認できた。 実施例2 この実施例は遮蔽部材とヒータの間を離し、ヒータ室内
のガス圧力により遮蔽部材表面の温度を、すなわち基板
温度を制御しようとするものである。図3は本発明に係
る他の実施例の薄膜太陽電池の製造装置の成膜室の模式
断面図である。通常のアルミ鋳込みヒータでは熱容量が
大きいために急速昇温および急速降温は非常に困難であ
る。これに対し、遮蔽部材と基板の熱容量は非常に小さ
いので数秒〜数分間程度での急速昇温および急速降温が
可能になる。
From FIG. 2, the shielding member and the pre-deposition,
It can be seen that the rise time of the conversion efficiency is shorter in the order of only the shielding member and the absence of the shielding member, and the conversion efficiency at the time of stabilization is higher. That is, according to the present invention,
The mass productivity of the thin-film solar cell was improved, and the characteristics of the thin-film solar cell were also improved. Embodiment 2 In this embodiment, the shield member and the heater are separated from each other, and the temperature of the surface of the shield member, that is, the substrate temperature is controlled by the gas pressure in the heater chamber. FIG. 3 is a schematic sectional view of a film forming chamber of a thin-film solar cell manufacturing apparatus according to another embodiment of the present invention. Since the heat capacity of a normal cast aluminum heater is large, it is very difficult to rapidly raise and lower the temperature. On the other hand, since the heat capacity of the shielding member and the substrate is very small, rapid temperature rise and fall in several seconds to several minutes are possible.

【0023】ヒータ室32に反応室22とは別系統のガ
ス導入口35、圧力コントロールバルブ43、真空ポン
プ52を備えたガスラインを設けた。この構成によって
ヒータ室32内のガス圧力を反応室22とは独立に変化
させることが可能である。ヒータ室32内のガス圧力を
変化させたときの遮蔽部材の温度変化を大きくするに
は、1)遮蔽部材とヒータの間に距離(熱ギャップとい
うことにする)をおき熱伝導による温度上昇を避ける、
2)ヒータ側の遮蔽部材面を高反射率にすることにより
ヒータからの熱放射による温度上昇を避ける、の2点が
必要である。
The heater chamber 32 was provided with a gas line provided with a gas inlet 35, a pressure control valve 43, and a vacuum pump 52 of a different system from the reaction chamber 22. With this configuration, the gas pressure in the heater chamber 32 can be changed independently of the reaction chamber 22. In order to increase the temperature change of the shielding member when the gas pressure in the heater chamber 32 is changed, 1) a distance (referred to as a heat gap) is provided between the shielding member and the heater, and the temperature rise due to heat conduction is reduced. avoid,
2) It is necessary to avoid the temperature rise due to heat radiation from the heater by making the surface of the shielding member on the heater side high reflectivity.

【0024】上記熱ギャップは0.5 〜10mm程度が適当で
あった。0.5 mm以下では熱ギャップ(距離)の不均一が
生じ遮蔽部材の温度不均一が大きくなりやすく、10mmよ
り大きいと対流が不規則に生じ温度とその分布が不安定
となる。ヒータの周縁部に固定したスペーサ3bにより
遮蔽部材を緊張させ、面内の熱ギャップを均一に保つこ
とが重要である。
The above-mentioned heat gap is suitably about 0.5 to 10 mm. If it is less than 0.5 mm, the heat gap (distance) becomes non-uniform, and the temperature of the shielding member tends to be non-uniform. If it is more than 10 mm, convection occurs irregularly and the temperature and its distribution become unstable. It is important to keep the in-plane thermal gap uniform by tensioning the shielding member by the spacer 3b fixed to the periphery of the heater.

【0025】高反射率の遮蔽部材としては、アルミニウ
ム箔、あるいはポリイミドやアラミド等の耐熱性フィル
ムにアルミニウム、銀または金などの高反射率の金属薄
膜を蒸着やスパッタリングにより形成したポリイミドや
アラミド等の耐熱性フィルムが有効であった。また、上
記の金属表面上に二酸化ケイ素や窒化ケイ素等の高透過
率材料を保護膜として形成し、多層化しておくと高反射
率の長時間保持ができるようになった。
Examples of the high-reflectance shielding member include polyimide, aramid, and the like formed by depositing or sputtering a high-reflectivity metal thin film of aluminum, silver, or gold on a heat-resistant film of aluminum foil, polyimide, or aramid. The heat-resistant film was effective. Further, when a high transmittance material such as silicon dioxide or silicon nitride is formed on the above metal surface as a protective film, and a multilayer is formed, a high reflectance can be maintained for a long time.

【0026】図4は本発明に係る薄膜太陽電池の製造装
置における基板温度のヒータ室内圧力依存性を示すグラ
フである。遮蔽部材として表面に銀薄膜を形成した厚さ
50μm のポリイミドフィルムを用い、熱ギャップを3mm
とした。基板は厚さ50μm のポリイミドフィルムを用い
た。また、ヒータ室および反応室に導入するガスは、熱
容量の大きい水素ガスとした。反応室内圧力は50Paとし
た。ヒータ温度は280℃とした。
FIG. 4 is a graph showing the dependence of the substrate temperature on the pressure in the heater chamber in the apparatus for manufacturing a thin film solar cell according to the present invention. The thickness of the silver thin film formed on the surface as a shielding member
Using a 50μm polyimide film, the thermal gap is 3mm
And The substrate used was a 50 μm thick polyimide film. The gas introduced into the heater chamber and the reaction chamber was hydrogen gas having a large heat capacity. The pressure in the reaction chamber was 50 Pa. The heater temperature was 280 ° C.

【0027】図4から、ヒータ側圧力を0.1Pa 〜100Pa
の範囲で変化させると、約100 ℃の幅で基板温度を制御
できることが判る。
FIG. 4 shows that the pressure on the heater side is 0.1 Pa to 100 Pa.
It can be seen that the substrate temperature can be controlled in a range of about 100 ° C. by changing the range.

【0028】[0028]

【発明の効果】本発明によれば、成膜反応が行われる反
応室とヒータを有するヒータ室からなる成膜室を複数有
し、前記成膜室を長尺のフィルム基板をステップ搬送し
ながら、前記基板上に薄膜太陽電池を構成する薄膜を成
膜し、前記反応室と前記ヒータ室の開口部は成膜時には
前記基板を挟んで密封される薄膜太陽電池の製造装置に
おいて、前記ヒータ室の開口部を遮蔽部材により覆うこ
ととしたため、従来あったヒータ室壁からの水分の放出
は遮られており、水分に起因する光電変換効率の低下は
生じず、高い歩留りで製造できる、すなわち薄膜太陽電
池の製造装置の課取りは高い。また、SCAF構造太陽電池
のような孔の開いた基板も孔のない基板と同様に、装着
することができる。
According to the present invention, a plurality of film forming chambers each including a reaction chamber in which a film forming reaction is performed and a heater chamber having a heater are provided, and the film forming chamber is transported while a long film substrate is transported step by step. A thin film forming a thin film solar cell is formed on the substrate, and the reaction chamber and the opening of the heater chamber are sealed with the substrate interposed therebetween during film formation. Since the opening of the heater chamber is covered by a shielding member, the conventional discharge of moisture from the heater chamber wall is blocked, the photoelectric conversion efficiency does not decrease due to the moisture, and the production can be performed at a high yield. The burden on solar cell manufacturing equipment is high. In addition, a substrate having a hole such as a SCAF solar cell can be mounted similarly to a substrate having no hole.

【0029】また遮蔽部材は薄く、ヒータに密着してい
る場合もまたは離れている場合でも、このときはヒータ
室の圧力制御により遮蔽部材の温度制御を行い、遮蔽部
材自身をほぼ全面にわたってヒータ温度と同程度に加熱
することができるため、ロール装着後の遮蔽部材からの
水分放出は初期のみで長期にわたることはない。従っ
て、製造装置の稼働率は高い。
In addition, even when the shielding member is thin and is in close contact with or away from the heater, in this case, the temperature of the shielding member is controlled by controlling the pressure of the heater chamber, and the heating temperature of the shielding member itself is almost all over. Since the heating can be performed to the same extent as that described above, the release of moisture from the shielding member after the roll is attached is only in the initial stage and does not last for a long time. Therefore, the operation rate of the manufacturing apparatus is high.

【0030】また、遮蔽部材とヒータを離した場合に
は、遮蔽部材の赤外線の反射率を高めて、ヒータ室の水
素ガスを主とした熱容量の大きいガスの圧力によって遮
蔽部材の温度制御を幅広く素早く行うことが出来、製造
装置の稼働率は向上する。また、遮蔽部材の表面を粗ら
してあり、成膜された薄膜の剥離は起こらず、太陽電池
の歩留りは高くなる。
Further, when the shield member and the heater are separated, the infrared reflectance of the shield member is increased, and the temperature control of the shield member is broadly controlled by the pressure of the gas having a large heat capacity, mainly hydrogen gas, in the heater chamber. It can be done quickly and the operating rate of the manufacturing equipment is improved. Further, the surface of the shielding member is roughened, and the formed thin film does not peel off, and the yield of the solar cell is increased.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る実施例の薄膜太陽電池の製造装置
の成膜室の模式断面図明の一実施例
FIG. 1 is a schematic sectional view showing one embodiment of a film forming chamber of a thin film solar cell manufacturing apparatus according to an embodiment of the present invention.

【図2】本発明に係る薄膜太陽電池の製造装置で製造し
たSCAF構造太陽電池の光電変換効率の成膜ステップ数依
存性のグラフ
FIG. 2 is a graph showing the dependence of the photoelectric conversion efficiency of a SCAF solar cell manufactured by the thin film solar cell manufacturing apparatus according to the present invention on the number of deposition steps.

【図3】本発明に係る他の実施例の薄膜太陽電池の製造
装置の成膜室の模式断面図
FIG. 3 is a schematic cross-sectional view of a film forming chamber of a thin-film solar cell manufacturing apparatus according to another embodiment of the present invention.

【図4】本発明に係る薄膜太陽電池の製造装置における
基板温度のヒータ室内圧力依存性を示すグラフ
FIG. 4 is a graph showing the dependence of the substrate temperature on the pressure in the heater chamber in the apparatus for manufacturing a thin film solar cell according to the present invention.

【図5】ステッピングロール方式の薄膜太陽電池の製造
装置の模式断面図
FIG. 5 is a schematic sectional view of an apparatus for manufacturing a thin-film solar cell using a stepping roll method.

【図6】従来のステッピングロール方式の薄膜太陽電池
の製造装置の成膜室の模式断面図
FIG. 6 is a schematic cross-sectional view of a film forming chamber of a conventional stepping roll type thin film solar cell manufacturing apparatus.

【符号の説明】[Explanation of symbols]

1 基板 11 送りロール 12 巻取りロール 21 RF電極 22 反応室 23 ガス導入口 24 Oリング 31 ヒータ 32 ヒータ室 32a ヒータ室縁 33 冷却パイプ 34 配管 35 ガス導入口 3p 遮蔽部材 3b スペーサ 41 バルブ 42 バルブ 51 ポンプ 52 ポンプ R 成膜室 E 電源 Reference Signs List 1 substrate 11 feed roll 12 take-up roll 21 RF electrode 22 reaction chamber 23 gas inlet 24 O-ring 31 heater 32 heater chamber 32a heater chamber rim 33 cooling pipe 34 pipe 35 gas inlet 3p shielding member 3b spacer 41 valve 42 valve 51 Pump 52 Pump R Deposition chamber E Power supply

Claims (16)

【特許請求の範囲】[Claims] 【請求項1】成膜反応が行われる反応室とヒータを有す
るヒータ室からなる成膜室を複数有し、前記成膜室を長
尺のフィルム基板をステップ搬送しながら、前記基板上
に薄膜太陽電池を構成する薄膜を成膜し、前記反応室と
前記ヒータ室の開口部は成膜時には前記基板を挟んで密
封される薄膜太陽電池の製造装置において、前記ヒータ
室の開口部は遮蔽部材により覆われていることを特徴と
する薄膜太陽電池の製造装置。
An apparatus has a plurality of deposition chambers each comprising a reaction chamber in which a deposition reaction is performed and a heater chamber having a heater, and a thin film is formed on the substrate while step-transporting a long film substrate through the deposition chamber. An apparatus for manufacturing a thin film solar cell, in which a thin film constituting a solar cell is formed and an opening of the reaction chamber and the opening of the heater chamber are hermetically sealed with the substrate therebetween during the film formation, wherein the opening of the heater chamber is a shielding member. An apparatus for manufacturing a thin-film solar cell, comprising:
【請求項2】前記遮蔽部材は金属材料からなる薄板また
は箔、あるいは耐熱性高分子材料からなる薄板またはフ
ィルムであることを特徴とする請求項1に記載の薄膜太
陽電池の製造装置。
2. The apparatus according to claim 1, wherein the shielding member is a thin plate or foil made of a metal material, or a thin plate or film made of a heat-resistant polymer material.
【請求項3】前記金属材料はアルミニウムまたはステン
レス鋼であることを特徴とする請求項2に記載の薄膜太
陽電池の製造装置。
3. The apparatus according to claim 2, wherein the metal material is aluminum or stainless steel.
【請求項4】前記耐熱性高分子材料はポリイミドまたは
アラミドであることを特徴とする請求項2に記載の薄膜
太陽電池の製造装置。
4. The apparatus according to claim 2, wherein the heat-resistant polymer material is polyimide or aramid.
【請求項5】前記遮蔽部材の厚さは0.01ないし2mm
であることを特徴とする請求項1ないし4に記載の薄膜
太陽電池の製造装置。
5. The shielding member has a thickness of 0.01 to 2 mm.
The apparatus for manufacturing a thin-film solar cell according to any one of claims 1 to 4, wherein
【請求項6】前記遮蔽部材の成膜室側表面は凹凸処理が
施されていることを特徴とする請求項1ないし5に記載
の薄膜太陽電池の製造装置。
6. The apparatus for manufacturing a thin-film solar cell according to claim 1, wherein the surface of the shielding member on the side of the film forming chamber is subjected to an unevenness treatment.
【請求項7】前記凹凸処理はサンドブラストであること
を特徴とする請求項6に記載の薄膜太陽電池の製造装
置。
7. The apparatus according to claim 6, wherein the concavo-convex treatment is sand blasting.
【請求項8】前記遮蔽部材は前記ヒータに密着している
ことを特徴とする請求項1ないし7に記載の薄膜太陽電
池の製造装置。
8. The apparatus according to claim 1, wherein the shielding member is in close contact with the heater.
【請求項9】前記遮蔽部材は前記ヒータと平行に設置さ
れており、前記ヒータ室にはガス導入口およびバルブを
介して真空ポンプに接続されるガス排出口とが設けられ
ており、前記ヒータ室内の圧力は前記反応室内の圧力と
は独立して制御できることことを特徴とする請求項1な
いし7に記載の薄膜太陽電池の製造装置。
9. The heater is provided in parallel with the heater, and the heater chamber is provided with a gas inlet and a gas outlet connected to a vacuum pump via a valve. 8. The apparatus according to claim 1, wherein the pressure in the chamber can be controlled independently of the pressure in the reaction chamber.
【請求項10】前記距離は0.5ないし10mmであるこ
とを特徴とする請求項9に記載の薄膜太陽電池の製造装
置。
10. The apparatus according to claim 9, wherein the distance is 0.5 to 10 mm.
【請求項11】前記遮蔽部材はアルミニウム、銀または
金等からなる高反射率コーティングが施されていること
を特徴とする請求項9または10に記載の薄膜太陽電池
の製造装置。
11. An apparatus according to claim 9, wherein said shielding member is provided with a high reflectance coating made of aluminum, silver, gold or the like.
【請求項12】前記高反射率コーティングにはさらに二
酸化ケイ素または窒化ケイ素からなる高透過率薄膜が形
成されていることを特徴とする請求項11に記載の薄膜
太陽電池の製造装置。
12. The apparatus according to claim 11, wherein a high transmittance thin film made of silicon dioxide or silicon nitride is further formed on the high reflectance coating.
【請求項13】請求項1ないし12に記載の薄膜太陽電
池の製造装置を用いる薄膜太陽電池の製造方法におい
て、前記成膜室を大気開放した後は、前記遮蔽部材表面
に各成膜室毎に、成膜室固有の薄膜を成膜した後、薄膜
太陽電池を構成する薄膜を成膜することを特徴とする薄
膜太陽電池の製造方法
13. A method for manufacturing a thin-film solar cell using the apparatus for manufacturing a thin-film solar cell according to claim 1, wherein after the film-forming chamber is opened to the atmosphere, the film-forming chamber is provided on the surface of the shielding member. Forming a thin film unique to a film forming chamber, and then forming a thin film constituting the thin film solar cell.
【請求項14】請求項1ないし13に記載の薄膜太陽電
池の製造装置を用いる薄膜太陽電池の製造方法におい
て、前記ヒータ室に導入されるガスは水素ガスまたは成
膜に用いる原料ガスであることを特徴とする薄膜太陽電
池の製造方法。
14. A method for manufacturing a thin film solar cell using the apparatus for manufacturing a thin film solar cell according to claim 1, wherein the gas introduced into the heater chamber is a hydrogen gas or a raw material gas used for film formation. A method for producing a thin-film solar cell, comprising:
【請求項15】請求項9ないし12に記載の薄膜太陽電
池の製造装置を用いる薄膜太陽電池の製造方法におい
て、前記ヒータ室内の圧力を制御することにより、基板
温度を調節することをことを特徴とする薄膜太陽電池の
製造方法。
15. A method for manufacturing a thin film solar cell using the apparatus for manufacturing a thin film solar cell according to claim 9, wherein a substrate temperature is adjusted by controlling a pressure in the heater chamber. Of manufacturing a thin film solar cell.
【請求項16】前記ヒータ室内の圧力は0.1 ないし100P
a であることを特徴とする請求項15に記載の薄膜太陽
電池の製造方法。
16. The pressure in the heater chamber is 0.1 to 100P.
The method according to claim 15, wherein a.
JP03479997A 1997-02-19 1997-02-19 Apparatus and method for manufacturing thin-film solar cell Expired - Fee Related JP3531398B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03479997A JP3531398B2 (en) 1997-02-19 1997-02-19 Apparatus and method for manufacturing thin-film solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03479997A JP3531398B2 (en) 1997-02-19 1997-02-19 Apparatus and method for manufacturing thin-film solar cell

Publications (2)

Publication Number Publication Date
JPH10233520A true JPH10233520A (en) 1998-09-02
JP3531398B2 JP3531398B2 (en) 2004-05-31

Family

ID=12424301

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03479997A Expired - Fee Related JP3531398B2 (en) 1997-02-19 1997-02-19 Apparatus and method for manufacturing thin-film solar cell

Country Status (1)

Country Link
JP (1) JP3531398B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100995394B1 (en) 2009-02-18 2010-11-19 한국과학기술원 Thin Film Forming Apparatus For Thin Film Solar Cell
JP2012256637A (en) * 2011-06-07 2012-12-27 Philtech Inc Film growth apparatus and manufacturing apparatus of solar cell

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6246515A (en) * 1985-08-26 1987-02-28 Semiconductor Energy Lab Co Ltd Thin film forming method
JPH07221025A (en) * 1994-01-28 1995-08-18 Fuji Electric Co Ltd Manufacture of thin film photoelectric conversion element
JPH08250431A (en) * 1995-01-11 1996-09-27 Fuji Electric Corp Res & Dev Ltd Manufacture of thin film photoelectric conversion element and film forming device used for its method
JPH08293491A (en) * 1995-04-25 1996-11-05 Fuji Electric Corp Res & Dev Ltd Manufacturing apparatus of thin film photoelectric conversion element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6246515A (en) * 1985-08-26 1987-02-28 Semiconductor Energy Lab Co Ltd Thin film forming method
JPH07221025A (en) * 1994-01-28 1995-08-18 Fuji Electric Co Ltd Manufacture of thin film photoelectric conversion element
JPH08250431A (en) * 1995-01-11 1996-09-27 Fuji Electric Corp Res & Dev Ltd Manufacture of thin film photoelectric conversion element and film forming device used for its method
JPH08293491A (en) * 1995-04-25 1996-11-05 Fuji Electric Corp Res & Dev Ltd Manufacturing apparatus of thin film photoelectric conversion element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100995394B1 (en) 2009-02-18 2010-11-19 한국과학기술원 Thin Film Forming Apparatus For Thin Film Solar Cell
JP2012256637A (en) * 2011-06-07 2012-12-27 Philtech Inc Film growth apparatus and manufacturing apparatus of solar cell

Also Published As

Publication number Publication date
JP3531398B2 (en) 2004-05-31

Similar Documents

Publication Publication Date Title
US5399387A (en) Plasma CVD of silicon nitride thin films on large area glass substrates at high deposition rates
EP0608633B1 (en) Method for multilayer CVD processing in a single chamber
US6444277B1 (en) Method for depositing amorphous silicon thin films onto large area glass substrates by chemical vapor deposition at high deposition rates
US6022586A (en) Method and apparatus for forming laminated thin films or layers
TWI625878B (en) Method for hybrid encapsulation of an organic light emitting diode
TW200830942A (en) Contamination reducing liner for inductively coupled chamber
JP4646609B2 (en) Plasma CVD equipment
TW201122151A (en) Hot wire chemical vapor deposition (CVD) inline coating tool
US20060231032A1 (en) Film-forming method and apparatus using plasma CVD
KR20070012508A (en) Method and apparatus of depositing low temperature inorganic films on plastic substrates
US20150380287A1 (en) Method and system for naturally oxidizing a substrate
TW201827640A (en) Temporal atomic layer deposition processing chamber
US5487786A (en) Plasma chemical vapor deposition device capable of suppressing generation of polysilane powder
TWI488313B (en) Thermal management and method for large scale processing of cis and/or cigs based thin films overlying glass substrates
EP2202785A1 (en) Plasma treatment apparatus, plasma treatment method, and semiconductor element
JP3531398B2 (en) Apparatus and method for manufacturing thin-film solar cell
US20030175426A1 (en) Heat treatment apparatus and method for processing substrates
JP4257586B2 (en) Substrate processing method
JP2017101270A (en) Thin film formation apparatus and thin film formation method
JP4218360B2 (en) Heat treatment apparatus and heat treatment method
JP2002093790A (en) Method and device for manufacturing semiconductor device
JP2000299481A (en) Manufacture of thin-film solar battery and degassing processor for solar battery substrate
JP3070567B2 (en) Vertical reduced pressure vapor phase growth apparatus and vapor phase growth method using the same
JPS63119525A (en) Plasma cvd apparatus
JP4161263B2 (en) Thin film forming equipment

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040223

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees