JPH10233145A - Vacuum valve - Google Patents

Vacuum valve

Info

Publication number
JPH10233145A
JPH10233145A JP3208697A JP3208697A JPH10233145A JP H10233145 A JPH10233145 A JP H10233145A JP 3208697 A JP3208697 A JP 3208697A JP 3208697 A JP3208697 A JP 3208697A JP H10233145 A JPH10233145 A JP H10233145A
Authority
JP
Japan
Prior art keywords
contact
fixed
movable
electrode
vacuum valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3208697A
Other languages
Japanese (ja)
Inventor
Toru Kamikawaji
徹 上川路
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP3208697A priority Critical patent/JPH10233145A/en
Publication of JPH10233145A publication Critical patent/JPH10233145A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a vacuum valve such that damage to contact surfaces caused by an arc generated at the input of power can be prevented and, even if it is damaged, a decrease in insulation characteristic can be prevented. SOLUTION: An approximately truncated-cone-shaped projection 12a is formed at the center of the contact surface of the contact 12 of an electrode on one side, and in the center of the contact surface of the contact 11 of an electrode on the other side, a recess 11a is formed into which the projection 12a is fitted when both of the contacts come into contact, with the top surface of the projection 12a making contact with the bottom surface of the recess 11a. The outer periphery of the top surface of the projection 12a is chamfered, and the outer periphery of the entrance of the recess 11a is also chamfered, so that an electric current is carried by way of the top surface of the projection 12a and the bottom surface of the recess 11a. For the contact material of the recess 11a, a material having a higher tensile strength than the contact material of the projection 12a is used, so that even if the contacts are fused together, the fused parts are allowed to remain in the recess 12a, preventing insulation characteristic from decreasing at the gap between the contacts when a circuit is broken and when it is made again.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、真空バルブに関す
る。
[0001] The present invention relates to a vacuum valve.

【0002】[0002]

【従来の技術】真空遮断器に組み込む真空バルブは、約
10-2Pa以下の高真空中で一対の接点を開離することに
より、真空の持つ優れた消弧性、絶縁性を利用して電流
を遮断するものである。
2. Description of the Related Art A vacuum valve incorporated in a vacuum circuit breaker is approximately
By separating a pair of contacts in a high vacuum of 10 -2 Pa or less, the current is interrupted by utilizing the excellent arc-extinguishing and insulating properties of the vacuum.

【0003】図9は、その一例を示す縦断面図で、一般
にセラミックスまたは硝子よりなる絶縁円筒1の両端の
開口部を、固定側端板2及び可動側端板3でそれぞれ密
封して、気密な容器を構成している。
FIG. 9 is a longitudinal sectional view showing an example of this. The openings at both ends of an insulating cylinder 1 generally made of ceramics or glass are sealed with a fixed end plate 2 and a movable end plate 3, respectively, so as to be airtight. A simple container.

【0004】固定側端板2には、固定側通電軸4が貫通
固定され、この固定側通電軸4の先端に固定側電極5が
ろう付されている。固定側電極5と対向して可動側電極
6が、図示しない操作機構に連結された可動側通電軸7
にろう付されている。また、固定側電極5及び可動側電
極6の対向する面には、真空遮断器の用途に応じて種々
の合金材料からなる接点8がそれぞれの電極にろう付さ
れている。
[0004] A fixed-side energized shaft 4 is fixedly penetrated to the fixed-side end plate 2, and a fixed-side electrode 5 is brazed to the tip of the fixed-side energized shaft 4. A movable-side electrode 6 is opposed to the fixed-side electrode 5 and has a movable-side energized shaft 7 connected to an operation mechanism (not shown).
It is brazed to. Further, on the opposing surfaces of the fixed side electrode 5 and the movable side electrode 6, contacts 8 made of various alloy materials are brazed to the respective electrodes according to the use of the vacuum circuit breaker.

【0005】一方、可動側通電軸7と可動側端板3の開
口部がベローズ9で気密にろう付され、これにより絶縁
円筒1の内部の真空を維持して可動側通電軸7を動作さ
せて接点の投入と開極を可能としている。
On the other hand, the opening of the movable energizing shaft 7 and the opening of the movable end plate 3 are air-tightly brazed by a bellows 9, thereby maintaining the vacuum inside the insulating cylinder 1 and operating the movable energizing shaft 7. This allows contact opening and closing.

【0006】また、電流遮断時に接点及び電極から飛散
する金属蒸気や金属溶融片が絶縁円筒1の内面に付着し
て、沿面の絶縁性能が低下する現象を防ぐために、筒状
のシールド10が設けられている。
Further, in order to prevent a phenomenon in which metal vapor or metal splatter scattered from the contacts and electrodes at the time of current interruption adheres to the inner surface of the insulating cylinder 1 and the insulation performance on the creeping surface is deteriorated, a cylindrical shield 10 is provided. Have been.

【0007】[0007]

【発明が解決しようとする課題】このような構成の真空
バルブを組み込んだ真空遮断器で大電流を開閉すると、
開閉条件によっては、その耐電圧性能が低下する場合が
ある。理由は、開閉で発生するアークにより、接点の表
面状態が変化するためである。
When a large current is opened and closed by a vacuum circuit breaker incorporating a vacuum valve having such a structure,
Depending on the switching conditions, the withstand voltage performance may be reduced. The reason is that the surface state of the contact changes due to the arc generated by opening and closing.

【0008】この表面状態が変化する理由は、主に次の
ようなものがある。まず、真空遮断器を投入し、真空バ
ルブの接点を閉じる際には、接点が接触する直前にこの
接点間に印加された電圧により絶縁が破壊して、プレア
ーク(先行放電)が点弧する。
The reasons for the change of the surface state are mainly as follows. First, when the vacuum circuit breaker is turned on and the contacts of the vacuum valve are closed, insulation is broken by the voltage applied between the contacts immediately before the contacts come into contact, and a pre-arc (preceding discharge) is ignited.

【0009】真空バルブの接点近傍を拡大した図10
(a)に示すように、狭い接点間隙で点弧したアーク22
は、拡散が抑えられるので、接点8への注入エネルギー
の密度が高くなり、その表面が溶融する。
FIG. 10 is an enlarged view of the vicinity of the contact point of the vacuum valve.
As shown in (a), an arc 22 fired at a narrow contact gap
Since the diffusion is suppressed, the density of the energy injected into the contact 8 is increased, and the surface is melted.

【0010】この溶融部8aが接点の接触後に凝固する
と、相互の接点が溶着する。図10(b)に示すように、
この溶着部8a1は、急熱急冷された結果、母材と特性
が異り、とりわけ引張り強さ(抗張力)が高くなる。そ
のため、次の開極動作で、溶着部8a1の直下の接点母
材部分で引き剥がされて、更に大きな突起8bが形成さ
れる。
When the fused portion 8a solidifies after the contact of the contacts, the mutual contacts are welded. As shown in FIG.
The welded portion 8a1 has different characteristics from the base material as a result of being rapidly heated and quenched, and particularly has a high tensile strength (tensile strength). Therefore, in the next opening operation, the contact base material portion immediately below the welded portion 8a1 is peeled off to form a larger projection 8b.

【0011】この突起8bの先端では電界が高くなるの
で、絶縁が破壊しやすい。特に、負荷がコンデンサの場
合には、このコンデンサに充電されていた電荷が高周波
大電流の突入電流として流れて、上述の接点の損傷が更
に大きくなる。
Since the electric field is high at the tip of the projection 8b, the insulation is easily broken. In particular, when the load is a capacitor, the charge charged in the capacitor flows as an inrush current of a high-frequency large current, and the above-mentioned damage to the contacts is further increased.

【0012】さらに、コンデンサ開閉のなかでも、コン
デンサと遮断器の間にリアクトルが接続されていない、
いわゆるバックツウバック(Back to Back)開閉では、
突入電流が数千Hz−数十キロアンペアにもなることが
ある。このような高周波の大電流がプレアークとして点
弧した場合には、前述の接点の溶着と引き剥がしによる
損傷とは異った現象が生ずる。すなわち、図11に示すよ
うに接点端部に薄いばり状の突出部8cが形成されるこ
とがある。
Further, in the opening and closing of the capacitor, no reactor is connected between the capacitor and the circuit breaker.
With so-called back-to-back opening and closing,
Inrush currents can be as high as thousands of Hz-tens of kiloamps. When such a high-frequency high current is ignited as a pre-arc, a phenomenon different from the above-described damage caused by welding and peeling of the contacts occurs. That is, as shown in FIG. 11, a thin burred projection 8c may be formed at the contact end.

【0013】発明者の実験によれば、20kA− 4,200H
zの突入電流で、10,000回の開閉試験を行った後に、真
空バルブを解体して観察したところ、突出部8cの厚さ
tは約 0.6mmで、突出長さLは最大 2.5mmに達したもの
もあった。
According to the experiment of the inventor, 20 kA-4,200 H
After conducting 10,000 open / close tests with an inrush current of z, the vacuum valve was dismantled and observed. The thickness t of the protrusion 8c was about 0.6 mm, and the protrusion length L reached a maximum of 2.5 mm. There were also things.

【0014】この突出部8cが形成される理由は、大電
流で接点への注入エネルギー密度が高く、接点の溶融・
蒸発量が増えるだけでなく、周波数が高いと電流変化率
が高くなるため、接点からの金属蒸気供給量が増えてア
ークの拡散速度を上回り、アークコラムの圧力が急増
し、この圧力により溶融部分が外方向に吹き出されるた
めと推定する。この現象が何回も繰り返されることで、
上記のようなばり状の突出部8cが形成される。
The reason why the protruding portion 8c is formed is that the injection energy density into the contact with a large current is high,
Not only does the amount of evaporation increase, but the higher the frequency, the higher the rate of change of current.As a result, the amount of metal vapor supplied from the contacts increases, exceeding the diffusion speed of the arc. Is estimated to be blown outward. By repeating this phenomenon many times,
The burrs 8c are formed as described above.

【0015】なお、アークによる接点の損傷として、大
電流を遮断する際にアークの局所的な集中によって、接
点の表面が溶融する場合もある。このため、主にアーク
と磁界との相互作用を利用した種々の電極構造が提案さ
れ実施されていて、遮断時のアーク制御技術はある程度
確立されている。
Incidentally, as a damage of a contact caused by an arc, the surface of the contact may be melted due to local concentration of the arc when a large current is interrupted. For this reason, various electrode structures mainly utilizing the interaction between the arc and the magnetic field have been proposed and implemented, and an arc control technique at the time of interruption has been established to some extent.

【0016】それに対して、上述したような投入時に発
生するアークに対しては、それを制御する有効な手段は
ない。そこで、本発明の目的は、投入時に発生するアー
クによる接点表面の損傷を抑え、たとえ損傷しても、絶
縁性能の低下を防ぐことのできる真空バルブを得ること
である。
On the other hand, there is no effective means for controlling the arc generated at the time of closing as described above. Therefore, an object of the present invention is to provide a vacuum valve that can suppress damage to a contact surface due to an arc generated at the time of injection, and can prevent a decrease in insulation performance even if it is damaged.

【0017】[0017]

【課題を解決するための手段】請求項1に対応する発明
は、真空容器の片側から内部に突設された固定側通電軸
の先端に固定側電極が設けられ、真空容器の他側から進
退自在に貫設された可動側通電軸の先端に可動側電極が
設けられ、この可動側電極と固定側電極の対向面に接点
が固定された真空バルブにおいて、片側の接点の対向面
に凸部を形成し、他側の接点の対向面に可動側通電軸の
投入動作で凸部が嵌合しこの凸部の頂面が底面に接触す
る凹部を形成し、この凹部の接点材料の抗張力を凸部の
抗張力よりも大としたことを特徴とする。
According to a first aspect of the present invention, a fixed-side electrode is provided at the tip of a fixed-side energizing shaft protruding from one side of the vacuum vessel to the inside thereof, and moves forward and backward from the other side of the vacuum vessel. A movable valve is provided at the end of a movable-side energized shaft freely penetrated, and a contact is fixed to a surface opposite to the movable-side electrode and the fixed-side electrode. Is formed, and a convex portion is fitted to the opposing surface of the contact on the other side by the operation of inputting the movable side conducting shaft, and a concave portion is formed in which the top surface of the convex portion contacts the bottom surface, and the tensile strength of the contact material of this concave portion is reduced. It is characterized in that it is larger than the tensile strength of the projection.

【0018】また、請求項2に対応する発明の真空バル
ブは、凸部と凹部を接点の中央部に形成したことを特徴
とし、請求項3に対応する発明の真空バルブは、凸部と
凹部を接点の中央部の周囲に複数箇所形成したことを特
徴とする。
A vacuum valve according to a second aspect of the invention is characterized in that a convex portion and a concave portion are formed at the center of the contact, and the vacuum valve according to the third aspect of the present invention has a convex portion and a concave portion. Are formed at a plurality of locations around the center of the contact.

【0019】また、請求項4に対応する発明の真空バル
ブは、凹部の接点材料と凸部の接点材料の組み合わせ
を、溶浸法と固相焼結法又はアーク溶解法と固相焼結法
或いはアーク溶解法と溶浸法によって製作した銅クロム
合金としたことを特徴とする。
According to a fourth aspect of the present invention, there is provided a vacuum valve, wherein a combination of a contact material for a concave portion and a contact material for a convex portion is formed by an infiltration method and a solid phase sintering method or an arc melting method and a solid phase sintering method. Alternatively, a copper chromium alloy manufactured by an arc melting method and an infiltration method is used.

【0020】また、請求項5に対応する発明は、真空容
器の片側から内部に突設された固定側通電軸の先端に固
定側電極が設けられ、真空容器の他側から進退自在に貫
設された可動側通電軸の先端に可動側電極が設けられ、
この可動側電極と固定側電極の対向側に接点が固定され
た真空バルブにおいて、接点の接触面の外周に非接触外
周面を形成したことを特徴とし、請求項6に対応する発
明の真空バルブは、接点の接触面をD1とし、非接触面
の直径をD2としたとき、D2−D1>5mmとしたこと
を特徴とする。
According to a fifth aspect of the present invention, a fixed-side electrode is provided at the tip of a fixed-side energizing shaft protruding from one side of the vacuum vessel to the inside thereof, and penetrates freely from the other side of the vacuum vessel. The movable-side electrode is provided at the tip of the movable-side energized shaft,
7. The vacuum valve according to claim 6, wherein a non-contact outer peripheral surface is formed on an outer periphery of a contact surface of the contact in the vacuum valve in which a contact is fixed on a side opposite to the movable-side electrode and the fixed-side electrode. Is characterized in that when the contact surface of the contact is D1 and the diameter of the non-contact surface is D2, D2−D1> 5 mm.

【0021】また、請求項7に対応する発明は、真空バ
ルブの片側から内部に突設された固定側通電軸の先端に
固定側電極が設けられ、真空容器の他側から進退自在に
貫設された可動側通電軸の先端に可動側電極が設けら
れ、この可動側電極と固定側電極の対向側に接点が固定
された真空バルブにおいて、接点の対向面に溝を形成し
たことを特徴とし、請求項8に対応する発明の真空バル
ブは、溝を同心円状としたことを特徴とし、請求項9に
対応する発明の真空バルブは、溝を放射状としたことを
特徴とする。
According to a seventh aspect of the present invention, a fixed-side electrode is provided at the tip of a fixed-side energizing shaft protruding from one side of the vacuum valve into the inside thereof, and penetrates freely from the other side of the vacuum vessel. A movable electrode is provided at the tip of the movable-side energized shaft, and a contact is fixed on the opposite side of the movable-side electrode and the fixed-side electrode. The vacuum valve according to the invention of claim 8 is characterized in that the groove is concentric, and the vacuum valve of the invention corresponding to claim 9 is characterized in that the groove is radial.

【0022】さらに、請求項10に対応する発明は、真空
容器の片側から内部に突設された固定側通電軸の先端に
固定側電極が設けられ、真空容器の他側から進退自在に
貫設された可動側通電軸の先端に可動側電極が設けら
れ、この可動側電極と固定側電極の対向側に接点が固定
された真空バルブにおいて、接点と電極を貫通した複数
の小孔を形成したことを特徴とする。
Further, according to a tenth aspect of the present invention, a fixed-side electrode is provided at a tip of a fixed-side energizing shaft protruding from one side of the vacuum vessel into the inside, and penetrates freely from the other side of the vacuum vessel. A movable electrode is provided at the tip of the movable-side energized shaft, and a plurality of small holes penetrating the contact and the electrode are formed in a vacuum valve in which the contact is fixed on the opposite side of the movable-side electrode and the fixed-side electrode. It is characterized by the following.

【0023】このような手段によって、請求項1,2及
び請求項3に対応する発明においては、接点間に発生し
たアークによって、接触面が溶融すると、溶融後の固化
部を凹部側に形成して、接点開極時の耐電圧特性の低下
を防ぐ。
According to the invention corresponding to the first, second and third aspects, when the contact surface is melted by the arc generated between the contacts, the solidified portion after the melting is formed on the concave side. Thus, a decrease in withstand voltage characteristics at the time of contact opening is prevented.

【0024】また、請求項4に対応する発明において
は、凹部側の接点材料の抗張力を凸部側の接点材料の抗
張力よりも大とする。また、請求項5及び請求項6に対
応する発明においては、接点の接触面が溶融し外周側に
突き出た場合の電界強度の増加を平坦な非接触外周面で
緩和する。
Further, in the invention corresponding to claim 4, the tensile strength of the contact material on the concave side is made larger than the tensile strength of the contact material on the convex side. In the inventions corresponding to claims 5 and 6, the increase in the electric field strength when the contact surface of the contact melts and projects to the outer peripheral side is reduced by the flat non-contact outer peripheral surface.

【0025】また、請求項7,8及び請求項9に対応す
る発明においては、接点間で発生したアークによって上
昇した圧力を、溝から放出するガスによって低下させ
る。
Further, in the inventions corresponding to claims 7, 8 and 9, the pressure increased by the arc generated between the contacts is reduced by the gas released from the groove.

【0026】さらに、請求項10に対応する発明において
は、接点間で発生したアークによって上昇した圧力を、
複数の小孔から電極の背後に放出するガスによって低下
させる。
Further, in the invention corresponding to claim 10, the pressure raised by the arc generated between the contacts is
Decreased by gas evolving behind the electrode through a plurality of small holes.

【0027】[0027]

【発明の実施の形態】以下、本発明の真空バルブの一実
施形態を図面を参照して説明する。図1は、本発明の真
空バルブの第1の実施形態を示す部分拡大詳細図で請求
項1及び請求項2に対応する図、図2は、図1の接点部
分の拡大縦断面図である。なお、図1は投入前の状態を
示し、図2は投入し部分的に溶融した後の開極状態を示
し、従来の技術で示した図9と同一部分には同一符号を
付している。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the vacuum valve of the present invention will be described below with reference to the drawings. FIG. 1 is a partially enlarged detailed view showing a first embodiment of the vacuum valve of the present invention, and is a view corresponding to claims 1 and 2, and FIG. 2 is an enlarged vertical sectional view of a contact portion of FIG. . FIG. 1 shows a state before charging, FIG. 2 shows an opening state after charging and partial melting, and the same parts as those in FIG. 9 shown in the prior art are denoted by the same reference numerals. .

【0028】図1において、一方の接点11には、中央に
凹部11aが形成され、この凹部11aと対応する位置に対
して、他方の接点12に凸部12aが形成されている。ここ
で、凹部11aの深さd1と凸部12aの高さh1の関係
は、僅かにh1>d1となっている。
In FIG. 1, a concave portion 11a is formed at the center of one contact 11 and a convex portion 12a is formed at the other contact 12 at a position corresponding to the concave portion 11a. Here, the relationship between the depth d1 of the concave portion 11a and the height h1 of the convex portion 12a is slightly h1> d1.

【0029】理由は、投入時には凹部11aの底面と凸部
12aの頂面とが接触し、接点の平坦部11b,12bでは接
触させないためである。さらに、接点の材料の特性とし
て、凹側接点11の抗張力を凸側接点12の抗張力よりも高
くする。
The reason is that the bottom surface of the concave portion 11a and the convex portion
This is because the top surface of the contact 12a comes into contact with the flat portions 11b and 12b of the contact and does not make contact. Further, as a characteristic of the material of the contact, the tensile strength of the concave contact 11 is made higher than the tensile strength of the convex contact 12.

【0030】例えば、真空バルブ用接点材料として、消
弧性能と耐電圧性能の面から世界的に採用されている銅
クロム合金の場合には、凹側接点11及び凸側接点12とし
て、アーク溶解法と溶浸法、アーク溶解法と固相焼結
法、溶浸法と固相焼結法によるそれぞれの接点の組み合
わせがある。
For example, in the case of a copper chromium alloy which is used worldwide as a contact material for a vacuum valve in terms of arc extinguishing performance and withstand voltage performance, the concave contact 11 and the convex contact 12 are formed by arc melting. There are combinations of respective contacts by the method and the infiltration method, the arc melting method and the solid phase sintering method, and the infiltration method and the solid phase sintering method.

【0031】このうち、固相焼結法及び溶浸法とアーク
溶解法が代表的で、抗張力は一般にアーク溶解法による
ものが最も高く、固相焼結法によるものが最も低い。こ
れらの製造方法のうち、まず、固相焼結法は、銅とクロ
ムの粉末原料を攪拌混合した材料を高温・高圧で焼結さ
せる方法で、生産性が最も高い。しかしながら、空孔率
が比較的高く、材料の密度は、理論密度の90乃至95%程
度で、不純物ガスの含有量が比較的多い。
Of these, the solid phase sintering method, the infiltration method and the arc melting method are typical, and the tensile strength is generally highest by the arc melting method and lowest by the solid phase sintering method. Among these manufacturing methods, first, the solid phase sintering method is a method of sintering a material obtained by stirring and mixing copper and chromium powder materials at high temperature and high pressure, and has the highest productivity. However, the porosity is relatively high, the density of the material is about 90 to 95% of the theoretical density, and the content of the impurity gas is relatively high.

【0032】次に、溶浸法は、クロムの粉末を高温・低
圧で焼結させたスケルトンと呼ばれる材料に、溶融銅を
浸潤させる方法で、欠陥が少なく材料密度は 100%に近
いが、スケルトンの十分な濡れ性を確保するため、クロ
ム原料の管理が重要であるとともに、製造コストも比較
的高く、生産性も劣る。
Next, the infiltration method is a method in which molten copper is infiltrated into a material called a skeleton obtained by sintering chromium powder at a high temperature and a low pressure, and has few defects and a material density close to 100%. In order to ensure sufficient wettability, it is important to control the chromium raw material, the production cost is relatively high, and the productivity is low.

【0033】また、アーク溶解法は、固相焼結法や溶浸
法で製造した電極棒の間にアークを点弧させ、この電極
棒が溶融した材料を凝固させる方法で、材料組織が微細
化され密度もほぼ 100%であるが、製造コストは最も高
く、生産性に劣る。
The arc melting method is a method in which an arc is ignited between electrode rods manufactured by a solid phase sintering method or an infiltration method to solidify a molten material of the electrode rods. Although the density is almost 100%, the production cost is the highest and the productivity is low.

【0034】このように材料欠陥が製法で異なり、主に
不純物ガスの量が影響することで、遮断性能はアーク溶
解法のものが最も優れ、固相焼結法のもが最も劣る。こ
のような接点の形状と材料の組み合わせによれば、次の
ような現象が生ずる。
As described above, the material defect differs depending on the production method, and mainly because of the amount of the impurity gas, the breaking performance of the arc melting method is the best and that of the solid phase sintering method is the poorest. According to such a combination of the contact shape and the material, the following phenomenon occurs.

【0035】まず、プレアーク点弧部が溶着すると、開
極時に抗張力が低い接点の母材から引き剥がされ、抗張
力の高い接点側に突起が形成される。したがって、本実
施例では図2(b)に示すように、突起13はこの凹部11
aの内側に形成される。しかし、凹部11aの周囲によっ
て、突起13の先端の電解が緩和され、絶縁性能に影響し
ない。一方、凸側接点12の溶着部には、引き剥がされた
後の凹部14が図2(a)に示すように形成されるが、電
界強度の増加はない。
First, when the pre-arc firing portion is welded, the contact is peeled off from the base material of the contact having a low tensile strength when the electrode is opened, and a projection is formed on the contact side having a high tensile strength. Therefore, in the present embodiment, as shown in FIG.
a is formed inside. However, due to the periphery of the concave portion 11a, electrolysis at the tip of the projection 13 is relaxed, and does not affect the insulation performance. On the other hand, in the welded portion of the convex contact 12, a concave portion 14 after being peeled is formed as shown in FIG. 2A, but the electric field intensity does not increase.

【0036】このように接点の表面に抗張力の高い凹部
と抗張力の低い凸部を形成することにより、溶着引き剥
がしが発生しても、突起は常に凹部内に形成させること
ができるので、この突起による電界強度の増加を防ぐこ
とができ、絶縁性能の低下を防ぐことができる。
By forming a concave portion having a high tensile strength and a convex portion having a low tensile strength on the surface of the contact as described above, the projection can always be formed in the concave portion even if welding and peeling occur. Can prevent an increase in the electric field strength, and can prevent a decrease in insulation performance.

【0037】ところで、図1及び図2に示す電極におい
て、3通りの製法の銅クロム接点材料の組み合わせは前
述したように3組あるが、それぞれ次のような特徴を有
している。
By the way, in the electrodes shown in FIGS. 1 and 2, there are three combinations of the copper-chromium contact materials of the three manufacturing methods as described above, each having the following features.

【0038】まず、凹側接点に溶浸法、凸側接点に固相
焼結法の銅クロム接点を使用する場合には、接点として
最も安価となるばかりでなく、溶着力も最も低くなる。
これは、溶着した場合には、抗張力の低い固相焼結法の
銅クロム側で引き剥がされるためである。そのため、可
動側通電軸を駆動する機構の操作力を減らすことがで
き、多頻度の開閉を行っても、電極の変形や軸の縮みが
少なく、また、開閉衝撃による応力も低いため、気密部
のリークのおそれのない、信頼性の高い真空バルブとす
ることができる。
First, when a copper chromium contact is used for the concave side contact by the infiltration method and for the convex side contact by the solid phase sintering method, not only is the contact inexpensive, but also the welding power is the lowest.
This is because when they are welded, they are peeled off on the copper chromium side in the solid-phase sintering method having low tensile strength. Therefore, the operating force of the mechanism that drives the movable-side energized shaft can be reduced, and even if frequent opening and closing are performed, there is little deformation of the electrode and shrinkage of the shaft. And a highly reliable vacuum valve without the risk of leakage.

【0039】次に、凹側接点にアーク溶解法、凸側接点
に固相焼結法の銅クロム接点を採用すると、凹側接点に
溶浸法、凸側接点に固相焼結法の銅クロム接点を使用す
る場合と比べて、アーク溶解法接点の特性により、遮断
性能を上げることができる。なお、溶着力は固相焼結法
の銅クロム接点の特性で決まるので、この場合も機構操
作力は低くてすみ、各部の変形やリークのおそれのな
い、信頼性の高い真空バルブとすることができる。
Next, when an arc melting method is used for the concave contact and a solid state sintering copper chromium contact is used for the convex contact, the infiltration method is used for the concave contact and the solid state sintering method is used for the convex contact. The breaking performance can be improved due to the characteristics of the arc melting contact as compared with the case of using a chrome contact. Since the welding force is determined by the characteristics of the copper chrome contacts in the solid-phase sintering method, in this case, the mechanism operation force is low and a highly reliable vacuum valve that does not cause deformation or leakage of each part is required. Can be.

【0040】さらに、凹側接点にアーク溶解法、凸側接
点に溶浸法の銅クロム接点を採用すると、欠陥及び不純
物ガスの含有量が比較的少ない溶浸法銅クロム接点の特
性により、凹側接点にアーク溶解法、凸側接点に固相焼
結法の銅クロム接点を採用する場合に比べて、遮断性能
を更に上げることができ、短絡遮断容量の大きい系統に
適用することができる。
Further, when a copper chromium contact of an arc melting method is used for the concave side contact and an infiltration method of the copper chromium contact is used for the convex side contact, the concave and infiltration copper chromium contact, which has a relatively small content of defects and impurity gas, is used. The breaking performance can be further improved as compared with the case where an arc melting method is used for the side contact and a copper chrome contact is used for the convex side contact by the solid phase sintering method, and it can be applied to a system having a large short-circuit breaking capacity.

【0041】ところで、接点は旋盤で加工するのが一般
的で生産性も優れているが、この点、第1の実施形態で
は、接点本体と凹部11a及び凸部12aの中心が一致して
おり、加工が容易である。
By the way, the contact is generally processed by a lathe and the productivity is excellent, but in this regard, in the first embodiment, the contact body and the centers of the concave portion 11a and the convex portion 12a coincide with each other. , Easy to process.

【0042】但し、この実施形態は投入容量の比較的小
さな真空バルブに適し、投入容量が増え接点の溶着力が
高くなると、開極するための操作力を増やさなければな
らない。すると、電極の変形や軸の縮みが生じたり、気
密ろう付部分にかかる開閉衝撃の応力の増加で、信頼性
が低下するおそれがある。
However, this embodiment is suitable for a vacuum valve having a relatively small input capacity, and when the input capacity is increased and the welding force of the contacts is increased, the operating force for opening the electrode must be increased. Then, the electrode may be deformed or the shaft may be shrunk, or the stress of the opening / closing impact applied to the airtight brazing portion may be increased, so that the reliability may be reduced.

【0043】そこで、請求項3に対応する本発明の真空
バルブの第2の実施形態としての電極部の構造を図3に
示す。図3においては、一方の接点15には中心部以外の
周部に少なくとも2個所の深さd1の凹部15が形成さ
れ、他方の接点16には凹部15aと対向する位置に高さh
1の凸部16aが形成されている。
FIG. 3 shows a structure of an electrode portion as a second embodiment of the vacuum valve according to the present invention. In FIG. 3, at least two concave portions 15 having a depth d1 are formed in one peripheral portion other than the center portion of one contact 15, and the other contact 16 has a height h at a position facing the concave portion 15 a.
One projection 16a is formed.

【0044】この場合も、第1の実施形態と同様、投入
時に接点の凹部15aと凸部16aとが必ず接触し、接点の
平坦部15b,16bでは接触させないために、僅かにh1
>d1となっている。また、接点の材料として、凹側接
点15の抗張力が凸側接点16の抗張力よりも高い材料を用
いている。
Also in this case, similarly to the first embodiment, the recess 15a and the projection 16a of the contact always come into contact with each other at the time of closing, and the flat portions 15b and 16b of the contact do not come into contact with each other.
> D1. Further, as a material of the contact, a material in which the tensile strength of the concave contact 15 is higher than the tensile strength of the convex contact 16 is used.

【0045】この第2の実施形態によれば、溶着部を中
心軸から外した位置に設定できるので、可動側通電軸で
投入し開極させたときに、溶着部にかかるモーメントに
よって、低い操作力で溶着部を引き剥がすことができ
る。
According to the second embodiment, the welding portion can be set at a position deviated from the center axis, so that when the movable portion is turned on and opened on the movable current-carrying shaft, the moment applied to the welding portion causes a low operation. The weld can be peeled off by force.

【0046】この場合も、引き剥がしの結果、突起が抗
張力の高い接点側に形成されるが、凹部15によって、突
起による電界の増加を防ぐことができ、絶縁性能の低下
のおそれはない。
In this case as well, as a result of peeling, the projection is formed on the contact side having a high tensile strength. However, the concave portion 15 can prevent an increase in the electric field due to the projection, and there is no possibility that the insulation performance is reduced.

【0047】次に、図4は、本発明の真空バルブの電極
部の第3の実施形態を示す部分拡大詳細図で請求項5及
び請求項6に対応する図、図5は、図4の片側の接点端
部近傍を拡大した縦断面図である。
Next, FIG. 4 is a partially enlarged detailed view showing a third embodiment of the electrode portion of the vacuum valve of the present invention, which corresponds to claims 5 and 6, and FIG. It is the longitudinal cross-sectional view which expanded the vicinity of one end of the contact.

【0048】図4においては、接点17には直径D1 の接
触面17aが形成され、この接触面17aの外側には、段差
h2だけ低い直径D2 の非接触平坦面17bが形成されて
いる。また、接点の外周部17cは電界の集中を防ぐため
に、弧状の面取りが施されている。
[0048] In Figure 4, are formed the contact face 17a of the diameter D 1 in the contact 17, on the outside of the contact surface 17a, the non-contact flat surface 17b only step h2 lower diameter D 2 is formed . The outer peripheral portion 17c of the contact is chamfered in an arc shape to prevent concentration of an electric field.

【0049】この電極で、高周波大電流の突入電流のBa
ck to Back開閉を行うと、接点17の接触部17aで点弧す
るプレアークで溶融した部分が薄いばり状に突出する
が、図5に示すように、突出部17dの直下の非接触平坦
面17bによって突出部17dの先端の電界が緩和されるの
で、絶縁性能が低下するおそれはない。
With this electrode, the inrush current Ba
When the ck to back is opened and closed, the portion melted by the pre-arc ignited at the contact portion 17a of the contact 17 projects in a thin bur shape, but as shown in FIG. 5, the non-contact flat surface 17b immediately below the projection 17d. As a result, the electric field at the tip of the protruding portion 17d is reduced, and there is no possibility that the insulation performance is reduced.

【0050】なお、段差h2が高すぎると、非接触平坦
面17bによる電界緩和効果が低くなる。発明者の実験で
は、突出部17dの厚さは 0.6mm程度であり、このため、
電界を効果的に緩和するには、ほぼ1<h2< 1.5mm程
度とすることが望ましい。Back to Back開閉では、接点
の損傷が大きいため、従来は数千回の開閉で真空バルブ
が交換されている。
If the step h2 is too high, the effect of alleviating the electric field by the non-contact flat surface 17b is reduced. In the experiment of the inventor, the thickness of the protruding portion 17d is about 0.6 mm.
In order to effectively reduce the electric field, it is desirable to set approximately 1 <h2 <1.5 mm. In back-to-back opening and closing, the damage to the contacts is large, so the vacuum valve has been replaced in the past several thousand times.

【0051】突入電流の値と周波数及び開閉回数にもよ
るが、上述した発明者の実験条件の20kA− 4,200Hz
の突入電流はかなり厳しい条件であり、この条件で1万
回の開閉ができれば、多頻度開閉用として十分である。
Although it depends on the value and frequency of the rush current and the number of switching operations, the above-mentioned experimental conditions of the inventor of 20 kA-4,200 Hz
Is a severe condition, and if it can be opened and closed 10,000 times under these conditions, it is sufficient for frequent opening and closing.

【0052】したがって、この突入電流及び開閉回数で
形成される突出部の影響を抑制できれば、多頻度開閉用
として適用できる。発明者の実験によれば、この開閉条
件での最大突出部の高さは 2.5mmであったので、非接触
平坦面の幅がこれ以上あればよい。したがって、D2
1 >5mmとすれば、多頻度のBack to Back開閉を行う
ことができる。
Therefore, if the influence of the projecting portion formed by the inrush current and the number of times of switching can be suppressed, it can be applied for frequent switching. According to the experiment of the inventor, the height of the maximum protruding portion under the open / close condition was 2.5 mm, so that the width of the non-contact flat surface may be any more. Therefore, D 2
If D 1 > 5 mm, frequent back-to-back opening and closing can be performed.

【0053】図6は、本発明の真空バルブの第4の実施
形態を示し、請求項7及び請求項8に対応する図で、
(a)は平面図、(b)は(a)のA−A断面図を示
す。図6においては、プレアーク点弧によって局部的に
接点18が溶融しても、この溶融材料が溝部18aに流入す
るので、接点の外周部への突出を防ぐことができ、接点
端部の電界上昇による絶縁性能の低下はない。
FIG. 6 shows a fourth embodiment of the vacuum valve according to the present invention, and corresponds to claims 7 and 8.
(A) is a plan view, and (b) is a sectional view taken along the line AA of (a). In FIG. 6, even if the contact 18 is locally melted by the pre-arc firing, the molten material flows into the groove 18a, so that it is possible to prevent the contact from protruding to the outer peripheral portion and to increase the electric field at the contact end. There is no reduction in insulation performance due to

【0054】なお、旋盤による切削加工が接点の生産性
に優れているので、溝の形状としては同心円状に設けた
方がよい。しかしながら、同心円状の溝は閉じているの
で、プレアーク点弧時のアークコラムの圧力上昇を抑え
る効果は低い。
Since the cutting by the lathe is excellent in the productivity of the contacts, it is better to form the grooves in a concentric shape. However, since the concentric grooves are closed, the effect of suppressing an increase in the pressure of the arc column during pre-arc firing is low.

【0055】そこで、請求項9に対応する図7(a)の
平面図と(a)のB−B断面の(b)の第5の実施形態
に示すように、接点19に放射状溝19aを形成すれば、接
点外周部19bで溝が開口するので、アークコラムの圧力
を放圧することができる。そのため、溶融した接点のは
み出しを阻止することができるので、突入電流が大きい
場合には放射状の溝が好ましい。
Therefore, as shown in the plan view of FIG. 7A corresponding to claim 9 and the fifth embodiment of FIG. 7B in the section BB of FIG. If formed, the groove is opened at the contact outer peripheral portion 19b, so that the pressure of the arc column can be released. For this reason, it is possible to prevent the melted contact from protruding. Therefore, when the inrush current is large, a radial groove is preferable.

【0056】次に、図8は本発明の真空バルブの第6の
実施形態を示す部分拡大詳細図で、請求項10に対応し、
(a)は部分平面図、(b)は(a)のC−C断面図で
ある。図8においては、接点20と電極21を貫通して小孔
20aが軸方向に多数形成されている。
FIG. 8 is a partially enlarged detailed view showing a sixth embodiment of the vacuum valve of the present invention.
(A) is a partial plan view, (b) is a CC sectional view of (a). In FIG. 8, a small hole extends through the contact 20 and the electrode 21.
A large number 20a are formed in the axial direction.

【0057】この実施形態においては、プレアーク点弧
時に発生したアークのプラズマが、小孔20aを通じて後
方に排出されるので、放射状に溝を設けた図7の実施形
態よりもアークコラムの圧力上昇を更に効果的に抑制す
ることができる。そのため、溶融した接点のはみ出し現
象を防ぐことができるので、絶縁性能の低下を防ぐこと
ができる。
In this embodiment, since the plasma of the arc generated at the time of the pre-arc firing is discharged backward through the small holes 20a, the pressure of the arc column is increased more than in the radially grooved embodiment of FIG. It can be more effectively suppressed. As a result, the protrusion of the melted contact can be prevented, so that a decrease in insulation performance can be prevented.

【0058】[0058]

【発明の効果】以上、請求項1に対応する発明によれ
ば、真空容器の片側から内部に突設された固定側通電軸
の先端に固定側電極が設けられ、真空容器の他側から進
退自在に貫設された可動側通電軸の先端に可動側電極が
設けられ、この可動側電極と固定側電極の対向面に接点
が固定された真空バルブにおいて、片側の接点の対向面
に凸部を形成し、他側の接点の対向面に可動側通電軸の
投入動作で凸部が嵌合しこの凸部の頂面が底面に接触す
る凹部を形成し、この凹部の接点材料の抗張力を凸部の
抗張力よりも大とすることで、接点間に発生したアーク
によって、接触面が溶融すると、溶融後の固化部を凹部
側に形成して、接点開極時の耐電圧特性の低下を防いだ
ので、投入時に発生したアークによる接点表面の損傷を
抑え、たとえ損傷しても、絶縁特性の低下を防ぐことの
できる真空バルブを得ることができる。
As described above, according to the first aspect of the present invention, the fixed-side electrode is provided at the tip of the fixed-side energizing shaft protruding from one side of the vacuum vessel, and moves forward and backward from the other side of the vacuum vessel. A movable valve is provided at the end of a movable-side energized shaft freely penetrated, and a contact is fixed to a surface opposite to the movable-side electrode and the fixed-side electrode. Is formed, and a convex portion is fitted to the opposing surface of the contact on the other side by the operation of inputting the movable side conducting shaft, and a concave portion is formed in which the top surface of the convex portion contacts the bottom surface, and the tensile strength of the contact material of this concave portion is reduced. When the contact surface is melted by the arc generated between the contacts by making it larger than the tensile strength of the convex portion, a solidified portion after melting is formed on the concave side to reduce the withstand voltage characteristics at the time of contact opening. This prevents damage to the contact surface due to arcs generated during Also, it is possible to obtain a vacuum valve which can prevent a decrease in insulating properties.

【0059】また、請求項2に対応する発明によれば、
凸部と凹部を接点の中央部に形成することで、また請求
項3に対応する発明によれば、凸部と凹部を接点の中央
部の周囲に複数箇所形成することで、接点間に発生した
アークによって、接触面が溶融すると、溶融後の固化部
を凹部側に形成して、接点開極時の耐電圧特性の低下を
防いだので、投入時に発生したアークによる接点表面の
損傷を抑え、たとえ損傷しても、絶縁特性の低下を防ぐ
ことのできる真空バルブを得ることができる。
According to the invention corresponding to claim 2,
According to the third aspect of the present invention, the protrusion and the recess are formed at a plurality of locations around the center of the contact, so that the protrusion and the recess are formed at the center of the contact. When the contact surface melts due to the arc, the solidified part after melting is formed on the concave side, preventing the deterioration of the withstand voltage characteristic at the time of contact opening, suppressing damage to the contact surface due to the arc generated at the time of injection Thus, even if damaged, a vacuum valve that can prevent the insulation characteristics from being deteriorated can be obtained.

【0060】また、請求項4に対応する発明によれば、
凹部の接点材料と凸部の接点材料の組み合わせを、溶浸
法と固相焼結法又はアーク溶解法と固相焼結法或いはア
ーク溶解法と溶浸法によって製作した銅クロム合金とす
ることで、凹部側の接点材料の抗張力を凸部側の接点材
料の抗張力よりも大としたので、投入時に発生したアー
クによる接点表面の損傷を抑え、たとえ損傷しても絶縁
特性の低下を防ぐことのできる真空バルブを得ることが
できる。
According to a fourth aspect of the present invention,
The combination of the contact material of the concave portion and the contact material of the convex portion should be a copper chromium alloy manufactured by infiltration method and solid phase sintering method, arc melting method and solid phase sintering method, or arc melting method and infiltration method. Since the tensile strength of the contact material on the concave side is higher than the tensile strength of the contact material on the convex side, it is possible to suppress damage to the contact surface due to the arc generated at the time of injection, and to prevent the deterioration of insulation properties even if it is damaged. The vacuum valve which can be obtained can be obtained.

【0061】また、請求項5に対応する発明によれば、
真空容器の片側から内部に突設された固定側通電軸の先
端に固定側電極が設けられ、真空容器の他側から進退自
在に貫設された可動側通電軸の先端に可動側電極が設け
られ、この可動側電極と固定側電極の対向側に接点が固
定された真空バルブにおいて、接点の接触面の外周に非
接触外周面を形成することで、また請求項6に対応する
発明によれば、接点の接触面をD1とし、非接触面の直
径をD2としたとき、D2−D1>5mmとすることで、
接点の接触面が溶融し外周側に突き出た場合の電界強度
の増加を平坦な非接触外周面で緩和したので、接点間に
発生したアークによる接点表面の損傷を抑え、たとえ損
傷しても絶縁特性の低下を防ぐことのできる真空バルブ
を得ることができる。
According to the invention corresponding to claim 5,
A fixed-side electrode is provided at the end of a fixed-side energizing shaft protruding from one side of the vacuum vessel to the inside, and a movable-side electrode is provided at the end of a movable-side energizing shaft penetrating from the other side of the vacuum vessel so as to freely advance and retreat. According to the invention corresponding to claim 6, a non-contact outer peripheral surface is formed on the outer periphery of the contact surface of the contact in the vacuum valve having the contact fixed on the opposite side of the movable side electrode and the fixed side electrode. For example, when the contact surface of the contact is D1 and the diameter of the non-contact surface is D2, by setting D2−D1> 5 mm,
An increase in electric field strength when the contact surface of the contact melts and protrudes to the outer peripheral side is mitigated by the flat non-contact outer peripheral surface. It is possible to obtain a vacuum valve capable of preventing the characteristic from deteriorating.

【0062】また、請求項7に対応する発明によれば、
真空バルブの片側から内部に突設された固定側通電軸の
先端に固定側電極が設けられ、真空容器の他側から進退
自在に貫設された可動側通電軸の先端に可動側電極が設
けられ、この可動側電極と固定側電極の対向側に接点が
固定された真空バルブにおいて、接点の対向面に溝を形
成することで、また、請求項8に対応する発明において
は、溝を同心円状とすることで、また、請求項9に対応
する発明によれば、溝を放射状とすることで、接点間で
発生したアークによって上昇した圧力を、溝から放出す
るガスによって低下させたので、接点間に発生したアー
クによる接点間の圧力の上昇を防ぎ、遮断性能を上げる
ことのできる真空バルブを得ることができる。
According to a seventh aspect of the present invention,
A fixed-side electrode is provided at the tip of a fixed-side energizing shaft protruding from one side of the vacuum valve to the inside, and a movable-side electrode is provided at the tip of a movable-side energizing shaft penetrating from the other side of the vacuum vessel so as to be able to advance and retreat. In the vacuum valve in which the contact is fixed on the opposite side of the movable-side electrode and the fixed-side electrode, a groove is formed on the opposite surface of the contact, and in the invention corresponding to claim 8, the groove is concentric. According to the invention corresponding to claim 9, the pressure raised by the arc generated between the contacts is reduced by the gas released from the groove by making the groove radial, It is possible to obtain a vacuum valve capable of preventing an increase in pressure between the contacts due to an arc generated between the contacts and improving the breaking performance.

【0063】さらに、請求項10に対応する発明によれ
ば、真空容器の片側から内部に突設された固定側通電軸
の先端に固定側電極が設けられ、真空容器の他側から進
退自在に貫設された可動側通電軸の先端に可動側電極が
設けられ、この可動側電極と固定側電極の対向側に接点
が固定された真空バルブにおいて、接点と電極を貫通し
た複数の小孔を形成することで、接点間で発生したアー
クによって上昇した圧力を、複数の小孔から電極の背後
に放出するガスによって低下させたので、接点間に発生
したアークによる接点間の圧力の上昇を防ぎ、遮断性能
を上げることのできる真空バルブを得ることができる。
Further, according to the tenth aspect of the present invention, a fixed-side electrode is provided at the tip of a fixed-side energizing shaft projecting from one side of the vacuum vessel to the inside thereof, so that the fixed-side electrode can advance and retreat from the other side of the vacuum vessel. A movable electrode is provided at the tip of the penetrated movable-side conducting shaft, and a plurality of small holes penetrating the contact and the electrode are provided in a vacuum valve in which the contact is fixed on the opposite side of the movable-side electrode and the fixed-side electrode. By forming, the pressure that was raised by the arc generated between the contacts was reduced by the gas released behind the electrode from the multiple holes, preventing the pressure between the contacts from being increased by the arc generated between the contacts. Thus, a vacuum valve capable of improving the shut-off performance can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の真空バルブの第1の実施形態を示す部
分拡大図で、(a)は電極部の固定側を示し、(b)は
可動側を示す。
FIG. 1 is a partially enlarged view showing a first embodiment of a vacuum valve according to the present invention, wherein (a) shows a fixed side of an electrode portion, and (b) shows a movable side.

【図2】本発明の真空バルブの第1の実施形態の作用を
示す部分拡大図で、(a)は接点の固定側を示し、
(b)は可動側を示す。
FIG. 2 is a partially enlarged view showing an operation of the first embodiment of the vacuum valve of the present invention, wherein (a) shows a fixed side of a contact;
(B) shows the movable side.

【図3】本発明の真空バルブの第2の実施形態を示す部
分拡大図で、(a)は電極部の固定側を示し、(b)は
可動側を示す。
FIGS. 3A and 3B are partially enlarged views showing a second embodiment of the vacuum valve of the present invention, wherein FIG. 3A shows a fixed side of an electrode portion, and FIG. 3B shows a movable side.

【図4】本発明の真空バルブの第3の実施形態を示す部
分拡大図で、(a)は電極部の固定側を示し、(b)は
可動側を示す。
FIGS. 4A and 4B are partially enlarged views showing a third embodiment of the vacuum valve of the present invention, wherein FIG. 4A shows a fixed side of an electrode portion, and FIG. 4B shows a movable side.

【図5】本発明の真空バルブの第3の実施形態の作用を
示す部分拡大断面図。
FIG. 5 is a partially enlarged sectional view showing the operation of a third embodiment of the vacuum valve of the present invention.

【図6】本発明の真空バルブの第4の実施形態を示す部
分拡大図で、(a)は平面図を示し、(b)は(a)の
A−A断面図を示す。
FIGS. 6A and 6B are partially enlarged views showing a fourth embodiment of the vacuum valve of the present invention, wherein FIG. 6A is a plan view and FIG. 6B is a sectional view taken along line AA of FIG.

【図7】本発明の真空バルブの第5の実施形態を示す部
分拡大図で、(a)は平面図を示し、(b)は(a)の
B−B断面図を示す。
FIGS. 7A and 7B are partially enlarged views showing a fifth embodiment of the vacuum valve of the present invention, wherein FIG. 7A is a plan view and FIG. 7B is a sectional view taken along line BB of FIG.

【図8】本発明の真空バルブの第6の実施形態を示す部
分拡大図で、(a)は平面図を示し、(b)は(a)の
C−C断面図を示す。
8A and 8B are partially enlarged views showing a sixth embodiment of the vacuum valve of the present invention, wherein FIG. 8A is a plan view, and FIG. 8B is a cross-sectional view taken along the line CC of FIG.

【図9】従来の真空バルブの一例を示す縦断面図。FIG. 9 is a longitudinal sectional view showing an example of a conventional vacuum valve.

【図10】従来の真空バルブの作用を示す部分拡大図
で、(a)は投入寸前を示し、(b)は開極後の接点を
示す。
FIGS. 10A and 10B are partially enlarged views showing the operation of a conventional vacuum valve, in which FIG. 10A shows a state immediately before closing, and FIG. 10B shows a contact after opening.

【図11】従来の真空バルブの図10と異なる作用を示す
部分拡大図で、(a)は電極の固定側を示し、(b)は
可動側を示す。
11 is a partially enlarged view showing the operation of the conventional vacuum valve different from that of FIG. 10, where (a) shows the fixed side of the electrode and (b) shows the movable side.

【符号の説明】[Explanation of symbols]

1…絶縁円筒、2…固定側端板、3…可動側端板、4…
固定側通電軸、5…固定側電極、6,21…可動側電極、
7…可動側通電軸、8,17,18,19…接点、9…ベロー
ズ、10…シールド、11,15…凹側接点、11a…凹部、1
2,16…凸側接点、12a…凸部、13…突起、14…穴、17
b…非接触平坦部、17d…突出部、18a,19a…溝、20
a…小孔。
DESCRIPTION OF SYMBOLS 1 ... Insulating cylinder, 2 ... Fixed end plate, 3 ... Movable end plate, 4 ...
Fixed-side conducting shaft, 5: fixed-side electrode, 6, 21: movable-side electrode,
7: movable side conducting shaft, 8, 17, 18, 19: contact, 9: bellows, 10: shield, 11, 15: concave contact, 11a: concave, 1
2, 16 ... convex side contact, 12a ... convex part, 13 ... protrusion, 14 ... hole, 17
b: non-contact flat portion, 17d: projecting portion, 18a, 19a: groove, 20
a ... Small hole.

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 真空容器の片側から内部に突設された固
定側通電軸の先端に固定側電極が設けられ、前記真空容
器の他側から進退自在に貫設された可動側通電軸の先端
に可動側電極が設けられ、この可動側電極と前記固定側
電極の対向面に接点が固定された真空バルブにおいて、
片側の前記接点の対向面に凸部を形成し、他側の前記接
点の対向面に前記可動側通電軸の投入動作で前記凸部が
嵌合しこの凸部の頂面が底面に接触する凹部を形成し、
この凹部の接点材料の抗張力を前記凸部の抗張力よりも
大としたことを特徴とする真空バルブ。
1. A fixed-side electrode is provided at the tip of a fixed-side energizing shaft protruding from one side of the vacuum vessel to the inside thereof, and a tip of a movable-side energizing shaft penetrated from the other side of the vacuum vessel so as to be able to advance and retreat. A movable side electrode is provided, and a vacuum valve in which a contact is fixed to a surface facing the movable side electrode and the fixed side electrode,
A convex portion is formed on the opposing surface of the contact on one side, and the convex portion is fitted to the opposing surface of the contact on the other side by the operation of turning on the movable-side energizing shaft, and the top surface of the convex portion contacts the bottom surface. Forming a recess,
The tensile strength of the contact material in the concave portion is larger than the tensile strength of the convex portion.
【請求項2】 前記凸部と前記凹部を前記接点の中央部
に形成したことを特徴とする請求項1に記載の真空バル
ブ。
2. The vacuum valve according to claim 1, wherein the convex portion and the concave portion are formed at a center of the contact.
【請求項3】 前記凸部と前記凹部を前記接点の中央部
の周囲に複数箇所形成したことを特徴とする請求項1に
記載の真空バルブ。
3. The vacuum valve according to claim 1, wherein the convex portion and the concave portion are formed at a plurality of positions around a central portion of the contact.
【請求項4】 前記凹部の接点材料と前記凸部の接点材
料の組み合わせを、溶浸法と固相焼結法又はアーク溶解
法と固相焼結法或いはアーク溶解法と溶浸法によって製
作した銅クロム合金としたことを特徴とする請求項1乃
至請求項3に記載の真空バルブ。
4. A combination of the contact material of the concave portion and the contact material of the convex portion is manufactured by an infiltration method and a solid phase sintering method, an arc melting method and a solid phase sintering method, or an arc melting method and an infiltration method. The vacuum valve according to any one of claims 1 to 3, wherein the copper chromium alloy is formed.
【請求項5】 真空容器の片側から内部に突設された固
定側通電軸の先端に固定側電極が設けられ、前記真空容
器の他側から進退自在に貫設された可動側通電軸の先端
に可動側電極が設けられ、この可動側電極と前記固定側
電極の対向側に接点が固定された真空バルブにおいて、
前記接点の接触面の外周に非接触外周面を形成したこと
を特徴とする真空バルブ。
5. A fixed-side electrode is provided at a tip of a fixed-side energizing shaft protruding from one side of the vacuum vessel to the inside, and a tip of a movable-side energizing shaft penetrated from the other side of the vacuum vessel so as to be able to advance and retreat. A movable side electrode is provided in a vacuum valve in which a contact is fixed on a side opposite to the movable side electrode and the fixed side electrode,
A non-contact outer peripheral surface is formed on the outer periphery of the contact surface of the contact, wherein the vacuum valve is provided.
【請求項6】 前記接点の接触面をD1とし、前記非接
触面の直径をD2としたとき、D2−D1>5mmとした
ことを特徴とする請求項5記載の真空バルブ。
6. The vacuum valve according to claim 5, wherein D2−D1> 5 mm, where D1 is a contact surface of the contact and D2 is a diameter of the non-contact surface.
【請求項7】 真空バルブの片側から内部に突設された
固定側通電軸の先端に固定側電極が設けられ、前記真空
容器の他側から進退自在に貫設された可動側通電軸の先
端に可動側電極が設けられ、この可動側電極と前記固定
側電極の対向側に接点が固定された真空バルブにおい
て、前記接点の対向面に溝を形成したことを特徴とする
真空バルブ。
7. A fixed-side electrode is provided at a tip of a fixed-side energized shaft protruding from one side of the vacuum valve to the inside thereof, and a tip of a movable-side energized shaft penetrated from the other side of the vacuum vessel so as to be able to advance and retreat. A movable electrode, and a contact is fixed on the opposite side of the movable electrode and the fixed electrode, wherein a groove is formed on a surface facing the contact.
【請求項8】 前記溝を同心円状としたことを特徴とす
る請求項7に記載の真空バルブ。
8. The vacuum valve according to claim 7, wherein said groove is concentric.
【請求項9】 前記溝を放射状としたことを特徴とする
請求項7に記載の真空バルブ。
9. The vacuum valve according to claim 7, wherein said groove is radial.
【請求項10】 真空容器の片側から内部に突設された
固定側通電軸の先端に固定側電極が設けられ、前記真空
容器の他側から進退自在に貫設された可動側通電軸の先
端に可動側電極が設けられ、この可動側電極と前記固定
側電極の対向側に接点が固定された真空バルブにおい
て、前記接点と前記電極を貫通した複数の小孔を形成し
たことを特徴とする真空バルブ。
10. A fixed-side electrode is provided at the tip of a fixed-side energizing shaft protruding from one side of the vacuum vessel to the inside, and a tip of a movable-side energizing shaft penetrated from the other side of the vacuum vessel so as to be able to advance and retreat. The movable side electrode is provided, and a plurality of small holes penetrating the contact point and the electrode are formed in a vacuum valve in which a contact is fixed on a side opposite to the movable side electrode and the fixed side electrode. Vacuum valve.
JP3208697A 1997-02-17 1997-02-17 Vacuum valve Pending JPH10233145A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3208697A JPH10233145A (en) 1997-02-17 1997-02-17 Vacuum valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3208697A JPH10233145A (en) 1997-02-17 1997-02-17 Vacuum valve

Publications (1)

Publication Number Publication Date
JPH10233145A true JPH10233145A (en) 1998-09-02

Family

ID=12349080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3208697A Pending JPH10233145A (en) 1997-02-17 1997-02-17 Vacuum valve

Country Status (1)

Country Link
JP (1) JPH10233145A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100463326C (en) * 2005-08-11 2009-02-18 西安交通大学 Concave, convex shaped or biconcave groove electrode overvoltage protection device under vacuum environment
WO2012110369A1 (en) * 2011-02-16 2012-08-23 Siemens Aktiengesellschaft Contact disk for a vacuum interrupter
WO2012127313A1 (en) * 2011-03-22 2012-09-27 Eaton Corporation Contact member including purposely introduced undulations and vacuum interrupter including the same
CN110911214A (en) * 2018-09-14 2020-03-24 平高集团有限公司 Isolating switch capable of inhibiting VFTO and moving contact thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100463326C (en) * 2005-08-11 2009-02-18 西安交通大学 Concave, convex shaped or biconcave groove electrode overvoltage protection device under vacuum environment
WO2012110369A1 (en) * 2011-02-16 2012-08-23 Siemens Aktiengesellschaft Contact disk for a vacuum interrupter
WO2012127313A1 (en) * 2011-03-22 2012-09-27 Eaton Corporation Contact member including purposely introduced undulations and vacuum interrupter including the same
US8507822B2 (en) 2011-03-22 2013-08-13 Eaton Corporation Contact member including purposely introduced undulations and vacuum interrupter including the same
CN103430265A (en) * 2011-03-22 2013-12-04 伊顿公司 Contact member including purposely introduced undulations and vacuum interrupter including the same
CN110911214A (en) * 2018-09-14 2020-03-24 平高集团有限公司 Isolating switch capable of inhibiting VFTO and moving contact thereof
CN110911214B (en) * 2018-09-14 2021-12-10 平高集团有限公司 Isolating switch capable of inhibiting VFTO and moving contact thereof

Similar Documents

Publication Publication Date Title
Slade Advances in material development for high power, vacuum interrupter contacts
US20120312785A1 (en) Contact piece for a vacuum interrupter chamber
US5687472A (en) Method of manufacturing a vacuum interrupter
EP2346061B1 (en) Electrode structure for vacuum circuit breaker
EP0911847B1 (en) Vapor shield for vacuum interrupters
JPH10233145A (en) Vacuum valve
US4806714A (en) Electrode structure for vacuum circuit breaker
US10991527B2 (en) Contact piece for a high-voltage circuit breaker and method for producing same
CA1084094A (en) Vacuum circuit interrupter with disc-shaped beryllium contacts
Ballat et al. Insulation characteristics and welding behavior of vacuum switch contacts made from various CuCr alloys
US3752946A (en) Arcing contract for an electric circuit breaker and method of making same
US4553003A (en) Cup type vacuum interrupter contact
Fink et al. Multilayer contact material based on copper and chromium material and its interruption ability
JP2643037B2 (en) Vacuum switch tube
US4128748A (en) High-current vacuum switch with reduced contact erosion
JPH04174919A (en) Vacuum valve
JPS59186219A (en) Slender contact structure
Hauf et al. Investigation of the heat affected volume of CuCr contact material for vacuum interrupters
JPH09245589A (en) Vacuum valve
JP2695902B2 (en) Contact for vacuum valve
JP2751301B2 (en) Manufacturing method of electrode for vacuum interrupter
JPH10302586A (en) Vacuum bulb and vacuum breaker using this vacuum bulb
JPH02148525A (en) Vacuum circuit breaker
JP2003331699A (en) Vacuum valve
KR960004097Y1 (en) Vacuum switch tube