JPH10232076A - Refrigerating device - Google Patents

Refrigerating device

Info

Publication number
JPH10232076A
JPH10232076A JP3580097A JP3580097A JPH10232076A JP H10232076 A JPH10232076 A JP H10232076A JP 3580097 A JP3580097 A JP 3580097A JP 3580097 A JP3580097 A JP 3580097A JP H10232076 A JPH10232076 A JP H10232076A
Authority
JP
Japan
Prior art keywords
refrigerant
control valve
compressor
proportional control
pressure loss
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3580097A
Other languages
Japanese (ja)
Inventor
Masatoshi Horikawa
正年 堀川
Toshiaki Mukoya
俊昭 向谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP3580097A priority Critical patent/JPH10232076A/en
Publication of JPH10232076A publication Critical patent/JPH10232076A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/21Refrigerant outlet evaporator temperature

Abstract

PROBLEM TO BE SOLVED: To increase the rate of change in an evaporating temperature with respect to the flow rate regulating amount in a pressure loss means by a method wherein hot gas is bypassed to the upstream side of the pressure loss means such as a proportional control valve or the like. SOLUTION: Upon cooling operation, high-pressure gas refrigerant is supplied to the upstream side of a proportional control valve 35 by opening the solenoid valve SV-3 of a hot gas bypass pipe 36 to sent a part of discharging refrigerant of a compressor 11. According to such an operation, the refrigerant flows through the proportional control valve 35 under a condition that refrigerant, evaporated in a heat exchanger 22 in a refrigerator, is mixed into the high- pressure gas refrigerant. Accordingly, the amount of refrigerant, which flows through the proportional control valve 35, can be increased and, therefore, the change of flow rate is increased even when a proportional control valve 35 is choked slightly whereby the evaporating temperature of the heat exchanger 22 in the refrigerator can be reduced remarkably. According to this method, the changing rate of the evaporating temperature of the heat exchanger 22 in the refrigerator with respect to the changing amount of opening degree of the proportional control valve 35 can be increased.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、冷凍装置に係り、
特に、圧縮機の吸入側に比例制御弁等の減圧手段を備
え、その制御により蒸発器能力を調整するようにしたも
のの改良に関する。
The present invention relates to a refrigeration system,
In particular, the present invention relates to an improvement in which a pressure reducing means such as a proportional control valve is provided on the suction side of a compressor, and the evaporator capacity is adjusted by controlling the pressure reducing means.

【0002】[0002]

【従来の技術】従来より、例えば特開平2−71076
号公報に開示されているような冷凍庫用などとして使用
される冷凍装置が知られている。この種の冷凍装置は、
庫外ユニットに収容された圧縮機及び凝縮器と、庫内ユ
ニットに収容された膨張弁及び蒸発器が冷媒配管により
順に接続されて成る。運転時には、圧縮機から吐出した
ガス冷媒が、凝縮器で外気と熱交換を行って凝縮し、そ
の後、膨張機構で減圧し、蒸発器で庫内空気と熱交換を
行って蒸発する。これにより、庫内空気を所定温度まで
冷却する。尚、膨張機構は蒸発器出口側の冷媒過熱度が
一定となるようにその減圧度が調整される。
2. Description of the Related Art Conventionally, for example, Japanese Patent Application Laid-Open No. 2-71076
There is known a refrigerating apparatus used for a freezer or the like as disclosed in Japanese Patent Application Laid-Open Publication No. H11-209,878. This type of refrigeration system
The compressor and the condenser housed in the outside unit, the expansion valve and the evaporator housed in the inside unit are connected in order by refrigerant piping. During operation, the gas refrigerant discharged from the compressor is condensed by exchanging heat with the outside air in the condenser, then decompressed by the expansion mechanism, and is evaporated by exchanging heat with the air in the refrigerator by the evaporator. Thereby, the inside air is cooled to a predetermined temperature. The degree of pressure reduction of the expansion mechanism is adjusted so that the degree of superheat of the refrigerant at the evaporator outlet side is constant.

【0003】また、一般に、この種の冷凍装置では、庫
内温度を所定温度に維持するために、庫内ユニットの吸
込温度に応じて圧縮機のオン,オフを切換えることが行
われている。しかし、これでは、圧縮機がオン,オフす
ることによって庫内温度のディファレンシャルが生じる
ので、精度の高い庫内温度コントロールを必要とする場
合には適さない。
In general, in this type of refrigeration system, the compressor is switched on and off in accordance with the suction temperature of a unit in the refrigerator in order to maintain the temperature in the refrigerator at a predetermined temperature. However, in this case, since the internal temperature of the refrigerator is changed by turning on and off the compressor, it is not suitable for a case in which high-precision internal temperature control is required.

【0004】このため、圧縮機の吸入側に開度調整可能
な比例制御弁を設け、圧縮機を常時駆動したままで、庫
内ユニットの吸込温度に応じて比例制御弁を制御するこ
とにより、冷凍能力を調整することも行われている。つ
まり、比例制御弁の開度を小さくすると、圧縮機吸入側
配管に圧力損失が生じ、この圧力損失分だけ蒸発温度が
高くなり、これによって蒸発器能力が小さくなる。従っ
て、上記吸込温度が所定温度に維持されるように比例制
御弁の開度を調整することにより、精度の高い庫内温度
コントロールを行うことができることになる。
For this reason, a proportional control valve whose opening can be adjusted is provided on the suction side of the compressor, and the proportional control valve is controlled in accordance with the suction temperature of the in-compartment unit while the compressor is constantly driven. Adjusting the refrigeration capacity has also been performed. That is, when the opening of the proportional control valve is reduced, a pressure loss occurs in the compressor suction side pipe, and the evaporation temperature increases by the pressure loss, thereby reducing the evaporator capacity. Therefore, by adjusting the opening of the proportional control valve so that the suction temperature is maintained at the predetermined temperature, it is possible to perform highly accurate internal temperature control.

【0005】[0005]

【発明が解決しようとする課題】ところで、上述したよ
うな比例制御弁を用いた冷凍装置にあっては、該比例制
御弁により圧縮機の吸入側を絞ることになるので、圧縮
機吸入圧力が低下し、その分、回路全体としては冷媒循
環量が減少する。これに伴い蒸発器出口側の冷媒過熱度
が高くなり、過熱度一定制御を行っている膨張弁では、
その開度が大きくなる。この開度が大きくなった分だけ
蒸発器には多くの冷媒が流れ込み蒸発能力は高くなる。
上述の如く、比例制御弁は庫内ユニットの吸込温度に応
じて開度制御されるので、蒸発能力が高くなったこと
で、吸込温度は低くなり、このため、更に比例制御弁の
開度は小さくなる。このような動作が繰り返されること
により、比例制御弁の開度が極端に小さくなってしま
う。このように従来の構成では、比例制御弁の能力制御
範囲を大きく確保することが難しかった。また、圧縮機
の吸入圧力の低下に伴って圧縮比が大きくなるので、そ
の分、吐出管温度の過上昇を招くといった課題もあっ
た。
In the refrigerating apparatus using the above-described proportional control valve, the suction side of the compressor is reduced by the proportional control valve. As a result, the refrigerant circulation amount decreases as a whole. With this, the superheat degree of the refrigerant at the evaporator outlet side increases, and the expansion valve performing the superheat degree constant control,
Its opening increases. As the degree of opening increases, more refrigerant flows into the evaporator, and the evaporating capacity increases.
As described above, since the opening of the proportional control valve is controlled in accordance with the suction temperature of the in-compartment unit, the suction temperature decreases as the evaporation capacity increases, and therefore, the opening of the proportional control valve further decreases. Become smaller. By repeating such an operation, the opening of the proportional control valve becomes extremely small. As described above, in the conventional configuration, it is difficult to secure a large capacity control range of the proportional control valve. Further, since the compression ratio increases with a decrease in the suction pressure of the compressor, there has been another problem that the discharge pipe temperature is excessively increased.

【0006】本発明は、この点に鑑みてなされたもので
あって、圧縮機の吸入側に設けた比例制御弁により蒸発
器能力を調整するものに対し、比例制御弁の能力制御範
囲の拡大及び圧縮機の吐出管温度の過上昇の防止を図る
ことを目的とする。
[0006] The present invention has been made in view of the above point, and the capacity control range of the proportional control valve is expanded as compared with the case where the capacity of the evaporator is adjusted by the proportional control valve provided on the suction side of the compressor. And to prevent the discharge pipe temperature of the compressor from excessively rising.

【0007】[0007]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明は、比例制御弁等の圧損手段の上流側にホ
ットガスをバイパスすることにより、この圧損手段での
流量を多くしておき、これによって、圧損手段での流量
調整の変化量に対する蒸発温度の変化割合を大きくする
ようにした。つまり、僅かな流量変化に対しても蒸発温
度を大きく変化させることを可能にした。
In order to achieve the above object, the present invention increases the flow rate at a pressure loss means by bypassing hot gas upstream of the pressure loss means such as a proportional control valve. In this case, the change rate of the evaporation temperature with respect to the change amount of the flow rate adjustment by the pressure loss means is increased. That is, it is possible to greatly change the evaporation temperature even with a small change in the flow rate.

【0008】具体的に、請求項1記載の発明は、圧縮機
(11)と、凝縮器(13)と、膨張機構(21)と、蒸発器(22)と
が冷媒循環可能に順に接続されて成る冷媒回路(30)を備
え、上記圧縮機(11)の吸入側に、該吸入側で圧力損失を
生じさせ且つその損失圧力を調整することにより蒸発器
(22)の蒸発温度を可変にする圧損手段(35)を設けた冷凍
装置を前提とする。上記圧縮機(11)の吐出冷媒の一部を
圧損手段(35)の上流側に供給するホットガス供給手段(3
6)を設けた構成としている。
[0008] Specifically, the invention according to claim 1 is a compressor.
(11), a condenser (13), an expansion mechanism (21), and a refrigerant circuit (30) in which an evaporator (22) is connected in order so that the refrigerant can circulate, and the compressor (11) On the suction side, an evaporator is produced by causing a pressure loss on the suction side and adjusting the pressure loss.
It is assumed that the refrigerating apparatus is provided with a pressure loss means (35) for making the evaporation temperature variable in (22). Hot gas supply means (3) for supplying a part of the refrigerant discharged from the compressor (11) to the upstream side of the pressure loss means (35).
6) is provided.

【0009】この特定事項により、圧損手段(35)には、
蒸発器(22)で蒸発した冷媒とホットガス供給手段(36)か
らの高圧ガス冷媒とが混合された状態で圧損手段(35)を
流れることになる。つまり、圧損手段(35)を流れる冷媒
の流量を増大させることができるので、圧損手段(35)に
おいて、圧力損失を生じさせない状態での総流量に対す
る圧力損失を生じさせた場合の流量変化量の比が小さく
ても損失圧力を大きくすることができる。つまり、圧損
手段(35)の上流側での減圧度は、該圧損手段(35)での実
際の流量変化量の2乗に比例するので、上記流量比に対
する蒸発器(22)の蒸発温度の変化割合を大きくすること
ができ、圧損手段(35)による蒸発器(22)の蒸発温度の制
御範囲の拡大を図ることができる。また、圧縮機(11)の
吸入圧力を高くすることもできるので、従来のように、
圧縮比の増大に伴って、吐出管温度が過上昇してしまう
といった状況の発生を回避することもできる。
According to this particular matter, the pressure drop means (35)
The refrigerant evaporated in the evaporator (22) and the high-pressure gas refrigerant from the hot gas supply means (36) are mixed and flow through the pressure loss means (35). That is, since the flow rate of the refrigerant flowing through the pressure loss means (35) can be increased, the flow rate change amount when the pressure loss is generated in the pressure loss means (35) with respect to the total flow rate in a state where no pressure loss is generated. Even if the ratio is small, the pressure loss can be increased. That is, since the degree of pressure reduction on the upstream side of the pressure loss means (35) is proportional to the square of the actual flow rate change amount in the pressure loss means (35), the evaporation temperature of the evaporator (22) with respect to the flow rate ratio is determined. The rate of change can be increased, and the control range of the evaporation temperature of the evaporator (22) by the pressure loss means (35) can be expanded. Also, since the suction pressure of the compressor (11) can be increased, as in the prior art,
It is also possible to avoid a situation where the discharge pipe temperature rises excessively with an increase in the compression ratio.

【0010】請求項2及び3記載の発明は、冷凍装置を
構成する機器を具体化したものである。先ず、請求項2
記載の発明では、圧損手段を、開度調整自在な比例制御
弁(35)としている。
[0010] The invention according to claims 2 and 3 embodies the equipment constituting the refrigeration apparatus. First, claim 2
In the described invention, the pressure loss means is a proportional control valve (35) whose opening is freely adjustable.

【0011】この特定事項によれば、比例制御弁(35)を
流れる冷媒の流量は、ホットガスにより増大しているの
で、比例制御弁(35)を僅かに絞っただけでもその流量変
化は大きくなり、その分、圧力損失の変化量も大きくな
って蒸発器(22)の蒸発温度を大幅に低下させることがで
きる。つまり、比例制御弁(35)の開度変化による蒸発器
(22)の蒸発温度の制御範囲を拡大できる。
According to this specific matter, since the flow rate of the refrigerant flowing through the proportional control valve (35) is increased by the hot gas, the flow rate change is large even if the proportional control valve (35) is slightly reduced. As a result, the amount of change in the pressure loss increases accordingly, and the evaporation temperature of the evaporator (22) can be significantly reduced. In other words, the evaporator is operated by changing the opening of the proportional control valve (35).
(22) The control range of the evaporation temperature can be expanded.

【0012】請求項3記載の発明では、膨張機構を、外
部均圧型の感温式膨張弁(21)としている。
According to the third aspect of the present invention, the expansion mechanism is an external pressure equalizing type temperature-sensitive expansion valve (21).

【0013】この特定事項では、特に、外部均圧型の感
温式膨張弁(21)を採用した場合には、回路全体として冷
媒循環量が減少すると、蒸発器出口側の冷媒過熱度が高
くなることに伴って弁開度が大きくなり、圧損手段(35)
での圧力損失を大きくさせる傾向になるが、本発明によ
れば、上述の如く、この圧力損失の増大を抑制して蒸発
温度の制御範囲の拡大を図ることができる。
In this particular case, particularly when the external pressure equalizing type temperature-sensitive expansion valve (21) is employed, the degree of superheat of the refrigerant at the evaporator outlet side increases when the refrigerant circulation amount decreases as a whole circuit. As a result, the valve opening increases and the pressure loss means (35)
However, according to the present invention, as described above, the increase in the pressure loss can be suppressed and the control range of the evaporation temperature can be expanded.

【0014】請求項4記載の発明では、凝縮器(13)で凝
縮した液冷媒の一部を圧縮機(11)の吸入側で且つ圧損手
段(35)の下流側に供給するインジェクション回路(20)を
備えさせ、該インジェクション回路(20)に、圧縮機(11)
の吸入側への液冷媒の供給量を調整可能な調整弁(SV-1,
SV-2) を設けた構成としている。
According to the present invention, the injection circuit (20) supplies a part of the liquid refrigerant condensed in the condenser (13) to the suction side of the compressor (11) and to the downstream side of the pressure loss means (35). ), The injection circuit (20), the compressor (11)
Control valve (SV-1,
SV-2).

【0015】ホットガス供給手段(36)からの高圧ガス冷
媒のバイパスにより、圧縮機(11)の吐出ガスの過熱度が
過上昇する可能性があるが、この場合、インジェクショ
ン回路(20)から圧縮機(11)の吸入側へ液冷媒が供給され
ることで、吐出ガス冷媒の過熱度を適切に調節すること
ができる。
There is a possibility that the degree of superheat of the gas discharged from the compressor (11) may be excessively increased by bypassing the high-pressure gas refrigerant from the hot gas supply means (36). By supplying the liquid refrigerant to the suction side of the machine (11), the degree of superheat of the discharged gas refrigerant can be appropriately adjusted.

【0016】[0016]

【発明の実施の形態】次に、本発明の実施形態を図面に
基いて説明する。図1に示すように、本形態に係る冷凍
装置(10)は、冷蔵庫又は冷凍庫を冷却するものであっ
て、庫外ユニット(1A)と庫内ユニット(1B)とにより
構成されている。
Next, embodiments of the present invention will be described with reference to the drawings. As shown in FIG. 1, the refrigeration apparatus (10) according to the present embodiment cools a refrigerator or a freezer, and includes an external unit (1A) and an internal unit (1B).

【0017】上記庫外ユニット(1A)は、スクロールタイ
プの圧縮機(11)と、庫内の冷却運転時に図中実線の如
く、デフロスト運転時に図中破線の如く切換わる四路切
換弁(12)と、冷却運転時に冷媒を凝縮させ且つ室外ファ
ン(F-o) が近接配置された庫外熱交換器(13)と、デフロ
スト運転時に冷媒を減圧するための減圧部(14)と、アキ
ュムレータ(15)とを備えている。上記減圧部(14)は、配
管が2分岐され、一方にキャピラリチューブ(CP)が、他
方に逆止弁(CV)が設けられている。この逆止弁(CV)は、
庫外熱交換器(13)から庫内ユニット(1B)に向かって流
れる冷媒の流通のみを許容するようになっている。
The external unit (1A) is provided with a scroll type compressor (11) and a four-way switching valve (12) which switches as shown by a solid line in the drawing during a cooling operation inside the refrigerator and as shown by a broken line in the defrosting operation. ), An outdoor heat exchanger (13) in which the refrigerant is condensed during the cooling operation and the outdoor fan (Fo) is arranged in proximity, a decompression unit (14) for decompressing the refrigerant during the defrost operation, and an accumulator (15). ). The pressure reducing unit (14) has two branches, one of which is provided with a capillary tube (CP) and the other of which is provided with a check valve (CV). This check valve (CV)
Only the flow of the refrigerant flowing from the external heat exchanger (13) toward the internal unit (1B) is allowed.

【0018】また、圧縮機(11)の吐出側には、吐出ガス
中の潤滑油を濾過する油分離器(16)が備えられている。
この油分離器(16)で分離された潤滑油はキャピラリチュ
ーブ(CP)を備えた油回収管(17)によりアキュムレータ(1
5)の下流側に回収されるようになっている。尚、この油
分離器(16)は必ずしも必要なものではなく、特に、吐出
ガス中に潤滑油が混入し易い圧縮機を採用する場合に必
要となるものである。上記庫外ユニット(1A)には液ライ
ン(18)と吸入ガスライン(19)とを接続し、液冷媒の一部
を圧縮機(11)の吸入側に供給するインジェクション回路
(20)が設けられている。このインジェクション回路(20)
は、吸入ガスライン(19)に接続される側が2分岐されて
おり、この各分岐配管(20a,20b) には電磁弁(SV-1,SV-
2) 及びキャピラリチューブ(CP,CP) が備えられてい
る。一方の分岐配管(20a) に備えられた電磁弁(SV-1)は
運転時には常時開放される。他方の分岐配管(20b) に備
えられた電磁弁(SV-2)は圧縮機(11)の吐出管温度が所定
値(例えば100℃)以上に達したときに開放され、吐
出ガス冷媒の過熱度を調節するようになっている。尚、
このインジェクション回路(20)としては、2分岐されて
いる必要は必ずしもなく、1本の配管のみで構成され、
上述した電磁弁(SV-2)と同様の動作を行う弁を設けるよ
うにしたものであってもよい。
Further, an oil separator (16) for filtering the lubricating oil in the discharged gas is provided on the discharge side of the compressor (11).
The lubricating oil separated by the oil separator (16) is supplied to an accumulator (1) by an oil recovery pipe (17) equipped with a capillary tube (CP).
It is designed to be collected downstream of 5). The oil separator (16) is not always necessary, and is particularly necessary when a compressor in which lubricating oil is apt to be mixed into the discharge gas is used. A liquid line (18) and a suction gas line (19) are connected to the external unit (1A), and an injection circuit that supplies a part of the liquid refrigerant to the suction side of the compressor (11).
(20) is provided. This injection circuit (20)
Has two branches on the side connected to the intake gas line (19), and the branch pipes (20a, 20b) have solenoid valves (SV-1, SV-
2) and capillary tubes (CP, CP) are provided. The solenoid valve (SV-1) provided in one branch pipe (20a) is always opened during operation. The solenoid valve (SV-2) provided in the other branch pipe (20b) is opened when the discharge pipe temperature of the compressor (11) reaches a predetermined value (for example, 100 ° C) or more, and the discharged gas refrigerant is overheated. The degree is adjusted. still,
The injection circuit (20) does not necessarily have to be branched into two, and is constituted by only one pipe,
A valve that performs the same operation as the above-described solenoid valve (SV-2) may be provided.

【0019】一方、庫内ユニット(1B)には、冷媒を減圧
する膨張弁(21)と、冷却運転時に冷媒を蒸発させ且つ室
外ファン(F-i) が近接配置された庫内熱交換器(22)が配
置されている。
On the other hand, the in-compartment unit (1B) has an expansion valve (21) for reducing the pressure of the refrigerant and an in-compartment heat exchanger (22) in which the refrigerant evaporates during the cooling operation and an outdoor fan (Fi) is arranged in close proximity. ) Is arranged.

【0020】上記膨張弁(21)は、外部均圧型の感温式
膨張弁で構成され、感温筒(23)が庫内熱交換器(22)
のガス側の配管(24)に取り付けられると共に、外部均
圧管(25)が接続されている。該外部均圧管(25)は、
ガス側配管(24)における感温筒(23)の取付け部分に
接続され、ガス冷媒が所定の過熱度になるよう該膨張弁
(21)が所定開度に開口するようになっている。
The expansion valve (21) is constituted by an external pressure equalizing type temperature-sensitive expansion valve, and the temperature-sensitive cylinder (23) is connected to the internal heat exchanger (22).
And an external pressure equalizing pipe (25) is connected to the gas side pipe (24). The external pressure equalizing pipe (25)
The expansion valve is connected to a mounting portion of the temperature sensing tube (23) in the gas side pipe (24) so that the gas refrigerant has a predetermined degree of superheat.
(21) is designed to open at a predetermined opening.

【0021】更に、上記庫内熱交換器(22)と膨張弁(2
1)との間からはドレンパンヒータ(26)が分岐されて
いる。このドレンパンヒータ(26)には逆止弁(CV)が設
けられている。このドレンパンヒータ(26)は、デフロ
スト運転時に庫内熱交換器(22)等から図示しないドレン
パンに落下した霜を除去するものである。
Further, the internal heat exchanger (22) and the expansion valve (2
A drain pan heater (26) is branched from between (1) and (1). The drain pan heater (26) is provided with a check valve (CV). The drain pan heater (26) is for removing frost that has fallen from the internal heat exchanger (22) or the like to a drain pan (not shown) during the defrost operation.

【0022】庫外ユニット(1A)と庫内ユニット(1B)とは
液側及びガス側の連絡管(31,32) によって接続され、こ
れにより、上記各機器が配管によって接続されてなる冷
媒回路(30)が構成されている。
The external unit (1A) and the internal unit (1B) are connected by connecting pipes (31, 32) on the liquid side and the gas side, whereby a refrigerant circuit is formed by connecting the above-mentioned devices by piping. (30) is constituted.

【0023】庫外ユニット(1A)と庫内ユニット(1B)とを
接続する各連絡管(31,32) のうちガス側連絡管(32)には
比例制御弁(35)が設けられている。この比例制御弁(35)
は開度調整が自在であって、この開度を調整することで
冷凍能力の調整を行うようになっている。つまり、冷却
運転時に、圧縮機(11)を常時駆動したままで、この比例
制御弁(35)の開度を小さくすると、圧縮機(11)吸入側で
の圧力損失が大きくなる。この圧力損失分だけ蒸発温度
が高くなり、これによって蒸発器能力が小さくなる。逆
に、この比例制御弁(35)の開度を大きくすると、圧縮機
(11)吸入側での圧力損失が小さくなって蒸発温度が低く
なり、これによって蒸発器能力を大きくするようになっ
ている。
The gas-side connecting pipe (32) of the connecting pipes (31, 32) connecting the external unit (1A) and the internal unit (1B) is provided with a proportional control valve (35). . This proportional control valve (35)
The opening degree can be freely adjusted, and the refrigeration capacity is adjusted by adjusting the opening degree. That is, when the opening of the proportional control valve (35) is reduced while the compressor (11) is constantly driven during the cooling operation, the pressure loss on the suction side of the compressor (11) increases. The evaporating temperature rises by this pressure loss, which reduces the evaporator capacity. Conversely, if the opening of the proportional control valve (35) is increased,
(11) The pressure loss on the suction side is reduced and the evaporation temperature is reduced, thereby increasing the evaporator capacity.

【0024】本形態の特徴とするところは、圧縮機(11)
の吐出冷媒の一部を比例制御弁(35)の上流側(庫内熱交
換器側)に導くホットガス供給手段としてのホットガス
バイパス管(36)が設けられていることにある。このホッ
トガスバイパス管(36)は、一端が圧縮機(11)の吐出側
に、他端がガス側連絡管(32)における比例制御弁(35)と
庫内熱交換器(22)との間に接続されている。また、この
ホットガスバイパス管(36)には、キャピラリチューブ(C
P)及び電磁弁(SV-3)が設けられており、この電磁弁(SV-
3)の開放時には圧縮機(11)の吐出冷媒の一部を比例制御
弁(35)の上流側に導くようになっている。
The feature of this embodiment is that the compressor (11)
Is provided with a hot gas bypass pipe (36) as hot gas supply means for guiding a part of the discharged refrigerant to the upstream side (inside the internal heat exchanger) of the proportional control valve (35). The hot gas bypass pipe (36) has one end connected to the discharge side of the compressor (11) and the other end connected to the proportional control valve (35) and the internal heat exchanger (22) in the gas side communication pipe (32). Connected between them. The hot gas bypass pipe (36) has a capillary tube (C
P) and solenoid valve (SV-3) are provided.
At the time of opening 3), a part of the refrigerant discharged from the compressor (11) is guided to the upstream side of the proportional control valve (35).

【0025】本装置には複数のセンサが設けられてい
る。圧縮機(1) の吐出側には高圧冷媒圧力が異常上昇す
ると異常信号を出力する高圧圧力開閉器(HPS1)が設け
られている。デフロスト運転時に吐出冷媒が流れる配管
には高圧冷媒圧力を制御するために該圧力を検出する高
圧圧力センサ(HPS2)が設けられている。圧縮機(11)の
吸入側には、低圧冷媒圧力が異常低下すると異常信号を
出力する低圧圧力開閉器(LPS1)と、低圧冷媒圧力を制
御するために該圧力を検出する低圧圧力センサ(LPS2)
が設けられている。庫内ユニット(1B)の庫内空気吸込口
には、庫内吸込空気温度を検知する庫内温度センサ(Th-
i)が設けられている。
The apparatus is provided with a plurality of sensors. On the discharge side of the compressor (1), there is provided a high pressure switch (HPS1) that outputs an abnormal signal when the high pressure refrigerant pressure rises abnormally. A high-pressure pressure sensor (HPS2) for detecting the pressure of the high-pressure refrigerant is provided in a pipe through which the discharged refrigerant flows during the defrost operation. On the suction side of the compressor (11), a low-pressure switch (LPS1) that outputs an abnormal signal when the low-pressure refrigerant pressure abnormally drops, and a low-pressure pressure sensor (LPS2) that detects the low-pressure refrigerant pressure in order to control the low-pressure refrigerant pressure. )
Is provided. The internal air intake of the internal unit (1B) has an internal temperature sensor (Th-
i) is provided.

【0026】そして、上述した各ユニット(1A,1B) の各
機器は、コントローラ(50)によって制御される。つま
り、各電磁弁(SV-1 〜SV-3) や比例制御弁(35)の制御、
各ファン(F-o,F-i) の風量制御がコントローラ(50)によ
って行われるようになっている。
Each device of each unit (1A, 1B) is controlled by a controller (50). In other words, control of each solenoid valve (SV-1 to SV-3) and proportional control valve (35),
The air flow of each fan (Fo, Fi) is controlled by the controller (50).

【0027】次に、上述の如く構成された本装置の運転
動作について説明する。
Next, the operation of the above-structured apparatus will be described.

【0028】冷却運転時には、四路切換弁(12)が図中実
線側に切換わり、圧縮機(11)が駆動すると共に、各フ
ァン(F-o,F-i)が駆動する。
During the cooling operation, the four-way switching valve (12) is switched to the solid line side in the figure, and the compressor (11) is driven and each fan (Fo, Fi) is driven.

【0029】この状態において、圧縮機(11)から吐出
した冷媒は、四路切換弁(12)を経て庫外熱交換器(13)
で凝縮して液冷媒となり、液ライン(18)を経て室内ユニ
ット(1B)に流れる。この液冷媒は、膨張弁(21)で減圧
した後、庫内熱交換器(22)で蒸発してガス冷媒とな
り、比例制御弁(35)を流通する。この比例制御弁(35)
は、庫内温度センサ(Th-i)によって検出される庫内温度
に応じて開度が調整されている。具体的には、庫内温度
が設定温度よりも低い場合には、比例制御弁(35)の開度
を小さくする。これにより、圧縮機(11)吸入側の圧力損
失が大きくなり、この圧力損失分だけ蒸発温度が高くな
って蒸発器能力が小さくなる。従って、庫内温度を上昇
させて設定温度に近付ける。逆に、庫内温度が設定温度
よりも高い場合には、この比例制御弁(35)の開度を大き
くする。これにより、圧縮機(11)吸入側の圧力損失が小
さくなって蒸発温度が低くなり蒸発器能力が大きくな
る。従って、庫内温度を設定温度まで低下させることが
可能となる。このような動作を繰り返すことで、庫内温
度を設定温度に維持する。
In this state, the refrigerant discharged from the compressor (11) passes through the four-way switching valve (12) and passes through the external heat exchanger (13).
Condenses into a liquid refrigerant and flows to the indoor unit (1B) via the liquid line (18). After the pressure of the liquid refrigerant is reduced by the expansion valve (21), the liquid refrigerant evaporates in the internal heat exchanger (22) to become a gas refrigerant, and flows through the proportional control valve (35). This proportional control valve (35)
The opening degree is adjusted according to the inside temperature detected by the inside temperature sensor (Th-i). Specifically, when the internal temperature is lower than the set temperature, the opening of the proportional control valve (35) is reduced. As a result, the pressure loss on the suction side of the compressor (11) increases, and the evaporating temperature increases by the amount of the pressure loss, and the evaporator capacity decreases. Therefore, the internal temperature is raised to approach the set temperature. Conversely, when the internal temperature is higher than the set temperature, the opening of the proportional control valve (35) is increased. As a result, the pressure loss on the suction side of the compressor (11) is reduced, the evaporation temperature is reduced, and the evaporator capacity is increased. Therefore, it becomes possible to lower the internal temperature to the set temperature. By repeating such an operation, the internal temperature is maintained at the set temperature.

【0030】本形態の特徴とする動作は、この冷却運転
時に圧縮機(11)の吐出冷媒の一部をホットガスバイパス
管(36)により比例制御弁(35)の上流側に供給することに
ある。つまり、このホットガスバイパス管(36)の電磁弁
(SV-3)を開放することで、比例制御弁(35)の上流側に高
圧ガス冷媒を供給する。このような動作によれば、比例
制御弁(35)には、庫内熱交換器(22)で蒸発した冷媒と高
圧ガス冷媒とが混合された状態で流れることになる。つ
まり、比例制御弁(35)を流れる冷媒の流量を増大させる
ことができるので、比例制御弁(35)を開閉動作させる際
の庫内熱交換器(22)に対する作用が大きく発揮できる。
何故なら、比例制御弁(35)を絞る際に、その上流側での
減圧度は、比例制御弁(35)での流量変化量の2乗に比例
する。従って、予め比例制御弁(35)を流れる冷媒の流量
を増大させておくことで、比例制御弁(35)を僅かに絞っ
ただけでもその流量変化は大きくなり、その分、圧力損
失の変化量も大きくなって庫内熱交換器(22)の蒸発温度
を大幅に低下させることができる。言い換えると、比例
制御弁(35)の開度変化量に対する庫内熱交換器(22)の蒸
発温度の変化割合を大きくすることができる。これによ
り、比例制御弁(35)による庫内熱交換器(22)の蒸発温度
の制御範囲の拡大を図ることができる。
The operation of this embodiment is characterized in that a part of the refrigerant discharged from the compressor (11) is supplied to the upstream side of the proportional control valve (35) by the hot gas bypass pipe (36) during the cooling operation. is there. That is, the solenoid valve of this hot gas bypass pipe (36)
By opening (SV-3), high-pressure gas refrigerant is supplied to the upstream side of the proportional control valve (35). According to such an operation, the refrigerant evaporated in the internal heat exchanger (22) and the high-pressure gas refrigerant flow through the proportional control valve (35) in a mixed state. That is, since the flow rate of the refrigerant flowing through the proportional control valve (35) can be increased, the action on the internal heat exchanger (22) when opening and closing the proportional control valve (35) can be significantly exerted.
This is because, when the proportional control valve (35) is throttled, the degree of pressure reduction on the upstream side is proportional to the square of the flow rate change amount in the proportional control valve (35). Therefore, by increasing the flow rate of the refrigerant flowing through the proportional control valve (35) in advance, even if the proportional control valve (35) is slightly squeezed, the change in the flow rate becomes large, and the change amount of the pressure loss is correspondingly increased. And the evaporation temperature of the internal heat exchanger (22) can be greatly reduced. In other words, the rate of change of the evaporation temperature of the internal heat exchanger (22) with respect to the amount of change in the opening of the proportional control valve (35) can be increased. Thereby, the control range of the evaporation temperature of the internal heat exchanger (22) by the proportional control valve (35) can be expanded.

【0031】また、圧縮機(11)の吸入圧力を高くするこ
ともできるので、従来のように、圧縮比の増大に伴っ
て、吐出管温度が過上昇してしまうといった状況の発生
を回避することもできる。
Further, since the suction pressure of the compressor (11) can be increased, it is possible to avoid the occurrence of a situation in which the discharge pipe temperature rises excessively as the compression ratio increases as in the prior art. You can also.

【0032】また、本装置(10)は、4時間等の所定時間
毎に除霜運転(デフロスト運転)を行う。この運転時に
は、四路切換弁(12)が図中破線側に切換えられると共に
比例制御弁(35)は全開状態となる。また、各ファン(F-
o,F-i) は停止される。これにより、圧縮機(11)から吐
出されたホットガス(高温のガス冷媒)は、四路切換弁
(12)を経て庫内熱交換器(22)に達し、該庫内熱交換器(2
2)の霜を除去する。その後、この冷媒は、ドレンパンヒ
ータ(26)を経て減圧部(14)に達する。ここで、キャピラ
リチューブ(CP)において減圧し、庫外熱交換器(13)で外
気と熱交換を行って蒸発した後、圧縮機(11)に戻る。
Further, the present apparatus (10) performs a defrosting operation (defrost operation) every predetermined time such as 4 hours. During this operation, the four-way switching valve (12) is switched to the broken line side in the figure, and the proportional control valve (35) is fully opened. In addition, each fan (F-
o, Fi) is stopped. As a result, the hot gas (high-temperature gas refrigerant) discharged from the compressor (11) is supplied to the four-way switching valve.
(12) and reaches the internal heat exchanger (22), where the internal heat exchanger (2
2) Remove the frost. Thereafter, the refrigerant reaches the pressure reducing section (14) via the drain pan heater (26). Here, the pressure is reduced in the capillary tube (CP), the heat is exchanged with the outside air in the external heat exchanger (13), and the vapor is returned to the compressor (11).

【0033】以上説明したように、本形態によれば、冷
却運転時に、比例制御弁(35)の上流側に高圧ガス冷媒を
供給することで、比例制御弁(35)の開度変化量に対する
庫内熱交換器(22)の蒸発温度の変化割合を大きくするこ
とができて、比例制御弁(35)による庫内熱交換器(22)の
蒸発温度の制御範囲の拡大を図ることができ、且つ吐出
管温度の過上昇を回避することもできる。このように、
蒸発温度の制御範囲の拡大を図ることができるというこ
とは、冷凍装置(10)の馬力に対して大きめの比例制御
弁を使用することが可能となり、冷凍装置(10)が能力
を最大限に発揮しているときであっても、比例制御弁で
の圧力損失を比較的小さくしながら制御範囲を大きく確
保できることに繋がる。
As described above, according to this embodiment, the high pressure gas refrigerant is supplied to the upstream side of the proportional control valve (35) during the cooling operation, so that the amount of change in the opening degree of the proportional control valve (35) can be reduced. The rate of change of the evaporation temperature of the internal heat exchanger (22) can be increased, and the control range of the evaporation temperature of the internal heat exchanger (22) by the proportional control valve (35) can be expanded. In addition, an excessive rise in the discharge pipe temperature can be avoided. in this way,
The ability to extend the control range of the evaporating temperature means that a larger proportional control valve can be used for the horsepower of the refrigeration system (10), and the refrigeration system (10) maximizes its capacity. Even when it is exerted, a large control range can be ensured while the pressure loss at the proportional control valve is relatively small.

【0034】尚、本形態では、比例制御弁(35)をガス側
連絡管(32)に設けたが、本発明は、これに限らず、庫外
ユニット(1A)内の吸入ガスライン(19)など、庫内熱交換
器(22)のガス側の適当な箇所に設けることが可能であ
る。
In this embodiment, the proportional control valve (35) is provided on the gas side communication pipe (32). However, the present invention is not limited to this, and the suction gas line (19) in the external unit (1A) is not limited to this. ) Can be provided at an appropriate location on the gas side of the internal heat exchanger (22).

【0035】[0035]

【発明の効果】以上説明してきたように、本発明によれ
ば以下に述べるような効果が発揮される。請求項1記載
の発明によれば、圧縮機(11)の吸入側に、該吸入側での
圧力損失を調整することにより蒸発器(22)の蒸発温度を
可変にする圧損手段(35)を設けた冷凍装置に対し、ホッ
トガス供給手段(36)により、圧縮機(11)の吐出冷媒の一
部を圧損手段(35)の上流側に供給するようにした。これ
により、圧損手段(35)において、圧力損失を生じさせな
い状態での総流量に対する圧力損失を生じさせた場合の
流量変化量の比が小さくても損失圧力を大きくすること
ができる。従って、圧損手段(35)による蒸発器(22)の蒸
発温度の制御範囲の拡大を図ることができ、装置の実用
性の向上を図ることができる。また、圧縮機(11)の吸入
圧力を高くすることで、圧縮比の増大に伴う吐出管温度
の過上昇を抑制でき信頼性の向上を図ることもできる。
As described above, according to the present invention, the following effects can be obtained. According to the first aspect of the present invention, the pressure loss means (35) for varying the evaporation temperature of the evaporator (22) by adjusting the pressure loss on the suction side of the compressor (11) is provided on the suction side of the compressor (11). A part of the refrigerant discharged from the compressor (11) is supplied to the upstream side of the pressure loss means (35) by the hot gas supply means (36) to the provided refrigerating apparatus. Thereby, in the pressure loss means (35), the pressure loss can be increased even if the ratio of the flow rate change amount when the pressure loss to the total flow rate in the state where the pressure loss is not generated is small. Therefore, the control range of the evaporation temperature of the evaporator (22) by the pressure loss means (35) can be expanded, and the practicality of the device can be improved. Further, by increasing the suction pressure of the compressor (11), it is possible to suppress an excessive rise in the temperature of the discharge pipe due to an increase in the compression ratio, thereby improving reliability.

【0036】請求項2記載の発明では、圧損手段を、開
度調整自在な比例制御弁(35)とし、該比例制御弁(35)の
開度変化による蒸発器(22)の蒸発温度の制御範囲を拡大
でき、蒸発温度の調整を容易に行うことができる。
According to the second aspect of the present invention, the pressure loss means is a proportional control valve (35) whose opening can be adjusted, and the evaporating temperature of the evaporator (22) is controlled by changing the opening of the proportional control valve (35). The range can be expanded, and the adjustment of the evaporation temperature can be easily performed.

【0037】請求項3記載の発明では、膨張機構を、外
部均圧型の感温式膨張弁(21)としている。この膨張弁で
は、回路全体として冷媒循環量が減少すると、蒸発器出
口側の冷媒過熱度が高くなることに伴って開度が大きく
なり、圧損手段(35)での圧力損失を大きくさせる傾向に
なるが、本発明によれば、上述の如く、この圧力損失の
増大を抑制して蒸発温度の制御範囲の拡大を図ることが
できる。
According to the third aspect of the present invention, the expansion mechanism is an external pressure equalizing type temperature-sensitive expansion valve (21). In this expansion valve, when the refrigerant circulation amount decreases as a whole circuit, the opening degree increases with an increase in the superheat degree of the refrigerant at the evaporator outlet side, and the pressure loss at the pressure loss means (35) tends to increase. However, according to the present invention, as described above, the increase in the pressure loss can be suppressed and the control range of the evaporation temperature can be expanded.

【0038】請求項4記載の発明では、インジェクショ
ン回路(20)により凝縮器(13)で凝縮した液冷媒の一部を
圧縮機(11)の吸入側に供給するようにし、この供給量を
調整弁(SV-1,SV-2) により調整可能にした。これによ
り、圧縮機(11)の吐出ガスの過熱度が過上昇することを
抑制でき、また、この過熱度を適切に調整できて、安定
した運転動作を行わせることができる。
According to the present invention, a part of the liquid refrigerant condensed by the condenser (13) is supplied to the suction side of the compressor (11) by the injection circuit (20), and the supply amount is adjusted. Adjustable with valves (SV-1, SV-2). Thereby, it is possible to suppress the superheat degree of the discharge gas of the compressor (11) from being excessively increased, and it is possible to appropriately adjust the superheat degree and perform a stable operation.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施形態に係る冷凍装置の冷媒配管系統図であ
る。
FIG. 1 is a refrigerant piping system diagram of a refrigeration apparatus according to an embodiment.

【符号の説明】[Explanation of symbols]

(11) 圧縮機 (13) 庫外熱交換器(凝縮器) (20) インジェクション回路 (21) 膨張弁(膨張機構) (22) 庫内熱交換器(蒸発器) (30) 冷媒回路 (35) 比例制御弁(圧損手段) (36) ホットガスバイパス管(ホットガス供給手
段)
(11) Compressor (13) External heat exchanger (condenser) (20) Injection circuit (21) Expansion valve (expansion mechanism) (22) Internal heat exchanger (evaporator) (30) Refrigerant circuit (35 ) Proportional control valve (pressure loss means) (36) Hot gas bypass pipe (hot gas supply means)

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機(11)と、凝縮器(13)と、膨張機構
(21)と、蒸発器(22)とが冷媒循環可能に順に接続されて
成る冷媒回路(30)を備え、 上記圧縮機(11)の吸入側に、該吸入側で圧力損失を生じ
させ且つその損失圧力を調整することにより蒸発器(22)
の蒸発温度を可変にする圧損手段(35)が設けられた冷凍
装置において、 上記圧縮機(11)の吐出冷媒の一部を圧損手段(35)の上流
側に供給するホットガス供給手段(36)が設けられている
ことを特徴とする冷凍装置。
1. A compressor (11), a condenser (13), and an expansion mechanism
(21), and a refrigerant circuit (30) in which an evaporator (22) is connected in order so that refrigerant can be circulated, causing a pressure loss on the suction side of the compressor (11) on the suction side, and Evaporator (22) by adjusting its loss pressure
In a refrigerating apparatus provided with a pressure loss means (35) for varying the evaporation temperature of the compressor, a hot gas supply means (36) for supplying a part of the refrigerant discharged from the compressor (11) to the upstream side of the pressure loss means (35). ) Is provided.
【請求項2】 請求項1記載の冷凍装置において、 圧損手段は、開度調整自在な比例制御弁(35)であること
を特徴とする冷凍装置。
2. The refrigeration system according to claim 1, wherein the pressure loss means is a proportional control valve (35) whose opening is adjustable.
【請求項3】 請求項1記載の冷凍装置において、 膨張機構は、外部均圧型の感温式膨張弁(21)であること
を特徴とする冷凍装置。
3. The refrigeration system according to claim 1, wherein the expansion mechanism is an external pressure equalizing type temperature-sensitive expansion valve (21).
【請求項4】 請求項1記載の冷凍装置において、 凝縮器(13)で凝縮した液冷媒の一部を圧縮機(11)の吸入
側で且つ圧損手段(35)の下流側に供給するインジェクシ
ョン回路(20)を備え、該インジェクション回路(20)には
圧縮機(11)の吸入側への液冷媒の供給量を調整可能な調
整弁(SV-1,SV-2) が設けられていることを特徴とする冷
凍装置。
4. The injection system according to claim 1, wherein a part of the liquid refrigerant condensed in the condenser (13) is supplied to a suction side of the compressor (11) and to a downstream side of the pressure loss means (35). Circuit (20), and the injection circuit (20) is provided with regulating valves (SV-1, SV-2) capable of adjusting the supply amount of the liquid refrigerant to the suction side of the compressor (11). A refrigeration apparatus characterized by the above-mentioned.
JP3580097A 1997-02-20 1997-02-20 Refrigerating device Withdrawn JPH10232076A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3580097A JPH10232076A (en) 1997-02-20 1997-02-20 Refrigerating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3580097A JPH10232076A (en) 1997-02-20 1997-02-20 Refrigerating device

Publications (1)

Publication Number Publication Date
JPH10232076A true JPH10232076A (en) 1998-09-02

Family

ID=12452006

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3580097A Withdrawn JPH10232076A (en) 1997-02-20 1997-02-20 Refrigerating device

Country Status (1)

Country Link
JP (1) JPH10232076A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012118198A1 (en) * 2011-03-03 2012-09-07 サンデン株式会社 Vehicle-use air conditioner

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012118198A1 (en) * 2011-03-03 2012-09-07 サンデン株式会社 Vehicle-use air conditioner
CN103534539A (en) * 2011-03-03 2014-01-22 三电有限公司 Vehicle-use air conditioner
CN105020920A (en) * 2011-03-03 2015-11-04 三电有限公司 Air conditioning device for vehicle
JP5934181B2 (en) * 2011-03-03 2016-06-15 サンデンホールディングス株式会社 Air conditioner for vehicles
US9517680B2 (en) 2011-03-03 2016-12-13 Sanden Holdings Corporation Vehicle air conditioning apparatus
US9849752B2 (en) 2011-03-03 2017-12-26 Sanden Holdings Corporation Vehicle air conditioning apparatus
US9855822B2 (en) 2011-03-03 2018-01-02 Sanden Holdings Corporation Vehicle air conditioning apparatus
US9937771B2 (en) 2011-03-03 2018-04-10 Sanden Holdings Corporation Vehicle air conditioning apparatus
US9956847B2 (en) 2011-03-03 2018-05-01 Sanden Holdings Corporation Vehicle air conditioning apparatus
US10183551B2 (en) 2011-03-03 2019-01-22 Sanden Holdings Corporation Vehicle air conditioning apparatus

Similar Documents

Publication Publication Date Title
JP3925545B2 (en) Refrigeration equipment
US9951974B2 (en) Flash tank economizer cycle control
EP1659348B1 (en) Freezing apparatus
EP2320159A1 (en) Refrigerating device
EP3144606B1 (en) Air conditioner
EP3546850B1 (en) Refrigeration device
JP2936961B2 (en) Air conditioner
WO2016174822A1 (en) Refrigeration apparatus
US11725855B2 (en) Air conditioning apparatus
JP2005076933A (en) Refrigeration cycle system
KR20210100461A (en) Air conditioning apparatus
EP2321593A2 (en) Improved operation of a refrigerant system
US11187447B2 (en) Refrigeration cycle apparatus
JP2007232265A (en) Refrigeration unit
KR101161381B1 (en) Refrigerant cycle apparatus
JP2010054193A (en) Refrigerating device
US20220357085A1 (en) Air-conditioning apparatus
US11708981B2 (en) High-pressure re-start control algorithm for microchannel condenser with reheat coil
JP6173360B2 (en) Refrigeration equipment
JP2018173195A (en) Refrigerator
JPH10232076A (en) Refrigerating device
WO2017098655A1 (en) Refrigeration cycle device
JPH04222341A (en) Operation controller for air conditioner
JP3642080B2 (en) Refrigeration equipment
JP2017015315A (en) Air conditioner

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20040511