JPH10228915A - Phosphoric acid fuel cell - Google Patents

Phosphoric acid fuel cell

Info

Publication number
JPH10228915A
JPH10228915A JP9028228A JP2822897A JPH10228915A JP H10228915 A JPH10228915 A JP H10228915A JP 9028228 A JP9028228 A JP 9028228A JP 2822897 A JP2822897 A JP 2822897A JP H10228915 A JPH10228915 A JP H10228915A
Authority
JP
Japan
Prior art keywords
phosphoric acid
electrode
potential
porous layer
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9028228A
Other languages
Japanese (ja)
Inventor
Hajime Sudo
業 須藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP9028228A priority Critical patent/JPH10228915A/en
Publication of JPH10228915A publication Critical patent/JPH10228915A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable proper measurement of the internal distribution of the electrode potential and grasp of the running conditions despite the attached positions difference of the fuel electrode and the air electrode. SOLUTION: In the center of the porous layer 3 of a unit cell, being arranged an air electrode 1 and a fuel electrode 2 on both the surfaces of the phosphoric acid contained porous layer 3, one end of three canaliculi 4A, 4B, 4C containing the phosphoric acid are inserted and other ends are connected to the porous layer 3A, 3B, 3C with the referring electrodes 5A, 5B, 5C being connected liquidly to the each referring electrode with the phosphoric acid at the position of the porous layer 3 where both the air electrode 1 and the fuel electrode 2 are arranged on the porous layer, the electrode potential is measured.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は運転条件下の単位セ
ル内における、発電部分の電極電位および電流密度を実
測するための参照極を備えたリン酸型燃料電池に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a phosphoric acid fuel cell provided with a reference electrode for actually measuring an electrode potential and a current density of a power generation part in a unit cell under operating conditions.

【0002】[0002]

【従来の技術】リン酸型燃料電池は、通常、リン酸を保
持した多孔質層を空気極と燃料極の間に挟持してなる複
数の単位セルを分離板を介して積層して構成され、200
℃付近において、空気極に酸化剤ガスを供給して酸化反
応を行わせ、燃料極に燃料ガスを供給して還元反応を行
わせて運転される。運転時には、単位セルの面内でガス
濃度の差、温度の差等が生じるので、燃料極および空気
極で電極電位が異なる部分が同一面内に存在することと
なる。一方、電解質には強酸である熱濃リン酸を用いて
いるため、隣りあった部分の電極電位差が大きくなれ
ば、局部電池が形成されて構成部材の腐食を引き起こす
原因となる。特に、空気極においては、電流密度の低下
とともに電極電位が上昇し、容易にカーボンの腐食電位
である 800mV(可逆水素電極基準)を超える高電位部分
が発生するため、リン酸型燃料電池の主たる構成材であ
るカーボン材等の腐食や触媒の劣化等が発生しやすい。
2. Description of the Related Art Phosphoric acid type fuel cells are generally constructed by laminating a plurality of unit cells having a porous layer holding phosphoric acid between an air electrode and a fuel electrode via a separator. , 200
In the vicinity of ° C., the operation is performed by supplying an oxidizing gas to the air electrode to cause an oxidation reaction, and supplying a fuel gas to the fuel electrode to cause a reduction reaction. At the time of operation, a difference in gas concentration, a difference in temperature, and the like occur in the plane of the unit cell, so that a portion having a different electrode potential between the fuel electrode and the air electrode exists in the same plane. On the other hand, since hot concentrated phosphoric acid, which is a strong acid, is used for the electrolyte, if the electrode potential difference between adjacent parts increases, a local battery is formed, which causes corrosion of the constituent members. In particular, at the air electrode, the electrode potential increases as the current density decreases, and a high potential portion easily exceeding the corrosion potential of carbon, 800 mV (based on a reversible hydrogen electrode), is generated. Corrosion of the carbon material as a constituent material, deterioration of the catalyst, and the like are likely to occur.

【0003】従って、このような電極の腐食による重故
障が回避され、長期にわたり安定して運転できるリン酸
型燃料電池の最適なセル構造および運転条件を見出すた
めには、運転条件下での電極電位分布および電流密度分
布を正確に把握しておく必要があり、以下のごとき方法
が採られている。 <電極電位分布の測定>図7は、従来より用いられてい
る単位セルの電極電位分布の測定方法を示す基本構成図
である。図に見られるように、本構成においては、空気
極1と燃料極2との間にリン酸を保持した多孔質層3を
配してなる単位セルにおいて、空気極1および燃料極2
よりも多孔質層3を大きくし、空気極1と燃料極2とに
挟持されたセル発電部の外側に二つの参照電極5G,5
Hが配置されている。この構成においては、電極面内に
電位分布があると、局部電池の形成によって面内の発電
部分および周辺部を電流が流れ、このときセル周辺部分
の電解質内に発生する電圧降下によって二つの参照電極
5G,5Hの間に電位差が生じるので、この電位差を測
定することにより、間接的に面内の電位分布が知られる
こととなる。 <電流密度分布の測定>図8は、従来より用いられてい
る電流密度分布の測定方法を示す基本構成図である。図
に示すように、空気極1と燃料極2と多孔質層3からな
る単位セルにおいて、空気極1と燃料極2の外側面に端
子を設けて電圧計8Aによって両端の電圧V1 を測定
し、また、単位セルの両側に位置する分離板7の外側面
に上記の端子と相対して端子を設けて電圧計8Bによっ
て両端の電圧V2 を測定し、これらの測定結果より次式
(1)によって端子設定位置における電流密度Jを求め
る。面内の複数点でV1 とV2 を測定して電流密度Jを
算出することにより面内の電流密度が求められる。な
お、式(1)のRは分離板の抵抗値である。
Therefore, in order to avoid such a serious failure due to corrosion of the electrode and to find out the optimal cell structure and operating conditions of the phosphoric acid type fuel cell which can be operated stably for a long period of time, the electrode under the operating conditions must be used. It is necessary to accurately grasp the potential distribution and the current density distribution, and the following method is employed. <Measurement of Electrode Potential Distribution> FIG. 7 is a basic configuration diagram showing a conventional method of measuring an electrode potential distribution of a unit cell. As shown in the figure, in this configuration, in the unit cell having the porous layer 3 holding phosphoric acid between the air electrode 1 and the fuel electrode 2, the air electrode 1 and the fuel electrode 2
The porous layer 3 is larger than the porous layer 3 and two reference electrodes 5G and 5 are provided outside the cell power generation section sandwiched between the air electrode 1 and the fuel electrode 2.
H is arranged. In this configuration, if there is a potential distribution in the electrode surface, a current flows through the power generation portion and the peripheral portion of the surface due to the formation of the local battery, and at this time, two reference voltages are generated by the voltage drop generated in the electrolyte around the cell. Since a potential difference occurs between the electrodes 5G and 5H, the potential difference in the plane is indirectly known by measuring the potential difference. <Measurement of Current Density Distribution> FIG. 8 is a basic configuration diagram showing a conventional method for measuring a current density distribution. As shown, in the unit cell composed of cathode 1 and the anode 2 and the porous layer 3, measures the voltages V 1 across provided terminals on the outer surface of the air electrode 1 and the fuel electrode 2 by voltmeter 8A In addition, terminals are provided on the outer surface of the separation plate 7 located on both sides of the unit cell in opposition to the above terminals, and a voltage V 2 at both ends is measured by a voltmeter 8B. The current density J at the terminal setting position is obtained by 1). By measuring V 1 and V 2 at a plurality of points in the plane and calculating the current density J, the in-plane current density is obtained. In the equation (1), R is the resistance value of the separator.

【0004】[0004]

【数1】 J = (V2 −V1 )/(2R) (1)J = (V 2 −V 1 ) / (2R) (1)

【0005】[0005]

【発明が解決しようとする課題】従来のリン酸型燃料電
池においては、最適なセル構造および運転条件を見出す
ために、上記のごとく構成して、面内の電極電位分布の
測定および電流密度分布の測定が行われている。しかし
ながら、これらの測定方式においても、それぞれ下記の
ごとき難点があり、必ずしも的確な測定結果が得られな
いという問題点がある。 <電極電位分布の測定>従来の技術では、発電部分の外
側に参照電極を設置しているため、発電部分の電解質電
位と参照電極の電解質電位が異なり、参照電極は周囲の
電解質電位の乱れを影響を受けることとなる。したがっ
て、面積が小さく、ガス利用率が低く、電極電位の面内
分布がほとんど無いセルの場合にあっても、参照電極間
に電位差を生じることがあり、参照電極が電極電位の評
価の基準とならない事態が生じるという難点がある。
In order to find out the optimum cell structure and operating conditions, the conventional phosphoric acid fuel cell is constructed as described above, and measures the in-plane electrode potential distribution and the current density distribution. Has been measured. However, these measurement methods also have the following disadvantages, and there is a problem that accurate measurement results cannot always be obtained. <Measurement of Electrode Potential Distribution> In the conventional technique, since the reference electrode is provided outside the power generation part, the electrolyte potential of the power generation part and the electrolyte potential of the reference electrode are different, and the reference electrode is configured to disturb the surrounding electrolyte potential. You will be affected. Therefore, even in the case of a cell having a small area, a low gas utilization rate, and almost no in-plane distribution of the electrode potential, a potential difference may occur between the reference electrodes, and the reference electrode serves as a reference for evaluating the electrode potential. There is a drawback that an unfortunate situation occurs.

【0006】図9は、図7の構成においてセルが面内分
布を持たない場合にセルの周辺に設置した参照電極間に
電位差が生じる原因を示す説明図である。開回路におい
ては、燃料極、空気極ともに電極電位はガス濃度によっ
て決定されるため、ガス濃度が面内で均一であれば面全
体で電極の電位は等しくなるが、セルに任意の負荷電流
を流すと、燃料極でηa 、空気極でηc の分極がそれぞ
れ生じる。
FIG. 9 is an explanatory diagram showing the cause of the potential difference between the reference electrodes installed around the cell when the cell has no in-plane distribution in the configuration of FIG. In an open circuit, the electrode potential of both the fuel electrode and the air electrode is determined by the gas concentration, so if the gas concentration is uniform in the plane, the electrode potentials will be equal over the entire surface. When flowing, polarization of η a occurs at the fuel electrode and η c occurs at the air electrode.

【0007】このとき設置された燃料極2と空気極1の
端部がずれて配設されていると、二つの電極の対極の存
在する部分、すなわち燃料極2の2aの部分と空気極1
の1a部分は発電部分となり、対極の存在しない部分、
すなわち燃料極2の2bの部分と空気極1の1b部分は
非発電部分(実際には対極が存在する部分に比べて微少
の電流が流れる)となる。発電部分では発電による分極
が生じるが、非発電部分は開回路と等しい状態にあるの
で分極は生じておらず、分極分だけ電位差が生じて、電
極中に局部電池が形成される。以下に、空気極1がはみ
出した場合と燃料極2がはみ出した場合の参照電極を基
準とした電極電位の測定結果に及ぼす影響について説明
する。 (空気極がはみ出した場合の影響)空気極1がはみ出し
ている場合、すなわち1bが存在する場合には、発電部
分1aの電位が非発電部分1bの電位と比較して空気極
1の発電による分極分(η c )だけ低くなるので、非発
電部分1bから発電部分1aへ電極中を電子電流12が
流れ、等量のプロトン電流11がリン酸を保持した多孔
質3の中を発電部分から非発電部分へと流れる。従っ
て、発電部分と非発電部分の電解質電位を比較すると、
電圧降下により、非発電部分の方が電解質電位が低くな
る。
At this time, the fuel electrode 2 and the air electrode 1
If the ends are offset, the existence of the opposite electrodes of the two electrodes
Existing part, that is, the part 2a of the anode 2 and the cathode 1
1a portion is a power generation portion, a portion where the counter electrode does not exist,
That is, the portion 2b of the anode 2 and the portion 1b of the cathode 1
Non-power generation part (actually smaller than the part where the counter electrode exists)
Current flows). Polarization due to power generation in the power generation part
But the non-power generation part is in the same state as the open circuit.
Polarization does not occur, and a potential difference occurs by the amount of polarization.
A local battery is formed in the pole. Below, the air electrode 1
And reference electrode when fuel electrode 2 protrudes.
Explanation of the effect of the reference electrode potential on the measurement results
I do. (Effect when air electrode protrudes) Air electrode 1 protrudes
If there is, that is, if 1b exists, the power generation unit
The potential of the minute 1a is compared with the potential of the non-power generation portion 1b,
1 polarization (η c) Only lower
Electron current 12 flows through the electrodes from power section 1b to power generation section 1a.
Porous with flowing, equal amount of proton current 11 holding phosphoric acid
It flows through the quality 3 from the power generation part to the non-power generation part. Follow
Therefore, comparing the electrolyte potentials of the power generation part and the non-power generation part,
Due to the voltage drop, the electrolyte potential is lower in the non-power generation area.
You.

【0008】このため、空気極がはみ出ている場合に
は、電流密度の増加に従い、空気極電位は低くなるが、
参照電極5Gの電位も電解質電位とともに低くなるた
め、空気極電位の低下が見掛け上小さくなり、燃料極電
位の上昇が見掛け上大きく測定されることとなる。 (燃料極がはみ出した場合の影響)燃料極2がはみ出て
いる場合には、すなわち2bが存在する場合には、発電
部分2aの電位が非発電部分2bの電位と比較して燃料
極2の発電による分極分(ηa )だけ高くなるので、発
電部分2aから非発電部分2bへ電極中を電子電流12
が流れ、等量のプロトン電流11がリン酸を保持した多
孔質3の中を非発電部分から発電部分へと流れる。従っ
て、発電部分と非発電部分の電解質電位を比較すると、
電圧降下により、非発電部分の方が電解質電位が高くな
る。
For this reason, when the air electrode protrudes, the air electrode potential decreases as the current density increases.
Since the potential of the reference electrode 5G also decreases with the electrolyte potential, the decrease in the air electrode potential is apparently reduced, and the increase in the fuel electrode potential is measured to be apparently large. (Effects when the fuel electrode protrudes) When the fuel electrode 2 protrudes, that is, when the fuel electrode 2b is present, the potential of the power generation portion 2a is compared with the potential of the non-power generation portion 2b to reduce the potential of the fuel electrode 2. Since the polarization (η a ) increases by the power generation, the electron current 12 flows from the power generation portion 2a to the non-power generation portion 2b in the electrode.
Flows, and an equal amount of proton current 11 flows from the non-power-generating portion to the power-generating portion in the porous body 3 holding phosphoric acid. Therefore, comparing the electrolyte potentials of the power generation part and the non-power generation part,
Due to the voltage drop, the non-power generation portion has a higher electrolyte potential.

【0009】このため、燃料極2がはみ出ている場合に
は、電流密度の増加に従い、燃料極電位は高くなるが、
参照電極5Hの電位も電解質電位とともに高くなるた
め、燃料極電位の上昇が見掛け上小さくなり、空気極電
位の低下が見掛け上大きく測定されることとなる。ま
た、燃料極および空気極のはみ出し部分がセル中で同時
に存在する構成、あるいは、はみ出しが不均一に存在す
る構成の場合には、上述の説明から類推されるように、
参照電極5Gと参照電極5Hの間には一定でない電位差
が生じることとなるため、このように配設した参照電極
5G,5Hを電極電位測定の基準として用いることはで
きない。 <電流密度の分布の測定>図8の構成による従来の方法
では、複数の測定点で分離板7中の電圧降下を測定し、
電流密度を算出して面内の分布を求めているが、被測定
体を構成する電極基材およびカーボン製の分離板は優れ
た電気電導性材料よりなるので、測定される電圧降下は
巨視的な電圧降下となり、局所的な測定は本質的に不可
能である。したがって、得られる分布は緩和された電流
密度分布に限定され、正確な電流密度分布が得られない
という難点がある。
For this reason, when the fuel electrode 2 protrudes, the fuel electrode potential increases as the current density increases.
Since the potential of the reference electrode 5H also increases with the electrolyte potential, the increase in the fuel electrode potential is apparently small, and the decrease in the air electrode potential is apparently large. Further, in a configuration in which the protruding portions of the fuel electrode and the air electrode are simultaneously present in the cell, or in the case of a configuration in which the protruding portion exists unevenly, as inferred from the above description,
Since a non-constant potential difference occurs between the reference electrode 5G and the reference electrode 5H, the reference electrodes 5G and 5H thus arranged cannot be used as a reference for measuring the electrode potential. <Measurement of Current Density Distribution> In the conventional method having the configuration shown in FIG. 8, the voltage drop in the separation plate 7 is measured at a plurality of measurement points.
Although the in-plane distribution is calculated by calculating the current density, since the electrode base material and the carbon-made separator constituting the object to be measured are made of an excellent electric conductive material, the measured voltage drop is macroscopic. And a local measurement is essentially impossible. Therefore, the obtained distribution is limited to the relaxed current density distribution, and there is a problem that an accurate current density distribution cannot be obtained.

【0010】本発明の目的は、上記のごとき従来技術の
難点を解消し、配設された燃料極と空気極の位置ずれが
存在する場合にあっても単位セルの面内の電極電位分布
が適正に測定され、あるいは、構成部材により緩和され
ることなく面内の電流密度分布が適正に測定され、運転
状態が的確に把握されるリン酸型燃料電池を提供するこ
とにある。
An object of the present invention is to solve the above-mentioned disadvantages of the prior art, and to provide an electrode potential distribution in a unit cell plane even when there is a misalignment between the disposed fuel electrode and the air electrode. An object of the present invention is to provide a phosphoric acid fuel cell in which the current density distribution in a plane is appropriately measured without being appropriately measured or alleviated by constituent members, and the operating state is accurately grasped.

【0011】[0011]

【課題を解決するための手段】上記の課題を解決するた
め、本発明においては、酸化反応を行う空気極と還元反
応を行う燃料極の間に、電解質としてリン酸を保持した
多孔質層を挟持してなる単位セルを、分離板を介して積
層したリン酸型燃料電池において、 (1)リン酸、またはリン酸を含む多孔体、またはリン
酸と粉体の混合物、またはリン酸を保持した繊維を充填
した細管と、その一方の開口端に液絡された電位測定用
の参照電極とからなり、かつ、細管の他方の開口端が、
空気極と燃料極が重なり合ってなる発電領域の多孔質層
の内部に挿入され、細管の内部のリン酸が多孔質層中の
リン酸と液絡されてなる電極電位の測定手段を少なくと
も1個備えることとする。
In order to solve the above problems, the present invention provides a porous layer holding phosphoric acid as an electrolyte between an air electrode for performing an oxidation reaction and a fuel electrode for performing a reduction reaction. In a phosphoric acid type fuel cell in which sandwiched unit cells are stacked via a separator, (1) phosphoric acid, or a porous body containing phosphoric acid, a mixture of phosphoric acid and powder, or phosphoric acid Consisting of a thin tube filled with the fibers and a reference electrode for potential measurement liquid-junction at one open end thereof, and the other open end of the thin tube,
At least one means for measuring the electrode potential is inserted into the porous layer of the power generation area where the air electrode and the fuel electrode overlap each other, and the phosphoric acid inside the thin tube is liquid junctioned with the phosphoric acid in the porous layer. I will prepare it.

【0012】(2)また、リン酸、またはリン酸を含む
多孔体、またはリン酸と粉体の混合物、またはリン酸を
保持した繊維を充填した細管と、その一方の開口端に液
絡された電位測定用の参照電極とからなり、かつ、細管
の他方の開口端が、空気極と燃料極が重なり合ってなる
発電領域の多孔質層と燃料極との間に挿入され、細管の
内部のリン酸が多孔質層中のリン酸と液絡されてなる第
1の電位測定手段、および、同様にリン酸を内蔵した細
管と、その一方の開口端に液絡された電位測定用の参照
電極とからなり、かつ、細管の他方の開口端が、発電領
域の多孔質層と空気極との間に挿入され、細管の内部の
リン酸が多孔質層中のリン酸と液絡されてなる第2の電
位測定手段からなる電解質電位差測定手段を少なくとも
一対備えることとする。
(2) A thin tube filled with phosphoric acid or a porous material containing phosphoric acid, a mixture of phosphoric acid and powder, or a fiber holding phosphoric acid, and a liquid junction at one open end thereof And the other open end of the thin tube is inserted between the fuel layer and the porous layer of the power generation area where the air electrode and the fuel electrode overlap, and the inside of the thin tube is First potential measuring means in which phosphoric acid is liquid-juncted with phosphoric acid in the porous layer, and a thin tube also containing phosphoric acid, and a reference for potential measurement liquid-junction at one open end thereof And the other open end of the thin tube is inserted between the porous layer in the power generation area and the air electrode, and the phosphoric acid inside the thin tube is liquid-juncted with the phosphoric acid in the porous layer. Having at least one pair of electrolyte potential difference measuring means comprising second potential measuring means. That.

【0013】上記(1)のごとく構成することとすれ
ば、参照電極は細管に内臓されたリン酸を介して発電部
分の多孔質層中のリン酸と液絡されることとなるので、
参照電極の電位は発電部分の電解質電位と等電位に保持
されることとなる。したがって、多孔質層を挟持する燃
料極と空気極に位置ずれがある場合においても、セル周
辺の電解質電位の乱れに影響を受けることなく電極電位
を測定することができ、複数点でこのように測定するこ
とにより、面内の電極電位分布を的確に把握することが
できることとなる。
According to the configuration described in the above (1), the reference electrode is liquid-juncted with the phosphoric acid in the porous layer of the power generation portion via the phosphoric acid contained in the thin tube.
The potential of the reference electrode is maintained at the same potential as the electrolyte potential of the power generation part. Therefore, even when the fuel electrode and the air electrode sandwiching the porous layer are misaligned, the electrode potential can be measured without being affected by the disturbance of the electrolyte potential around the cell. By measuring, the in-plane electrode potential distribution can be accurately grasped.

【0014】また、上記(2)のごとく構成することと
すれば、第1の電位測定手段の参照電極と第2の電位測
定手段の参照電極との間の電位差から、多孔質層のその
点における電流密度が実測されるので、従来のごとく電
気電導性のよい電極基材や分離板の影響を受けることな
く電流密度が求められることとなる。したがって、面内
にこれらの電位測定手段を複数対設置すれば、面内の電
流密度分布を的確に把握することができる。
Further, if the configuration is made as in the above (2), the point of the porous layer is determined from the potential difference between the reference electrode of the first potential measuring means and the reference electrode of the second potential measuring means. Is measured, the current density is determined without being affected by the electrode substrate or the separator having good electric conductivity as in the related art. Therefore, when a plurality of pairs of these potential measuring means are provided in the plane, the current density distribution in the plane can be accurately grasped.

【0015】[0015]

【発明の実施の形態】以下、本発明を実施例に基づき説
明する。 <実施例1>図1は、本発明の第1の実施例における単
位セルの電極電位分布の測定構成を示す基本構成図で、
(a)は平面図、(b)は(a)のX−X面の断面図あ
る。また、図10は、比較のために用いた従来方式の単
位セルの電極電位分布の測定構成を示す基本構成図で、
(a)は平面図、(b)は(a)のZ−Z面の断面図あ
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described based on embodiments. <Embodiment 1> FIG. 1 is a basic configuration diagram showing a configuration for measuring an electrode potential distribution of a unit cell according to a first embodiment of the present invention.
(A) is a plan view, and (b) is a cross-sectional view taken along the line XX of (a). FIG. 10 is a basic configuration diagram showing a configuration for measuring the electrode potential distribution of a conventional unit cell used for comparison.
(A) is a plan view, and (b) is a cross-sectional view of the ZZ plane of (a).

【0016】図1において、単位セルは、リン酸を保持
した厚さ 300〜500 μm の多孔質層3の両面に空気極1
と燃料極2を配して形成されており、空気極1と燃料極
2とが重なり合う位置の多孔質層3の厚さ方向の中央部
には、リン酸を内蔵した3本の細管4A,4B,4Cの
一端が装入されている。これらの細管4A,4B,4C
の他端は、それぞれ可逆水素電極からなる参照電極5
A,5B,5Cを配設したリン酸を保持する多孔質層3
A,3B,3Cに連結されている。すなわち、参照電極
5A,5B,5Cは、細管4A,4B,4Cに内臓され
たリン酸を通して、開口端において多孔質層3に液絡さ
れている。また、本構成においては、空気極1と燃料極
2の位置が相対的にずれたときの特性を試験するため
に、空気極1を参照電極5Bの方向に1.8mm ずらして設
置されている。
In FIG. 1, a unit cell has air electrodes 1 on both sides of a porous layer 3 having a thickness of 300 to 500 μm holding phosphoric acid.
And a fuel electrode 2, and three thin tubes 4A containing phosphoric acid are provided at the center in the thickness direction of the porous layer 3 where the air electrode 1 and the fuel electrode 2 overlap. One end of each of 4B and 4C is inserted. These thin tubes 4A, 4B, 4C
Is connected to a reference electrode 5 composed of a reversible hydrogen electrode.
Porous layer 3 holding phosphoric acid provided with A, 5B, 5C
A, 3B, 3C. That is, the reference electrodes 5A, 5B, and 5C are liquid-juncted to the porous layer 3 at the open ends through the phosphoric acid contained in the thin tubes 4A, 4B, and 4C. Further, in the present configuration, in order to test the characteristics when the positions of the air electrode 1 and the fuel electrode 2 are relatively shifted, the air electrode 1 is arranged to be shifted by 1.8 mm in the direction of the reference electrode 5B.

【0017】図10の従来方式の構成の単位セルも、リ
ン酸を保持した厚さ 300〜500 μmの多孔質層3の両面
に空気極1と燃料極2を配して形成されており、発電部
分の外側に位置する多孔質層3の表面に3個の参照電極
5F,5G,5Hが配されている。なお、本単位セルに
おいても、特性を試験するために、燃料極2と空気極1
が 1.0 mm ずらして設置されている。
The unit cell of the conventional system shown in FIG. 10 is also formed by arranging an air electrode 1 and a fuel electrode 2 on both sides of a porous layer 3 having a thickness of 300 to 500 μm holding phosphoric acid. Three reference electrodes 5F, 5G, 5H are arranged on the surface of the porous layer 3 located outside the power generation part. In this unit cell, the fuel electrode 2 and the air electrode 1 were used to test the characteristics.
Are shifted by 1.0 mm.

【0018】図2は、図1に示した本実施例のセルのI
−V,I−E特性図で、図中の特性Aはセル電圧、特性
B,C,D,Eは、それぞれ参照電極5Aを基準とする
空気極電位、燃料極電位、参照電極5Bの電位、参照電
極5Cの電位である。また、図11は、図10に示した
従来方式のセルのI−V,I−E特性図で、図中の特性
Aはセル電圧、特性K,L,M,Nは、それぞれ参照電
極5Fを基準とする空気極電位、燃料極電位、参照電極
5Gの電位、参照電極5Hの電位である。
FIG. 2 shows the I of the cell of this embodiment shown in FIG.
In the -V and IE characteristic diagrams, the characteristic A in the figure is the cell voltage, and the characteristics B, C, D, and E are the air electrode potential, the fuel electrode potential, and the potential of the reference electrode 5B with respect to the reference electrode 5A, respectively. , The potential of the reference electrode 5C. FIG. 11 is a diagram showing IV and IE characteristics of the conventional cell shown in FIG. 10. In FIG. 11, characteristic A is a cell voltage, and characteristics K, L, M, and N are reference electrode 5F, respectively. , The air electrode potential, the fuel electrode potential, the potential of the reference electrode 5G, and the potential of the reference electrode 5H.

【0019】特性M,Nに見られるごとく、従来方式で
は参照電極間に電位差が見られ、電流密度 300 mA/cm2
において 114 mV の電位差が発生している。これに対し
て、本実施例の方式では、両電極の位置のずれ量が大き
いにもかかわらず、特性D,Eに見られるごとく参照電
極間に有意の電位差は認められない。すなわち、本実施
例のごとき手段を用いて電位を測定すれば、電極の位置
ずれに伴って生じるセル発電部分周辺の電解質電位の乱
れの影響を受けることなく、適正に電極電位が測定でき
る。したがって、これらの測定手段を複数配置して測定
を行えば、セルの面内の電極電位分布が適正に測定でき
ることとなり、ガスの濃度分布や温度分布によって面内
に局部電池が形成される事態が生ずれば、的確に把握さ
れる。 <実施例2>図3は、本発明の第2の実施例における単
位セルの電極電位分布の測定構成を示す基本構成図で、
(a)は平面図、(b)は(a)のY−Y面の断面図あ
る。単位セルは、リン酸を保持した通常の発電用セルと
同等の厚さ約100 μm の多孔質層3の両面に空気極1と
燃料極2を配して形成されており、燃料極2と多孔質層
3の間、および空気極1と多孔質層3の間にリン酸を内
臓した細管4Dおよび4Eが挿入され、端部開口部にお
いて多孔質層3のリン酸と液絡して配されている。細管
4D,4E の他端は、可逆水素電極からなる参照電極
5D,5Eを配設した多孔質層3D,3Eに連結されて
おり、参照電極5D,5Eは細管4D,4Eに内臓され
たリン酸を介して開口端において多孔質層3のリン酸と
液絡されている。また、細管4D,4E の多孔質層3
中の開口端はおおむね互いに重なり合うような位置、す
なわち図中に記した間隔δが微少となるような位置に配
されている。したがって、参照電極5Dを基準とすれば
多孔質層3の電圧降下に影響されることなく空気極電位
が、また参照電極5Eを基準とすれば多孔質層3の電圧
降下に影響されることなく燃料極電位が測定できる。
As seen from the characteristics M and N, in the conventional method, a potential difference is observed between the reference electrodes, and the current density is 300 mA / cm 2.
, A potential difference of 114 mV occurs. On the other hand, in the method of the present embodiment, no significant potential difference is observed between the reference electrodes as seen in the characteristics D and E, despite the large amount of displacement between the two electrodes. That is, if the potential is measured using the means of the present embodiment, the electrode potential can be measured properly without being affected by the disturbance of the electrolyte potential around the cell power generation portion caused by the displacement of the electrode. Therefore, by arranging a plurality of these measuring means and performing measurement, it is possible to properly measure the electrode potential distribution in the plane of the cell, and a situation in which a local battery is formed in the plane due to the gas concentration distribution and temperature distribution. If they do, they will be accurately grasped. <Embodiment 2> FIG. 3 is a basic configuration diagram showing a configuration for measuring an electrode potential distribution of a unit cell in a second embodiment of the present invention.
(A) is a plan view, and (b) is a cross-sectional view taken along the line YY in (a). The unit cell is formed by disposing an air electrode 1 and a fuel electrode 2 on both sides of a porous layer 3 having a thickness of about 100 μm, which is equivalent to that of a normal power generation cell holding phosphoric acid. Capillary tubes 4D and 4E containing phosphoric acid are inserted between the porous layer 3 and between the air electrode 1 and the porous layer 3, and are arranged in a liquid junction with the phosphoric acid of the porous layer 3 at the end openings. Have been. The other ends of the thin tubes 4D, 4E are connected to porous layers 3D, 3E provided with reference electrodes 5D, 5E, each of which is a reversible hydrogen electrode, and the reference electrodes 5D, 5E are connected to the phosphor layers incorporated in the thin tubes 4D, 4E. At the open end, it is liquid-juncted with the phosphoric acid of the porous layer 3 via an acid. The porous layers 3 of the thin tubes 4D and 4E
The open ends in the middle are arranged at positions where they are substantially overlapped with each other, that is, at positions where the interval δ shown in the drawing is very small. Therefore, the air electrode potential is not affected by the voltage drop of the porous layer 3 with respect to the reference electrode 5D, and is not affected by the voltage drop of the porous layer 3 with respect to the reference electrode 5E. Fuel electrode potential can be measured.

【0020】図4および図5は、本実施例のセルのI−
V,I−E特性で、図4はガス濃度が高い場合の特性、
図5はガス濃度が低い場合の特性である。また、図中の
特性Aはセル電圧、特性F,G,Hは、それぞれ参照電
極5Dを基準とする空気極電位、燃料極電位、参照電極
5Eの電位である。図に見られるように、ガス濃度が低
くなると、空気極電位が低下し燃料極電位が上昇してセ
ル電圧が低下しているが、参照電極5Eの電位は、ガス
濃度が変わっても変化が見られず、電流密度に比例した
挙動を示している。本実施例の構成においては、参照電
極5Eと参照電極5Dの電位差は,燃料極側の電解質電
位と空気極側の電解質電位との差であるので、測定され
た参照電極5Eの電位の値は、リン酸を保持した多孔質
層3中の電圧降下によるものと推定される。
FIGS. 4 and 5 show I-I of the cell of this embodiment.
FIG. 4 shows the V, IE characteristics when the gas concentration is high,
FIG. 5 shows the characteristics when the gas concentration is low. In the figure, the characteristic A is the cell voltage, and the characteristics F, G, and H are the air electrode potential, the fuel electrode potential, and the potential of the reference electrode 5E, respectively, with reference to the reference electrode 5D. As shown in the figure, when the gas concentration decreases, the air electrode potential decreases, the fuel electrode potential increases, and the cell voltage decreases. However, the potential of the reference electrode 5E changes even when the gas concentration changes. No behavior was observed, indicating a behavior proportional to the current density. In the configuration of the present embodiment, since the potential difference between the reference electrode 5E and the reference electrode 5D is the difference between the electrolyte potential on the fuel electrode side and the electrolyte potential on the air electrode side, the value of the measured potential of the reference electrode 5E is It is presumed that this is due to a voltage drop in the porous layer 3 holding phosphoric acid.

【0021】これを確認するため、カレントインターラ
プト法により電圧降下を測定した。図6は、カレントイ
ンターラプト法により測定した電圧降下(J)と、上記
の参照電極5Eの電位の値(H)を合わせて図示したも
のである。図に見られるように、参照電極5Eの電位の
値とカレントインターラプト法で測定された電圧降下の
値の差は、電流密度が 300 mA/cm2 のとき約 6 mV と良
い一致がみられており、測定された参照電極5Eの電位
の値は、リン酸を保持した多孔質層3中の電圧降下によ
るものであることがわかる。
To confirm this, the voltage drop was measured by the current interrupt method. FIG. 6 illustrates the voltage drop (J) measured by the current interrupt method and the potential value (H) of the reference electrode 5E. As can be seen from the figure, the difference between the value of the potential of the reference electrode 5E and the value of the voltage drop measured by the current interrupt method is in good agreement with about 6 mV when the current density is 300 mA / cm 2. This indicates that the value of the measured potential of the reference electrode 5E is due to a voltage drop in the porous layer 3 holding phosphoric acid.

【0022】すなわち、本実施例のごとく、リン酸を保
持した多孔質層と燃料極の間、およびリン酸を保持した
多孔質層と空気極の間に、リン酸を内臓した細管よりな
る電位プローブを挿入し、その間の電位差を測定すれ
ば、電流密度に比例した電圧降下が直接測定されるの
で、この値より電流密度を知ることができる。したがっ
て、このリン酸を内臓した細管よりなる電位プローブを
備えた参照電極を、セル中に複数対設置してその電位差
を測定することとすれば、面内の電流密度分布を直接測
定でき、ガスの濃度分布や温度分布によって面内に局部
電池が形成される事態が生ずれば、的確に把握できるこ
ととなる。
That is, as in the present embodiment, a potential formed by a thin tube containing phosphoric acid is provided between the porous layer holding phosphoric acid and the fuel electrode and between the porous layer holding phosphoric acid and the air electrode. If a probe is inserted and a potential difference between the probes is measured, a voltage drop proportional to the current density is directly measured, so that the current density can be known from this value. Therefore, if a plurality of pairs of reference electrodes each having a potential probe formed of a thin tube containing phosphoric acid are installed in the cell and the potential difference is measured, the in-plane current density distribution can be directly measured, and the gas density can be measured. If a situation occurs in which a local battery is formed in the plane due to the concentration distribution and the temperature distribution of, the temperature can be accurately grasped.

【0023】[0023]

【発明の効果】上述のごとく、本発明によれば、 (1)リン酸型燃料電池を請求項1に記載のごとくに構
成することとしたので、配設された燃料極と空気極の位
置ずれが存在する場合にあっても単位セルの面内の電極
電位分布が適正に測定され、運転状態が的確に把握され
るリン酸型燃料電池が得られることとなった。
As described above, according to the present invention, (1) Since the phosphoric acid type fuel cell is configured as described in claim 1, the positions of the disposed fuel electrode and air electrode are determined. Even in the case where there is a shift, the electrode potential distribution in the plane of the unit cell is properly measured, and a phosphoric acid fuel cell in which the operating state is accurately grasped can be obtained.

【0024】(2)また、リン酸型燃料電池を請求項2
に記載のごとくに構成することとすれば、構成部材によ
り緩和されることなく面内の電流密度分布が適正に測定
され、運転状態が的確に把握されるリン酸型燃料電池が
得られることとなる。
(2) Further, the phosphoric acid type fuel cell is claimed in claim 2
If it is configured as described in the above, it is possible to obtain a phosphoric acid type fuel cell in which the in-plane current density distribution is appropriately measured without being relaxed by the constituent members, and the operating state is accurately grasped. Become.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施例における単位セルの電極
電位分布の測定構成を示す基本構成図で、(a)は平面
図、(b)は(a)のX−X面の断面図
FIG. 1 is a basic configuration diagram showing a configuration for measuring an electrode potential distribution of a unit cell according to a first embodiment of the present invention, where (a) is a plan view and (b) is a cross section taken along the XX plane of (a). Figure

【図2】第1の実施例のセルのI−V,I−E特性図FIG. 2 is a diagram showing IV and IE characteristics of the cell according to the first embodiment;

【図3】本発明の第2の実施例における単位セルの電極
電位分布の測定構成を示す基本構成図で、(a)は平面
図、(b)は(a)のY−Y面の断面図
3A and 3B are basic configuration diagrams illustrating a configuration for measuring an electrode potential distribution of a unit cell according to a second embodiment of the present invention, wherein FIG. 3A is a plan view, and FIG. 3B is a cross-section along the YY plane of FIG. Figure

【図4】第2の実施例のセルの高ガス濃度におけるI−
V,I−E特性図
FIG. 4 shows a graph of I- at a high gas concentration in the cell of the second embodiment.
V, IE characteristic diagram

【図5】第2の実施例のセルの低ガス濃度におけるI−
V,I−E特性図
FIG. 5 is a graph showing I- at a low gas concentration in the cell of the second embodiment.
V, IE characteristic diagram

【図6】第2の実施例のセルの参照電極間の電位差とカ
レントインターラプト法により測定した電圧降下の比較
FIG. 6 is a comparison diagram of a potential difference between reference electrodes of the cell of the second embodiment and a voltage drop measured by a current interrupt method.

【図7】従来の単位セルの電極電位分布の測定方法を示
す基本構成図
FIG. 7 is a basic configuration diagram showing a conventional method for measuring an electrode potential distribution of a unit cell.

【図8】従来の単位セルの電流密度分布の測定方法を示
す基本構成図
FIG. 8 is a basic configuration diagram showing a conventional method for measuring a current density distribution of a unit cell.

【図9】従来の単位セルの電極電位分布の測定方法にお
いて参照電極間に電位差が生じる原因を示す説明図
FIG. 9 is an explanatory view showing a cause of a potential difference between reference electrodes in a conventional method for measuring an electrode potential distribution of a unit cell.

【図10】比較のために用いた従来方式の単位セルの電
極電位分布の測定構成を示す基本構成図で、(a)は平
面図、(b)は(a)のZ−Z面の断面図
10A and 10B are basic configuration diagrams illustrating a measurement configuration of an electrode potential distribution of a conventional unit cell used for comparison, in which FIG. 10A is a plan view, and FIG. 10B is a cross section taken along the ZZ plane of FIG. Figure

【図11】比較のために用いた従来方式の単位セルのI
−V,I−E特性図
FIG. 11 shows a conventional unit cell I used for comparison.
-V, IE characteristic diagram

【符号の説明】[Explanation of symbols]

1 空気極 2 燃料極 3 多孔質層 3A,3B,3C, 多孔質層 3D,3E 多孔質層 4A,4B,4C 細管 4D,4E 細管 5A,5B,5C 参照電極 5D,5E 参照電極 6 発電領域 7 分離板 8A,8B 電圧計 10 等電位線 11 プロトンの流れ 12 電子の流れ DESCRIPTION OF SYMBOLS 1 Air electrode 2 Fuel electrode 3 Porous layer 3A, 3B, 3C, Porous layer 3D, 3E Porous layer 4A, 4B, 4C Capillary tube 4D, 4E Capillary tube 5A, 5B, 5C Reference electrode 5D, 5E Reference electrode 6 Power generation area 7 Separation plate 8A, 8B Voltmeter 10 Equipotential line 11 Proton flow 12 Electron flow

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】酸化反応を行う空気極と還元反応を行う燃
料極の間に、電解質としてリン酸を保持した多孔質層を
挟持してなる単位セルを、分離板を介して積層したリン
酸型燃料電池において、 リン酸、またはリン酸を含む多孔体、またはリン酸と粉
体の混合物、またはリン酸を保持した繊維を充填した細
管と、その一方の開口端に液絡された電位測定用の参照
電極とからなり、かつ、細管の他方の開口端が、空気極
と燃料極が重なり合ってなる発電領域の多孔質層の内部
に挿入され、細管の内部のリン酸が多孔質層中のリン酸
と液絡されてなる電極電位の測定手段を少なくとも1個
備えたことを特徴とするリン酸型燃料電池。
A unit cell comprising a porous layer holding phosphoric acid as an electrolyte sandwiched between an air electrode for performing an oxidation reaction and a fuel electrode for performing a reduction reaction via a separator. In a fuel cell, a thin tube filled with phosphoric acid or a porous body containing phosphoric acid, a mixture of phosphoric acid and powder, or a fiber holding phosphoric acid, and a potential measurement liquid-junction at one open end And the other open end of the thin tube is inserted into the porous layer of the power generation area where the air electrode and the fuel electrode overlap, and the phosphoric acid inside the thin tube is contained in the porous layer. A phosphoric acid-type fuel cell comprising at least one means for measuring an electrode potential formed by liquid junction with phosphoric acid.
【請求項2】酸化反応を行う空気極と還元反応を行う燃
料極の間に、電解質としてリン酸を保持した多孔質層を
挟持してなる単位セルを、分離板を介して積層したリン
酸型燃料電池において、 リン酸、またはリン酸を含む多孔体、またはリン酸と粉
体の混合物、またはリン酸を保持した繊維を充填した細
管と、その一方の開口端に液絡された電位測定用の参照
電極とからなり、かつ、細管の他方の開口端が、空気極
と燃料極が重なり合ってなる発電領域の多孔質層と燃料
極との間に挿入され、細管の内部のリン酸が多孔質層中
のリン酸と液絡されてなる第1の電位測定手段、およ
び、 リン酸、またはリン酸を含む多孔体、またはリン酸と粉
体の混合物、またはリン酸を保持した繊維を充填した細
管と、その一方の開口端に液絡された電位測定用の参照
電極とからなり、かつ、細管の他方の開口端が前記発電
領域の多孔質層と空気極との間に挿入され、細管の内部
のリン酸が多孔質層中のリン酸と液絡されてなる第2の
電位測定手段からなる電解質電位差測定手段を少なくと
も一対備えたことを特徴とするリン酸型燃料電池。
2. A phosphoric acid in which unit cells each comprising a porous layer holding phosphoric acid as an electrolyte sandwiched between an air electrode for performing an oxidation reaction and a fuel electrode for performing a reduction reaction via a separator. In a fuel cell, a thin tube filled with phosphoric acid or a porous body containing phosphoric acid, a mixture of phosphoric acid and powder, or a fiber holding phosphoric acid, and a potential measurement liquid-junction at one open end And the other open end of the thin tube is inserted between the fuel layer and the porous layer of the power generation area where the air electrode and the fuel electrode overlap, and phosphoric acid inside the thin tube is removed. A first potential measuring means which is liquid junction with phosphoric acid in the porous layer, and phosphoric acid, or a porous body containing phosphoric acid, a mixture of phosphoric acid and powder, or a fiber holding phosphoric acid. Filled capillary and potential measurement liquid junction at one open end And the other open end of the thin tube is inserted between the porous layer and the air electrode of the power generation area, and the phosphoric acid inside the thin tube is mixed with the phosphoric acid in the porous layer and the liquid. A phosphoric acid fuel cell comprising at least one pair of electrolyte potential difference measuring means comprising a second potential measuring means which is entangled.
JP9028228A 1997-02-13 1997-02-13 Phosphoric acid fuel cell Pending JPH10228915A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9028228A JPH10228915A (en) 1997-02-13 1997-02-13 Phosphoric acid fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9028228A JPH10228915A (en) 1997-02-13 1997-02-13 Phosphoric acid fuel cell

Publications (1)

Publication Number Publication Date
JPH10228915A true JPH10228915A (en) 1998-08-25

Family

ID=12242753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9028228A Pending JPH10228915A (en) 1997-02-13 1997-02-13 Phosphoric acid fuel cell

Country Status (1)

Country Link
JP (1) JPH10228915A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006147464A (en) * 2004-11-24 2006-06-08 Honda Motor Co Ltd Fuel cell
JP2006278246A (en) * 2005-03-30 2006-10-12 Honda Motor Co Ltd Control method of fuel cell stack
JP2007265885A (en) * 2006-03-29 2007-10-11 Yokogawa Electric Corp Characteristic measuring device and method of fuel cell
JP2018506839A (en) * 2015-02-06 2018-03-08 パーデュー・リサーチ・ファウンデーションPurdue Research Foundation Probe, system, cartridge, and method of use thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006147464A (en) * 2004-11-24 2006-06-08 Honda Motor Co Ltd Fuel cell
JP4505315B2 (en) * 2004-11-24 2010-07-21 本田技研工業株式会社 Fuel cell
JP2006278246A (en) * 2005-03-30 2006-10-12 Honda Motor Co Ltd Control method of fuel cell stack
JP2007265885A (en) * 2006-03-29 2007-10-11 Yokogawa Electric Corp Characteristic measuring device and method of fuel cell
JP2018506839A (en) * 2015-02-06 2018-03-08 パーデュー・リサーチ・ファウンデーションPurdue Research Foundation Probe, system, cartridge, and method of use thereof
CN113725063A (en) * 2015-02-06 2021-11-30 普度研究基金会 Probe, system, cartridge and method of use thereof

Similar Documents

Publication Publication Date Title
Barfod et al. Break down of losses in thin electrolyte SOFCs
US20040095127A1 (en) Apparatus for measuring current density of fuel cell
CN112068019B (en) Flat-plate SOFC current density distributed end plate test structure and test method
US10020525B2 (en) Method and system for diagnosing state of fuel cell stack
JPH09223512A (en) Abnormality monitoring method of fuel cell and device therefor
Mitsuda et al. Polarization study of a fuel cell with four reference electrodes
JP4607827B2 (en) Fuel cell system
JP2019031733A (en) Electrochemical device equipped with hydrogen sensor
JPH10228915A (en) Phosphoric acid fuel cell
JP5876318B2 (en) Fuel cell system
KR101283022B1 (en) Fuel cell stack
KR101405374B1 (en) Fuel cell
JPH06236767A (en) Potential monitoring method for fuel cell constituting member
US5504433A (en) Electrochemical sensor for monitoring electrolyte content
JP2598014B2 (en) Crossover detection method for stacked fuel cells
JP2015022856A (en) Impedance measuring device for fuel cell
JP4779205B2 (en) Fine detection method for fuel cell
JP4428046B2 (en) Fuel cell
JP2004095301A (en) Measuring device for electrode potential of fuel cell
JP5694123B2 (en) Fuel cell
KR101271889B1 (en) Fuel cell unit cell for accurate performance testing
JP2014049266A (en) Method and device for measuring electrolyte membrane of fuel cell
CN113406706B (en) Water detection device and water detection method
JP2004093307A (en) Gas sensor element
JP2010198963A (en) Electrode potential-measuring sensor and electrode potential measuring device of fuel cell