JPH10228606A - Magnetic head and its production - Google Patents

Magnetic head and its production

Info

Publication number
JPH10228606A
JPH10228606A JP9031594A JP3159497A JPH10228606A JP H10228606 A JPH10228606 A JP H10228606A JP 9031594 A JP9031594 A JP 9031594A JP 3159497 A JP3159497 A JP 3159497A JP H10228606 A JPH10228606 A JP H10228606A
Authority
JP
Japan
Prior art keywords
gap
magnetic
head
heat treatment
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9031594A
Other languages
Japanese (ja)
Inventor
Shunsaku Muraoka
俊作 村岡
Noboru Ito
昇 伊藤
Hiromi Takeda
裕美 武田
Takeshi Takahashi
高橋  健
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP9031594A priority Critical patent/JPH10228606A/en
Priority to SG9800311A priority patent/SG90706A1/en
Priority to KR1019980004862A priority patent/KR100282214B1/en
Priority to CN98107042A priority patent/CN1196549A/en
Publication of JPH10228606A publication Critical patent/JPH10228606A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/187Structure or manufacture of the surface of the head in physical contact with, or immediately adjacent to the recording medium; Pole pieces; Gap features
    • G11B5/1875"Composite" pole pieces, i.e. poles composed in some parts of magnetic particles and in some other parts of magnetic metal layers
    • G11B5/1877"Composite" pole pieces, i.e. poles composed in some parts of magnetic particles and in some other parts of magnetic metal layers including at least one magnetic thin film
    • G11B5/1878"Composite" pole pieces, i.e. poles composed in some parts of magnetic particles and in some other parts of magnetic metal layers including at least one magnetic thin film disposed immediately adjacent to the transducing gap, e.g. "Metal-In-Gap" structure
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/133Structure or manufacture of heads, e.g. inductive with cores composed of particles, e.g. with dust cores, with ferrite cores with cores composed of isolated magnetic particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10009Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets
    • B32B17/10082Properties of the bulk of a glass sheet
    • B32B17/10119Properties of the bulk of a glass sheet having a composition deviating from the basic composition of soda-lime glass, e.g. borosilicate

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Magnetic Heads (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an MIG head having high yield and reliability and to provide its producing method by improving the gap accuracy of the MIG head. SOLUTION: At least one magnetic core of this MIG head has a metal magnetic film 1 on the gap-facing surface of a ferromagnetic oxide, and the magnetic gap 6 of this head consists of a nonmagnetic oxide gap material comprising Cr2 O3 or having such a structure that Cr2 O3 is held between a nonmagnetic oxide material essentially comprising SiO2 . A pair of core half bodies are brought into contact on the Cr2 O3 faces on the gap-facing surfaces, and a low melting point glass essentially comprising PbO is molded by heat treatment on Cr2 O3 in a groove formed in the ferromagnetic oxide to join the core half bodies. In this process, the heat treatment is carried out in an atmosphere containing oxygen at least in the temp. range T satisfying Tg-85 deg.C<=T<=T<=Tg-35 deg.C (wherein Tg is the glass transition temp. of the low melting point glass) during the temp. is raised in the heat treatment.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はデジタルVTRやデ
ータストリーマ等のシステムに用いられる高保磁力の磁
気記録媒体に高密度に情報を記録再生するのに適した磁
気ヘッド、及びその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic head suitable for recording and reproducing information at a high density on a magnetic recording medium having a high coercive force used in a system such as a digital VTR and a data streamer, and a method of manufacturing the same. is there.

【0002】[0002]

【従来の技術】VTRやデータストリーマ等の磁気記録
システムの高密度化が要求される中、高密度磁気記録再
生に適した磁気ヘッドとして、従来のフェライト材料よ
りも飽和磁束密度Bsの高い材料であるCo系アモルフ
ァス膜やFe系窒化膜等の金属磁性材料を用いた磁気ヘ
ッド、その中でも特にMIGヘッドの開発が盛んに行わ
れている。
2. Description of the Related Art With the demand for higher density of magnetic recording systems such as VTRs and data streamers, a magnetic head suitable for high-density magnetic recording / reproducing is made of a material having a higher saturation magnetic flux density Bs than a conventional ferrite material. 2. Description of the Related Art A magnetic head using a metal magnetic material such as a Co-based amorphous film or an Fe-based nitride film, and particularly, a MIG head has been actively developed.

【0003】従来のMIGヘッドの構造としては、おも
に図1に示すように磁気コアであるフェライト2の磁気
ギャップ対向面上に飽和磁束密度の高い金属磁性膜1を
形成し、金属磁性膜間に磁気ギャップ6を設けた構造が
主流で、その磁気ギャップは主にCr8をSiO27で
挟持した構造となっていた。
As a structure of a conventional MIG head, as shown in FIG. 1, a metal magnetic film 1 having a high saturation magnetic flux density is formed mainly on a surface facing a magnetic gap of a ferrite 2 as a magnetic core. the provided structure magnetic gap 6 is the mainstream, the magnetic gap was mainly a structure which sandwiches Cr8 with SiO 2 7.

【0004】また、従来のMIGヘッドの製造方法を図
2ー(a)〜(f)に示す。まず、一対のフェライトコ
ア2に巻線溝12及びバックガラス溝13を形成し、次
にトラック溝14を形成する。次にギャップ対向面15
を研磨した後に金属磁性膜1をギャップ対向面上に形成
し、その上にギャップ材として、SiO27とCr8を
順次スパッタリングで形成する。そして一対のコア半体
をギャップ面で突き合わせ、低融点鉛ガラス4を熱処理
によりCr8上にモールドしてコアをギャップで接合
し、一つのギャップドバーを作成する。
FIGS. 2A to 2F show a conventional method of manufacturing a MIG head. First, a winding groove 12 and a back glass groove 13 are formed in a pair of ferrite cores 2, and then a track groove 14 is formed. Next, the gap facing surface 15
After polishing, a metal magnetic film 1 is formed on the surface facing the gap, and SiO 2 7 and Cr 8 are sequentially formed thereon as a gap material by sputtering. Then, a pair of core halves are abutted on a gap surface, the low melting point lead glass 4 is molded on Cr8 by heat treatment, and the cores are joined by a gap to form one gapped bar.

【0005】また、従来は熱処理中の雰囲気を不活性ガ
スであるN2フロー中としている。その理由としては使
用している金属磁性膜の熱処理による酸化を防ぐためで
ある。その後、所定のヘッドチップコア幅、アジマス角
度でヘッドチップに切断し、摺動面を研磨してヘッドチ
ップが完成する。
Further, conventionally, the atmosphere during the heat treatment is in an N 2 flow which is an inert gas. The reason for this is to prevent oxidation of the metal magnetic film used by heat treatment. Thereafter, the head chip is cut at a predetermined head chip core width and azimuth angle, and the sliding surface is polished to complete the head chip.

【0006】[0006]

【発明が解決しようとする課題】ところが、従来の構造
のMIGヘッドは、ギャップ長精度が悪く特性が安定し
ないという問題や、ギャップ長を光学顕微鏡で測定する
際にギャップ材として使用しているCrに光が反射し
て、ギャップ長を精度良く測定しにくい等の製造上の問
題が生じた。
However, the conventional structure of the MIG head has a problem that the gap length accuracy is poor and the characteristics are not stable, and the MIG head used as a gap material when measuring the gap length with an optical microscope. In this case, light is reflected on the substrate, and it is difficult to accurately measure the gap length.

【0007】そこで、原因を解析した結果、従来のギャ
ップ材構成では、図3に示すようにギャップ材として使
用したCrが熱処理中の残留酸素や低融点鉛ガラス4中
の酸素により、部分的に酸化して不均一なCr酸化物9
となって体積膨張し、膜厚が不均一になるために、ギャ
ップ長10が安定しないことがわかった。
Therefore, as a result of analyzing the cause, in the conventional gap material configuration, as shown in FIG. 3, Cr used as the gap material is partially removed by residual oxygen during heat treatment and oxygen in the low melting point lead glass 4. Oxidized and uneven Cr oxide 9
It was found that the gap length 10 was unstable because the volume was expanded and the film thickness became uneven.

【0008】また、従来Crをギャップ材として使用し
ている目的は、低融点鉛ガラスの濡れ性を向上させるた
めであり、Crを用いずSiO2等の酸化物だけでは、
図4に示すように低融点鉛カラス4の流れが悪くチップ
強度も大きく劣化するという課題があった。
Further, the purpose of using the conventional Cr as the gap material is for improving the wettability of the low melting point lead glass, the only oxides such as SiO 2 without using Cr,
As shown in FIG. 4, there is a problem that the flow of the low-melting lead crow 4 is poor and the chip strength is greatly deteriorated.

【0009】[0009]

【課題を解決するための手段】上記課題を解決するた
め、本発明の磁気ヘッドは、少なくとも片側の磁気コア
が強磁性酸化物のギャップ対向面上に金属磁性膜が形成
されたMIGヘッドの磁気ギャップが、Cr23からな
るギャップ材で形成されていることを特徴とする、ある
いは、少なくとも片側の磁気コアが強磁性酸化物のギャ
ップ対向面上に金属磁性膜が形成されたMIGヘッドの
磁気ギャップが、Cr23をSiO2を主成分とする非
磁性酸化物で挟持した構造のギャップ材で形成されてい
ることを特徴とするものである。
In order to solve the above-mentioned problems, a magnetic head according to the present invention has a magnetic core of at least one side in which a metal magnetic film is formed on a surface of a ferromagnetic oxide facing a gap. The gap is formed of a gap material made of Cr 2 O 3 , or at least one magnetic core has a metal magnetic film formed on a gap facing surface of a ferromagnetic oxide. The magnetic gap is formed of a gap material having a structure in which Cr 2 O 3 is sandwiched between nonmagnetic oxides containing SiO 2 as a main component.

【0010】また、その磁気ヘッドの製造方法は、一対
の強磁性酸化物に溝を形成し、その後上記強磁性酸化物
の少なくとも片側のギャップ対向面上に金属磁性膜を形
成して、一対のコア半体を作製する工程と、上記コア半
体のギャップ対向面及び溝の表面にCr23を形成、あ
るいはSiO2を主成分とする非磁性酸化物とCr2 3
を形成し、一対のコア半体同士をギャップ対向面上のC
23面で突き合わせ、PbOを主成分とする低融点ガ
ラスを上記溝中のCr23上に熱処理によりモールド
し、コアを接合する工程とを有するMIGヘッドの製造
において、上記熱処理の昇温過程で、少なくとも、 Tgー85℃≦T≦Tgー35℃ (但し、Tgは上記低融点ガラスのガラス転移点であ
る)の温度範囲Tでは酸素を含有する雰囲気中で熱処理
することを特徴とするものである。
[0010] The method of manufacturing the magnetic head includes a pair of magnetic heads.
A groove is formed in the ferromagnetic oxide of
A magnetic metal film on at least one side of the gap
Forming a pair of core halves;
Cr on the surface of the body facing the gap and the surface of the grooveTwoOThreeForming a
Or SiOTwoNon-magnetic oxide containing Cr as the main component and CrTwoO Three
To form a pair of core halves with C
rTwoOThreeLow melting point gas mainly composed of PbO
The lath is replaced with Cr in the groove.TwoOThreeMold by heat treatment on top
Of a MIG head having a step of joining cores
In the temperature rise process of the heat treatment, at least Tg-85 ° C ≦ T ≦ Tg-35 ° C (where Tg is the glass transition point of the low melting glass).
Temperature range T), heat treatment in an atmosphere containing oxygen
It is characterized by doing.

【0011】図5に、MIGヘッドの製造に用いている
電気炉でCrとCr23を熱処理した後のそれぞれの膜
厚の変化を示す。520℃10min.の熱処理ではCrが
約70%膜厚増加しているのに対して、Cr23はほと
んど膜厚の変化がないことがわかる。これは、Crが熱
処理中の残留酸素により酸化して、Cr酸化物になり体
積膨張しているのに対して、Cr23は初めから酸化し
ているので熱処理による新たな酸化はなく、体積が一定
しているためである。
FIG. 5 shows the change in the thickness of each of Cr and Cr 2 O 3 after the heat treatment in the electric furnace used for manufacturing the MIG head. In the heat treatment at 520 ° C. for 10 minutes, the thickness of Cr is increased by about 70%, whereas the thickness of Cr 2 O 3 is hardly changed. This is because Cr is oxidized by residual oxygen during the heat treatment to become Cr oxide and expands in volume, whereas Cr 2 O 3 is oxidized from the beginning, so there is no new oxidation by heat treatment, This is because the volume is constant.

【0012】このことから、MIGヘッドの磁気ギャッ
プをCr23、あるいはCr23をSiO2を主成分と
する非磁性酸化物で挟持した構造のギャップ材で形成す
ることにより、熱処理による膜厚変化がなく、安定した
ギャップ長が実現できる。
Therefore, the magnetic gap of the MIG head is formed of Cr 2 O 3 , or a gap material having a structure in which Cr 2 O 3 is sandwiched between non-magnetic oxides containing SiO 2 as a main component, so that the heat treatment can be performed. There is no change in film thickness, and a stable gap length can be realized.

【0013】さらに、Crと異なりCr23は透明であ
るので、従来Crで課題であった光のCrによる反射に
よりギャップ長を精度良く測定できない等の製造上の問
題がなくなる。
Furthermore, since Cr 2 O 3 is transparent, unlike Cr, there is no problem in manufacturing such as the fact that the gap length cannot be measured with high accuracy due to the reflection of light by Cr, which has been a problem with conventional Cr.

【0014】ところが、現状のCrをCr23にするだ
けでは、Cr23上でのガラスの流れはSiO2上に比
べ良いものの、従来のCr上に比べ悪く、MIGヘッド
のギャップ強度が充分でないという課題がある。
[0014] However, only the current state of Cr in Cr 2 O 3, although the flow of glass over Cr 2 O 3 good than on SiO 2, worse than on a conventional Cr, the MIG head gap strength Is not enough.

【0015】そこで、Cr23上にガラスを充分に流す
手段について説明する。従来は熱処理中の雰囲気はN2
フローとしていたが、ガラスの濡れ性を改善することを
目的に、熱処理の昇温過程で一部大気(酸素を約20%
含有)中熱処理を施こす検討を行った。図6は、熱処理
(最高温度510℃で10min.キープ)の昇温過程
で、ある温度Tcまでは大気中熱処理を行い、その後N
2フロー中熱処理を行った時のCr上及びCr23上で
の低融点鉛ガラス(ガラス転移点Tg=385℃)の濡
れ角を調べたものである。この結果より、低融点鉛ガラ
スはCr23上でも大気置換温度Tc=350℃以上の
熱処理を行うことで、Cr上とほぼ同等の濡れ性が実現
できることがわかった。したがって、Cr23上に低融
点鉛ガラスを流すには、熱処理の昇温過程で少なくとも
300℃(ガラス転移点Tgー85℃)〜350℃(ガ
ラス転移点Tgー35℃)の温度範囲では大気中での熱
処理が必要である。また、SiO2においても同等の検
討を行ったが、Tcを510℃まで上げてもCrと同等
の濡れ性は実現できなかった。
Therefore, a means for sufficiently flowing glass on Cr 2 O 3 will be described. Conventionally, the atmosphere during heat treatment is N 2
Although it was a flow, in order to improve the wettability of the glass, some air (oxygen was reduced to about 20%
(Including) heat treatment was studied. FIG. 6 shows a temperature rise process of a heat treatment (maximum temperature of 510 ° C. for 10 min. Keep).
2 shows the results of examining the wetting angle of a low melting point lead glass (glass transition point Tg = 385 ° C.) on Cr and Cr 2 O 3 when heat treatment is performed in two flows. From this result, it was found that the low-melting-point lead glass can achieve substantially the same wettability as that on Cr by performing a heat treatment at 350 ° C. or more on the atmosphere replacement temperature Tc even on Cr 2 O 3 . Therefore, to flow the low melting point lead glass on Cr 2 O 3 , the temperature range of at least 300 ° C. (glass transition point Tg-85 ° C.) to 350 ° C. (glass transition point Tg-35 ° C.) Requires heat treatment in the atmosphere. In addition, the same examination was performed for SiO 2 , but even if Tc was increased to 510 ° C., the same wettability as Cr could not be realized.

【0016】したがって、Cr23上では、熱処理にお
ける昇温過程で少なくとも(Tgー85℃)〜(Tgー
35℃)の温度範囲では大気中で熱処理を行う方法で、
Cr上と同等のガラスの濡れ性が実現できることがわか
る(但しTgは用いるガラスのガラス転移点である)。
Therefore, on Cr 2 O 3 , the heat treatment is performed in the air at least in the temperature range of (Tg-85 ° C.) to (Tg-35 ° C.) during the temperature rise process in the heat treatment.
It can be seen that the same wettability of glass as on Cr can be realized (however, Tg is the glass transition point of the glass used).

【0017】[0017]

【発明の実施の形態】本発明の磁気ヘッドの実施形態に
ついて、図面を参照しながら説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a magnetic head according to the present invention will be described with reference to the drawings.

【0018】(実施例1)図7は本発明の実施例1の磁
気ヘッドの斜視図、及び摺動面から見た磁気ギャップ近
傍の拡大図を示す。磁気コアであるフェライト2の磁気
ギャップ対向面上に飽和磁束密度の高い金属磁性膜1が
形成され、金属磁性膜間にCr23からなる磁気ギャッ
プ6が形成されている。また、コアのギャップにおける
接合は低融点鉛ガラス4で行われている。本実施例で
は、フェライトはMnーZnフェライト、金属磁性膜は
飽和磁束密度Bs=1.6TのFeTaN膜を用いた。
また、コアの接合に用いるガラスはPbOを主成分とす
る低融点ガラスで、ガラス転移点Tg=385℃のもの
を用いた。このヘッドの製造方法で従来と異なる点は、
図2に示した従来の磁気ヘッドの製造方法の中で、ギャ
ップ材をCr23のみに変えてスパッタリングで形成す
る点と、その後低融点鉛ガラスを熱処理によりモールド
し、コアをギャップで接合する熱処理工程では、図6に
示すように、昇温時にTc=350℃まで大気中で熱処
理し、その後はN2フロー中で熱処理を行う方法に変え
ている点である。本実施例ではCr23の厚みは100
0Åとした。図8に従来のCrギャップ(a)の磁気ヘ
ッドと本発明のCr23ギャップ(b)の磁気ヘッドを
試作した時のGL(ギャップ長)分布を示す。本発明の
Cr 23ギャップの磁気ヘッドはGL分布が従来品に比
べ非常にシャープでバラツキが小さいことがわかる。ま
た、Cr23と金属磁性膜であるFeTaNとの反応も
ないことがわかった。このように本実施例の結果、GL
精度が向上し、安定したヘッド特性を得ることができ、
ヘッド製造歩留まりが大きく向上した。また、従来のC
rギャップに比べギャップ長も精度良く測定することが
可能となり、従来のようなヘッド製造上の課題を解決す
ることができた。
(Embodiment 1) FIG. 7 shows a magnetic recording medium according to Embodiment 1 of the present invention.
Perspective view of magnetic head and near magnetic gap seen from sliding surface
An enlarged view of the side is shown. Ferrite 2 magnetic core
A metal magnetic film 1 having a high saturation magnetic flux density is formed on the surface facing the gap.
Cr is formed between the metal magnetic films.TwoOThreeMagnetic gap
A loop 6 is formed. Also in the core gap
The joining is performed with the low melting point lead glass 4. In this embodiment
The ferrite is Mn-Zn ferrite, the metal magnetic film is
An FeTaN film having a saturation magnetic flux density Bs = 1.6T was used.
The glass used for bonding the core is mainly composed of PbO.
Low melting point glass with glass transition point Tg = 385 ° C
Was used. The difference between this head manufacturing method and the conventional one is that
In the conventional method of manufacturing a magnetic head shown in FIG.
Cr materialTwoOThreeOnly by sputtering instead of
And then mold the low melting point lead glass by heat treatment.
Then, in the heat treatment step of joining the cores with the gap, FIG.
As shown in FIG.
And then NTwoChanged to heat treatment in the flow
That is the point. In this embodiment, CrTwoOThreeHas a thickness of 100
0 °. FIG. 8 shows the conventional magnetic gap of the Cr gap (a).
And Cr of the present inventionTwoOThreeGap (b) magnetic head
The GL (gap length) distribution at the time of trial production is shown. Of the present invention
Cr TwoOThreeGap distribution of magnetic head with gap is lower than conventional products
It can be seen that it is very sharp and has little variation. Ma
CrTwoOThreeReaction with FeTaN which is a metal magnetic film
I knew it wasn't. Thus, as a result of this embodiment, GL
Accuracy is improved, stable head characteristics can be obtained,
The head manufacturing yield has been greatly improved. In addition, the conventional C
Gap length can be measured more accurately than r gap
To solve conventional head manufacturing challenges.
I was able to.

【0019】(実施例2)図9は本発明の実施例2の磁
気ヘッドの斜視図、及び摺動面から見た磁気ギャップ近
傍の拡大図を示す。磁気コアであるフェライト2の磁気
ギャップ対向面上に飽和磁束密度の高い金属磁性膜1が
形成され、金属磁性膜間にCr23をSiO2で挟持し
た構造からなる磁気ギャップ6が形成されている。その
他の部分及び製造方法は実施例1と同様である。本実施
例ではSiO2の膜厚は600Å、Cr23の膜厚は4
00Åとし、それぞれスパッタリングで形成した。その
結果、このヘッドのGL分布は実施例1とほぼ同様で、
従来に比べGL精度が向上し、安定したヘッド特性を得
ることができ、ヘッド製造歩留まりが大きく向上した。
また、ギャップ長の測定も精度良く測定することがで
き、従来のようなヘッド製造上の課題を解決することが
できた。
(Embodiment 2) FIG. 9 is a perspective view of a magnetic head according to Embodiment 2 of the present invention, and an enlarged view of the vicinity of a magnetic gap viewed from a sliding surface. A metal magnetic film 1 having a high saturation magnetic flux density is formed on the magnetic gap opposing surface of a ferrite 2 as a magnetic core, and a magnetic gap 6 having a structure in which Cr 2 O 3 is sandwiched between SiO 2 is formed between the metal magnetic films. ing. The other parts and the manufacturing method are the same as in the first embodiment. In this embodiment, the thickness of SiO 2 is 600 ° and the thickness of Cr 2 O 3 is 4
It was set to 00 °, and each was formed by sputtering. As a result, the GL distribution of this head is almost the same as in the first embodiment.
The GL accuracy has been improved compared to the prior art, stable head characteristics can be obtained, and the head manufacturing yield has been greatly improved.
In addition, the gap length can be measured with high accuracy, and the conventional problem in head manufacturing can be solved.

【0020】次に本実施例特有の効果を説明する。実施
例1のCr23のみのギャップでは、熱処理温度が35
0℃以上でのN2フロー雰囲気中に残留酸素があると、
雰囲気内の残留酸素と金属磁性膜であるFeTaNが反
応を起こし、ヘッド特性が劣化する場合があることがわ
かった。その原因としては、1000ÅのCr23のみ
では雰囲気中の残留酸素とFeTaNとの反応を抑制す
る効果が小さいことが考えられる。しかし、本実施例で
は、熱処理温度が350℃以上のN2フロー雰囲気中に
残留酸素があっても、雰囲気内の残留酸素と金属磁性膜
であるFeTaNとは反応を起こさないことがわかっ
た。この原因は600ÅのSiO2が雰囲気中の残留酸
素とFeTaNとの反応を防止するためであると考えら
れる。したがってこの実施例2は実施例1に比べ熱処理
中の雰囲気に対する余裕度が大きく、製造上有利である
ことがわかった。
Next, the effects specific to this embodiment will be described. In the gap of only Cr 2 O 3 of Example 1, the heat treatment temperature was 35 °.
If there is residual oxygen in the N 2 flow atmosphere at 0 ° C or higher,
It has been found that the residual oxygen in the atmosphere reacts with FeTaN, which is a metal magnetic film, and the head characteristics may deteriorate. It is considered that the reason for this is that the effect of suppressing the reaction between the residual oxygen in the atmosphere and FeTaN is small with only 1000 ° Cr 2 O 3 alone. However, in this example, it was found that even if there was residual oxygen in the N 2 flow atmosphere at a heat treatment temperature of 350 ° C. or higher, the residual oxygen in the atmosphere did not react with FeTaN as the metal magnetic film. It is considered that the reason for this is that 600 ° SiO 2 prevents the reaction between the residual oxygen in the atmosphere and FeTaN. Therefore, it was found that Example 2 had a larger allowance for the atmosphere during the heat treatment than Example 1 and was advantageous in manufacturing.

【0021】(実施例3)図10に本発明の実施例3の
摺動面のギャップ近傍の拡大図を示す。実施例1、2と
異なる点はトラック幅の規制を放電加工により行ってい
る点である。
(Embodiment 3) FIG. 10 is an enlarged view showing the vicinity of a gap on a sliding surface according to Embodiment 3 of the present invention. The difference from the first and second embodiments is that the track width is regulated by electric discharge machining.

【0022】このようなヘッドにおいてもCr23ある
いは、Cr23をSiO2で挟持した構造のギャップ材
により実施例1、2と同等の高精度の磁気ギャップを実
現することができた。
Even in such a head, a magnetic gap having the same high precision as that of the first and second embodiments could be realized by using Cr 2 O 3 or a gap material having a structure in which Cr 2 O 3 was sandwiched between SiO 2 . .

【0023】またこれらヘッドの製造方法は、図2−
(e)において、まずバック溝中に低融点鉛ガラスをモ
ールドし、その後トラック規制の放電加工を施し、その
後トラック溝中に低融点鉛ガラスをモールドするという
点が実施例1、2とは異なり、低融点鉛ガラスをモール
ドする熱処理工程では、昇温時にTc=350℃まで大
気中で熱処理し、その後はN2フロー中で熱処理を行う
方法で行った。その結果、ガラスの流れは良好であり、
チップ強度が劣化するといった問題は見られなかった。
The method of manufacturing these heads is shown in FIG.
In (e), unlike the first and second embodiments, first, a low-melting lead glass is molded in the back groove, and then, electric discharge machining for track regulation is performed, and then the low-melting lead glass is molded in the track groove. In the heat treatment step of molding the low melting point lead glass, heat treatment was performed in the atmosphere up to Tc = 350 ° C. at the time of raising the temperature, and then heat treatment was performed in an N 2 flow. As a result, the glass flow is good,
No problem such as deterioration of chip strength was observed.

【0024】また実施例1〜3では、金属磁性膜とし
て、FeTaNを使用した時について述べたが、金属磁
性膜としてCo系アモルファス膜や、センダスト、Fe
GaSiRuの金属磁性膜を用いた磁気ヘッドに応用し
ても同様の効果が得られる。
In the first to third embodiments, the case where FeTaN was used as the metal magnetic film was described. However, a Co-based amorphous film, sendust, Fe
Similar effects can be obtained by applying the present invention to a magnetic head using a GaSiRu metal magnetic film.

【0025】また実施例2、3では、SiO2の代わり
にパイレックス等のSiO2を主成分とした非磁性酸化
物を用いても同様の効果が得られる。
[0025] In Examples 2 and 3, the same effect even by using a non-magnetic oxide mainly containing SiO 2 of Pyrex or the like instead of SiO 2 is obtained.

【0026】[0026]

【発明の効果】本発明の磁気ヘッド及びその製造方法に
より、磁気ギャップの精度を大幅に向上させ、さらにギ
ャップ長の測定精度を改善することができ、磁気ヘッド
製造歩留まりを大きく上昇させることができた。
According to the magnetic head and the method of manufacturing the same according to the present invention, the accuracy of the magnetic gap can be greatly improved, the accuracy of measuring the gap length can be improved, and the manufacturing yield of the magnetic head can be greatly increased. Was.

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来の磁気ヘッドの構造を示す斜視図及び摺動
面から見た磁気ギャップ近傍の拡大図
FIG. 1 is a perspective view showing a structure of a conventional magnetic head and an enlarged view of the vicinity of a magnetic gap viewed from a sliding surface.

【図2】従来の磁気ヘッドの製造方法を示す斜視図FIG. 2 is a perspective view showing a conventional method for manufacturing a magnetic head.

【図3】従来の磁気ヘッドの課題を示す図FIG. 3 is a diagram showing a problem of a conventional magnetic head.

【図4】従来の製造方法で作製した磁気ヘッドの斜視図FIG. 4 is a perspective view of a magnetic head manufactured by a conventional manufacturing method.

【図5】Cr及びCr23の熱処理後の膜厚変化を示す
FIG. 5 is a diagram showing a change in film thickness of Cr and Cr 2 O 3 after heat treatment.

【図6】熱処理条件によるCr及びCr23上での低融
点鉛ガラスの濡れ角を示す図
FIG. 6 is a view showing a wetting angle of a low melting point lead glass on Cr and Cr 2 O 3 according to heat treatment conditions.

【図7】本発明の実施例1の磁気ヘッドの構造を示す斜
視図及び摺動面から見た磁気ギャップ近傍の拡大図
FIG. 7 is a perspective view showing the structure of the magnetic head according to the first embodiment of the present invention, and an enlarged view of the vicinity of the magnetic gap seen from the sliding surface.

【図8】従来の磁気ヘッドと本発明の磁気ヘッドのGL
(ギャップ長)分布を示す図
FIG. 8 shows GLs of a conventional magnetic head and a magnetic head of the present invention.
Diagram showing (gap length) distribution

【図9】本発明の実施例2の磁気ヘッドの構造を示す斜
視図及び摺動面から見た磁気ギャップ近傍の拡大図
FIG. 9 is a perspective view showing the structure of a magnetic head according to a second embodiment of the present invention, and an enlarged view of the vicinity of a magnetic gap viewed from a sliding surface.

【図10】本発明の実施例3の磁気ヘッドの摺動面から
見た磁気ギャップ近傍の拡大図
FIG. 10 is an enlarged view of the vicinity of a magnetic gap viewed from a sliding surface of a magnetic head according to a third embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 金属磁性膜 2 フェライト 3 Cr23 4 低融点鉛ガラス 6 磁気ギャップ 7 SiO2 8 Cr 9 Cr酸化物 10 ギャップ長 11 放電加工 12 巻線溝 13 バック溝 14 トラック溝 15 ギャップ面1 metallic magnetic film 2 ferrite 3 Cr 2 O 3 4 low melting point lead glass 6 magnetic gap 7 SiO 2 8 Cr 9 Cr oxide 10 gap length 11 EDM 12 winding groove 13 back groove 14 track groove 15 gap surface

───────────────────────────────────────────────────── フロントページの続き (72)発明者 高橋 健 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Ken Takahashi 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも片側の磁気コアが強磁性酸化
物のギャップ対向面上に金属磁性膜が形成されたMIG
ヘッドの磁気ギャップが、Cr23からなるギャップ材
で形成されていることを特徴とする磁気ヘッド。
An MIG wherein at least one magnetic core has a metal magnetic film formed on a surface of a ferromagnetic oxide facing a gap.
Magnetic head is characterized in that the magnetic gap of the head is formed of a gap material made of Cr 2 O 3.
【請求項2】 少なくとも片側の磁気コアが強磁性酸化
物のギャップ対向面上に金属磁性膜が形成されたMIG
ヘッドの磁気ギャップが、Cr23をSiO2を主成分
とする非磁性酸化物で挟持した構造のギャップ材で形成
されていることを特徴とする磁気ヘッド。
2. A MIG in which at least one magnetic core has a metal magnetic film formed on a surface of a ferromagnetic oxide facing a gap.
A magnetic head, wherein the magnetic gap of the head is formed of a gap material having a structure in which Cr 2 O 3 is sandwiched between nonmagnetic oxides containing SiO 2 as a main component.
【請求項3】 一対の強磁性酸化物に溝を形成し、その
後上記強磁性酸化物の少なくとも片側のギャップ対向面
上に金属磁性膜を形成して一対のコア半体を作製する工
程と、上記コア半体のギャップ対向面及び溝の表面にC
23を形成、あるいはSiO2を主成分とする非磁性
酸化物とCr23を形成し、一対のコア半体同士をギャ
ップ対向面上のCr23面で突き合わせ、PbOを主成
分とする低融点鉛ガラスを上記溝中のCr23上に熱処
理によりモールドし、コアを接合する工程とを有するM
IGヘッドの製造において、上記熱処理の昇温過程で、
少なくとも、 Tgー85℃≦T≦Tgー35℃ (但し、Tgは上記低融点ガラスのガラス転移点であ
る)の温度範囲Tでは酸素を含有する雰囲気中で熱処理
することを特徴とする磁気ヘッドの製造方法。
Forming a groove in the pair of ferromagnetic oxides and then forming a metal magnetic film on at least one of the gap opposing surfaces of the ferromagnetic oxide to form a pair of core halves; C is applied to the gap opposing surface and the groove surface of the core half.
r 2 O 3 is formed, or a non-magnetic oxide containing SiO 2 as a main component and Cr 2 O 3 are formed, and a pair of core halves are abutted on a Cr 2 O 3 surface on a gap opposing surface to form PbO. Molding a low melting point lead glass as a main component on the Cr 2 O 3 in the groove by heat treatment and joining the core.
In the manufacture of the IG head,
At least in a temperature range T of Tg-85 ° C. ≦ T ≦ Tg-35 ° C. (where Tg is the glass transition point of the low-melting glass), the magnetic head is heat-treated in an atmosphere containing oxygen. Manufacturing method.
JP9031594A 1997-02-17 1997-02-17 Magnetic head and its production Pending JPH10228606A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP9031594A JPH10228606A (en) 1997-02-17 1997-02-17 Magnetic head and its production
SG9800311A SG90706A1 (en) 1997-02-17 1998-02-12 Magnetic head and method for manufacturing the same
KR1019980004862A KR100282214B1 (en) 1997-02-17 1998-02-17 Magnet head and method for manufacturing the same
CN98107042A CN1196549A (en) 1997-02-17 1998-02-17 Magnetic head and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9031594A JPH10228606A (en) 1997-02-17 1997-02-17 Magnetic head and its production

Publications (1)

Publication Number Publication Date
JPH10228606A true JPH10228606A (en) 1998-08-25

Family

ID=12335531

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9031594A Pending JPH10228606A (en) 1997-02-17 1997-02-17 Magnetic head and its production

Country Status (4)

Country Link
JP (1) JPH10228606A (en)
KR (1) KR100282214B1 (en)
CN (1) CN1196549A (en)
SG (1) SG90706A1 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3769301D1 (en) * 1986-12-03 1991-05-16 Philips Nv MAGNETIC HEAD WITH AN ELECTRO-CHEMICAL INERT GAP MADE OF HARD MATERIAL.
JPH0258714A (en) * 1988-08-23 1990-02-27 Nippon Mining Co Ltd Magnetic head
EP0378214A1 (en) * 1989-01-13 1990-07-18 Sanyo Electric Co., Ltd. Magnetic head
KR940008711B1 (en) * 1992-03-11 1994-09-26 삼성전관 주식회사 Driving method for plasma display panel

Also Published As

Publication number Publication date
SG90706A1 (en) 2002-08-20
KR19980071437A (en) 1998-10-26
CN1196549A (en) 1998-10-21
KR100282214B1 (en) 2001-03-02

Similar Documents

Publication Publication Date Title
JPH10228606A (en) Magnetic head and its production
KR940011673B1 (en) Magnetic head and manufacturing method thereof
JP2900635B2 (en) Method of manufacturing composite magnetic head
JP2964706B2 (en) Method of manufacturing magnetic head and magnetic head manufactured using the method
JPS63187408A (en) Magnetic head
KR940004485B1 (en) Magnetic head and manufacturing method thereof
JPS58182118A (en) Magnetic head and its manufacture
JPH0554324A (en) Magnetic head
JPH08329410A (en) Magnetic head
JPH06203323A (en) Magnetic head and its production
JPS61204815A (en) Production of magnetic head
JPH04370509A (en) Magnetic head and production thereof
JPH10320713A (en) Magnetic head
JPS6254807A (en) Magnetic head and its manufacture
JPH0325710A (en) Magnetic head and production thereof
JPS6374104A (en) Composite type magnetic head and its production
JPH07129910A (en) Magnetic head and its production
JPH07129919A (en) Magnetic head
JPS61202312A (en) Magnetic head
JPH10228604A (en) Composite magnetic head
JPS63308714A (en) Production of magnetic head
JPH07121817A (en) Production of magnetic head
JPH03248306A (en) Manufacture of magnetic head
JPH05250630A (en) Magnetic head
JPH06187609A (en) Magnetic head and its production