JPH10227895A - Solidification processing method of radioactive waste - Google Patents

Solidification processing method of radioactive waste

Info

Publication number
JPH10227895A
JPH10227895A JP3004197A JP3004197A JPH10227895A JP H10227895 A JPH10227895 A JP H10227895A JP 3004197 A JP3004197 A JP 3004197A JP 3004197 A JP3004197 A JP 3004197A JP H10227895 A JPH10227895 A JP H10227895A
Authority
JP
Japan
Prior art keywords
solidifying
oxidizing agent
radioactive
cement
radioactive waste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3004197A
Other languages
Japanese (ja)
Inventor
Kenji Noshita
健司 野下
Takashi Nishi
高志 西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP3004197A priority Critical patent/JPH10227895A/en
Publication of JPH10227895A publication Critical patent/JPH10227895A/en
Pending legal-status Critical Current

Links

Landscapes

  • Processing Of Solid Wastes (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve holding performance for radioactive iodine of radioactive waste solid body by adding an oxidizing agent of a specific concentration in the case of solidifying processing radioactive waste with a cement group solidifier agent. SOLUTION: In solidifying processing, condensed waste liquid is supplied form a waste liquid tank 1 through a constant amount supply device 4 to a kneader 5 and a cement group solidifying agent is supplied from a solidifying agent tank 2 through a quantifying supply device 6 to the kneader 5. The oxidizing agent is supplied so as to be 0.01mol for 100g of waste solid weight from a oxidizing agent tank 3 through a constant amount supply device 7 to the kneader 5. For oxidizing agent, peroxodisulfate, silver oxide, permanganate or dichromate are used. After sufficiently mixing with the kneader 5, the cement paste of the condensed waste liquid is injected in a solidifying vessel 9 with an electromagnetic valve 8 and is statically cured for ca. a month. By this, holding capability of radioactive iodine of solid by cement group solidifying agent can be improved.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は放射性廃棄物の固化
処理方法に関する。
The present invention relates to a method for solidifying radioactive waste.

【0002】[0002]

【従来の技術】原子力発電所など放射性物質取扱い施設
から発生する放射性廃棄物は、例えば「放射性廃棄物処
理処分に関する研究開発」(産業技術出版,pp.57
−65,1983,天沼椋・阪田貞弘)に示されている
ようにセメント系固化材により安定に固化処理できるこ
とが示されている。
2. Description of the Related Art Radioactive waste generated from facilities handling radioactive materials such as nuclear power plants is described in, for example, "R & D on Radioactive Waste Treatment and Disposal" (Industrial Technology Publishing, pp. 57).
-65, 1983, Ryo Amanuma and Sadahiro Sakata) show that a cement-based solidifying agent can stably solidify.

【0003】一方、陸地処分の対象となる廃棄物固化体
は放射性核種を長期にわたり安定な状態で固化体内に保
持するために、それぞれの放射性核種の保持性能が評価
されている。すなわち、固化体を陸地処分した場合を想
定し、処分場に地下水が浸入してきた場合の固化体から
地下水への放射性核種の漏洩量を保持性能の指標である
分配係数により評価している。この分配係数とは、微粉
末状にした廃棄物固化体を水中で撹拌し定常状態となっ
た後、数1により求められるもので、この値が大きいほ
ど固化体の放射性核種保持性能が高いと判断することが
一般的である。
[0003] On the other hand, in order to hold radioactive nuclides in a solidified state in a solid state for a long period of time, solid radioactive nuclides to be disposed of on land are evaluated for their retention performance. That is, assuming the case where the solidified body is disposed of on land, the amount of radionuclide leakage from the solidified body to the groundwater when groundwater infiltrates the repository is evaluated by the distribution coefficient which is an index of the retention performance. The partition coefficient is determined by Equation 1 after the solidified waste in the form of fine powder is stirred in water to be in a steady state, and the larger the value is, the higher the radionuclide retention performance of the solidified body is. It is common to judge.

【0004】[0004]

【数1】 分配係数(mL/g)=固化体中の放射性核種濃度(Bq/g)/水中の放射 性核種濃度(Bq/mL) …(数1) 廃棄物固化体のそれぞれの核種の分配係数は固化処理の
対象となる放射性廃棄物の種類によっても異なるが、例
えば廃棄物を含まないセメント単独固化体の分配係数
は、“S. Hoglund, L. Eliasson, B. Allard, K. Ander
sson, B. Torstenfelt;Sorption of Some Fissi
on Products and Actinides in ConcreteSystems, Mate
rials Research Society Symposium Proceeding Vol.
50,pp.683−690,1985”に報告されてい
る。また、例えば、使用済みイオン交換樹脂のペレット
状廃棄物固化体の分配係数は、「中間貯蔵ペレット固化
体の分配係数」((社)日本原子力学会「1996春の
年会」要旨集,p639,金子昌章・豊原尚美・佐藤龍
明・稲熊正彦)に報告されている。これらの報告から、
放射性よう素の分配係数は他の放射性核種に比べて低い
ことがわかる。
## EQU00001 ## Partition coefficient (mL / g) = concentration of radionuclide in solidified body (Bq / g) / concentration of radionuclide in water (Bq / mL) ... (Equation 1) Each radionuclide of solidified waste The partition coefficient varies depending on the type of radioactive waste to be solidified. For example, the partition coefficient of a solidified cement containing no waste is described in “S. Hoglund, L. Eliasson, B. Allard, K. Ander.
sson, B. Torstenfelt; Sorption of Some Fissi
on Products and Actinides in ConcreteSystems, Mate
rials Research Society Symposium Proceeding Vol.
50, pp. 683-690, 1985 ". For example, the distribution coefficient of the solidified waste pellets of the used ion exchange resin is referred to as the" partition coefficient of the solidified intermediate storage pellets "((Corporation ) Abstracts of the Atomic Energy Society of Japan, 1996 Annual Meeting, p. 639, Masaaki Kaneko, Naomi Toyohara, Tatsuaki Sato, Masahiko Inakuma). From these reports,
It turns out that the partition coefficient of radioactive iodine is lower than that of other radionuclides.

【0005】これに対し、放射性よう素の分配係数を向
上する手段は、「セメントによる放射性よう素の固定
化」((社)日本原子力学会「1995秋の大会」要旨
集,p681,金子昌章・豊原尚美・和田幹雄)に報告
されているように、セメント中のカルシウム/アルミニ
ウム比を2程度に調整する方法が報告されている。
On the other hand, means for improving the distribution coefficient of radioactive iodine is described in "Immobilization of radioactive iodine by cement" (Abstracts of the Atomic Energy Society of Japan, 1995 Autumn Meeting, p.681, Masaaki Kaneko, As reported by Naomi Toyohara and Mikio Wada), a method of adjusting the calcium / aluminum ratio in cement to about 2 has been reported.

【0006】[0006]

【発明が解決しようとする課題】本発明の目的は、セメ
ント系固化材を用いた放射性廃棄物固化体の放射性よう
素に対する保持性能を向上することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to improve the holding performance of radioactive waste solidified body using a cement-based solidifying material for radioactive iodine.

【0007】[0007]

【課題を解決するための手段】前記目的は、放射性廃棄
物固化体作製時に、酸化剤を添加することにより達成で
きる。
The above object can be achieved by adding an oxidizing agent at the time of producing a solidified radioactive waste.

【0008】セメント系固化材を用いて固化処理した放
射性廃棄物固化体による放射性よう素の保持性能、すな
わち分配係数を向上するために発明者らはまず、放射性
廃棄物中に含まれるよう素の化学形態について調べた。
その結果、多くの場合、とりわけ原子力発電所から発生
する放射性廃棄物の大半はよう素がよう素イオン(I~
)の形態で含まれていることがわかった。しかしなが
ら、一部のよう素はよう素酸イオン(IO3~)として存
在することがわかった。そこで発明者らは、よう素イオ
ン及びよう素酸イオンそれぞれの分配係数を以下のよう
に取得した。すなわち、放射性よう素をよう素イオン及
びよう素酸イオンで準備し、それぞれを最も一般的なセ
メント系固化材である普通ポルトランドセメントを用い
て固化処理し、一定期間の養生の後、セメント固化体の
中心部をコアボーリングし、そのサンプルを水浸漬する
ことで放射性よう素の分配係数を取得した。その結果、
よう素イオンの分配係数は50(mL/g)であったの
に対し、よう素酸イオンの分配係数は2800(mL/
g)と50倍以上高いことを見いだした。
[0008] In order to improve the retention performance of radioactive iodine by the solidified radioactive waste using a cement-based solidifying material, that is, to improve the distribution coefficient, the present inventors first settled the iodine contained in the radioactive waste. The chemical form was investigated.
As a result, in most cases, most of the radioactive waste, especially from nuclear power plants, is mostly iodine ions (I ~).
). However, some iodine was found to exist as iodate ions (IO 3 ~). Then, the inventors obtained the distribution coefficients of iodine ions and iodate ions as follows. That is, radioactive iodine is prepared with iodine ions and iodide ions, each of which is solidified using ordinary Portland cement, which is the most common cement-based solidifying material. Was core-bored, and the sample was immersed in water to obtain the distribution coefficient of radioactive iodine. as a result,
The partition coefficient of iodine ion was 50 (mL / g), while the partition coefficient of iodine ion was 2800 (mL / g).
g) and more than 50 times higher.

【0009】したがって、発明者らは放射性廃棄物中に
含まれるよう素イオンをよう素酸イオンにすることがで
きれば、セメントによる放射性よう素の保持性能を向上
できると考えた。また、その手段として酸化剤を廃棄物
固化体作製時に添加することが有効であると考えた。
[0009] Therefore, the present inventors thought that if the iodine ions contained in the radioactive waste could be converted into iodide ions, the retention performance of the radioactive iodine by the cement could be improved. Also, it was considered effective to add an oxidizing agent at the time of producing the solidified waste as a means for that.

【0010】具体的な酸化剤は、“Marcel Pourbaix, A
tlas of Electrochemical Equilibria, Pergamon Pres
s, p618,1966”に示されているように、セメ
ントのようなpH12程度のアルカリ水溶液中における
よう素イオンとよう素酸イオンの標準電極電位の差であ
る1.085(V)以上の酸化力を持つ酸化剤が好まし
い。また、廃棄物固化体の他の物性、例えば物理的強度
等への影響低減の観点から、これらの酸化剤は固体状ペ
ルオキソ二硫酸塩,酸化銀,過マンガン酸塩,重クロム
酸塩であればより好ましい。
A specific oxidizing agent is described in “Marcel Pourbaix, A
tlas of Electrochemical Equilibria, Pergamon Pres
s, p618, 1966 ", oxidation of 1.085 (V) or more, which is the difference between the standard electrode potentials of iodide ions and iodate ions in an aqueous alkaline solution having a pH of about 12, such as cement. From the viewpoint of reducing the influence on the other physical properties of the solidified waste such as physical strength, etc., these oxidizing agents are preferably used in the form of solid peroxodisulfate, silver oxide, permanganate. Salts and dichromates are more preferred.

【0011】さらに、酸化剤添加の方法はセメント系固
化材に添加する方法,混練水に添加する方法,放射性廃
棄物に添加する方法,固化材への混和材に添加する方
法,固化材と混練水を混合する際に添加する方法などが
いずれも有効であると考えられる。
Further, the method of adding the oxidizing agent includes a method of adding to the cement-based solidifying material, a method of adding to the kneading water, a method of adding to the radioactive waste, a method of adding to the admixing material to the solidifying material, and a method of kneading with the solidifying material. It is considered that any method of adding water when mixing is effective.

【0012】また、これらの方法は直接放射性廃棄物を
固化する固化材以外にも、陸地処分施設で用いられるセ
メント系埋め戻し材などについても適用可能である。
Further, these methods can be applied not only to solidifying materials for directly solidifying radioactive waste, but also to cement-based backfill materials used in land disposal facilities.

【0013】[0013]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

(実施例1)本実施例は、BWRプラントから発生する
濃縮廃液を固化処理するもので、図1に処理システムの
フローを示す。
(Embodiment 1) In this embodiment, a concentrated waste liquid generated from a BWR plant is solidified, and FIG. 1 shows a flow of a treatment system.

【0014】BWRプラントから発生した濃縮廃液は廃
液タンク1に貯蔵されていた。また、固化材タンク2に
はセメント系固化材が、酸化剤タンク3には酸化剤が貯
蔵されていた。
The concentrated waste liquid generated from the BWR plant has been stored in the waste liquid tank 1. Further, the cement-based solidifying material was stored in the solidifying material tank 2 and the oxidizing agent was stored in the oxidizing agent tank 3.

【0015】固化処理時には、濃縮廃液は定量供給装置
4を通して混練装置5に167kg供給された。セメント
系固化材は定量供給装置6を通して混練装置5に233
kg供給された。また、本実施例では、各種酸化剤の添加
効果を調べるため、酸化剤が廃棄物固化体重量100g
に対して0.01 モルとなるように定量供給装置7を通
して混練装置5に供給された。この際、酸化剤の種類は
酸化剤を添加しないケース及び酸化剤としてペルオキソ
二硫酸塩,酸化銀,過マンガン酸塩,重クロム酸塩を添
加するケースを実施した。
At the time of the solidification treatment, 167 kg of the concentrated waste liquid was supplied to the kneading device 5 through the quantitative supply device 4. The cement-based solidification material is supplied to the kneading device 5 through the
kg supplied. Further, in this example, in order to examine the effect of adding various oxidizing agents, the oxidizing agent was changed to a waste solidified body weight of 100 g.
And supplied to the kneading device 5 through the fixed amount supplying device 7 so as to be 0.01 mol. At this time, as the type of the oxidizing agent, a case where no oxidizing agent was added and a case where peroxodisulfate, silver oxide, permanganate and dichromate were added as the oxidizing agent were implemented.

【0016】その後、混練装置5で十分に混練された
後、濃縮廃液のセメントペーストは電磁バルブ8により
固化容器9に注入された。約1ヶ月静置養生後、それぞ
れの固化体の中心部をコアボーリングし、そのサンプル
を水浸漬することで放射性よう素の分配係数を取得し
た。
Then, after sufficiently kneading in the kneading device 5, the cement paste of the concentrated waste liquid was injected into the solidification container 9 by the electromagnetic valve 8. After curing for about one month, the core of each solid was core-bored, and the sample was immersed in water to obtain the distribution coefficient of radioactive iodine.

【0017】表1にはそれぞれの酸化剤を添加した場合
の放射性よう素の分配係数を比較して示す。その結果、
酸化剤を添加しない場合では分配係数は50(mL/
g)であるものの、酸化剤添加により分配係数はいずれ
の場合にも20倍以上に向上できることがわかった。
Table 1 shows a comparison of the distribution coefficients of radioactive iodine when each oxidizing agent is added. as a result,
When no oxidizing agent was added, the partition coefficient was 50 (mL /
g), it was found that the distribution coefficient could be improved to 20 times or more in any case by adding the oxidizing agent.

【0018】[0018]

【表1】 [Table 1]

【0019】本実施例では、放射性廃棄物として濃縮廃
液を取り上げたが、本方法は放射性よう素を含むすべて
の放射性廃棄物に対し、セメント系固化材により保持性
能を確保する場合に有効である。
In this embodiment, the concentrated waste liquid is taken as the radioactive waste. However, the present method is effective when all the radioactive wastes including radioactive iodine are maintained with the cement-based solidifying material. .

【0020】(実施例2)本実施例は、原子力発電所の
BWRプラントから発生する濃縮廃液ペレットを固化処
理するもので、図2に処理システムのフローを示す。
(Embodiment 2) In this embodiment, a concentrated waste liquid pellet generated from a BWR plant of a nuclear power plant is solidified, and FIG. 2 shows a flow of a treatment system.

【0021】BWRプラントから発生した濃縮廃液は、
乾燥機で粉末とし、さらに造粒機で長さ3cm程度のアー
モンド状のペレットとした後、ペレット貯槽10に保管
されていた。また、固化材タンク11にはセメント系固
化材が、混練水タンク12には混練水が貯蔵されてい
た。なお、本実施例では酸化剤としてペルオキソ二硫酸
塩が混練水中に予め添加量をパラメータとして添加され
ていた。
The concentrated waste liquid generated from the BWR plant is
The powder was formed into a powder by a drier, and further formed into almond-shaped pellets having a length of about 3 cm by a granulator. Further, the solidification material tank 11 stores the cement-based solidification material, and the mixing water tank 12 stores the mixing water. In this example, peroxodisulfate was added as an oxidizing agent to the kneading water in advance with the addition amount as a parameter.

【0022】固化処理時には、ペレットは取出装置13
で抜き出された後、吸引装置14によりペレットホッパ
15まで移送された。その後、定量移送装置16を通し
て混練機17に200kg供給された。セメント系固化材
は定量供給装置18を通して混練装置17に151kg供
給された。また、混練水は定量供給装置19を通して混
練装置17に83L供給された。その後、混練装置17
で十分に混練された後、ペレットのセメントペーストは
電磁バルブ20により固化容器21に注入された。約1
ヶ月静置養生後、それぞれの固化体の中心部をコアボー
リングし、そのサンプルを水浸漬することで放射性よう
素の分配係数を取得した。
During the solidification process, the pellets are taken out of the take-out device 13.
After that, it was transferred to the pellet hopper 15 by the suction device 14. Thereafter, 200 kg was supplied to the kneader 17 through the fixed amount transfer device 16. 151 kg of the cement-based solidified material was supplied to the kneading device 17 through the quantitative supply device 18. In addition, 83 L of the kneading water was supplied to the kneading device 17 through the quantitative supply device 19. Then, the kneading device 17
After sufficiently kneading, the cement paste of the pellets was poured into the solidification container 21 by the electromagnetic valve 20. About 1
After curing for one month, the core of each solid was core-bored and the sample was immersed in water to obtain the distribution coefficient of radioactive iodine.

【0023】図2にはペルオキソ二硫酸塩の添加量をパ
ラメータとした場合の放射性よう素の分配係数を比較し
て示す。その結果、酸化剤の添加量が廃棄物固化体10
0gに対し、0.01mol以上を添加した場合で顕著に分
配係数が向上する効果があることがわかった。これは他
の酸化剤、すなわち、酸化銀,過マンガン酸塩,重クロ
ム酸塩を添加した場合でも同様の傾向を示すことがわか
った。
FIG. 2 shows a comparison of the distribution coefficient of radioactive iodine when the amount of peroxodisulfate is used as a parameter. As a result, the amount of the oxidizing agent added becomes
It was found that when 0.01 mol or more was added to 0 g, the distribution coefficient was significantly improved. It was found that the same tendency was exhibited when other oxidizing agents, that is, silver oxide, permanganate, and dichromate were added.

【0024】本実施例では、放射性廃棄物として濃縮廃
液ペレットを取り上げたが、本方法は放射性よう素を含
むすべての放射性廃棄物に対し、セメント系固化材によ
り保持性能を確保する場合に有効である。
In the present embodiment, the concentrated waste liquid pellets are taken as the radioactive waste. However, the present method is effective for securing the holding performance of all radioactive wastes including radioactive iodine by the cement-based solidifying material. is there.

【0025】[0025]

【発明の効果】本発明によればセメント系固化材により
固化処理した放射性廃棄物固化体の放射性よう素保持性
能を向上できるとの効果がある。
According to the present invention, there is an effect that the radioactive iodine retention performance of the solidified radioactive waste solidified by the cement-based solidifying material can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例に用いた濃縮廃液を固化処理す
るシステムの説明図。
FIG. 1 is an explanatory diagram of a system for solidifying a concentrated waste liquid used in an embodiment of the present invention.

【図2】本発明の実施例に用いた放射性廃棄物を固化処
理するシステムの説明図。
FIG. 2 is an explanatory diagram of a system for solidifying radioactive waste used in an embodiment of the present invention.

【図3】本発明の実施例に用いた酸化剤添加量の影響の
説明図。
FIG. 3 is an explanatory diagram of the influence of the amount of an oxidizing agent used in an example of the present invention.

【符号の説明】[Explanation of symbols]

1…廃液タンク、2…固化材タンク、3…酸化剤タン
ク、5…混練装置、8…電磁バルブ、9…固化容器。
DESCRIPTION OF SYMBOLS 1 ... Waste liquid tank, 2 ... Solidification material tank, 3 ... Oxidizing agent tank, 5 ... Kneading apparatus, 8 ... Electromagnetic valve, 9 ... Solidification container.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】放射性よう素を含む放射性廃棄物をセメン
ト系固化材により固化処理するに際し、酸化剤を添加し
た放射性廃棄物固化体を作製することを特徴とする放射
性廃棄物の固化処理方法。
1. A method for solidifying radioactive waste, comprising the step of solidifying a radioactive waste containing radioactive iodine with an oxidizing agent when solidifying the radioactive waste with a cement-based solidifying material.
【請求項2】前記酸化剤が標準電極電位差で1.085
(V)以上の酸化力を持つ請求項1に記載の放射性廃棄
物の固化処理方法。
2. The method according to claim 1, wherein the oxidizing agent has a standard electrode potential difference of 1.085.
2. The method for solidifying radioactive waste according to claim 1, wherein the method further comprises (V) oxidizing power.
【請求項3】前記酸化剤がペルオキソ二硫酸塩,酸化
銀,過マンガン酸塩,重クロム酸塩である請求項2に記
載の放射性廃棄物の固化処理方法。
3. The method for solidifying radioactive waste according to claim 2, wherein said oxidizing agent is peroxodisulfate, silver oxide, permanganate or dichromate.
【請求項4】前記酸化剤の添加量が前記放射性廃棄物固
化体重量100gに対し、0.01mol 以上添加する請
求項3に記載の放射性廃棄物の固化処理方法。
4. The method for solidifying radioactive waste according to claim 3, wherein the oxidizing agent is added in an amount of 0.01 mol or more based on 100 g of the solidified radioactive waste.
JP3004197A 1997-02-14 1997-02-14 Solidification processing method of radioactive waste Pending JPH10227895A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3004197A JPH10227895A (en) 1997-02-14 1997-02-14 Solidification processing method of radioactive waste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3004197A JPH10227895A (en) 1997-02-14 1997-02-14 Solidification processing method of radioactive waste

Publications (1)

Publication Number Publication Date
JPH10227895A true JPH10227895A (en) 1998-08-25

Family

ID=12292746

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3004197A Pending JPH10227895A (en) 1997-02-14 1997-02-14 Solidification processing method of radioactive waste

Country Status (1)

Country Link
JP (1) JPH10227895A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001099990A (en) * 1999-09-30 2001-04-13 Toshiba Corp Method of solidifying radioactive waste
EP2045007A2 (en) 2004-06-07 2009-04-08 National Institute for Materials Science Adsorbent for radioelement-containing waste and method for fixing radioelement
CN111863304A (en) * 2020-08-20 2020-10-30 中国原子能科学研究院 Sodalite-based ceramic curing method for radioactive iodine waste

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001099990A (en) * 1999-09-30 2001-04-13 Toshiba Corp Method of solidifying radioactive waste
EP2045007A2 (en) 2004-06-07 2009-04-08 National Institute for Materials Science Adsorbent for radioelement-containing waste and method for fixing radioelement
US8207391B2 (en) 2004-06-07 2012-06-26 National Institute For Materials Science Adsorbent for radioelement-containing waste and method for fixing radioelement
CN111863304A (en) * 2020-08-20 2020-10-30 中国原子能科学研究院 Sodalite-based ceramic curing method for radioactive iodine waste

Similar Documents

Publication Publication Date Title
JPH03105298A (en) Producing method for solidified body of radioactive waste
JP5100570B2 (en) Method and apparatus for solidifying radioactive waste
JPH0631850B2 (en) How to dispose of radioactive liquid waste
JPS61240199A (en) Method and device for manufacturing radioactive waste solidified body
JPH10227895A (en) Solidification processing method of radioactive waste
Gorbunova Cementation of liquid radioactive waste with high content of borate salts
JP2001208896A (en) Method of cosolidifying low-level radioactive wetting waste generated from boiling water nuclear power plant
JPH05346493A (en) Treatment method for radioactive waste
Guzii et al. Application of alkali-activated cements for immobilization of dry low-level radioactive waste containing copper ferrocyanide
JPH08285995A (en) Method for solidification process of radioactive waste
KR102368220B1 (en) Solidifying agent for radioactive waste using fine powder of waste concrete and Prussian blue, and solidification method of radioactive waste using the same
Yamada et al. Leaching Characteristics of Cs from the Decomposed Cu Ferrocyanide Adsorbent Solidified by Portland Cement and Geopolymer
Kosyakov et al. Preparation, properties, and application of modified mikoton sorbents
JPH09211194A (en) Method for solidifying radioactive waste
Eskander et al. Immobilization of radioactive sulphate waste simulate in polymer–cement composite based on recycled expanded polystyrene foam: evaluation of the final waste form resistance for Cs-134 and Co-60 leachability
JPH06331794A (en) Aggregate for cementing radioactive waste and production thereof
Iffland et al. Process for solidifying and eliminating radioactive borate containing liquids
JP2003248085A (en) Method for treating residue left after reduced volume of radioactive waste
JPH04115198A (en) Solidifying method for radioactive waste
JPH0345543A (en) Inorganic soldifying material and solidification of radioactive waste disposal using same material
JP2854691B2 (en) Stabilization method for radioactive waste
Herbst et al. Idaho Nuclear Technology and Engineering Center Low-Activity Waste Process Technology Program FY-99 Status Report
JPS6191600A (en) Method of solidifying radioactive concentrated waste liquor
Singh et al. Immobilization of 99 Tc in low-temperature phosphate ceramic waste forms
Funabashi et al. Properties of a radioactive waste pellet package using cement-glass