JPH10227423A - Method for melting waste material - Google Patents

Method for melting waste material

Info

Publication number
JPH10227423A
JPH10227423A JP9030275A JP3027597A JPH10227423A JP H10227423 A JPH10227423 A JP H10227423A JP 9030275 A JP9030275 A JP 9030275A JP 3027597 A JP3027597 A JP 3027597A JP H10227423 A JPH10227423 A JP H10227423A
Authority
JP
Japan
Prior art keywords
melting
waste
reaction tower
gas
auxiliary fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9030275A
Other languages
Japanese (ja)
Inventor
Masakazu Abe
将一 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiyoda Corp
Chiyoda Chemical Engineering and Construction Co Ltd
Original Assignee
Chiyoda Corp
Chiyoda Chemical Engineering and Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiyoda Corp, Chiyoda Chemical Engineering and Construction Co Ltd filed Critical Chiyoda Corp
Priority to JP9030275A priority Critical patent/JPH10227423A/en
Publication of JPH10227423A publication Critical patent/JPH10227423A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Landscapes

  • Incineration Of Waste (AREA)
  • Gasification And Melting Of Waste (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce an operation expenditure without making a facility complicated. SOLUTION: In a method of melting waste material for supplying oxygen rich gas and auxiliary fuel into a reaction tower 1, igniting and melting the waste material, metallic fine pieces capable of being oxidized and ignited in a predetermined temperature range are supplied into the reaction tower 1 in addition to auxiliary fuel such as fossil fuel or the like in order to keep an inside part of the reaction tower 1 in a state in which ignited ash can be melted. With such an arrangement as above, it is possible to perform an efficient melting operation with a less amount of carrying energy, reduce substantially a feeding amount of auxiliary fuel, resulting in that it has a substantial effect in view of reducing operation expenditure. In particular, in the case that some fine metallic pieces are transported with oxygen rich gas and supplied into the reaction tower 1, it may be efficiently transported with a simple configuration and it is effective in view of saving facility expenditure and operation expenditure.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、廃棄物を焼却する
と共にこのとき生成される残滓を溶融処理する廃棄物の
焼却処理方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a waste incineration method for incinerating waste and melting the residue generated at this time.

【0002】[0002]

【従来の技術】廃棄物の焼却処理において多量に発生す
る残滓(焼却灰)は、埋め立て処分するのが一般的であ
るが、近年、埋め立て処分に係る費用を削減するべく、
残滓を溶融・凝固して減容化するようにした溶融技術
が、種々発案され、実用化されつつある。
2. Description of the Related Art Generally, a large amount of residue (incinerated ash) generated during incineration of waste is disposed of in a landfill. In recent years, in order to reduce costs associated with landfill disposal,
Various melting techniques for melting and solidifying the residue to reduce the volume have been proposed and are being put to practical use.

【0003】これらの溶融技術は、空気による自燃だけ
では、残滓の溶融温度(1200乃至1500℃)に達
しないことから、各種の方式で溶融に必要な高温を得る
ようにしたものであり、大別して、焼却灰を化石燃料等
で高温に加熱して溶融するようにした表面溶融方式、電
気アーク等を用いて焼却灰を高温化して溶融するように
した電気溶融方式、廃棄物を熱分解してガス成分と残滓
(主に炭素分)を分離した後に再燃焼させて溶融する熱
分解ガス方式、並びに廃棄物と可燃物(コークス等)と
を混合して酸素富化空気または高純度酸素で高温を得つ
つ燃焼・溶融するようにした直接溶融方式が挙げられ
る。
[0003] In these melting techniques, since the self-combustion by air alone does not reach the melting temperature of the residue (1200 to 1500 ° C), a high temperature necessary for melting is obtained by various methods. Separately, incineration ash is heated to a high temperature with fossil fuel etc. to melt it by heating, incineration ash is heated to a high temperature using an electric arc, etc. Pyrolysis gas method in which gas components and residues (mainly carbon content) are separated and then recombusted and melted, or waste and combustibles (such as coke) are mixed with oxygen-enriched air or high-purity oxygen. There is a direct melting method in which combustion and melting are performed while obtaining a high temperature.

【0004】[0004]

【発明が解決しようとする課題】ところが、表面溶融方
式や直接溶融方式において補助燃料として投入される化
石燃料や、電気溶融方式において用いられる電力が、運
転費を増大させる大きな要因となっている。また、直接
溶融方式において用いられる酸素富化ガスを得るための
PSA法や深冷分離法でも大量の電力が必要であり、運
転費が嵩むといった問題がある。一方、熱分解ガス方式
は、熱分解ガスを有効利用することによって運転費の軽
減を図ったものであるが、設備が複雑となり、経費を節
減する上で必ずしも有効な手だてとなっていない。
However, fossil fuel supplied as an auxiliary fuel in the surface melting method or the direct melting method and electric power used in the electric melting method are major factors that increase the operating cost. Further, the PSA method and the cryogenic separation method for obtaining the oxygen-enriched gas used in the direct melting method also require a large amount of electric power, and there is a problem that the operating cost increases. On the other hand, in the pyrolysis gas method, the operation cost is reduced by effectively utilizing the pyrolysis gas, but the equipment is complicated and it is not always effective in reducing the cost.

【0005】このような従来技術の問題に鑑み、本発明
の主な目的は、設備を複雑化することなく運転費を低減
し得るような廃棄物の溶融方法を提供することにある。
[0005] In view of the above-mentioned problems in the prior art, a main object of the present invention is to provide a method for melting waste which can reduce the operating cost without complicating the equipment.

【0006】[0006]

【課題を解決するための手段】上記した目的は本発明に
よれば、酸素富化ガス並びに補助燃料を反応塔内に供給
して、廃棄物を燃焼・溶融する廃棄物の溶融方法であっ
て、所定温度域で酸化燃焼可能な金属細片を前記反応塔
内に供給することを特徴とする廃棄物の溶融方法を提供
することにより達成される。
SUMMARY OF THE INVENTION According to the present invention, there is provided, in accordance with the present invention, a method for melting waste, comprising supplying an oxygen-enriched gas and an auxiliary fuel into a reaction column to burn and melt the waste. The present invention is attained by providing a method for melting waste, comprising supplying metal fragments that can be oxidized and burned in a predetermined temperature range into the reaction tower.

【0007】特に、前記金属細片を前記酸素富化ガスに
気流搬送させて前記反応塔内に供給すると好ましい。
In particular, it is preferable that the metal strip is transported in a gas stream to the oxygen-enriched gas and supplied into the reaction tower.

【0008】[0008]

【発明の実施の形態】以下に添付の図面に示された実施
形態に基づいて本発明の構成を詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The structure of the present invention will be described in detail below based on embodiments shown in the accompanying drawings.

【0009】図1は、本発明による廃棄物の溶融方法に
基づき構成された廃棄物溶融装置を示している。この廃
棄物溶融装置1は、廃棄物を熱分解・燃焼・溶融する反
応塔2と、反応塔2の側壁上部に設けられた廃棄物投入
部3と、反応塔2の側壁下部に設けられた酸素富化ガス
並びに補助燃料の各供給部4・5と、反応塔2の頂壁に
設けられた燃焼ガスの取出部6と、反応塔2の底壁に設
けられた溶融スラグの取出部7とを有している。
FIG. 1 shows a waste melting apparatus constructed based on a waste melting method according to the present invention. This waste melting apparatus 1 is provided with a reaction tower 2 for thermally decomposing, burning, and melting waste, a waste input section 3 provided at an upper portion of a side wall of the reaction tower 2, and a lower portion of a side wall of the reaction tower 2. Supply units 4 and 5 for the oxygen-enriched gas and the auxiliary fuel, a combustion gas extraction unit 6 provided on the top wall of the reaction tower 2, and a molten slag extraction unit 7 provided on the bottom wall of the reaction tower 2 And

【0010】処理すべき廃棄物は、廃棄物投入口3から
投入され、反応塔2の内部に所定高さ充填される。反応
塔2に廃棄物を投入するにあたっては、選別・破砕を行
って均一化しておくことが望ましい。
[0010] The waste to be treated is introduced from the waste inlet 3 and filled into the reaction tower 2 at a predetermined height. When charging the waste into the reaction tower 2, it is desirable to carry out sorting and crushing to make the waste uniform.

【0011】反応塔2内の廃棄物は、酸素富化ガス供給
部4から導入された酸素富化ガスによって自己燃焼す
る。この酸素富化ガスによる自己燃焼だけでは、溶融す
るのに十分な高温が得られずに焼却灰として反応塔2の
底部に溜まることになるため、適宜、補助燃料として化
石燃料等を補助燃料供給部5から投入する。これによ
り、反応塔2の下部が溶融に十分な高温状態になり、焼
却灰が溶融する。
The waste in the reaction tower 2 self-combustes with the oxygen-enriched gas introduced from the oxygen-enriched gas supply unit 4. If only the self-combustion with the oxygen-enriched gas alone is not performed, a high temperature enough to melt is not obtained and the ash accumulates at the bottom of the reaction tower 2 as incineration ash. Input from section 5. As a result, the lower portion of the reaction tower 2 is brought to a high temperature state sufficient for melting, and the incinerated ash is melted.

【0012】廃棄物の燃焼によって生成した燃焼ガス
は、反応塔2の内部に充填された廃棄物の間隙を流通し
ながら上昇する。その際、高温の燃焼ガスが廃棄物に接
触することで、廃棄物が乾燥され、更に熱分解される。
廃棄物は概ね400℃以上で熱分解して分解ガスを生成
する。廃棄物は、熱分解を経て炭素化(チャー)する。
ガラスや鉄等の不燃物はそのまま残る。アルミ等の低融
点の不燃物は溶解する。分解ガスは、燃焼ガスと共に燃
焼ガス取出部6から反応塔2の外部に導かれる。
The combustion gas generated by the combustion of the waste rises while flowing through the gap between the waste filled in the reaction tower 2. At that time, the high-temperature combustion gas comes into contact with the waste, whereby the waste is dried and further thermally decomposed.
The waste is thermally decomposed at about 400 ° C. or higher to generate a decomposition gas. Waste is carbonized through pyrolysis.
Non-combustible materials such as glass and iron remain. Low melting point incombustibles such as aluminum dissolve. The cracked gas is guided to the outside of the reaction tower 2 from the combustion gas outlet 6 together with the combustion gas.

【0013】このようにして、反応塔2内の廃棄物の充
填層が、乾燥・熱分解・燃焼・溶融の各過程に応じて概
ね上下5層に分かれる。すなわち、最上部には乾燥ゾー
ンAが、その下方には熱分解ゾーンBが、その下方には
燃焼ゾーンCが、その下方には酸素富化ガス並びに補助
燃料の各供給部4・5に対応して燃焼・溶融ゾーンD
が、その下方の反応塔2の底部には溶融湯だまりEが形
成される。溶融湯だまりEの溶融スラグは、溶融スラグ
取出部7から外部に流出される。
In this way, the packed bed of waste in the reaction tower 2 is roughly divided into five upper and lower layers according to each process of drying, pyrolysis, combustion and melting. That is, the drying zone A is located at the top, the pyrolysis zone B is located below, the combustion zone C is located below, and the oxygen-enriched gas and the auxiliary fuel supply units 4 and 5 are located below. And combustion and melting zone D
However, a molten metal pool E is formed at the bottom of the reaction tower 2 thereunder. The molten slag of the molten metal pool E flows out of the molten slag removal section 7 to the outside.

【0014】ところで、酸素富化ガス供給部4から反応
塔2内に吹き込まれる酸素富化ガスには、金属アルミ粉
末が添加され、酸素富化ガスに気流搬送されて反応塔2
内に投入される。金属アルミは、酸素分圧にもよるが常
圧では、1300℃以上で自燃する。従って、上記の化
石燃料等の補助燃料によって所定の温度(1300乃至
1400℃以上)に保持された反応塔2内に金属アルミ
粉末が投入されると、金属アルミの酸化燃焼反応が急速
に引き起こされる。
Meanwhile, metal aluminum powder is added to the oxygen-enriched gas blown into the reaction tower 2 from the oxygen-enriched gas supply section 4, and the aluminum-enriched gas is transported in a gas stream to the oxygen-enriched gas.
It is thrown in. At normal pressure, metallic aluminum self-combustes at 1300 ° C. or higher, depending on the oxygen partial pressure. Therefore, when the metal aluminum powder is charged into the reaction tower 2 maintained at a predetermined temperature (1300 to 1400 ° C. or higher) by the above-mentioned auxiliary fuel such as fossil fuel, the oxidation combustion reaction of the metal aluminum is rapidly caused. .

【0015】金属アルミは、その生産過程からも解るよ
うに多量のエネルギーを含有しており、酸化燃焼する際
に、大きな反応熱(発熱量7500kcal/kg)を
放出する。しかも、燃焼生成物として酸化アルミ(アル
ミナ)が生成されるだけで、化石燃料が燃焼する際に生
じるような燃焼ガスを生成しない。このため、持ち出し
エネルギーがなく、放出された反応熱の略全量を焼却灰
の溶融熱として利用することが可能である。従って、溶
融に要する高温(1350乃至1500℃)を極めて効
率的に得ることができ、化石燃料等の補助燃料の投入量
を大幅に削減することができる。
Metallic aluminum contains a large amount of energy, as can be seen from its production process, and emits a large amount of heat of reaction (calorific value of 7,500 kcal / kg) when oxidizing and burning. In addition, only aluminum oxide (alumina) is generated as a combustion product, and combustion gas such as that generated when fossil fuel is burned is not generated. For this reason, there is no take-out energy, and it is possible to use substantially all of the released reaction heat as the heat of fusion of the incinerated ash. Therefore, the high temperature (1350 to 1500 ° C.) required for melting can be obtained extremely efficiently, and the amount of auxiliary fuel such as fossil fuel can be significantly reduced.

【0016】このような廃棄物溶融装置1は、例えば、
図2に示すような廃棄物処理場に適用される。
Such a waste melting apparatus 1 includes, for example,
It is applied to a waste treatment plant as shown in FIG.

【0017】この廃棄物処理場においては、まず、搬送
トラックから搬入された搬入ごみピット11a内の廃棄
物が破砕機12にて適当な大きさに破砕される。この破
砕廃棄物は、一旦、破砕ごみピット11bに貯留された
上で、適宜、クレーン搬送して給じん装置13に投入さ
れる。給じん装置13では、破砕廃棄物が成型処理さ
れ、順次、廃棄物溶融装置1の廃棄物投入部3に送り込
まれる。
In this waste treatment plant, first, the waste in the carry-in waste pit 11a carried in from the transport truck is crushed by the crusher 12 into an appropriate size. The crushed waste is temporarily stored in the crushed garbage pit 11b, and then is appropriately conveyed to a crane and charged into the dust supply device 13. In the dust supply device 13, the crushed waste is molded and sequentially sent to the waste input section 3 of the waste melting device 1.

【0018】廃棄物溶融装置1の補助燃料供給部5に
は、補助燃料貯槽14からの補助燃料が供給され、酸素
富化ガス供給部4には、酸素生成装置15からの酸素富
化ガスが供給される。この酸素生成装置15は、PSA
(Pressure Swing Absorption)法等により、空気から
窒素を一定量或いは略全量除去して酸素富化ガスを得る
ものである。この酸素富化ガスには、適所で金属アルミ
粉末が添加される。
The auxiliary fuel supply unit 5 of the waste melting apparatus 1 is supplied with auxiliary fuel from an auxiliary fuel storage tank 14, and the oxygen-enriched gas supply unit 4 is supplied with oxygen-enriched gas from an oxygen generator 15. Supplied. This oxygen generator 15 is a PSA
(Pressure Swing Absorption) method is to remove a fixed amount or substantially the entire amount of nitrogen from air to obtain an oxygen-enriched gas. Metallic aluminum powder is added to the oxygen-enriched gas at appropriate locations.

【0019】廃棄物溶融装置1の溶融スラグ取出部7か
ら回収された溶融物は、スラグ冷却槽16で水中に滴下
されてガラス状に凝固する。この水砕スラグは、一旦、
スラグピット17に貯留された後、適宜、場外に搬出さ
れる。
The molten material recovered from the molten slag removal section 7 of the waste melting apparatus 1 is dropped into water in a slag cooling tank 16 and solidified into a glass. This granulated slag, once
After being stored in the slag pit 17, it is appropriately carried out of the yard.

【0020】廃棄物溶融装置1の燃焼ガス取出部6から
排出された分解ガスを含む燃焼ガスは、二次燃焼炉18
に導かれ、ここで補助燃料貯槽14から供給される補助
燃料を用いて燃焼される。この二次燃焼炉18には、押
込送風機19で吸引された汚水ごみピット11内の空気
が供給され、汚水ポンプ20で集水されたごみピット1
1内の汚水が投入されて燃焼ガスと共に焼却処理され
る。
The combustion gas containing the decomposed gas discharged from the combustion gas outlet 6 of the waste melting device 1 is supplied to the secondary combustion furnace 18.
And is burned using the auxiliary fuel supplied from the auxiliary fuel storage tank 14. The secondary combustion furnace 18 is supplied with the air in the sewage waste pit 11 sucked by the forced air blower 19, and the garbage pit 1 collected by the sewage pump 20.
The wastewater in 1 is injected and incinerated together with the combustion gas.

【0021】二次燃焼炉18を流通した燃焼ガスは、次
ぎに廃熱ボイラ21に送られて熱回収される。ここで燃
焼ガスとの熱交換で得られたスチームは、タービン22
に供給されて発電器23を駆動する。このとき得られた
電力は、酸素生成装置15を始めとした場内の電気設備
に供給される。
The combustion gas flowing through the secondary combustion furnace 18 is then sent to a waste heat boiler 21 for heat recovery. Here, the steam obtained by heat exchange with the combustion gas is supplied to the turbine 22.
To drive the generator 23. The power obtained at this time is supplied to on-site electrical equipment such as the oxygen generator 15.

【0022】廃熱ボイラ21を流通して降温した燃焼ガ
スは、マルチサイクロン24に送られて比較的大きな煤
じんが捕集され、次いで電気集じん機25で微細な煤じ
んが捕集された後、煙突26から大気中に放出される。
なお、以上の燃焼ガスのフローは、誘引送風機27で生
起される。
The combustion gas that has passed through the waste heat boiler 21 and cooled down is sent to the multicyclone 24 where relatively large soot is collected, and then fine soot is collected by the electric precipitator 25. Thereafter, the air is released from the chimney 26 into the atmosphere.
The above combustion gas flow is generated by the induction blower 27.

【0023】廃熱ボイラ21、マルチサイクロン24並
びに電気集じん機25から回収された集じん灰は、破砕
ごみピット11bに返送する等して、再度、廃棄物溶融
装置1で処理される。
The collected ash collected from the waste heat boiler 21, the multicyclone 24, and the electric dust collector 25 is returned to the crushed waste pit 11b, etc., and is processed again by the waste melting apparatus 1.

【0024】ところで、本発明による廃棄物の溶融方法
は、図3に示すように、酸素富化ガスが供給されて所定
の高温状態に保持された室内で廃棄物片を旋回させなが
ら焼却・溶融する縦置き円筒状の内壁を有する旋回焼却
溶融室31を備えた廃棄物溶融装置32に適用可能であ
る。旋回焼却溶融室31の下方には、旋回焼却溶融室3
1から降下してきた溶融物を滞留させる方形箱形状の内
壁を有する二次溶融室33が設けられている。
In the meantime, as shown in FIG. 3, the waste melting method according to the present invention involves incineration and melting while turning a waste piece in a room supplied with an oxygen-enriched gas and kept at a predetermined high temperature. The present invention can be applied to a waste melting apparatus 32 provided with a swirling incineration melting chamber 31 having a vertical cylindrical inner wall. Below the swirling incineration melting chamber 31 is a swirling incineration melting chamber 3.
A secondary melting chamber 33 having a rectangular box-shaped inner wall for retaining the melt descending from 1 is provided.

【0025】旋回焼却溶融室31の内周面31aには、
ガス吹き出し口34〜39が円周の接線方向を臨んで開
口している。これらのガス吹き出し口34〜39から
は、循環ガスと酸素富化ガスとの混合気が噴出して、室
内の全域に渡って旋回流を発生させるようになってい
る。循環ガスは、本焼却溶融炉32から一旦排出された
燃焼ガスの一部を図示しない循環送風機によって環流さ
せたものである。
On the inner peripheral surface 31a of the swirling incineration melting chamber 31,
Gas outlets 34 to 39 are open facing the tangential direction of the circumference. A mixture of the circulating gas and the oxygen-enriched gas is ejected from these gas outlets 34 to 39 to generate a swirling flow over the entire area of the room. The circulating gas is obtained by circulating a part of the combustion gas once discharged from the incineration melting furnace 32 by a circulating blower (not shown).

【0026】最上段のガス吹き出し口34には、ごみ搬
送管40が接続されており、ここから供給される廃棄物
片が、酸素富化ガスと循環ガスとの混合気で気流搬送さ
れて旋回焼却溶融室31の頂部に投入されるようになっ
ている。
A refuse transport pipe 40 is connected to the uppermost gas outlet 34, and waste pieces supplied from the refuse transport pipe 40 are conveyed by a gas mixture of an oxygen-enriched gas and a circulating gas and swirled. It is designed to be charged into the top of the incineration melting chamber 31.

【0027】旋回焼却溶融室31の下端に設けられた連
通孔41は、二次溶融室33の一端側の天井面に開口し
ている。この二次溶融室33の他端側の床面33aに
は、溶融物を回収する出湯口42が形成されている。ま
た、二次溶融室33の側面には、燃焼ガスを排出する煙
道43が開口しており、熱回収部に接続されている。出
湯口42の側方には、バーナ44が設けられている。
A communication hole 41 provided at the lower end of the swirling incineration melting chamber 31 is open to the ceiling at one end of the secondary melting chamber 33. On the floor surface 33a on the other end side of the secondary melting chamber 33, a tap hole 42 for collecting a molten material is formed. In addition, a flue 43 for discharging combustion gas is opened on a side surface of the secondary melting chamber 33, and is connected to a heat recovery unit. A burner 44 is provided on the side of the tap hole 42.

【0028】ガス吹き出し口34〜39から噴出される
循環ガスと酸素富化ガスとの混合気には、金属アルミ粉
末が添加され、これが酸化燃焼する際の反応熱で、旋回
焼却溶融室31が所定の高温状態に保持される。このと
き、ガス吹き出し口35〜39から均等に金属アルミ粉
末を投入するのではなく、室内の高さ方向で金属アルミ
粉末の投入量を変えると、燃焼・溶融に適した温度分布
を効率的に形成することができる。
Metal aluminum powder is added to the mixture of the circulating gas and the oxygen-enriched gas ejected from the gas outlets 34 to 39, and the reaction heat generated by the oxidizing combustion of the mixed gas causes the swirl incineration and melting chamber 31 to generate heat. It is kept at a predetermined high temperature state. At this time, if the amount of the metal aluminum powder is changed in the height direction of the room instead of uniformly charging the metal aluminum powder from the gas outlets 35 to 39, the temperature distribution suitable for combustion and melting can be efficiently performed. Can be formed.

【0029】ガス吹き出し口34から投入された廃棄物
片は、旋回焼却溶融室31内を旋回流に乗って螺旋を描
きながら落下しつつ燃焼し、その多くが遠心力で旋回焼
却溶融室31の内周面31aに衝突付着する。そして、
内周面31aを流下しながら十分な滞留時間を与えられ
て大半が溶融し、連通孔41を経て二次溶融室33の床
面33a上に滴下する。二次溶融室33に送られた溶融
物並びに未溶融物の混合物は、出湯口42に向かって床
面33a上を徐々に移動しながら十分な滞留時間を与え
られ、さらにバーナ44の火炎で表面を加熱されて溶融
が完結し、出湯口42から回収される。
The waste pieces supplied from the gas outlet 34 fall down in a spiral flow in the swirling incineration / melting chamber 31 and burn while falling spirally. It collides and adheres to the inner peripheral surface 31a. And
A sufficient residence time is given while flowing down the inner peripheral surface 31 a, most of which is melted, and drops on the floor surface 33 a of the secondary melting chamber 33 through the communication hole 41. The mixture of the molten material and the unmelted material sent to the secondary melting chamber 33 is given a sufficient residence time while gradually moving on the floor surface 33 a toward the tap hole 42, and is further subjected to a flame by the burner 44. Is heated to complete the melting, and is recovered from the tap hole 42.

【0030】なお、上記実施形態では、金属細片に金属
アルミ粉末を使用したが、本発明における金属細片の成
分はアルミニウムに限定されるものではなく、例えば、
鉄やマグネシウム等でも適用可能であるが、入手の容易
性や発熱量等の観点からアルミニウムが好適である。ま
た、廃棄物として回収された不純物の多い金属も利用可
能であり、運転費の節約になる。更に、金属細片の大き
さは、着火性等からできるだけ小径で粉末状のものが望
ましいが、反応塔内で酸化燃焼可能な程度に薄小であれ
ば良く、加工に要する経費を節減するため、例えば小片
状に破砕されたものでも同様に適用可能である。
In the above-described embodiment, metal aluminum powder is used for the metal strip. However, the component of the metal strip in the present invention is not limited to aluminum.
Although iron and magnesium can be applied, aluminum is preferred from the viewpoint of easy availability and calorific value. In addition, impurities-rich metals recovered as waste can be used, which saves operating costs. Further, the size of the metal flakes is desirably as small as possible and powdery from the viewpoint of ignitability, etc., but it is sufficient that the metal flakes are small enough to be oxidized and combustible in the reaction tower. For example, those which are crushed into small pieces can be similarly applied.

【0031】廃棄物回収品の中でも、例えば、アルミホ
イールやエンジンブロック等のアルミダイカスト製品の
ようなアルミニウム合金材は、溶解によって純度を向上
させて再資源化することが困難であるが、本発明は、こ
のような再資源化不能な金属廃棄物を利用し得ることか
ら、資源の有効利用になる。
Among the collected waste products, for example, aluminum alloy materials such as aluminum die-cast products such as aluminum wheels and engine blocks are difficult to recycle by improving the purity by melting. Since such non-recyclable metal waste can be used, resources can be effectively used.

【0032】また、上記実施形態では、可燃物と不燃物
とが混在する一般的な廃棄物の溶融処理について説明を
行ったが、本発明は、各種の汚泥、例えば、化学生産プ
ラントの排出汚泥、下水汚泥並びに建設汚泥等、或いは
シュレッダーダスト等の廃棄物の溶融にも広く利用可能
であり、従来、投入するエネルギーの膨大さ故に経済的
な困難性を有していた溶融処理を経済的かつ容易に実現
し得る。
Further, in the above-described embodiment, the melting treatment of general waste in which combustibles and incombustibles are mixed has been described. However, the present invention is applicable to various kinds of sludge, for example, sludge discharged from a chemical production plant. It can be widely used for melting waste such as sewage sludge and construction sludge, or shredder dust, etc. It can be easily realized.

【0033】[0033]

【発明の効果】上記した説明により明らかなように、本
発明による廃棄物の溶融方法によれば、反応塔内を焼却
灰が溶融可能な高温状態(1350乃至1500℃)に
保持するべく補助燃料に加えて金属細片を供給すると、
持ち出しエネルギーの少ない効率的な溶融を行うことが
でき、化石燃料等の補助燃料の投入量を大幅に削減し得
ることから、運転費を軽減する上に多大な効果を奏す
る。特に、金属細片を酸素富化ガスに気流搬送させて反
応塔内に供給するものとすると、簡易な構成で効率良く
搬送することができ、設備費並びに運転費を節減する上
で効果的である。
As is apparent from the above description, according to the waste melting method of the present invention, the auxiliary fuel is used to keep the incineration ash at a high temperature (1350 to 1500 ° C.) at which the incineration ash can be melted. Supply metal strips in addition to
Since it is possible to perform efficient melting with a small amount of energy taken out, and to greatly reduce the amount of auxiliary fuel such as fossil fuel, it has a great effect in reducing operating costs. In particular, when the metal flakes are transported in a gas stream to the oxygen-enriched gas and supplied into the reaction tower, the metal flakes can be transported efficiently with a simple configuration, which is effective in reducing equipment costs and operation costs. is there.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による廃棄物の溶融方法に基づき構成さ
れた廃棄物溶融装置の概念図。
FIG. 1 is a conceptual diagram of a waste melting apparatus configured based on a waste melting method according to the present invention.

【図2】図1に示す廃棄物溶融装置が適用された廃棄物
処理場の概略を示すブロック図。
FIG. 2 is a block diagram schematically showing a waste treatment plant to which the waste melting apparatus shown in FIG. 1 is applied.

【図3】本発明に基づき構成された廃棄物溶融装置の他
の実施形態を鉛直面で分断して示す概略的な鳥瞰図。
FIG. 3 is a schematic bird's-eye view showing another embodiment of the waste melting apparatus configured according to the present invention, which is divided by a vertical plane.

【符号の説明】[Explanation of symbols]

1 廃棄物溶融装置 2 反応塔 3 廃棄物投入部 4 酸素富化ガス供給部 5 補助燃料供給部 6 燃焼ガス取出部 7 溶融スラグ取出部 11 ごみピット、11a 搬入ごみピット、11b
破砕ごみピット 12 破砕機 13 給じん装置 14 補助燃料貯槽 15 酸素生成装置 16 スラグ冷却槽 17 スラグピット 18 二次燃焼炉 19 押込送風機 20 汚水ポンプ 21 廃熱ボイラ 22 タービン 23 発電器 24 マルチサイクロン 25 電気集じん機 26 煙突 27 誘引送風機 31 旋回焼却溶融室、31a 内周面 32 廃棄物溶融装置 33 二次溶融室、33a 床面 34〜39 ガス吹き出し口 40 ごみ搬送管 41 連通孔 42 出湯口 43 煙道 44 バーナ A 乾燥ゾーン B 熱分解ゾーン C 燃焼ゾーン D 燃焼・溶融ゾーン E 溶融湯だまり
DESCRIPTION OF SYMBOLS 1 Waste melting apparatus 2 Reaction tower 3 Waste input part 4 Oxygen-enriched gas supply part 5 Auxiliary fuel supply part 6 Combustion gas extraction part 7 Molten slag extraction part 11 Garbage pit, 11a Import garbage pit, 11b
Crushed garbage pit 12 Crusher 13 Dust supply device 14 Auxiliary fuel storage tank 15 Oxygen generator 16 Slag cooling tank 17 Slag pit 18 Secondary combustion furnace 19 Push blower 20 Sewage pump 21 Waste heat boiler 22 Turbine 23 Generator 24 Multicyclone 25 Electricity Dust collector 26 Chimney 27 Induction blower 31 Revolving incineration melting chamber, 31a inner peripheral surface 32 Waste melting device 33 Secondary melting chamber, 33a Floor surface 34-39 Gas outlet 40 Waste transport pipe 41 Communication hole 42 Outlet 43 Smoke Road 44 Burner A Drying zone B Pyrolysis zone C Burning zone D Burning / melting zone E Molten pool

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI F23L 7/00 F23L 7/00 B ──────────────────────────────────────────────────続 き Continued on front page (51) Int.Cl. 6 Identification code FI F23L 7/00 F23L 7/00 B

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 酸素富化ガス並びに補助燃料を反応塔
内に供給して、廃棄物を燃焼・溶融する廃棄物の溶融方
法であって、 所定温度域で酸化燃焼可能な金属細片を前記反応塔内に
供給することを特徴とする廃棄物の溶融方法。
1. A waste melting method in which an oxygen-enriched gas and an auxiliary fuel are supplied into a reaction tower to burn and melt the waste, wherein the metal strip capable of being oxidized and burned in a predetermined temperature range is formed. A method for melting waste, comprising feeding into a reaction tower.
【請求項2】 前記金属細片を前記酸素富化ガスに気
流搬送させて前記反応塔内に供給することを特徴とする
請求項1に記載の廃棄物の溶融方法。
2. The method for melting waste according to claim 1, wherein the metal strip is transported in a gas stream to the oxygen-enriched gas and supplied into the reaction tower.
JP9030275A 1997-02-14 1997-02-14 Method for melting waste material Pending JPH10227423A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9030275A JPH10227423A (en) 1997-02-14 1997-02-14 Method for melting waste material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9030275A JPH10227423A (en) 1997-02-14 1997-02-14 Method for melting waste material

Publications (1)

Publication Number Publication Date
JPH10227423A true JPH10227423A (en) 1998-08-25

Family

ID=12299170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9030275A Pending JPH10227423A (en) 1997-02-14 1997-02-14 Method for melting waste material

Country Status (1)

Country Link
JP (1) JPH10227423A (en)

Similar Documents

Publication Publication Date Title
US3779182A (en) Refuse converting method and apparatus utilizing long arc column forming plasma torches
WO2004048851A1 (en) Integrated plasma-frequency induction process for waste treatment, resource recovery and apparatus for realizing same
JPH10103634A (en) Method and apparatus for operating melting furnace for waste disposal facility
CN105864782A (en) Device and method for heating and melting rubbish under oxygen-rich condition
WO1997049953A1 (en) Method for fusion treating a solid waste for gasification
JP2000310408A (en) Method and facility for refuse disposal
JP3361517B2 (en) Waste treatment method by oxygen combustion
US5224984A (en) Process for treatment and purification of waste gases from a secondary aluminum melting plant
JPH11159718A (en) Device and method for combustion
JPH10227423A (en) Method for melting waste material
RU2502017C1 (en) Method of environmentally safe treatment of solid domestic wastes with production of thermal energy and building materials and waste burning plant for its realisation
JP4036826B2 (en) Incineration melt cooling method
JPH10169944A (en) Fluidized layer control method in waste thermal decomposition furnace
JPH11101420A (en) Stoker type incinerator
JP2006170609A (en) Gasification and gasification combustion method of solid waste
JP3077756B2 (en) Waste treatment equipment
JPH0212324B2 (en)
JP3049170B2 (en) Swirling flow melting furnace
JPH0942627A (en) Treating method and device for incineration of waste
KR100316668B1 (en) Melting Furnace Operation Method and Apparatus in Waste Treatment Facility
JP3891754B2 (en) Waste incineration ash melting system using fine combustion of waste plastics
KR20230010696A (en) Industrial plant and method for separating waste
JPH10300047A (en) Temperature control method of fluidized bed pyrolysis furnace, waste pyrolysis furnace, and waste treating equipment
JPH10306907A (en) Fluidized bed pyrolysis method and pyrolysis fuenace as well as treating device for matter to be burnt
JP2001317717A (en) Oil-containing sludge incinerator and method for calcining oil-containing sludge