JPH10225406A - Vacuum cleaner - Google Patents

Vacuum cleaner

Info

Publication number
JPH10225406A
JPH10225406A JP2872197A JP2872197A JPH10225406A JP H10225406 A JPH10225406 A JP H10225406A JP 2872197 A JP2872197 A JP 2872197A JP 2872197 A JP2872197 A JP 2872197A JP H10225406 A JPH10225406 A JP H10225406A
Authority
JP
Japan
Prior art keywords
power supply
supply frequency
signal
power
electric blower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2872197A
Other languages
Japanese (ja)
Inventor
Takeshi Omori
健 大森
Shoichi Ito
正一 伊東
Isao Wada
功 和田
Masaki Kaji
正貴 梶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2872197A priority Critical patent/JPH10225406A/en
Publication of JPH10225406A publication Critical patent/JPH10225406A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electric Vacuum Cleaner (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce a phase deviation between AC commercial power waveform and a power frequency signal and to improve the precision of phase control to improve an inhaling work rate by permitting a commercial AC power waveform to be the input of a direct power frequency detecting circuit. SOLUTION: The power frequency detecting circuit 10a adopts the AC commercial power waveform as the direct input and the power frequency signal being its output waveform reduces the diviation of phase difference with AC commercial power voltage wave. When a microcomputer 9 detects the rising and falling of the power frequency signal, a timer in the microcomputer 9 is started. When the timer counts a prescribed time, the microcomputer outputs a trigger signal so that a triac 18 becomes a continuity state and current is permitted to flow in a motor-driven blower 2. A time till the microcomputer 9 outputs a triac driving pulse, that is, an ignition phase angle is fixedly kept so that the input to the motor-driven blower 2 is kept fixed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電気掃除機に関す
る。
[0001] The present invention relates to a vacuum cleaner.

【0002】[0002]

【従来の技術】電気掃除機では、電源周波数検出回路に
て電源周波数信号を生成し、前記電源周波数信号を基準
信号として、位相制御を行っている。従来の電源周波数
検出回路は、電源トランス2次側の電圧を回路の入力と
しており、その出力波形である電源周波数信号は、全波
方式すなわち、交流商用電源電圧1周期当たり2パルス
の波形であり、各パルスの立ち下がりをマイコンが検出
して、割り込みがかかり、各種処理を行っている。
2. Description of the Related Art In a vacuum cleaner, a power supply frequency signal is generated by a power supply frequency detection circuit, and phase control is performed using the power supply frequency signal as a reference signal. In the conventional power supply frequency detection circuit, the voltage on the secondary side of the power supply transformer is used as an input to the circuit, and the power supply frequency signal, which is the output waveform, has a full-wave system, that is, a waveform of two pulses per one cycle of the AC commercial power supply voltage. The microcomputer detects the falling edge of each pulse, interrupts it, and performs various processes.

【0003】[0003]

【発明が解決しようとする課題】位相制御では、電源周
波数信号の検出時点を基準として、電動送風機に印加さ
れる電圧波形の位相を制御するため、電源周波数信号の
検出点と交流商用電源波形のゼロクロス点(電圧が0に
なる点)が一致することが理想であるが、このような従
来の電源周波数検出回路では、電源周波数検出回路への
入力を電源トランスの2次側から取っているため、電源
周波数信号生成の入力信号の段階で既に交流商用電源波
形との位相のずれが生じている。しかも、位相のずれ
は、単に一定ではなく、電源トランス2次側の消費電流
により変化する。吸込仕事率競争の中で、仕事率ピーク
点での入力をできるだけ上げたいというのが現状である
が、電源周波数信号検出点と交流商用電源波形のずれの
量が一定でないので、位相のずれの変動分を考慮にいれ
て入力制御を行わなければならない。
In the phase control, the phase of the voltage waveform applied to the electric blower is controlled on the basis of the detection point of the power supply frequency signal. Ideally, the zero-cross points (points at which the voltage becomes 0) coincide. However, in such a conventional power supply frequency detection circuit, the input to the power supply frequency detection circuit is taken from the secondary side of the power supply transformer. At the stage of the input signal for generating the power supply frequency signal, a phase shift from the AC commercial power supply waveform already occurs. In addition, the phase shift is not simply constant, but changes depending on the current consumption on the secondary side of the power transformer. At present, it is desired to increase the input at the power peak point in the suction power competition, but since the amount of deviation between the power frequency signal detection point and the AC commercial power waveform is not constant, the phase deviation Input control must be performed in consideration of the fluctuation.

【0004】図4に交流商用電源電圧,電源周波数信号
(従来の方式の一例),電動送風機をON状態にするトリ
ガ信号,電動送風機端子間電圧、そして電源周波数信号
検出点と電動送風機への入力の関係を示す。位相制御
は、図4に示すところの電源周波数信号検出点から電動
送風機をONさせるトリガ信号が出力されるまでの時間
を角度で表した点弧位相角θの増減によって行われる。
現在の点弧位相角をθ1と定義する。通常の電源周波数
検出点をb点とし、その時の電動送風機への入力をWb
とする。電源周波数信号検出点がa点にずれると、電源
周波数信号検出点がb点より早くなるために、検出点よ
り一定時間後に出力されるトリガ信号の出力点がb点の
時より早くなる。そのため、電動送風機のON時間が長
くなり、その時の電動送風機の入力Waは、Wbよりも
大きくなる。
FIG. 4 shows an AC commercial power supply voltage and a power supply frequency signal.
(Example of a conventional system), a trigger signal for turning on an electric blower, a voltage between terminals of the electric blower, and a relation between a power supply frequency signal detection point and an input to the electric blower are shown. The phase control is performed by increasing or decreasing the firing phase angle θ, which represents the time from the power supply frequency signal detection point shown in FIG. 4 until the trigger signal for turning on the electric blower is output.
The current firing phase angle is defined as θ1. The normal power supply frequency detection point is point b, and the input to the electric blower at that time is Wb
And When the power supply frequency signal detection point shifts to the point a, the power supply frequency signal detection point is earlier than the point b, so that the output point of the trigger signal output after a fixed time from the detection point is earlier than the point b. Therefore, the ON time of the electric blower becomes longer, and the input Wa of the electric blower at that time becomes larger than Wb.

【0005】逆に電源周波数信号検出点がc点にずれる
と、電源周波数信号検出点がb点より遅くなるために、
検出点より一定時間後に出力されるトリガ信号の出力点
が、交流商用電源電圧のゼロクロス点に対して、b点の
時よりも遅くなる。そのため、電動送風機のON時間が
短くなり、その時の電動送風機の入力Wcは、Wbより
も小さくなる。同一の点弧位相角θ1であるにもかかわ
らず、電源周波数信号検出点のばらつきによって、電動
送風機の入力に差が現れてしまい、入力制御の精度が悪
くなってしまう。
Conversely, if the power supply frequency signal detection point shifts to the point c, the power supply frequency signal detection point becomes later than the point b.
The output point of the trigger signal output after a fixed time from the detection point is later than the point b at the zero cross point of the AC commercial power supply voltage. Therefore, the ON time of the electric blower is shortened, and the input Wc of the electric blower at that time becomes smaller than Wb. Even though the firing phase angle θ1 is the same, a difference appears in the input of the electric blower due to the variation in the power supply frequency signal detection point, and the accuracy of the input control deteriorates.

【0006】したがって、より精度の良い位相制御を行
うには、b点とa点,b点とc点の差、すなわち電源周
波数信号検出点のばらつきを低減する必要がある。
Therefore, in order to perform more accurate phase control, it is necessary to reduce the difference between the points b and a and between the points b and c, that is, the variation in the power frequency signal detection points.

【0007】本発明は上記課題を解決するものであり、
商用交流電源波形を直接電源周波数検出回路の入力とす
ることによって、交流商用電源波形と電源周波数信号と
の間の位相のずれを低減し、位相制御の精度の向上とそ
れに伴う吸込仕事率の向上を目的とする。
The present invention has been made to solve the above problems, and
By using the commercial AC power supply waveform directly as the input to the power supply frequency detection circuit, the phase shift between the AC commercial power supply waveform and the power supply frequency signal is reduced, improving the accuracy of the phase control and accompanying suction power. With the goal.

【0008】[0008]

【課題を解決するための手段】本発明は上記目的を達成
するために本発明の特徴とするところは、交流商用電源
の周波数を検出するための電源周波数検出回路と、電動
送風機の電流を検出する電流検出手段と、前記電流検出
手段の出力をレベル信号に変換する信号変換手段と、前
記信号変換手段の出力により前記電動送風機の入力を制
御する位相制御手段とを備え、交流商用電源波形を直接
に前記電源周波数検出回路の入力とすることによって、
交流商用電源波形と、前記電源周波数検出回路の出力で
ある電源周波数信号との間の位相のずれを低減し、位相
制御の精度を向上させることにある。
SUMMARY OF THE INVENTION In order to achieve the above object, the present invention is characterized in that a power supply frequency detecting circuit for detecting a frequency of an AC commercial power supply, and a current detecting circuit for detecting a current of the electric blower. Current detecting means, a signal converting means for converting an output of the current detecting means into a level signal, and a phase controlling means for controlling an input of the electric blower by an output of the signal converting means, and comprising: Directly as an input to the power frequency detection circuit,
It is an object of the present invention to reduce a phase shift between an AC commercial power supply waveform and a power supply frequency signal output from the power supply frequency detection circuit, thereby improving the accuracy of phase control.

【0009】[0009]

【発明の実施の形態】以下、本発明の実施の形態の一例
を添付の図面を参照し、説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the accompanying drawings.

【0010】電気掃除機は図2に示すような構成となっ
ている。掃除機本体1の内部に集塵室4と電動送風機2
を有しており、ホース5が掃除機本体1に接続されてい
る。また、ホース5と延長管7の接続部には電動送風機
2の吸い込み力等を設定するための手元操作部6を設け
ており、ここで設定された吸い込み力となるように、本
体制御部3にて制御を行う。延長管7の先端部には吸口
8が接続されている。電気掃除機本体1に内蔵されてい
る本体制御部3は、図1に示すような回路構成となって
おり、吸い込み力を設定する手元操作部6と、電動送風
機2の電流を検出する電流検出手段14と、前記電流検
出手段の出力を一定レベルの電圧に変換する信号変換手
段15と、前記図2における集塵室4内の真空度を検出
する圧力センサ回路16と、交流商用電源11を直流電
源に変換し制御回路全体に供給する電源トランス12,
5V定電圧部13からなる電源回路,交流商用電源11
の周波数を検出する電源周波数検出回路10a,演算処
理を行い、制御回路の中心となるマイクロコンピュータ
(以下マイコンと称す)9,マイコン動作用のクロック
周波数信号を発生するクロック発振回路19と、電気掃
除機の運転状態を発光ダイオード等により外部に表示す
る表示回路20,電動送風機のスイッチングのための双
方向性半導体素子(以下トライアックと称す)18,ト
ライアック18をマイコン9からのトリガ信号によりO
N−OFFさせるモータ駆動回路17からなる。
The vacuum cleaner has a configuration as shown in FIG. The dust collecting chamber 4 and the electric blower 2 are provided inside the cleaner body 1.
, And the hose 5 is connected to the cleaner body 1. At the connection between the hose 5 and the extension pipe 7, there is provided a hand operation unit 6 for setting a suction force or the like of the electric blower 2, and the main body control unit 3 is controlled so that the suction force set here is attained. Is controlled by. A suction port 8 is connected to the tip of the extension tube 7. The main body control unit 3 built in the main body 1 of the vacuum cleaner has a circuit configuration as shown in FIG. 1, a hand operation unit 6 for setting a suction force, and a current detection for detecting a current of the electric blower 2. Means 14, a signal converting means 15 for converting the output of the current detecting means to a voltage of a constant level, a pressure sensor circuit 16 for detecting the degree of vacuum in the dust collecting chamber 4 in FIG. A power transformer 12, which converts the power into DC power and supplies it to the entire control circuit;
Power supply circuit composed of 5V constant voltage section 13, AC commercial power supply 11
A power supply frequency detection circuit 10a for detecting the frequency of the power supply, a microcomputer (hereinafter referred to as a microcomputer) 9 which performs arithmetic processing, and a clock oscillation circuit 19 for generating a clock frequency signal for operating the microcomputer; A display circuit 20 for externally displaying the operation state of the fan using a light emitting diode or the like, a bidirectional semiconductor element (hereinafter referred to as a triac) 18 for switching the electric blower, and a triac 18 are turned on by a trigger signal from the microcomputer 9.
It comprises a motor drive circuit 17 for N-OFF.

【0011】図1〜図4をもとに、本発明の実施の形態
の一例の制御回路の構成を説明する。図1は、本発明の
実施の形態の一例の回路ブロック図、図2は本発明の実
施の形態の一例の電気掃除機の構成図、図3は従来の電
源周波数検出回路の一例を含む回路ブロック図、そして
図4は、交流商用電源電圧,電源周波数信号,トリガ信
号,電動送風機端子間電圧,電源周波数信号検出点と電
動送風機の入力の関係を表している。
A configuration of a control circuit according to an embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a circuit block diagram of one example of an embodiment of the present invention, FIG. 2 is a configuration diagram of a vacuum cleaner of one example of an embodiment of the present invention, and FIG. 3 is a circuit including an example of a conventional power supply frequency detection circuit. FIG. 4 is a block diagram showing the relationship between the AC commercial power supply voltage, the power supply frequency signal, the trigger signal, the voltage between the electric blower terminals, the power supply frequency signal detection point, and the input of the electric blower.

【0012】本体制御部3はマイコン9を中心に構成さ
れる。マイコン9からのトリガ信号がモータ駆動回路1
7を介して、トライアック18のゲート端子に送られる
と、トライアック18が導通状態となり、電動送風機2
が回転する。したがって、図4においてθ1を小さくす
れば、電動送風機2の導通時間が長くなるので、電動送
風機2の入力が大きくなり、θ1を大きくすれば、電動
送風機2の導通時間が短くなり、電動送風機2の入力が
小さくなる。電源周波数検出回路10aでは位相制御の
基準となる電源周波数信号を発生させる。マイコン9
は、電源周波数信号の立ち上がり・立ち下がりを交互に
検出し、それを基準として周波数判定や位相制御を行
う。また、本体制御部3の電源は交流商用電源11から
電源回路により直流電源に変換され、制御回路全体に供
給される。電流検出手段14は、電動送風機2の電流を
検出し、交流信号を出力する。電流検出手段14から出
力された交流信号は、信号変換手段15で所定の値のレ
ベル信号に変換される。変換されたレベル信号は、マイ
コン9のA/D変換入力ポートに入力される。
The main body control section 3 is constituted mainly by a microcomputer 9. The trigger signal from the microcomputer 9 is the motor drive circuit 1
When the triac 18 is sent to the gate terminal of the triac 18 via the switch 7, the triac 18 becomes conductive and the electric blower 2
Rotates. Accordingly, in FIG. 4, if θ1 is reduced, the conduction time of the electric blower 2 is increased, so that the input of the electric blower 2 is increased. If θ1 is increased, the conduction time of the electric blower 2 is reduced, and the electric blower 2 is reduced. Input becomes smaller. The power supply frequency detection circuit 10a generates a power supply frequency signal serving as a reference for phase control. Microcomputer 9
Detects the rise and fall of the power supply frequency signal alternately, and performs frequency judgment and phase control based on the detected rise and fall. The power of the main body control unit 3 is converted from an AC commercial power supply 11 to a DC power supply by a power supply circuit and supplied to the entire control circuit. The current detecting means 14 detects the current of the electric blower 2 and outputs an AC signal. The AC signal output from the current detecting means 14 is converted by the signal converting means 15 into a level signal having a predetermined value. The converted level signal is input to an A / D conversion input port of the microcomputer 9.

【0013】また、圧力センサ回路16は集塵室4内の
真空度を検出し、レベル信号に変換してマイコン9のA
/D変換入力ポートに出力する。マイコン9はその値か
ら集塵室4のフィルターの目詰り具合を認識することが
できる。以下、本構成における動作を説明する。
The pressure sensor circuit 16 detects the degree of vacuum in the dust collection chamber 4 and converts it into a level signal,
Output to the / D conversion input port. The microcomputer 9 can recognize the degree of clogging of the filter of the dust collection chamber 4 from the value. Hereinafter, the operation in this configuration will be described.

【0014】マイコン9が電源周波数信号の立ち上が
り、または立ち下がりを検出すると、マイコン9内のタ
イマが起動する。タイマが、所定の時間をカウントする
と、マイコン9は、トリガ信号を出力し、それによって
トライアック18が導通状態となり、電動送風機2に電
流が流れる。タイマがカウントを開始してから、マイコ
ン9がトライアック駆動パルスを出力するまでの時間を
正弦波の角度に換算したものを点弧位相角と呼ぶ。この
点弧位相角を一定に保つことにより、電動送風機2への
入力を一定に保つことができる。
When the microcomputer 9 detects the rise or fall of the power supply frequency signal, the timer in the microcomputer 9 starts. When the timer counts a predetermined time, the microcomputer 9 outputs a trigger signal, whereby the triac 18 is brought into a conductive state, and a current flows through the electric blower 2. A value obtained by converting the time from when the timer starts counting until the microcomputer 9 outputs the triac drive pulse to a sine wave angle is called a firing phase angle. By keeping this firing phase angle constant, the input to the electric blower 2 can be kept constant.

【0015】ここで、図3は、従来の電源周波数検出回
路10bを用いた回路の一例である。従来の電源周波数
検出回路10bでは、トランス12の2次側の電圧を入
力としており、その出力波形である電源周波数信号は交
流商用電源波形に対して図6の如くとなり、マイコン9
はその立ち下がりを検出する。
FIG. 3 shows an example of a circuit using the conventional power supply frequency detection circuit 10b. In the conventional power supply frequency detection circuit 10b, the voltage on the secondary side of the transformer 12 is input, and the power supply frequency signal which is the output waveform is as shown in FIG.
Detects its fall.

【0016】それに対して本発明による図1の電源周波
数検出回路10aは、交流商用電源波形を直接入力とし
ており、その出力波形である電源周波数信号は、図5の
如くとなり、マイコン9はその立ち上がりと立ち下がり
を交互に検出する。実際にタイマがカウントを開始する
のは、電源周波数信号をマイコン9が検知した時点から
であるが、電源周波数信号の検知時間と、商用交流電源
波形のゼロクロス点との間にずれが発生すると、マイコ
ン9の計算上では同一の点弧位相角でも、実際の電動送
風機2への入力には差が出てくる。従来の電源周波数検
出回路10bは、電源周波数検出回路への入力がトラン
ス12を介している。
On the other hand, the power supply frequency detection circuit 10a of FIG. 1 according to the present invention directly receives the AC commercial power supply waveform, and the power supply frequency signal as the output waveform is as shown in FIG. And fall are detected alternately. The timer actually starts counting from the time when the microcomputer 9 detects the power supply frequency signal. However, if a deviation occurs between the detection time of the power supply frequency signal and the zero-cross point of the commercial AC power supply waveform, According to the calculation of the microcomputer 9, even if the firing phase angle is the same, a difference appears in the actual input to the electric blower 2. In the conventional power supply frequency detection circuit 10b, the input to the power supply frequency detection circuit is via the transformer 12.

【0017】トランス2次側での消費電流により、トラ
ンス1次側の電圧と、トランス2次側の電圧の間には、
位相のずれが生じる。しかも、トランス2次側での消費
電流は一定ではなく、常に変動しているため、トランス
1次側の電圧、すなわち交流商用電源電圧と、トランス
2次側の電圧を入力とする電源周波数検出回路10bの
出力である電源周波数信号の間には、位相のばらつきが
生じる。
Due to the current consumption on the secondary side of the transformer, the voltage between the primary side of the transformer and the secondary side voltage becomes
A phase shift occurs. In addition, since the current consumption on the secondary side of the transformer is not constant but fluctuates constantly, the power supply frequency detection circuit receives the voltage on the primary side of the transformer, that is, the AC commercial power supply voltage and the voltage on the secondary side of the transformer. There is a phase variation between the power supply frequency signals output from 10b.

【0018】本発明による電源周波数検出回路10aで
は、交流商用電源波形を直接電源周波数検出回路の入力
としており、トランスを介することによる交流商用電源
電圧と、電源周波数信号との間の位相のずれをなくして
いる。
In the power supply frequency detection circuit 10a according to the present invention, the AC commercial power supply waveform is directly input to the power supply frequency detection circuit, and the phase shift between the AC commercial power supply voltage and the power supply frequency signal through a transformer is detected. Lost.

【0019】次に、本発明を用いた電気掃除機の実施形
態について述べる。図7に、電力制御を行わない場合の
風量Qに対する真空度H,消費電力Wi,吸込仕事率P
の関係の一例を二点鎖線で、また消費電力をWi′のよ
うに制御したときの風量Qに対する真空度H′,吸込仕
事率P′の関係の一例を実線で示す。
Next, an embodiment of a vacuum cleaner using the present invention will be described. FIG. 7 shows the degree of vacuum H, the power consumption Wi, and the suction power P with respect to the air volume Q when the power control is not performed.
Is shown by a two-dot chain line, and an example of the relationship between the degree of vacuum H 'and the suction power P' with respect to the air flow Q when the power consumption is controlled like Wi 'is shown by a solid line.

【0020】一般に、風量Qに対する消費電力Wiと真
空度Hの関係は、図7の二点鎖線で示されるように、大
風量側(ゴミのたまっていない状態)では、真空度Hは
低いが、電動送風機2の負荷(空気負荷)は大きくなる
ため、電動送風機2に流れる電流も大きくなる。よっ
て、消費電力Wiも大きくなる。これとは逆に、小風量
側(ゴミのたまっている状態)では、真空度Hは高くな
るが、電動送風機2に流れる電流は小さくなり、消費電
力Wiも小さくなる。吸込仕事率Pは、P=Q×H×
0.1634(W)で求めることができ、図7のようなカ
ーブとなる。
In general, the relationship between the power consumption Wi and the degree of vacuum H with respect to the air volume Q is, as shown by the two-dot chain line in FIG. 7, the vacuum level H is low on the large air volume side (in a state where dust is not accumulated). Since the load (air load) of the electric blower 2 increases, the current flowing through the electric blower 2 also increases. Therefore, the power consumption Wi also increases. Conversely, on the small air volume side (in a state where dust is accumulated), the degree of vacuum H increases, but the current flowing through the electric blower 2 decreases, and the power consumption Wi also decreases. The suction power P is P = Q × H ×
0.1634 (W), which results in a curve as shown in FIG.

【0021】しかし、掃除機の消費電力には法的規定値
があり、その上限を超えることなくより高い吸込仕事率
を得るためには、吸込仕事率ピーク点付近での消費電力
を監視しながら、その付近で最も消費電力、すなわち電
動送風機への入力が高くなるように入力一定制御を行う
必要がある。
However, there is a legally prescribed value for the power consumption of the vacuum cleaner, and in order to obtain a higher suction power without exceeding the upper limit, the power consumption near the suction power peak point should be monitored. It is necessary to perform constant input control so that the power consumption, that is, the input to the electric blower becomes the highest in the vicinity.

【0022】図7において、Qp′は吸込仕事率ピーク
点における風量であり、その付近のQ1≦Q≦Q2の範
囲でWi′の入力一定制御を行っている。本発明におけ
る実施の形態の一例についての説明は、この吸込仕事率
ピーク点付近のQ1≦Q≦Q2の範囲について行う。初
めに、手元操作部6からの信号をもとに信号変換手段1
5の信号レベルを一定にするように制御する基準値W
i′1を決定する。決定したWi′1をもとに信号変換
手段15の出力レベルから計算によって求まる消費電力
Wi′が、一定の値Wi′1になるように電動送風機2
を制御する。
In FIG. 7, Qp 'is the airflow at the suction power peak point, and constant input control of Wi' is performed in the vicinity of Q1≤Q≤Q2. An example of the embodiment of the present invention will be described in the range of Q1 ≦ Q ≦ Q2 near the suction power peak point. First, the signal conversion means 1 based on the signal from the hand operation unit 6
The reference value W for controlling the signal level of No. 5 to be constant
Determine i′1. The electric blower 2 is controlled so that the power consumption Wi ′ obtained by calculation from the output level of the signal conversion means 15 based on the determined Wi′1 becomes a constant value Wi′1.
Control.

【0023】例えば、集塵室11内にゴミがたまってく
ると、風量Qは低下する。風量Qが低下すると、電動送
風機2の負荷(空気負荷)が減るので、電流値が下が
る。電流検出手段14が電流の変化をとらえることによ
り、信号変換手段15の出力信号レベルが下がり、信号
変換手段15の出力電圧によって計算される消費電力の
値が基準値Wi′1よりも低下する。すると、電動送風
機2の電流値を上げるようにマイコン9が点弧位相角を
早め、すなわち、電源周波数信号検知時からトライアッ
ク駆動パルス出力までの時間を短くし、電動送風機2の
電流値を元の水準に戻すように、すなわち電流値と電動
送風機2への印加電圧の積によって求まる消費電力W
i′を増やして基準値Wi′1に戻すように働く。
For example, when dust accumulates in the dust collecting chamber 11, the air volume Q decreases. When the air volume Q decreases, the load (air load) of the electric blower 2 decreases, so that the current value decreases. When the current detection unit 14 detects the change in the current, the output signal level of the signal conversion unit 15 decreases, and the value of power consumption calculated by the output voltage of the signal conversion unit 15 becomes lower than the reference value Wi′1. Then, the microcomputer 9 advances the firing phase angle so as to increase the current value of the electric blower 2, that is, shortens the time from the detection of the power supply frequency signal to the output of the triac drive pulse, and reduces the current value of the electric blower 2 to the original value. Power consumption W determined to return to the level, that is, the product of the current value and the voltage applied to the electric blower 2.
It works to increase i ′ and return to the reference value Wi′1.

【0024】また、ゴミを取り除くと、風量Qは増加す
る。風量Qが増加すると、電動送風機2の負荷(空気負
荷)が増え、電流値が上がり、電流検出手段14により
電流の変化をとらえ、信号変換手段15の出力信号レベ
ルが上がり、それに伴って信号変換手段15の出力電圧
により計算される消費電力の値が基準値Wi′1より上
昇する。すると、電動送風機2の電流値を下げるように
マイコン9が点弧位相角を遅くし、すなわち、電源周波
数信号検知時からトライアック駆動パルス出力までの時
間を長くして、電動送風機2の電流値を元の水準に戻す
ように、すなわち電流値と電動送風機への印加電圧との
積によって求まる消費電力Wi′を減らして基準値W
i′1に戻すように働く。
When the dust is removed, the air volume Q increases. When the air volume Q increases, the load (air load) of the electric blower 2 increases, the current value increases, the change in the current is detected by the current detection unit 14, the output signal level of the signal conversion unit 15 increases, and the signal conversion takes place accordingly. The value of the power consumption calculated by the output voltage of the means 15 rises from the reference value Wi′1. Then, the microcomputer 9 delays the firing phase angle so as to reduce the current value of the electric blower 2, that is, increases the time from the detection of the power supply frequency signal to the output of the triac drive pulse, and reduces the current value of the electric blower 2. In order to return to the original level, that is, reduce the power consumption Wi ′ obtained by multiplying the current value and the voltage applied to the electric blower by reducing the reference value W
It works to return to i'1.

【0025】従って、電源周波数検出回路の改善によ
り、電源周波数信号と電源電圧波形の位相のずれが低減
されれば、点弧位相角の理論と実際のずれ、すなわち、
マイコンの計算上の電力と実際に電動送風機で消費され
る電力との差が少なくなり、位相制御の精度を向上させ
ることができる。
Therefore, if the phase difference between the power supply frequency signal and the power supply voltage waveform is reduced by the improvement of the power supply frequency detection circuit, the theoretical and actual shift of the ignition phase angle, that is,
The difference between the calculated power of the microcomputer and the power actually consumed by the electric blower is reduced, and the accuracy of the phase control can be improved.

【0026】[0026]

【発明の効果】以上説明したように本発明によれば、交
流商用電源波形の周波数を検出する電源周波数検出回路
と、電動送風機の電流を検出する電流検出手段と、前記
電流検出手段の出力をレベル信号に変換する信号変換手
段と、前記信号変換手段の出力により前記電動送風機の
入力を制御する位相制御手段とを備え、前記電源周波数
検出回路は、商用交流電源波形を直接に入力としたこと
によって、商用交流電源波形と、前記電源周波数検出回
路の出力である電源周波数信号との間の位相のずれを低
減したことによって、前記信号変換手段の信号レベルが
一定になるように、より精度の高い位相制御を行うこと
ができる。
As described above, according to the present invention, the power supply frequency detecting circuit for detecting the frequency of the AC commercial power supply waveform, the current detecting means for detecting the current of the electric blower, and the output of the current detecting means are provided. A signal converting means for converting the signal into a level signal; and a phase control means for controlling an input of the electric blower by an output of the signal converting means, wherein the power supply frequency detection circuit directly receives a commercial AC power supply waveform. By reducing the phase shift between the commercial AC power supply waveform and the power supply frequency signal that is the output of the power supply frequency detection circuit, a more accurate signal level of the signal conversion means is maintained. High phase control can be performed.

【0027】また、本発明による電源周波数検出回路
は、商用交流電源波形を直接入力としているため、トラ
ンスレス回路にもそのまま流用可能であり、回路の共用
化という利点も持っている。
Further, since the power supply frequency detection circuit according to the present invention has a direct input of a commercial AC power supply waveform, it can be diverted to a transformerless circuit as it is, and has the advantage of sharing the circuit.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態の一例の回路ブロック図で
ある。
FIG. 1 is a circuit block diagram of an example of an embodiment of the present invention.

【図2】本発明の実施の形態の一例の電気掃除機の構成
図である。
FIG. 2 is a configuration diagram of a vacuum cleaner according to an example of an embodiment of the present invention.

【図3】従来の電源周波数検出回路の一例を含む回路ブ
ロック図である。
FIG. 3 is a circuit block diagram including an example of a conventional power supply frequency detection circuit.

【図4】交流商用電源電圧,電源周波数信号,トリガ信
号,電動送風機端子間電圧,電源周波数検出点と電動送
風機入力の関係である。
FIG. 4 shows a relationship among an AC commercial power supply voltage, a power supply frequency signal, a trigger signal, an electric blower terminal voltage, a power supply frequency detection point, and an electric blower input.

【図5】交流商用電源波形と本発明による電源周波数検
出回路10aの出力である電源周波数信号である。
FIG. 5 shows an AC commercial power supply waveform and a power supply frequency signal which is an output of the power supply frequency detection circuit 10a according to the present invention.

【図6】交流商用電源波形と従来の電源周波数検出回路
10bの出力である電源周波数信号である。
FIG. 6 shows an AC commercial power supply waveform and a power supply frequency signal output from a conventional power supply frequency detection circuit 10b.

【図7】本発明の実施形態の一例による電気掃除機の風
量−真空度・消費電力・吸込仕事率の関係を示す図であ
る。
FIG. 7 is a diagram showing a relationship among air volume-vacuum degree, power consumption, and suction power of the vacuum cleaner according to an example of an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…掃除機本体、2…電動送風機、3…本体制御部、1
0a…電源周波数検出回路。
DESCRIPTION OF SYMBOLS 1 ... Vacuum cleaner main body, 2 ... Electric blower, 3 ... Main body control part, 1
0a: power supply frequency detection circuit.

フロントページの続き (72)発明者 和田 功 茨城県日立市東多賀町一丁目1番1号 株 式会社日立製作所電化機器事業部多賀本部 内 (72)発明者 梶 正貴 茨城県日立市東多賀町一丁目1番1号 日 立多賀テクノロジー株式会社内Continuing from the front page (72) Isao Wada 1-1-1, Higashitaga-cho, Hitachi City, Ibaraki Prefecture Inside the Taga Headquarters, Electrification Equipment Division, Hitachi, Ltd. No. 1 in the Sun Tachiga Technology Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】交流商用電源波形の周波数を検出する電源
周波数検出回路と、電動送風機の電流を検出する電流検
出手段と、前記電流検出手段の出力をレベル信号に変換
する信号変換手段と、前記信号変換手段の出力により前
記電動送風機の入力を制御する位相制御手段とを備え、
前記電源周波数検出回路は、商用交流電源波形を直接に
入力することを特徴とする電気掃除機。
A power supply frequency detection circuit for detecting a frequency of an AC commercial power supply waveform; a current detection means for detecting a current of the electric blower; a signal conversion means for converting an output of the current detection means into a level signal; Phase control means for controlling the input of the electric blower by the output of the signal conversion means,
The electric vacuum cleaner wherein the power supply frequency detection circuit directly inputs a commercial AC power supply waveform.
【請求項2】請求項1において、前記電源周波数検出回
路の出力である電源周波数信号の立ち上がりと立ち下が
りを検出することを特徴とする電気掃除機。
2. The vacuum cleaner according to claim 1, wherein a rise and a fall of a power frequency signal output from the power frequency detection circuit are detected.
【請求項3】請求項1において、 前記電源周波数検出回路の出力である電源周波数信号の
立ち上がりと立ち下がりを交互に切り替えて検出するこ
とを特徴とする電気掃除機。
3. The vacuum cleaner according to claim 1, wherein a rising edge and a falling edge of a power supply frequency signal output from the power supply frequency detection circuit are alternately switched and detected.
【請求項4】請求項1において、 前記電源周波数検出回路の出力である電源周波数信号を
基準信号として、前記位相制御手段は前記電流検出手段
の信号レベルが任意の値となるように点弧位相角を増減
することにより、吸込仕事率ピーク点付近における電動
送風機の入力をほぼ一定に保つように制御することを特
徴とする電気掃除機。
4. The phase control means according to claim 1, wherein a power supply frequency signal output from said power supply frequency detection circuit is used as a reference signal, and said phase control means controls the ignition phase so that the signal level of said current detection means has an arbitrary value. An electric vacuum cleaner characterized by controlling the input of the electric blower near the suction power peak point to be kept substantially constant by increasing or decreasing the angle.
JP2872197A 1997-02-13 1997-02-13 Vacuum cleaner Pending JPH10225406A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2872197A JPH10225406A (en) 1997-02-13 1997-02-13 Vacuum cleaner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2872197A JPH10225406A (en) 1997-02-13 1997-02-13 Vacuum cleaner

Publications (1)

Publication Number Publication Date
JPH10225406A true JPH10225406A (en) 1998-08-25

Family

ID=12256313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2872197A Pending JPH10225406A (en) 1997-02-13 1997-02-13 Vacuum cleaner

Country Status (1)

Country Link
JP (1) JPH10225406A (en)

Similar Documents

Publication Publication Date Title
EP1597995A2 (en) Motor control apparatus and electric appliance using the same
KR101284492B1 (en) Electric vacuum cleaner
JPH10225406A (en) Vacuum cleaner
JP3326126B2 (en) Electric vacuum cleaner
JP2537209B2 (en) Electric vacuum cleaner and method for controlling electric vacuum cleaner
JPH0690883A (en) Vacuum cleaner
JPH08289864A (en) Electric vacuum cleaner and power consumption control method for its motor-driven blower
JP3146944B2 (en) Vacuum cleaner control circuit
JPH08101722A (en) Phase controller
JPH06160140A (en) Flow meter
JPH08196495A (en) Vacuum cleaner
JPH10192208A (en) Vacuum cleaner
JPH11128131A (en) Vacuum cleaner
KR100724492B1 (en) Dc link voltage detection circuit
JPH1156723A (en) Control circuit for vacuum cleaner
JPH0910150A (en) Vacuum cleaner
JP3189459B2 (en) Phase control circuit of electric water heater
JPS58146912A (en) Controlling device of electric power
JPH0124353B2 (en)
JPH11318786A (en) Vacuum cleaner
JPH0614856A (en) Vacuum cleaner
JPH08280588A (en) Power consumption control method for vacuum cleaner and electric blower
JP2005124593A (en) Vacuum cleaner
JPH0327796A (en) Driving circuit for pulse motor
JPH0994194A (en) Electric vacuum cleaner