JPH1022217A - Aligner for manufacturing integrated circuit - Google Patents

Aligner for manufacturing integrated circuit

Info

Publication number
JPH1022217A
JPH1022217A JP8191515A JP19151596A JPH1022217A JP H1022217 A JPH1022217 A JP H1022217A JP 8191515 A JP8191515 A JP 8191515A JP 19151596 A JP19151596 A JP 19151596A JP H1022217 A JPH1022217 A JP H1022217A
Authority
JP
Japan
Prior art keywords
molecules
less
quartz glass
optical
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8191515A
Other languages
Japanese (ja)
Other versions
JP3641767B2 (en
Inventor
Akira Fujinoki
朗 藤ノ木
Hiroyuki Nishimura
裕幸 西村
Toshiki Mori
利樹 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Quartz Products Co Ltd
Original Assignee
Shin Etsu Quartz Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Quartz Products Co Ltd filed Critical Shin Etsu Quartz Products Co Ltd
Priority to JP19151596A priority Critical patent/JP3641767B2/en
Priority to PCT/EP1997/003406 priority patent/WO1998000761A1/en
Priority to DE69702830T priority patent/DE69702830T2/en
Priority to EP97930447A priority patent/EP0852742B1/en
Priority to US09/029,451 priority patent/US6031238A/en
Publication of JPH1022217A publication Critical patent/JPH1022217A/en
Application granted granted Critical
Publication of JP3641767B2 publication Critical patent/JP3641767B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PROBLEM TO BE SOLVED: To comprise the aligner at a low cost for the entire optical system so as to be easily manufacture without deteriorating the durability and quality, even in the case of using the optical system comprising hydrogen-doped quartz glass to configure an ArF excimer laser exposure device. SOLUTION: At least a lens being a component of an optical system 5 comprises an optical member made of a hydrogen-doped synthetic quartz glass with different hydrogen molecular concentration, and especially optical members placed toward a wafer are made of a synthetic quartz glass member containing hydrogen molecules whose hydrogen molecular concentration is within a range of 5×10<18> -5×10<19> molecules/cm<3> , whose homogeneity Δn of refracting power is 5×10<-6> /1cm or below and whose double refracting power is 5nm/cm or below. On the other hand, optical members placed toward a light source are made of a synthetic quartz glass member containing hydrogen molecules whose hydrogen molecular concentration is within a range of 1×10<17> -5×10<18> molecules/cm<3> , whose homogeneity Δn of refracting power is 3×10<-6> /1cm or below and whose double refracting power is 3nm/cm or below.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は64Mから256Mをに
らんだ集積回路製造用露光装置に係り、特にArFエキ
シマレーザーからのレーザ光で集積回路のパターンを照
明し、石英ガラス材からなる光学系により集積回路のパ
ターンをウエーハ上に焼き付けて集積回路を製造する為
の露光装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exposure apparatus for manufacturing an integrated circuit in the range of 64M to 256M, and more particularly to an optical system made of quartz glass which illuminates a pattern of an integrated circuit with laser light from an ArF excimer laser. To print an integrated circuit pattern on a wafer to manufacture an integrated circuit.

【0002】[0002]

【従来の技術】従来より、光を用いてマスク上のパター
ンをウエーハ上に転写する光リソグラフィ技術は電子線
やΧ線を用いる他の技術に比較してコスト面で優れてい
る事から集積回路を製造する為の露光装置として広く用
いられている。従来かかる光リソグラフィ技術を利用し
た露光装置には光源に高圧水銀ランプから発する波長36
5nmのi線を用いて線幅 0.5〜0.4μmのパターン形成
が露光装置が開発されているが、かかる露光装置は16M
ビット−DRAM以下の集積回路に対応するものであ
る。一方次世代の64Mビット〜256Mビットでは0.25〜
0.35μmの結像性能を、更には1Gビットでは0.13〜0.
20μmの解像性能を必要とするが、0.35μmという解像
性能はi線の波長を下回るもので、光源としてKrF光
が用いられる。そして更に0.20μmを切る領域ではKr
F光に代ってArF光、特にArFエキシマレーザーが
使用される。
2. Description of the Related Art Conventionally, an optical lithography technique for transferring a pattern on a mask onto a wafer using light is superior in cost in comparison with other techniques using an electron beam or a Χ-ray, so that an integrated circuit is used. Is widely used as an exposure apparatus for manufacturing a semiconductor device. Conventionally, an exposure apparatus utilizing such photolithography technology has a light source of a wavelength of 36 emitted from a high-pressure mercury lamp.
An exposure apparatus has been developed to form a pattern having a line width of 0.5 to 0.4 μm using an i-line of 5 nm.
It corresponds to an integrated circuit below the bit-DRAM. On the other hand, for next generation 64Mbit ~ 256Mbit, 0.25 ~
An imaging performance of 0.35 μm, and 0.13-0.
Although a resolution of 20 μm is required, a resolution of 0.35 μm is lower than the wavelength of the i-line, and KrF light is used as a light source. And in the region below 0.20 μm, Kr
ArF light, particularly an ArF excimer laser, is used instead of F light.

【0003】しかしながらArFエキシマレーザーを用
いた光リソグラフィ技術には種々の課題があり、その一
つが投影光学系を構成するレンズ、ミラーやプリズムを
形成するための光学材料の問題である。即ちArFの19
3nm波長で透過率のよい光学材料は実質的に石英ガラ
ス、特に高純度の合成石英ガラスに限定されるが、Ar
F光は石英ガラスに与えるダメージがKrF光に比べて
10倍以上大きい。
However, there are various problems in the optical lithography technique using an ArF excimer laser, one of which is a problem of an optical material for forming a lens, a mirror and a prism constituting a projection optical system. That is, 19 of ArF
Optical materials having a good transmittance at a wavelength of 3 nm are substantially limited to quartz glass, particularly high-purity synthetic quartz glass.
F light damages quartz glass more than KrF light
10 times larger.

【0004】さて、石英ガラスのエキシマレーザー照射
に対する耐性は、本出願人の出願にかかる特願平1ー1
45226に示される様に含有される水素濃度に依存す
る。このため従来のKrFエキシマレーザーを光源とす
る露光装置では光学系を構成する石英ガラスはその含有
する水素濃度が5×1016分子/cm3以上あれば、十分な
耐性を確保することが出来たと前記技術に記載されてい
る。しかしながらArFレーザー光が石英ガラスに与え
る影響は前記したようにKrFに比べて甚大であるため
に、ArFレーザー光によって合成石英ガラスに引き起
こされるダメージの程度(透過率の変化及び屈折率の変
化)を調べてみると、必要とされる水素分子濃度はKr
Fレーザー光に比べて場合によっては100〜1000倍以上
も高濃度、具体的には5×1018分子/cm3以上の水
素分子濃度が必要がある事が判明した。
Now, the resistance of quartz glass to irradiation with excimer laser is described in Japanese Patent Application No. 1-11 filed by the present applicant.
45226 depending on the concentration of hydrogen contained. For this reason, in a conventional exposure apparatus using a KrF excimer laser as a light source, if the concentration of hydrogen contained in the quartz glass constituting the optical system is 5 × 10 16 molecules / cm 3 or more, sufficient durability can be secured. It is described in the art. However, since the influence of ArF laser light on quartz glass is greater than that of KrF as described above, the degree of damage (change in transmittance and change in refractive index) caused to synthetic quartz glass by ArF laser light is limited. Examination shows that the required hydrogen molecule concentration is Kr
In some cases, it was found that the concentration of hydrogen molecules was required to be 100 to 1000 times or more higher than that of the F laser light, specifically, a hydrogen molecule concentration of 5 × 10 18 molecules / cm 3 or more was required.

【0005】さてこの光学系を構成する石英ガラスに含
まれる水素分子濃度は原料素材を合成する条件及び/ま
たはその後の熱処理工程(水素dopeも含む)の条件によ
り決定される数字であり、一般的には水素分子濃度は工
程のばらつきによる範囲を無視すれば一義的に定まり、
従って露光装置を構成するミラーやレンズ等の光学系に
用いられる合成石英ガラス部材は水素濃度という視点か
らみればただ1種類の合成石英ガラスから成り立ってい
た。合成石英ガラスに水素分子を含ませる方法は2つあ
るが、まず製造時の雰囲気を調整して常圧で合成石英ガ
ラスに水素分子を含ませる場合、含ませうる水素分子濃
度は最高で5×1018分子/cm3程度までである。またも
う1つの方法として水素雰囲気での加圧熱処理により水
素分子を石英ガラス中にドープする場合でも、高圧ガス
取り締まり法の対象とならない上限の10気圧/cm2
水素処理において導入される水素分子濃度はやはり5×1
018分子/cm3が上限である。
[0005] The concentration of hydrogen molecules contained in the quartz glass constituting the optical system is a number determined by the conditions for synthesizing the raw material and / or the conditions of the subsequent heat treatment step (including hydrogen dope). The hydrogen molecule concentration is uniquely determined if the range due to process variation is ignored.
Therefore, a synthetic quartz glass member used for an optical system such as a mirror and a lens constituting an exposure apparatus is composed of only one kind of synthetic quartz glass from the viewpoint of hydrogen concentration. There are two methods of including hydrogen molecules in synthetic quartz glass. First, when adjusting the atmosphere during manufacture and including hydrogen molecules in synthetic quartz glass at normal pressure, the concentration of hydrogen molecules that can be included is up to 5 × It is up to about 10 18 molecules / cm 3 . As another method, even when hydrogen molecules are doped into quartz glass by pressurized heat treatment in a hydrogen atmosphere, hydrogen molecules introduced in hydrogen treatment at an upper limit of 10 atm / cm 2 which are not subject to the high-pressure gas control method. The concentration is still 5 × 1
0 18 molecules / cm 3 is the upper limit.

【0006】このため石英ガラス中に5×1018分子/c
3以上の水素分子を含ませようとする場合には、10気
圧より遥かに高い高圧の水素圧力で熱処理を行う事が必
要となる。例えば本出願人が出願した特開平4ー164
833においては、アルゴンガス100%の高圧雰囲気
で、1750℃の温度を再溶融加熱処理することにより略5
×1018(molecules/cm3)の程度の水素分子をドープ
し得る技術が開示されている。
For this reason, 5 × 10 18 molecules / c are contained in quartz glass.
In the case of including hydrogen molecules of m 3 or more, it is necessary to perform heat treatment at a high hydrogen pressure which is much higher than 10 atm. For example, Japanese Patent Application Laid-Open No. 4-164 filed by the present applicant
In 833, a temperature of 1750 ° C. is re-melted and heat-treated in a high-pressure atmosphere of argon gas 100% to reduce the temperature to approximately 5 ° C.
A technique capable of doping hydrogen molecules of about × 10 18 (molecules / cm 3 ) is disclosed.

【0007】[0007]

【発明が解決しようとする課題】しかしながら1750℃の
温度を再溶融加熱処理することは石英ガラスに新たな欠
陥を誘起するために、熱処理温度は200〜800℃の範囲で
行う事が好ましいが(特開平6−166528)、この
温度領域で水素熱処理により石英ガラス光学部材に5×1
018分子/cm3以上の多量の水素分子を導入する場合、
水素分子の拡散速度があまり大きくないので大きな光学
部材においては処理に非常に時間がかかるという欠点を
有するうえに、高圧雰囲気で熱処理を行う事は石英ガラ
ス光学部材の屈折率の均質性が低下し、また歪みが導入
されるという問題点も有している。従って高圧熱処理を
行った場合においても再度の調整のための熱処理が必要
で、このため5×1018分子/cm3以上水素分子を含有し
かつ露光装置の光学系を構成するに足りる屈折率の均質
性、低歪み等の光学特性を兼ね備えた石英ガラスは工業
的には極めて複雑で長時間の処理を経た非常に高価なも
のとなってしまう。
However, the re-melting heat treatment at a temperature of 1750 ° C. is preferably performed at a heat treatment temperature in the range of 200 to 800 ° C. in order to induce new defects in quartz glass. Japanese Patent Application Laid-Open No. Hei 6-166528).
When introducing a large amount of hydrogen molecules of 18 molecules / cm 3 or more,
Since the diffusion rate of hydrogen molecules is not very high, the processing of large optical members takes a very long time.In addition, heat treatment in a high-pressure atmosphere reduces the homogeneity of the refractive index of the quartz glass optical members. Also, there is a problem that distortion is introduced. Therefore, even when the high-pressure heat treatment is performed, heat treatment for re-adjustment is necessary, and therefore, contains a hydrogen molecule of 5 × 10 18 molecules / cm 3 or more and has a refractive index sufficient to constitute an optical system of the exposure apparatus. Quartz glass having optical properties such as homogeneity and low distortion is industrially extremely complicated and extremely expensive after a long time treatment.

【0008】本発明は、水素ドープされた石英ガラスか
らなる光学系を用いてArFエキシマレーザー露光装置
を構成する場合においても、耐久性や光透過性等の品質
を劣化させる事なく、光学系全体として低コストで製造
容易に構成することのできる露光装置を提供する事を目
的とする。
According to the present invention, even when an ArF excimer laser exposure apparatus is constructed using an optical system made of hydrogen-doped quartz glass, the optical system as a whole can be manufactured without deteriorating the quality such as durability and light transmittance. It is an object of the present invention to provide an exposure apparatus which can be easily manufactured at low cost.

【0009】[0009]

【課題を解決するための手段】本発明は、次の点に着目
したものである。先ず前記したようにArFエキシマレ
ーザー露光装置の耐久性の向上を図るために5×1018
子/cm3以上の水素分子を含有することは工業的には
極めて複雑で長時間の処理を必要とし製造困難であると
ともに非常に高価になってしまう。一方文献2(New Gl
ass VoL6 No,2(1989)191-196“ステッパ用石英ガラスに
ついて”牛田一雄著)によればステッパ投影レンズ等に
必要な露光装置として透過率として99.0(最低レベル)
%/cm以上、屈折率分布(Δn)が≦1×10-6、複屈折量
nm/cm≦1.00とされているが、前記したように加圧
処理にて5×1018分子/cm3の高濃度の水素ドープを行
うと、前記したように均質な屈折率を有する石英ガラス
を得ることが出来ない。一方、屈折率の面を重視して石
英ガラスを製造すると、高濃度の水素ドープガラスを得
ることが出来ず、ArFエキシマレーザーを照射した場
合に破損に至る場合がある。
The present invention focuses on the following points. First, as described above, in order to improve the durability of an ArF excimer laser exposure apparatus, containing hydrogen molecules of 5 × 10 18 molecules / cm 3 or more is industrially extremely complicated and requires a long time treatment. It is difficult to manufacture and very expensive. On the other hand, Reference 2 (New Gl
According to ass VoL6 No, 2 (1989) 191-196 "Quartz glass for steppers", written by Kazuo Ushida), 99.0 (lowest level) as transmittance required as an exposure device required for stepper projection lenses, etc.
% / Cm or more, the refractive index distribution (Δn) is ≦ 1 × 10 −6 , and the birefringence is nm / cm ≦ 1.00. However, as described above, 5 × 10 18 molecules / cm 3 are obtained by the pressure treatment. When high-concentration hydrogen doping is performed, quartz glass having a uniform refractive index cannot be obtained as described above. On the other hand, if quartz glass is manufactured with emphasis on the refractive index, it is not possible to obtain a high-concentration hydrogen-doped glass, and damage may occur when irradiated with ArF excimer laser.

【0010】そこで本発明は、ArFエキシマレーザー
からのレーザ光で集積回路のパターンを照明し、石英ガ
ラス材からなる光学系により集積回路のパターンをウエ
ーハ上に投影して焼き付けて集積回路を製造する為の露
光装置において、前記光学系を構成する合成石英ガラス
製光学部材を水素分子濃度の異なる複数種の水素ドープ
合成石英ガラス製光学部材群で構成するとともに、該光
学部材群の内、該光学部材を透過する光エネルギー密度
ε(mJ/cm2)に対応させて水素分子濃度と均質性
の異なる複数の光学部材群を効果的に組合せ、光学系全
体としての高透過率を達成させた事を特徴とするもので
ある。
Accordingly, the present invention manufactures an integrated circuit by illuminating a pattern of the integrated circuit with laser light from an ArF excimer laser, and projecting and printing the pattern of the integrated circuit on a wafer by an optical system made of a quartz glass material. In the exposure apparatus, the synthetic quartz glass optical member constituting the optical system is composed of a plurality of types of hydrogen-doped synthetic quartz glass optical members having different hydrogen molecule concentrations, and the optical member Achieving high transmittance as a whole optical system by effectively combining a plurality of optical members having different hydrogen molecule concentrations and homogeneities in accordance with the light energy density ε (mJ / cm 2 ) transmitted through the members. It is characterized by the following.

【0011】即ち、より具体的にはウエーハ露光面又は
/及び瞳面に最も近接して配設され該光学部材を透過す
る光エネルギー密度ε(mJ/cm2)が最も大なる位
置にある少なくとも1の光学部材(以下ウエーハ側光学
部材という)の水素分子濃度を、ウエーハ露光面又は/
及び瞳面に最も遠ざかる位置に配設され該光学部材を透
過する光エネルギー密度ε(mJ/cm2)が最も小な
る位置にある少なくとも1の光学部材(以下光源側光学
部材という)の水素分子濃度より大に、一方屈折率分布
(Δn)と複屈折量nm/cmの均質性については光源側
光学部材をウエーハ側光学部材の均質性より良好に設定
し、光学系全体としての高透過率を達成させた事を特徴
とするものである。
That is, more specifically, at least the light energy density ε (mJ / cm 2 ) which is disposed closest to the wafer exposure surface and / or the pupil surface and which transmits the optical member is the largest. The hydrogen molecule concentration of the first optical member (hereinafter, referred to as a wafer-side optical member) is adjusted to the wafer exposure surface or /
And hydrogen molecules of at least one optical member (hereinafter referred to as a light source side optical member) disposed at a position furthest away from the pupil plane and at a position where the light energy density ε (mJ / cm 2 ) transmitted through the optical member is the smallest. Greater than concentration, while refractive index distribution
Regarding the homogeneity of (Δn) and the birefringence amount nm / cm, the light source side optical member is set to be better than the uniformity of the wafer side optical member, and high transmittance as the whole optical system is achieved. Things.

【0012】そして好ましくは、前記ウエーハ側光学部
材が、5×1018分子/cm3以上5×1019分子/cm3以下
の水素分子濃度を有する石英ガラス光学材料から構成さ
れ、光源側光学部材が1×1017分子/cm3以上5×1018
分子/cm3以下の水素分子濃度を有する石英ガラス光
学材料から構成され、そして更に好ましくは前記ウエー
ハ側光学部材が、5×1018分子/cm3〜5×1019分子/
cm3の水素分子を含有し、屈折力の均質性Δnが5×10
ー6/1cm以下で且つ複屈折量が5nm/cm以下の合
成石英ガラス材で形成され、一方光源側光学部材が、1
×1017分子/cm3 〜 5×1018分子/cm3の水素分子
を含有し、屈折率の均質性Δnが3×10ー6/1cm以下
で且つ複屈折量が3nm/cm以下の合成石英ガラス材
で形成したことを特徴とするものである。
Preferably, the wafer-side optical member is made of a quartz glass optical material having a hydrogen molecule concentration of 5 × 10 18 molecules / cm 3 or more and 5 × 10 19 molecules / cm 3 or less, and the light source-side optical member is provided. Is 1 × 10 17 molecules / cm 3 or more 5 × 10 18
It is composed of silica glass optical material having a less molecules / cm 3 of hydrogen molecule concentration, and more preferably the wafer side optical element is, 5 × 10 18 molecules / cm 3 to 5 × 10 19 molecules /
cm 3 hydrogen molecules, and the refractive power homogeneity Δn is 5 × 10
-6/1 cm or less and a birefringence of 5 nm / cm or less, and made of a synthetic quartz glass material.
Synthesis containing hydrogen molecules of × 10 17 molecules / cm 3 to 5 × 10 18 molecules / cm 3 , homogeneity of refractive index Δn of 3 × 10 −6 / 1 cm or less, and birefringence of 3 nm / cm or less It is characterized by being formed of a quartz glass material.

【0013】請求項4記載の発明は、瞳面を有する投影
光学系により集積回路製造用露光装置において、瞳面の
直径がφ30〜50mmであることに着目してなされたもの
で、その特徴とするところは、前記投影光学系を構成す
るレンズ群を水素ドープ濃度の異なる複数種の石英ガラ
ス製光学部材で構成し、前記レンズ群の内、直径φ80m
m以下のレンズ群(前記ウエーハ側のレンズ群に対応す
る)が5×1018分子/cm3以上5×1019分子/cm3以下
の水素分子濃度を有し、屈折率の均質性Δnが5×10-6
以下でかつ複屈折量が5nm/cm以下である石英ガラ
ス材から構成され、直径φ80以上φ100mm以下のレン
ズ群が5×1017分子/cm3以上5×1018分子/cm3以下の
水素分子濃度を有し、屈折率の均質性Δnが3×10-6以下
でかつ複屈折量が3nm/cm以下である石英ガラス光
学部材から構成され、直径φ100mm以上のレンズ群
(前記光源側レンズ群に対応する。)が1×1017分子/
cm3以上5×1018分子/cm3以下の水素分子濃度を有
し、屈折率の均質性Δnが1×10-6以下でかつ複屈折量が
1nm/cm以下である石英ガラス光学部材から構成さ
れる事を特徴とするものである。
According to a fourth aspect of the present invention, a projection optical system having a pupil plane focuses on the fact that the diameter of the pupil plane is 30 to 50 mm in an exposure apparatus for manufacturing an integrated circuit. That is, the lens group constituting the projection optical system is constituted by a plurality of kinds of quartz glass optical members having different hydrogen doping concentrations, and the diameter of the lens group is φ80 m.
m (corresponding to the lens group on the wafer side) has a hydrogen molecule concentration of 5 × 10 18 molecules / cm 3 or more and 5 × 10 19 molecules / cm 3 or less, and the refractive index homogeneity Δn is 5 × 10 -6
A lens group having a diameter of φ80 or more and φ100 mm or less is composed of 5 × 10 17 molecules / cm 3 or more and 5 × 10 18 molecules / cm 3 or less of a quartz glass material having a birefringence of 5 nm / cm or less. A lens group having a density, a refractive index homogeneity Δn of 3 × 10 −6 or less and a birefringence of 3 nm / cm or less, and a lens group having a diameter of φ100 mm or more (the light source side lens group); 1 × 10 17 molecules /
A quartz glass optical member having a hydrogen molecule concentration of not less than 5 cm 3 and not more than 5 × 10 18 molecules / cm 3 , having a refractive index homogeneity Δn of not more than 1 × 10 −6 and a birefringence of not more than 1 nm / cm. It is characterized by being composed.

【0014】請求項5記載の発明は、請求項4記載の発
明に光路長等を組合せ本発明の目的を一層円滑に達成せ
んとするもので、露光装置の光学系を構成する石英ガラ
ス光学部材の内、直径φ80mm以下のレンズ等光学部材
の光路長さの合計が光学系全体の20%以下、好ましくは
15%以下で、直径φ80mm以上φ100mm以下のレンズ
等光学部材の光路長の合計が光学系の光路長全体の20%
以下、好ましくは15%以下に設定するのが良い。
According to a fifth aspect of the present invention, the object of the present invention is achieved more smoothly by combining an optical path length and the like with the fourth aspect of the present invention, and a quartz glass optical member constituting an optical system of an exposure apparatus. Among them, the sum of the optical path lengths of optical members such as lenses having a diameter of φ80 mm or less is 20% or less of the entire optical system, preferably
15% or less, and the total optical path length of optical members such as lenses with a diameter of φ80mm or more and φ100mm or less is 20% of the entire optical path length of the optical system.
Or less, preferably 15% or less.

【0015】[0015]

【発明の実施の形態】以下図面を参照して本発明の実施
形態を説明する。但し、この実施形態に記載されている
構成部品の寸法、材質、形状、その相対的配置等は特に
特定的な記載がないかぎりは、この発明の範囲をそれに
限定する趣旨ではなく、単なる説明例にすぎない。図1
は本発明に適用されるArFエキシマレーザーを用いた
リソグラフィ露光装置の概略構成図で、1はArFエキ
シマレーザー光源、2はウエーハ面上において回析光の
干渉のないパターン像を形成するための変形照明手段
で、中心部が遮光面となる例えば四重極照明若しくは輪
帯照明光源状の形状を有す。3は前記光源より照射され
たエキシマレーザー光をレチクルに導く為のコンデンサ
レンズ、4はマスク(レチクル)、5は投影光学系で、
例えば屈折力が正のレンズ群と、屈折力が負のレンズ群
を組合せて光の狭帯域化を図りつつ、前記光学系中に瞳
面を形成し、解像力の向上を図っている。6はウエーハ
ステージ7上に載置されたウエーハで、前記レチクル4
に形成したマスクパターンが前記投影光学系を介してウ
エーハ6上に結像描画される。
Embodiments of the present invention will be described below with reference to the drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the components described in this embodiment are not intended to limit the scope of the present invention unless otherwise specified, and are merely illustrative examples. It's just FIG.
FIG. 1 is a schematic configuration diagram of a lithography exposure apparatus using an ArF excimer laser applied to the present invention. 1 is an ArF excimer laser light source, and 2 is a deformation for forming a pattern image on a wafer surface without interference of diffraction light. The illuminating means has, for example, a quadrupole illumination or an annular illumination light source shape in which a central portion is a light shielding surface. 3 is a condenser lens for guiding the excimer laser light emitted from the light source to the reticle, 4 is a mask (reticle), 5 is a projection optical system,
For example, by combining a lens group having a positive refractive power and a lens group having a negative refractive power to narrow the band of light, a pupil plane is formed in the optical system to improve the resolution. Reference numeral 6 denotes a wafer mounted on a wafer stage 7 and the reticle 4
Is formed on the wafer 6 via the projection optical system.

【0016】かかる装置において、前記投影光学系には
ウエーハ面にパターン光を結像させるために、ウエーハ
面と最近接位置に配置した集光レンズ群5aと、瞳面近
傍に配置したレンズ群5bが存在するが、瞳面には光源
の像である二次光源が形成される。従って瞳面に光源像
が離散的に表われると、そこにエネルギーが集中し、ウ
エーハ側とともに光学系の破損要因となる。一方レチク
ル側はウエーハ側に比べ結像倍率の2乗でエネルギー密
度が小さくなる為厳しい条件とはならない。
In this apparatus, the projection optical system includes a condenser lens group 5a disposed closest to the wafer surface and a lens group 5b disposed near the pupil plane in order to form pattern light on the wafer surface. Exists, but a secondary light source which is an image of the light source is formed on the pupil plane. Therefore, when a light source image discretely appears on the pupil plane, energy concentrates on the light source image, which causes damage to the optical system together with the wafer side. On the other hand, on the reticle side, the energy density becomes smaller by the square of the imaging magnification as compared with the wafer side.

【0017】本実施形態はかかる点に着目したのであ
り、即ち、具体的に説明すると、ArFエキシマレーザ
ーの瞳面の大きさは参考文献によるとφ30〜φ50mm程
度であり、この面積に対して何倍かという基準でエネル
ギー密度を決める事が合理的である。例えばレチクル感
度20〜50mJとし、これを20〜30パルスのレーザー照射
で露光するとすると、瞳面上のパルス当たりのエネルギ
ー密度は 0.7〜1.7mJ/cm2、正確には露光面と瞳面
ではエネルギー密度は異なり、ウエーハ面の方が僅かに
大きいと仮定した場合ででも前記ウエーハ面に最も近接
された位置に配置されたウエーハ側レンズ群のエネルギ
ー密度はその80〜90%程度の0.6〜1.5mJ/cm2程度
であると推定される。又瞳面はこれより僅かに低いもの
と思料される。一方、解像力の向上を図るために、屈折
力が正のレンズ群と、屈折力が負のレンズ群を組合せて
前記投影光学系を構成するが(例えば特開平3−343
08参照)、この場合夫々のレンズ群は収差を極力排除
する必要があり、このような場合実際の夫々のレンズ群
の縮小若しくは拡大する倍率はある程度抑えて設定する
のがよく、してみると前記ウエーハ側若しくは瞳面最近
接位置より次段のレンズ群のエネルギー密度は0.6〜1.5
mJ/cm2の1/3程度、具体的には0.2〜0.6mJ/
cm2程度であると推定される。その他のほとんどのレ
ンズ群(光源側レンズも含めて)は1パルス当たりのエ
ネルギー密度ε≦0.2 mJ/cm2である。従ってウエ
ーハ側レンズ群のうち1パルス当たりのエネルギー密度
がε≦0.2mJ/cm2であるレンズ群においては、耐久
性より光学的均質性を重視することにより、光学系全体
としての解像度の向上が図れる。そこで本実施形態にお
いてはε:≦0.2 mJ/cm2の光源側光学部材の場合
は、水素分子濃度CH2を1×1017≦CH2≦5×1018分子/
cm3に低く設定するも、屈折率分布(Δn)は≦1×10
-6、複屈折量は≦1.00nm/cmと高品質に維持する。
This embodiment focuses on such a point, that is, specifically, the size of the pupil plane of the ArF excimer laser is about φ30 to φ50 mm according to the reference document. It is reasonable to determine the energy density on the basis of double. For example, if the reticle sensitivity is 20 to 50 mJ and this is exposed by laser irradiation of 20 to 30 pulses, the energy density per pulse on the pupil plane is 0.7 to 1.7 mJ / cm 2 , and more precisely, the energy on the exposure plane and the pupil plane is energy. The densities are different, and even if it is assumed that the wafer surface is slightly larger, the energy density of the wafer-side lens group arranged closest to the wafer surface is about 0.6 to 1.5 mJ, which is about 80 to 90% of that. / Cm 2 . It is also assumed that the pupil plane is slightly lower. On the other hand, in order to improve the resolution, the projection optical system is configured by combining a lens group having a positive refractive power and a lens group having a negative refractive power (for example, Japanese Patent Application Laid-Open No. 3-343).
In this case, it is necessary to eliminate aberrations in each lens group as much as possible. In such a case, it is better to set the actual reduction or enlargement magnification of each lens group to some extent. The energy density of the next lens unit from the wafer side or the closest position to the pupil plane is 0.6 to 1.5.
about 1/3 of mJ / cm 2 , specifically 0.2 to 0.6 mJ /
It is estimated to be of the order of cm 2 . Most of the other lens groups (including the light source side lens) have an energy density per pulse ε ≦ 0.2 mJ / cm 2 . Therefore, in the lens group in which the energy density per pulse is ε ≦ 0.2 mJ / cm 2 in the wafer-side lens group, the emphasis is placed on optical homogeneity rather than durability, so that the resolution of the entire optical system is improved. I can do it. Therefore, in the present embodiment, in the case of the light source side optical member of ε: ≦ 0.2 mJ / cm 2 , the hydrogen molecule concentration C H2 is set to 1 × 10 17 ≦ C H2 ≦ 5 × 10 18 molecules /
cm 3 , the refractive index distribution (Δn) is ≦ 1 × 10
-6 , the birefringence is maintained at a high quality of ≦ 1.00 nm / cm.

【0018】又瞳面周辺やウエーハに最も近接するウエ
ーハ側レンズ群において、1パルス当たりのエネルギー
密度が0.6≦ε≦1.5であるレンズ群においては、耐久性
を重視することにより、光学系全体としての耐久性の向
上が図れる。そこで本実施形態においてはε:0.6≦ε
≦1.5 mJ/cm2の光学系の場合は、水素分子濃度C H
2を5×1018≦CH2≦5×1019分子/cm3に高く設定する
も、屈折率分布(Δn)は≦5×10-6、複屈折量は≦5.0n
m/cmと緩やかに設定し、製造の容易化を図る。更に
前記受光エネルギーが高密度レンズ等の次段に位置する
レンズ等の光学部材は前記両者の中間を取り、ε:0.2
≦ε≦0.6 mJ/cm2の光学系の場合は、水素分子濃
度CH2を5×1017≦CH2≦5×1018分子/cm3に、又屈
折率分布(Δn)は≦3×10-6、複屈折量は≦3.0nm/c
mと緩やかに設定し、製造の容易化を図る。そして0.6
≦ε≦1.5 mJ/cm2の光学部材の光路長さの合計が
光学系全体の光路長の20%以下、好ましくは15%以下
で、前記ε:0.6≦ε≦1.5mJ/cm2の光学部材の光
路長の合計が光学系の光路長全体の20%以下、好ましく
は15%以下になるように光学系を組合せ配置することに
より後記実施例に示すように、耐久性を維持しつつ光学
系全体として高透過率を達成させることが出来る。
The wafer closest to the pupil plane and the wafer
-Energy per pulse in the c-side lens group
In the lens group whose density is 0.6 ≦ ε ≦ 1.5, the durability is
Focus on the durability of the optical system as a whole.
I can go up. Therefore, in the present embodiment, ε: 0.6 ≦ ε
≤1.5 mJ / cmTwo, The hydrogen molecule concentration C H
TwoTo 5 × 1018≤CH2≦ 5 × 1019Molecule / cmThreeSet high
Also, the refractive index distribution (Δn) is ≦ 5 × 10-6, Birefringence ≤5.0n
m / cm is set gently to facilitate production. Further
The received light energy is located at the next stage such as a high-density lens
An optical member such as a lens takes an intermediate point between the two, and ε: 0.2
≦ ε ≦ 0.6 mJ / cmTwoIn the case of the optical system of
Degree CH2To 5 × 1017≤CH2≦ 5 × 1018Molecule / cmThreeAgain
Fold distribution (Δn) ≦ 3 × 10-6, Birefringence is ≤3.0 nm / c
m is set gently to facilitate manufacturing. And 0.6
≦ ε ≦ 1.5 mJ / cmTwoThe total optical path length of the optical members
20% or less, preferably 15% or less of the optical path length of the entire optical system
And the ε: 0.6 ≦ ε ≦ 1.5 mJ / cmTwoLight of optical members
Total path length is 20% or less of the total optical path length of the optical system, preferably
Is to combine and arrange optical systems so that it is less than 15%
As shown in the examples below, while maintaining durability, optical
High transmittance can be achieved as a whole system.

【0019】さて前記投影光学系を構成するレンズ材を
考えるとき、レンズ等の径がいくらの時、劣化の程度が
激しいかという事を決めなければならないが、前記した
参考文献によるとArFエキシマレーザーの瞳面の大き
さはφ30〜φ50mm程度であり、この面積に対して何倍
かという基準で決める事が合理的である。即ち、瞳面や
ウエーハ面に近接する位置で前記した0.6≦ε≦1.5mJ
/cm2のエネルギー密度のArFエキシマレーザーを
受光するレンズ径は使用面積を80%とすると瞳面の最大
値がφ50mmであることを考慮すると、そのレンズ口径
が最大φ80mm程度であり、従ってε:0.6≦ε≦1.5m
J/cm2の光学部材のレンズ径は略80φ以下であると
推定される。更に同様の計算により、ε:0.2≦ε≦0.6
mJ/cm2のレンズ等の場合は前記瞳面に対し、拡大
率が2〜3倍程度であり、従ってそのレンズ直径はφ80
〜100mm前後のレンズに対応する。そしてこれ以上(1
00mm)のレンズ径では当然エネルギ密度ε:≧0.2m
J/cm2と低くなる。そしてこの場合も、直径φ80m
m以下のレンズ等光学部材の光路長さの合計が光学系全
体の20%以下、好ましくは15%以下で、直径φ80mm以
上φ100mm以下のレンズ等光学部材の光路長の合計が
光学系の光路長全体の20%以下、好ましくは15%以下に
設定するのが良い。
Now, when considering the lens material constituting the projection optical system, it is necessary to decide what the diameter of the lens or the like should be and the degree of deterioration is severe. However, according to the above-mentioned reference, the ArF excimer laser is used. Of the pupil plane is about φ30 to φ50 mm, and it is reasonable to determine the pupil plane on the basis of several times this area. That is, 0.6 ≦ ε ≦ 1.5 mJ at a position close to the pupil plane or the wafer plane.
Considering that the maximum value of the pupil plane is φ50 mm when the use area is 80%, the lens diameter for receiving an ArF excimer laser having an energy density of / cm 2 is about φ80 mm at maximum, and therefore ε: 0.6 ≦ ε ≦ 1.5m
It is estimated that the lens diameter of the optical member of J / cm 2 is about 80φ or less. Further, by the same calculation, ε: 0.2 ≦ ε ≦ 0.6
In the case of a lens of mJ / cm 2 or the like, the magnification is about 2 to 3 times the pupil plane.
Corresponds to lenses around 100mm. And no more (1
Energy density ε: ≧ 0.2 m with a lens diameter of 00 mm)
J / cm 2 . And also in this case, diameter φ80m
The total of the optical path lengths of the optical members such as lenses having a diameter of m or less is 20% or less, preferably 15% or less of the entire optical system, and the total of the optical path lengths of the optical members such as the lenses having a diameter of 80 mm or more and 100 mm or less is the optical path length of the optical system. It is good to set it to 20% or less, preferably 15% or less of the whole.

【0020】尚、本発明は前記図1に示した投影光学系
露光装置のみならず、反射光学系露光装置にも適用可能
である。即ち、図2は高解像度を図るためにプリズム型
のビームスプリッタを用いた反射光学系露光装置のレン
ズ等構成を示す概略図で、その構成を簡単に説明する
に、光源11より第1レンズ群12を介してビームスプ
リッタ13を通過した光が第2レンズ群14を通過し、
その後ミラー15で変向されて、その後第3レンズ群1
6で集光した後、該集光光で、レチクル17をスキャン
した後、再度第3レンズ群16、ミラー15、第2レン
ズ群14を介して再びビームスプリッタ13に戻り、今
度は該スプリッタ13に変向されて第4レンズ群19で
結像されてウエーハ18上に集積回路パターンを焼き付
ける。かかる装置によれば前記スプリッタ13に変向後
のウエーハに最も近い第4レンズ群19は1パルス当た
りのエネルギー密度0.6≦ε≦1.5mJ/cm2の最も強
い光エネルギーを受ける為水素分子濃度CH2分子/cm
3を5×1018≦CH2≦5×1019に高く設定するも、屈折率
分布(Δn)は≦5×10-6、複屈折量は≦5.0nm/cmと
緩やかに設定すればよく、又本装置においてはレチクル
17側で第3レンズ群16については集光/スキャンさ
れるために1パルス当たりのエネルギー密度0.2≦ε≦
0.6mJ/cm2のエネルギーを受けると推定される為水
素分子濃度CH2分子/cm3を5×1017≦CH2≦5×1018
に設定、又屈折率分布(Δn)は≦3×10-6、複屈折量は≦
3.0nm/cmと緩やかに設定すればよく、そして他の
レンズ、ミラー、及びプリズム型のビームスプリッタ、
特に光源側に近い光学部材においては1パルス当たりの
エネルギー密度ε≦0.2mJ/cm2のエネルギーしか受
けない為に、そのレンズ群等の水素分子濃度CH2分子/
cm3は、1×1017≦CH2≦5×1018に設定するも、屈折
率分布(Δn)は≦1×10-6、複屈折量は≦1nm/cmと
高品質に維持する。
The present invention can be applied not only to the projection optical system exposure apparatus shown in FIG. 1 but also to a reflection optical system exposure apparatus. That is, FIG. 2 is a schematic diagram showing a configuration of a lens and the like of a reflection optical system exposure apparatus using a prism type beam splitter in order to achieve high resolution. Light passing through the beam splitter 13 through the second lens group 14 passes through the second lens group 14,
After that, the light is turned by the mirror 15 and then the third lens group 1
6, the reticle 17 is scanned with the condensed light, and then returns to the beam splitter 13 again via the third lens group 16, the mirror 15, and the second lens group 14, and this time the splitter 13 Then, the image is formed by the fourth lens group 19 and the integrated circuit pattern is printed on the wafer 18. According to such an apparatus, the fourth lens group 19 closest to the wafer after being turned to the splitter 13 receives the strongest light energy with an energy density per pulse of 0.6 ≦ ε ≦ 1.5 mJ / cm 2 , so that the hydrogen molecule concentration C H2 Molecule / cm
Although 3 is set as high as 5 × 10 18 ≦ C H2 ≦ 5 × 10 19 , the refractive index distribution (Δn) may be set to ≦ 5 × 10 −6 and the birefringence may be set to ≦ 5.0 nm / cm gently. In the present apparatus, since the third lens group 16 is focused / scanned on the reticle 17 side, the energy density per pulse is 0.2 ≦ ε ≦
Since it is presumed to receive an energy of 0.6 mJ / cm 2, the hydrogen molecule concentration C H2 molecule / cm 3 is set to 5 × 10 17 ≦ C H2 ≦ 5 × 10 18
, The refractive index distribution (Δn) is ≦ 3 × 10 −6 , and the birefringence is ≦
It may be set as gently as 3.0 nm / cm, and other lenses, mirrors, and prism type beam splitters,
In particular, since the optical member near the light source side receives only the energy of energy density ε ≦ 0.2 mJ / cm 2 per pulse, the hydrogen molecule concentration C H2 molecule /
Although cm 3 is set to 1 × 10 17 ≦ C H2 ≦ 5 × 10 18 , the refractive index distribution (Δn) is maintained at ≦ 1 × 10 −6 and the birefringence is maintained at a high quality of ≦ 1 nm / cm.

【0021】そしてレンズ径の関係は前記と同様で、更
にレンズ口径をφ80mm以下に設定した第4レンズ群1
9の光路長さの合計が光学系全体の光路長の20%以下、
好ましくは15%以下で、前記レンズ口径をφ80〜100m
mに設定した第3レンズ群16の光学部材の光路長の合
計が光学系の光路長全体の20%以下、好ましくは15%以
下になるように光学系を組合せ配置することにより本実
施形態においても、耐久性を維持しつつ光学系全体とし
て透過率99.8%/cmを達成させることが出来ると推定
される。
The relationship between the lens diameters is the same as that described above, and the fourth lens group 1 in which the lens diameter is set to φ80 mm or less.
9 is less than 20% of the optical path length of the entire optical system,
Preferably, the lens aperture is φ80 to 100 m at 15% or less.
In this embodiment, the optical systems are combined and arranged so that the total optical path length of the optical members of the third lens group 16 set to m is 20% or less, preferably 15% or less of the entire optical path length of the optical system. However, it is estimated that the optical system as a whole can achieve a transmittance of 99.8% / cm while maintaining durability.

【0022】[0022]

【発明の実施例】さて前記図1及び図2に示す露光装置
において実際の操業条件における光学特性の長期にわた
る安定性を確認する事は非常に時間がかかるので、レン
ズ、ミラー、及びプリズム等を製造するための石英ガラ
ス光学部材のみを取り出し、実際の操業を加速したシュ
ミレーション実験を行った。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the exposure apparatus shown in FIGS. 1 and 2, it takes a very long time to confirm the long-term stability of optical characteristics under actual operating conditions. Only a quartz glass optical member to be manufactured was taken out, and a simulation experiment in which actual operation was accelerated was performed.

【0023】一般に石英ガラスのレーザー照射における
ダメージの進行速度は照射エキシマレーザーのエネルギ
ー密度(フルエンス)の2乗に比例して早くなるが(光
学第23巻10号“エキシマレーザ用石英ガラス”藤ノ木
朗著参照、以下文献1という)この事を利用して加速実
験の基準とした。
In general, the progression rate of damage in laser irradiation of quartz glass increases in proportion to the square of the energy density (fluence) of the irradiated excimer laser (Optics Vol. 23, No. 10, "Quartz Glass for Excimer Laser", Akira Fujinoki). This is used as a reference for acceleration experiments.

【0024】四塩化珪素を酸水素火炎で加水分解しなが
ら回転する基体上に堆積させるいわゆるDQ法で石英ガ
ラスインゴットを作成した。得られた石英ガラスインゴ
ットはOH基を800〜1000ppm含有し、かつ水素分子
を5×1018分子/cm2含有していた。この石英ガラスイ
ンゴットを特開平7−267662号に示される方法で
均質化処理を行い1150℃で40時間の歪取アニール為の加
熱、徐冷を行った。得られた均質な光学用石英ガラス材
料の光学特性を測定したが、3方向に脈理が存在せず、
また屈折率分布を干渉計(Zygo MarkIV)で
測定したところΔnは1×10-6と極めて良好な値を示し
た。また直交ニコルの歪み測定器で複屈折量を測定した
が、複屈折量は1nm/cm以下であった。
A quartz glass ingot was prepared by a so-called DQ method in which silicon tetrachloride was deposited on a rotating substrate while being hydrolyzed by an oxyhydrogen flame. The obtained quartz glass ingot contained 800 to 1000 ppm of OH groups and contained 5 × 10 18 molecules / cm 2 of hydrogen molecules. This quartz glass ingot was homogenized by the method described in JP-A-7-267662, and was heated and gradually cooled at 1150 ° C. for 40 hours for strain relief annealing. The optical properties of the obtained homogeneous quartz glass material for optics were measured, but there were no striae in three directions.
When the refractive index distribution was measured with an interferometer (Zygo Mark IV), Δn showed an extremely good value of 1 × 10 −6 . The amount of birefringence was measured using a crossed Nicols strain gauge, and the amount of birefringence was 1 nm / cm or less.

【0025】この光学用石英ガラス材料は文献2(New
Glass VoL6 No,2(1989)191-196“ステッパ用石英ガラス
について”牛田一雄著)に示されるエキシマレーザース
テッパーに用いられる石英ガラス部材として必要な光学
特性を満たしているために、この光学用石英ガラス材料
を用いて光学部品を構成する事によりArFを光源とす
る半導体露光装置を作る事が可能である。一方で該光学
用石英ガラス材料に含有された水素分子濃度をレーザー
ラマン法にて測定したところ、5×1017分子/cm2であ
った。(サンプル番号A)
This quartz glass material for optics is disclosed in Reference 2 (New
Glass VoL6 No, 2 (1989) 191-196 "Quartz glass for steppers" by Kazuo Ushida), which satisfies the optical characteristics required for quartz glass members used in excimer laser steppers. By configuring an optical component using a glass material, a semiconductor exposure apparatus using ArF as a light source can be manufactured. On the other hand, when the concentration of hydrogen molecules contained in the quartz glass material for optics was measured by a laser Raman method, it was 5 × 10 17 molecules / cm 2 . (Sample number A)

【0026】また該光学用石英ガラス材料からφ60mm
×t20mmの試料を切り出し、大気雰囲気で1000℃×20
時間の酸化処理を行った後、オートクレーブ中で水素ガ
スの高圧(50気圧)雰囲気で600℃×1000時間の水素ド
ープ処理を行った。処理後のサンプルの屈折率分布を測
定したところΔnが4×10-6で複屈折量は5nm/c
m、含有される水素分子濃度は2×1019分子/cm2
あった。(サンプル番号D) 水素分子含有量はラマン分光光度計を用いて行なった
が、これは日本分光工業社製のラマン分光光度計・NR
1100を用いて、励起波長488nmのArレーザー光で出
力700mW、浜松ホトニクス社製のホトマル・R943
−02を使用するホストカウンティング法で行なった。
なお、この水素分子含有量はこのときのラマン散乱スペ
クトルで800cm-1に観察されるSiO2の散乱バンドと
水素の4135−40cm-1に観察される散乱バンドの面積強
度比を濃度に換算して求めた。また、換算定数は文献値
4135cm-1/800cm-1×1.22×1021 (Zhurnal Pri-Kl
adnoi Spektroskopii, Vol.46、No.6、PP987〜991,June,1
987)を使用した。
The optical quartz glass material is φ60 mm
Xt20mm sample is cut out at 1000 ℃
After performing the oxidation treatment for a period of time, hydrogen doping treatment was performed in an autoclave in a high-pressure (50 atm) atmosphere of hydrogen gas at 600 ° C. for 1000 hours. When the refractive index distribution of the sample after the treatment was measured, Δn was 4 × 10 −6 and the amount of birefringence was 5 nm / c.
m, the concentration of hydrogen molecules contained was 2 × 10 19 molecules / cm 2 . (Sample No. D) The content of hydrogen molecules was measured using a Raman spectrophotometer, which is a Raman spectrophotometer NR manufactured by JASCO Corporation.
Using a 1100, an Ar laser beam with an excitation wavelength of 488 nm and an output of 700 mW, Homamatsu Photonics R943
Performed by the host counting method using -02.
The hydrogen molecule content is obtained by converting the area intensity ratio between the SiO 2 scattering band observed at 800 cm −1 and the hydrogen scattering band observed at 4135-40 cm −1 in the Raman scattering spectrum at this time into a concentration. I asked. Conversion constants are based on literature values
4135cm -1 / 800cm -1 × 1.22 × 10 21 (Zhurnal Pri-Kl
adnoi Spektroskopii, Vol. 46, No. 6, PP987-991, June, 1
987) was used.

【0027】更に該光学用石英ガラス材料からφ60mm
×t20mmの試料を切り出し、大気雰囲気で1000℃×20
時間の酸化処理を行った後、雰囲気炉中で水素ガスの加
圧(9気圧)雰囲気で600℃×1000時間の水素ドープ処理
を行った。処理後のサンプルの屈折率分布を測定したと
ころΔnが3×10-6で複屈折量は3nm/cm、含有さ
れる水素分子濃度は5×1018分子/cm2であった。(サ
ンプル番号B)
Further, from the quartz glass material for optics, φ60 mm
Xt20mm sample is cut out at 1000 ℃
After performing the oxidation treatment for a period of time, hydrogen doping treatment was performed in an atmosphere furnace under a pressurized hydrogen gas atmosphere (9 atm) at 600 ° C. for 1000 hours. When the refractive index distribution of the sample after the treatment was measured, Δn was 3 × 10 −6 , the amount of birefringence was 3 nm / cm, and the concentration of contained hydrogen molecules was 5 × 10 18 molecules / cm 2 . (Sample number B)

【0028】再び該光学用石英ガラス材料からφ60mm
×t20mmの試料を切り出し、大気雰囲気で1000℃×20
時間の酸化処理を行った後、雰囲気炉中で水素ガスの加
圧(3気圧)雰囲気で600℃×1000時間の水素ドープ処理
を行った。処理後のサンプルの屈折率分布を測定したと
ころΔnが2×10-6で複屈折量は2nm/cm、含有さ
れる水素分子濃度は2×1018分子/cm2であった。(サ
ンプル番号C)
Again from the quartz glass material for optics, φ60 mm
Xt20mm sample is cut out at 1000 ℃
After performing the oxidation treatment for a period of time, hydrogen doping treatment was performed at 600 ° C. for 1000 hours in a hydrogen gas pressurized (3 atm) atmosphere in an atmosphere furnace. When the refractive index distribution of the sample after the treatment was measured, Δn was 2 × 10 −6 , the amount of birefringence was 2 nm / cm, and the concentration of contained hydrogen molecules was 2 × 10 18 molecules / cm 2 . (Sample number C)

【0029】ここで、サンプルA及びCを除いてはそれ
ぞれ1種類の石英ガラスのみではArFエキシマレーザ
ーを光源とする露光装置を構成するには十分な均質性を
有しておらず、また複屈折量も大きすぎる事が判った
が、サンプルA、B、C、Dで代表される光学部材を図
1の装置の投影光学系として光路長に換算して4:2:
1:1でレンズ系を構成したとして光学系全体の屈折率
の均質性を計算したところ、光路1cmあたりのΔnと
しては2×10-6、複屈折の平均値は2nm/cmであり
露光装置を構成するに十分な光学特性が得られている事
が判った。
Here, except for the samples A and C, only one kind of quartz glass is not sufficient in homogeneity to constitute an exposure apparatus using an ArF excimer laser as a light source. Although the amount was found to be too large, the optical members represented by the samples A, B, C, and D were converted into the optical path length as the projection optical system of the apparatus of FIG.
When the homogeneity of the refractive index of the entire optical system was calculated assuming that the lens system was configured at 1: 1, Δn per 1 cm of the optical path was 2 × 10 −6 and the average value of birefringence was 2 nm / cm. It was found that sufficient optical characteristics were obtained to constitute the above.

【0030】尚、4つのサンプルの波長193nmの紫外線
に対する透過率を紫外分光光度計で測定したところ、1
cm当たりの内部透過率で良好な値を示した。やはりエ
キシマレーザーステッパーを構成するのに十分な透過性
を有している。
The transmittance of the four samples to ultraviolet light having a wavelength of 193 nm was measured with an ultraviolet spectrophotometer.
A good value was shown for the internal transmittance per cm. Again, it has sufficient transmittance to constitute an excimer laser stepper.

【0031】得られた4つのサンプルに対してArFエ
キシマレーザーを照射して光学特性の変化を調べた。照
射条件はパルス当たりのエネルギー密度が10mJ/cm
2、照射周波数は300Hzで行った。これは文献1に示さ
れる様に実際の操業における光学部材を透過するレーザ
ーの光エネルギー密度をεmJ/cm2とすると、(100
/ε)2倍の加速試験に該当する。表1に各サンプルの
エキシマレーザー照射結果を示す。照射数は2.5×107
ョットで、この照射に伴う193nmの透過率変化と屈折
率の変化を示す。
The four samples thus obtained were irradiated with an ArF excimer laser to examine changes in optical characteristics. The irradiation condition is that the energy density per pulse is 10 mJ / cm
2. The irradiation frequency was 300 Hz. This is, as shown in Document 1, when the light energy density of a laser transmitted through an optical member in an actual operation is εmJ / cm 2 , (100
/ Epsilon) corresponds to an accelerated test twice. Table 1 shows the results of excimer laser irradiation of each sample. The number of irradiation was 2.5 × 10 7 shots, showing a change in the transmittance at 193 nm and a change in the refractive index due to this irradiation.

【0032】[0032]

【表1】 [Table 1]

【0033】サンプルDに関しては屈折率の変化量が少
なすぎるため正確な測定が行えなかった。この結果から
露光装置としての安定性を決定するパラメーターとして
光学部材のArFレーザー照射による屈折率の変化が最
も重要なパラメーターであることが判った。尚、サンプ
ルDに関しては十分な測定精度が得られなかったため、
サンプルA〜Cの結果を用いて水素濃度と屈折率の上昇
率の関係を求め、これを外挿して計算を行った。
For sample D, the amount of change in the refractive index was too small to perform an accurate measurement. From these results, it was found that the change in the refractive index of the optical member due to the irradiation of the ArF laser was the most important parameter as a parameter for determining the stability of the exposure apparatus. Since sufficient measurement accuracy was not obtained for sample D,
The relationship between the hydrogen concentration and the rate of increase in the refractive index was determined using the results of Samples A to C, and the extrapolation was performed to calculate.

【0034】ここでこの加速シュミレーション実験の条
件から、実際の露光装置の操業において石英ガラス光学
部材を透過するArFエキシマレーザー光のエネルギー
密度をεmJ/cm2とした場合に対する加速率は(100
/ε)2倍であると考えられるので、 ArFエキシマレ
ーザー光のエネルギー密度が0.6mJ/cm2の場合にお
ける1×1010ショット後(100Hzの連続照射で3年)の予
想される屈折率の変化は各サンプルで下表のようにな
る。
Here, from the conditions of the acceleration simulation experiment, the acceleration rate with respect to the case where the energy density of the ArF excimer laser beam transmitted through the quartz glass optical member is εmJ / cm 2 in the actual operation of the exposure apparatus is (100)
/ Epsilon) it is considered to be twice the energy density of the ArF excimer laser light is expected refractive index of 1 × 10 10 shots after in the case of 0.6 mJ / cm 2 (3 years at 100Hz of continuous irradiation) The change is as shown in the table below for each sample.

【表2】 サンプル番号 照射後の屈折率変化の予想値 判定 A 4.04×10-7 使用可能 B 1.60×10-7 使用可能 C 8.68×10-8 使用可能 D 3.42×10-8 使用可能 [Table 2] Sample number Estimated value of change in refractive index after irradiation Judgment A 4.04 × 10 -7 usable B 1.60 × 10 -7 usable C 8.68 × 10 -8 usable D 3.42 × 10 -8 usable

【0035】尚、サンプルDに関しては十分な測定精度
が得られなかったため、サンプルA〜Cの結果を用いて
水素濃度と屈折率の上昇率の関係を求めこれを外挿して
計算を行った。
Since sufficient measurement accuracy was not obtained for Sample D, the relationship between the hydrogen concentration and the rate of increase in the refractive index was obtained using the results of Samples A to C, and this was extrapolated and calculated.

【0036】次にArFエキシマレーザー光のエネルギ
ー密度が0.6mJ/cm2の場合における1×1010ショッ
ト後(100Hzの連続照射で3年)の予想される屈折率
の変化は各サンプルで下表のようになる。
Next, when the energy density of the ArF excimer laser beam is 0.6 mJ / cm 2 , the expected change in the refractive index after 1 × 10 10 shots (3 years with continuous irradiation at 100 Hz) is shown in the following table for each sample. become that way.

【0037】[0037]

【表3】 サンプル番号 照射後の屈折率変化の予想値 判定 A 3.63×10-6 使用不可 B 1.14×10-6 使用可能 C 7.81×10-7 使用可能 D 3.08×10-7 使用可能[Table 3] Sample No. Expected value of change in refractive index after irradiation Judgment A 3.63 × 10 -6 cannot be used B 1.14 × 10 -6 can be used C 7.81 × 10 -7 can be used D 3.08 × 10 -7 can be used

【0038】次にArFエキシマレーザー光のエネルギ
ー密度が1.0mJ/cm2の場合における1×1010ショッ
ト後(100Hzの連続照射で3年)の予想される屈折率の変
化は各サンプルで下表のようになる。
Next, when the energy density of the ArF excimer laser beam is 1.0 mJ / cm 2 , the expected change in the refractive index after 1 × 10 10 shots (3 years with continuous irradiation at 100 Hz) is shown in the following table for each sample. become that way.

【0039】[0039]

【表4】 サンプル番号 照射後の屈折率変化の予想値 判定 A 1.01×10-5 使用不可 B 4.00×10-6 使用不可 C 2.17×10-6 使用不可 D 8.56×10-7 使用可能[Table 4] Sample No. Expected value of refractive index change after irradiation Judgment A 1.01 × 10 -5 Not available B 4.00 × 10 -6 Not available C 2.17 × 10 -6 Not available D 8.56 × 10 -7 Available

【0040】本シュミレーション実験により、請求範囲
に定められた複数種類の合成石英ガラス光学部材により
構成される光学系よりなる露光装置は、実際の操業にお
いても長期にわたって十分な光学特性の安定性を実現で
きると予想される。
According to this simulation experiment, an exposure apparatus comprising an optical system composed of a plurality of types of synthetic quartz glass optical members as defined in the claims achieves sufficient stability of optical characteristics for a long period of time even in actual operation. It is expected to be possible.

【0041】[0041]

【発明の効果】以上記載のごとく本発明によれば、水素
ドープされた石英ガラスからなる光学系を用いてArF
エキシマレーザー露光装置を構成する場合においても、
耐久性や品質を劣化させる事なく、光学系全体として低
コストで製造容易に構成することのできる。
As described above, according to the present invention, ArF is formed by using an optical system made of hydrogen-doped quartz glass.
Even when configuring an excimer laser exposure device,
The optical system as a whole can be easily manufactured at low cost without deteriorating durability and quality.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明が適用される投影光学系を用いた集積回
路製造用露光装置である。
FIG. 1 is an exposure apparatus for manufacturing an integrated circuit using a projection optical system to which the present invention is applied.

【図2】本発明が適用される反射光学系を用いた集積回
路製造用露光装置である。
FIG. 2 is an exposure apparatus for manufacturing an integrated circuit using a reflection optical system to which the present invention is applied.

【符号の説明】[Explanation of symbols]

1 ArFエキシマレーザー光源 2 変形照明手段 3 コンデンサレンズ 4 マスク(レチクル) 5 投影光学系 6 ウエーハ 11 光源 12 第1レンズ群 13 ビームスプリッタ 14 第2レンズ群 15 ミラー 16 第3レンズ群 17 レチクル 19 第4レンズ群 18 ウエーハ DESCRIPTION OF SYMBOLS 1 ArF excimer laser light source 2 Deformation illumination means 3 Condenser lens 4 Mask (reticle) 5 Projection optical system 6 Wafer 11 Light source 12 First lens group 13 Beam splitter 14 Second lens group 15 Mirror 16 Third lens group 17 Reticle 19 Fourth Lens group 18 wafer

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 ArFエキシマレーザーからのレーザ光
で集積回路のパターンを照明し、石英ガラス材からなる
投影光学系若しくは反射光学系により集積回路のパター
ンをウエーハ上に焼き付けて集積回路を製造する為の露
光装置において、 前記光学系を構成する合成石英ガラス製光学部材を水素
分子濃度の異なる複数種の水素ドープ合成石英ガラス製
光学部材群で構成し、 ウエーハ露光面又は/及び瞳面に最も近接して配設され
該光学部材を透過する光エネルギー密度ε(mJ/cm
2)が最も大なる位置にある少なくとも1の光学部材
(以下ウエーハ側光学部材という)の水素分子濃度を、 ウエーハ露光面又は/及び瞳面に最も遠ざかる位置に配
設され該光学部材を透過する光エネルギー密度ε(mJ
/cm2)が最も小なる位置にある少なくとも1の光学
部材(以下光源側光学部材という)の水素分子濃度より
大に、 一方屈折率分布(Δn)と複屈折量nm/cmの均質性に
ついては光源側光学部材をウエーハ側光学部材の均質性
より良好に設定した事を特徴とする集積回路製造用露光
装置。
An integrated circuit is manufactured by illuminating an integrated circuit pattern with laser light from an ArF excimer laser and printing the integrated circuit pattern on a wafer by a projection optical system or a reflection optical system made of quartz glass. In the exposure apparatus, the synthetic quartz glass optical member constituting the optical system is constituted by a plurality of types of hydrogen-doped synthetic quartz glass optical members having different hydrogen molecule concentrations, and is closest to the wafer exposure surface and / or the pupil surface. Light energy density ε (mJ / cm
2 ) the hydrogen molecule concentration of at least one optical member (hereinafter referred to as a wafer-side optical member) at the position where the largest is located at a position farthest from the wafer exposure surface and / or the pupil surface and transmitted through the optical member; Light energy density ε (mJ
/ Cm 2 ) is larger than the hydrogen molecule concentration of at least one optical member at the position where the smallest is the smallest (hereinafter referred to as a light source side optical member), while the refractive index distribution (Δn) and the homogeneity of the birefringence amount nm / cm. An exposure apparatus for manufacturing an integrated circuit, wherein the light source side optical member is set to be more excellent than the uniformity of the wafer side optical member.
【請求項2】 前記ウエーハ側光学部材が、5×1018
子/cm3 以上5×1019分子/cm3以下の水素分子濃度
を有する石英ガラス光学材料から構成され、光源側光学
部材が1×1017分子/cm3以上5×1018分子/cm3以下
の水素分子濃度を有する石英ガラス光学材料から構成さ
れる事を特徴とする請求項1記載の半導体製造用露光装
置。
2. The wafer-side optical member is composed of a quartz glass optical material having a hydrogen molecule concentration of 5 × 10 18 molecules / cm 3 or more and 5 × 10 19 molecules / cm 3 or less, and 2. The semiconductor manufacturing exposure apparatus according to claim 1, wherein the exposure apparatus is made of a quartz glass optical material having a hydrogen molecule concentration of not less than × 10 17 molecules / cm 3 and not more than 5 × 10 18 molecules / cm 3 .
【請求項3】 前記ウエーハ側光学部材が、5×1018
子/cm3〜5×1019分子/cm3の水素分子を含有し、
屈折力の均質性Δnが5×10ー6/1cm以下で且つ複屈
折量が5nm/cm以下の合成石英ガラス材で形成さ
れ、 一方光源側光学部材が、1×1017分子/cm3 〜 5×10
18分子/cm3の水素分子を含有し、屈折率の均質性Δ
nが3×10ー6/1cm以下で且つ複屈折量が3nm/c
m以下の合成石英ガラス材で形成したことを特徴とする
請求項2記載の集積回路製造用露光装置。
3. The wafer-side optical member contains 5 × 10 18 molecules / cm 3 to 5 × 10 19 molecules / cm 3 of hydrogen molecules,
It is formed of a synthetic quartz glass material having a refractive power homogeneity Δn of 5 × 10 −6 / 1 cm or less and a birefringence of 5 nm / cm or less, while the light source side optical member is 1 × 10 17 molecules / cm 3 to 5 × 10
Contains 18 molecules / cm 3 of hydrogen molecules and has uniformity of refractive index Δ
n is 3 × 10 −6 / 1 cm or less and the amount of birefringence is 3 nm / c
3. An exposure apparatus for producing an integrated circuit according to claim 2, wherein said exposure apparatus is formed of a synthetic quartz glass material having a size of m or less.
【請求項4】 ArFエキシマレーザーからのレーザ光
で集積回路のパターンを照明し、瞳面を有する投影光学
系により集積回路のパターンをウエーハ上に焼き付けて
集積回路を製造する為の露光装置において、 前記投影光学系を構成するレンズ群を水素ドープ濃度の
異なる複数種の石英ガラス製光学部材で構成し、 前記レンズ群の内、直径φ80mm以下のレンズ群が5×1
018分子/cm3以上5×1019分子/cm3以下の水素分子
濃度を有し、屈折率の均質性Δnが5×10-6以下でかつ複
屈折量が5nm/cm以下である石英ガラス材から構成
され、直径φ80以上φ100mm以下のレンズ群が5×1017
分子/cm3以上5×1018分子/cm3以下の水素分子濃
度を有し、屈折率の均質性Δnが3×10-6以下でかつ複屈
折量が3nm/cm以下である石英ガラス光学部材から
構成され、直径φ100mm以上のレンズ群が1×1017分子
/cm3以上5×1018分子/cm3以下の水素分子濃度を
有し、屈折率の均質性Δnが1×10-6以下でかつ複屈折量
が1nm/cm以下である石英ガラス光学部材から構成
される事を特徴とする半導体製造用露光装置。
4. An exposure apparatus for manufacturing an integrated circuit by illuminating a pattern of the integrated circuit with laser light from an ArF excimer laser and printing the pattern of the integrated circuit on a wafer by a projection optical system having a pupil plane. The lens group that constitutes the projection optical system is composed of a plurality of types of quartz glass optical members having different hydrogen doping concentrations, and among the lens groups, a lens group having a diameter of φ80 mm or less is 5 × 1.
Quartz having a hydrogen molecule concentration of at least 18 molecules / cm 3 and at most 5 × 10 19 molecules / cm 3 , a refractive index homogeneity Δn of at most 5 × 10 −6 and a birefringence of at most 5 nm / cm. A lens group composed of glass material and having a diameter of φ80 or more and φ100 mm or less is 5 × 10 17
Quartz glass optics having a hydrogen molecule concentration of not less than molecules / cm 3 and not more than 5 × 10 18 molecules / cm 3 , having a refractive index homogeneity Δn of not more than 3 × 10 -6 and a birefringence of not more than 3 nm / cm. A lens group composed of members and having a diameter of φ100 mm or more has a hydrogen molecule concentration of 1 × 10 17 molecules / cm 3 or more and 5 × 10 18 molecules / cm 3 or less, and has a refractive index homogeneity Δn of 1 × 10 −6. An exposure apparatus for manufacturing a semiconductor, comprising: a quartz glass optical member having a birefringence of 1 nm / cm or less.
【請求項5】 露光装置の光学系を構成する石英ガラス
光学部材の内、直径φ80mm以下のレンズ等光学部材の
光路長さの合計が光学系全体の20%以下、好ましくは15
%以下で、直径φ80mm以上φ100mm以下のレンズ等
光学部材の光路長の合計が光学系の光路長全体の20%以
下、好ましくは15%以下である事を特徴とする半導体製
造用露光装置。
5. The sum of the optical path lengths of optical members such as lenses having a diameter of φ80 mm or less among quartz glass optical members constituting an optical system of an exposure apparatus is 20% or less, preferably 15% or less of the entire optical system.
%, And the total optical path length of optical members such as lenses having a diameter of φ80 mm to φ100 mm is 20% or less, preferably 15% or less, of the entire optical path length of the optical system.
JP19151596A 1996-07-02 1996-07-02 Exposure apparatus for integrated circuit manufacturing Expired - Lifetime JP3641767B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP19151596A JP3641767B2 (en) 1996-07-02 1996-07-02 Exposure apparatus for integrated circuit manufacturing
PCT/EP1997/003406 WO1998000761A1 (en) 1996-07-02 1997-06-30 Projection aligner for integrated circuit fabrication
DE69702830T DE69702830T2 (en) 1996-07-02 1997-06-30 PROJECTION DEVICE WITH ALIGNMENT DEVICE FOR PRODUCING INTEGRATED CIRCUITS
EP97930447A EP0852742B1 (en) 1996-07-02 1997-06-30 Projection aligner for integrated circuit fabrication
US09/029,451 US6031238A (en) 1996-07-02 1997-06-30 Projection aligner for integrated circuit fabrication

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19151596A JP3641767B2 (en) 1996-07-02 1996-07-02 Exposure apparatus for integrated circuit manufacturing

Publications (2)

Publication Number Publication Date
JPH1022217A true JPH1022217A (en) 1998-01-23
JP3641767B2 JP3641767B2 (en) 2005-04-27

Family

ID=16275945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19151596A Expired - Lifetime JP3641767B2 (en) 1996-07-02 1996-07-02 Exposure apparatus for integrated circuit manufacturing

Country Status (1)

Country Link
JP (1) JP3641767B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7242457B2 (en) 2004-04-20 2007-07-10 Canon Kabushiki Kaisha Exposure apparatus and exposure method, and device manufacturing method using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7242457B2 (en) 2004-04-20 2007-07-10 Canon Kabushiki Kaisha Exposure apparatus and exposure method, and device manufacturing method using the same

Also Published As

Publication number Publication date
JP3641767B2 (en) 2005-04-27

Similar Documents

Publication Publication Date Title
JP4304409B2 (en) Method for producing quartz glass member
US5908482A (en) Method for producing a silica glass
EP0691312B1 (en) Method for producing silica glass for use with light in a vacuum ultraviolet wavelength range, and silica glass and optical member produced by the method
US5719698A (en) Silica glass member for UV-lithography, method for silica glass production, and method for silica glass member production
JP5299477B2 (en) Method for producing synthetic quartz glass
KR100291564B1 (en) Optical member for optical lithography and evaluation method of optical member
EP0901650B1 (en) Optical system for integrated circuit fabrication
JP2770224B2 (en) Quartz glass for optical lithography, optical member including the same, exposure apparatus using the same, and method of manufacturing the same
US6587262B1 (en) UV synthetic silica glass optical member and reduction projection exposure apparatus using the same
JP3976083B2 (en) Optical system for circuit pattern exposure
US6611317B1 (en) Exposure apparatus, semiconductor device, and photomask
JP3641767B2 (en) Exposure apparatus for integrated circuit manufacturing
JP3607006B2 (en) Exposure apparatus for integrated circuit manufacturing
JP3641766B2 (en) Exposure apparatus for integrated circuit manufacturing
JPH1067526A (en) Optical quartz glass element
WO1998000761A1 (en) Projection aligner for integrated circuit fabrication
JP2566151B2 (en) Method for manufacturing laser optical system base material
JPH10270352A (en) Aligner for manufacturing integrated circuit
US6518210B1 (en) Exposure apparatus including silica glass and method for producing silica glass
JPH06308717A (en) Quartz glass member for photolithography
JPH0463019B2 (en)
JPWO2004065315A1 (en) Synthetic quartz glass optical member and manufacturing method thereof
JPH1029831A (en) Laser exposure device for lithography
JP2001284249A (en) Optical member for photolithography, method of production and aligner

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041005

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050112

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080204

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090204

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100204

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100204

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110204

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120204

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120204

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20170204

Year of fee payment: 12

EXPY Cancellation because of completion of term