JPH10221137A - Jig for fitting probe of cryogenic ultrasonic flowmeter - Google Patents

Jig for fitting probe of cryogenic ultrasonic flowmeter

Info

Publication number
JPH10221137A
JPH10221137A JP9026539A JP2653997A JPH10221137A JP H10221137 A JPH10221137 A JP H10221137A JP 9026539 A JP9026539 A JP 9026539A JP 2653997 A JP2653997 A JP 2653997A JP H10221137 A JPH10221137 A JP H10221137A
Authority
JP
Japan
Prior art keywords
tube
probe
ultrasonic
cryogenic
annular frame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9026539A
Other languages
Japanese (ja)
Inventor
Yutaka Kashiwase
裕 柏瀬
Hiroshi Okajima
洋 岡嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokimec Inc
Original Assignee
Tokimec Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokimec Inc filed Critical Tokimec Inc
Priority to JP9026539A priority Critical patent/JPH10221137A/en
Publication of JPH10221137A publication Critical patent/JPH10221137A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a jig for fitting a probe of a cryogenic ultrasonic flowmeter whereby the contact between the probe and a pipe is maintained constant both at a cryogenic temperature environment and at a normal temperature environment, so that ultrasonic waves can be propagated stably and a flow rate can be measured stably. SOLUTION: A probe-fitting jig 16 supports an ultrasonic probe 14 and is provided with a ring-shaped frame 20 which is formed of a schematically inverted U-shape upper frame 18 and a rightly inverted U-shaped lower frame 19 coupled with the upper flame. A gap between an end part 18b of the upper frame 18 and an end part 19b of the lower frame 19 is extensible and compressible by a spring 30.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、管内を流れる極低
温の流体の流量を測定するクランプオン形式の超音波流
量計のプローブ取付治具に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a probe mounting jig for a clamp-on type ultrasonic flowmeter for measuring a flow rate of a cryogenic fluid flowing in a pipe.

【0002】[0002]

【従来の技術】従来、この種の極低温用超音波流量計プ
ローブ取付治具としては、図4に示したものがある。ク
ランプオン方式の超音波流量計は、管40の外壁面の所
定の位置に一対の超音波プローブ42、42を取り付
け、管壁を経由して管内の流体に超音波を放射し、その
際の伝搬時間を測定することで流速及び流量を求めるも
のであり、この超音波プローブ42、42を取り付ける
ために、従来のプローブ取付治具46は、超音波プロー
ブ42を収容するハウジング44を金属製の帯48で管
40に固定し、このハウジング44の中央部を通るネジ
50で超音波プローブ42を管40に押し付ける構造と
なっている。
2. Description of the Related Art A conventional jig for mounting an ultrasonic flowmeter probe for cryogenic temperature is shown in FIG. The clamp-on type ultrasonic flow meter has a pair of ultrasonic probes 42, 42 attached to predetermined positions on the outer wall surface of the tube 40, and radiates ultrasonic waves to the fluid in the tube via the tube wall. The flow rate and the flow rate are obtained by measuring the propagation time. In order to mount the ultrasonic probes 42, 42, a conventional probe mounting jig 46 has a housing 44 for accommodating the ultrasonic probe 42 made of a metal. The structure is such that the ultrasonic probe 42 is pressed against the tube 40 with a screw 50 passing through the center of the housing 44 and fixed to the tube 40 with a band 48.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、極低温
の環境においては、この帯と管との間にしみ込んだ水あ
るいは空気中の水分が氷結することで帯に該帯を引き延
ばす方向の力が発生し、時間の経過とともに帯が塑性変
形して伸びてしまうという問題がある。さらに、その
後、管が一旦常温に戻るなどして氷が解けると、帯と管
との間に隙間ができ、その結果治具および超音波プロー
ブが管から浮き上がってしまい、超音波の伝搬、および
流量測定に支障が生じるという問題がある。
However, in an extremely low-temperature environment, the water penetrating between the band and the pipe or the water in the air freezes to generate a force in the band to extend the band. However, there is a problem that the band is plastically deformed and elongates with the passage of time. Further, after that, once the tube has returned to normal temperature and the ice has melted, a gap is formed between the band and the tube, and as a result, the jig and the ultrasonic probe float up from the tube, and the propagation of ultrasonic waves, and There is a problem that the flow measurement is hindered.

【0004】また、帯と管との間の接触部分から熱が伝
搬するため、管内の液化ガスが気化することがあり、経
済的な損失になるという問題もある。さらには、このプ
ローブ取付治具を管に固定する際に帯部分に加える張力
が管表面の摩擦によって阻止されて、有効なプローブ押
し付け力にならないという問題もある。
[0004] Further, since heat is transmitted from a contact portion between the band and the pipe, a liquefied gas in the pipe may be vaporized, resulting in a problem of economical loss. Further, there is another problem that the tension applied to the band portion when the probe mounting jig is fixed to the tube is blocked by the friction of the tube surface, and does not become an effective probe pressing force.

【0005】本発明は、かかる問題点に鑑みなされたも
ので、請求項1記載ないし請求項3記載の発明は、極低
温の環境においても常温環境においても超音波プローブ
と管との接触を一定に維持することによって安定な超音
波伝搬、流量測定ができる極低温用超音波流量計プロー
ブ取付治具を提供することを目的とする。また、請求項
2記載の発明は、上記目的に加えて、管との熱の伝搬を
少なくすることができる極低温用超音波流量計プローブ
取付治具を提供することを目的とする。
The present invention has been made in view of such a problem, and the inventions of claims 1 to 3 maintain constant contact between the ultrasonic probe and the tube both in an extremely low temperature environment and in a normal temperature environment. It is an object of the present invention to provide a cryogenic ultrasonic flowmeter probe mounting jig capable of performing stable ultrasonic wave propagation and flow rate measurement by maintaining the temperature. It is another object of the present invention to provide a cryogenic ultrasonic flowmeter probe mounting jig which can reduce the propagation of heat to and from a pipe in addition to the above objects.

【0006】また、請求項3記載の発明は、上記目的に
加えて、さらに、管表面の摩擦の影響を低減し、有効な
プローブ押し付け力を発生させることができる極低温用
超音波流量計プローブ取付治具を提供することを目的と
する。
[0006] In addition to the above object, the invention according to claim 3 further reduces the influence of friction on the tube surface and generates an effective probe pressing force. An object is to provide a mounting jig.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に、本発明のうち請求項1記載の発明は、管内を流れる
極低温の流体に超音波を放射して流体の流量を測定する
超音波プローブを、管の外壁面に取り付けるための極低
温用超音波流量計プローブ取付治具であって、前記超音
波プローブを支持すると共に、前記管の外周囲を締め付
けることにより管に固定される環状フレームを備えてお
り、該環状フレームの一部に伸縮可能な機構を設けるこ
とを特徴とする。
In order to achieve the above object, according to the first aspect of the present invention, an ultrasonic wave is emitted to a cryogenic fluid flowing in a pipe to measure the flow rate of the fluid. A cryogenic ultrasonic flowmeter probe mounting jig for attaching an ultrasonic probe to an outer wall surface of a pipe, which supports the ultrasonic probe and is fixed to the pipe by tightening the outer periphery of the pipe. An annular frame is provided, and a part of the annular frame is provided with an extendable mechanism.

【0008】環状フレームの管との間にしみ込んだ水あ
るいは空気中の水分が氷結するときには、環状フレーム
に設けられた伸縮可能な機構が伸張し、また、常温に戻
るなどして氷が解けると、該伸縮可能な機構が収縮する
ことで、常に環状フレームは管の外周囲を締め付ける状
態を維持し、従って、超音波プローブと管との接触を一
定に維持する。
When the water or air in the air permeating between the pipes of the annular frame freezes, the expandable and contractible mechanism provided on the annular frame expands, and when the ice melts by returning to normal temperature or the like. As the telescopic mechanism contracts, the annular frame always keeps the outer periphery of the tube clamped, thus maintaining constant contact between the ultrasonic probe and the tube.

【0009】また、請求項2記載の発明は、請求項1記
載のものにおいて、前記環状フレームの管の外壁面に接
触する部位は、断熱材からなることを特徴とする。管と
の接触部位を断熱材とすることで、管とプローブ取付治
具との間の熱の伝搬を小さくする。前記環状フレーム
は、それ全体で管の外周囲に接触して管を締め付けるこ
とも可能であるが、請求項3記載の発明は、請求項1ま
たは請求項2記載のものにおいて、前記環状フレーム
は、その円周方向に適宜間隔を開けて内径方向に突出し
た接触体を有しており、前記接触体が管の外壁面と線接
触することを特徴とする。
According to a second aspect of the present invention, in the first aspect, the portion of the annular frame that contacts the outer wall surface of the pipe is made of a heat insulating material. By using a heat insulating material for the contact portion with the tube, the propagation of heat between the tube and the probe mounting jig is reduced. Although the annular frame can entirely contact the outer periphery of the tube to tighten the tube, the invention according to claim 3 is the invention according to claim 1 or claim 2, wherein the annular frame is And a contact body protruding in the inner diameter direction at appropriate intervals in the circumferential direction, and the contact body is in line contact with the outer wall surface of the tube.

【0010】環状フレーム全体で管に接触せずに、接触
体を介して管に接触するため、接触面積が少なくなり、
従って、管表面の摩擦の影響が小さくなり、環状フレー
ムの締め付け力が超音波プローブの管への押し付け力に
効果的に伝達される。また、管とプローブ取付治具との
間の熱の伝搬も小さくなる。
[0010] Since the entire annular frame does not contact the pipe but contacts the pipe via the contact body, the contact area is reduced.
Therefore, the influence of friction on the tube surface is reduced, and the tightening force of the annular frame is effectively transmitted to the pressing force of the ultrasonic probe against the tube. In addition, the propagation of heat between the tube and the probe mounting jig is reduced.

【0011】[0011]

【発明の実施の形態】以下、図面を用いて本発明の実施
の形態を説明する。図1は本発明の極低温用超音波流量
計プローブ取付治具の実施の形態を表す斜視図、図2は
図3の2−2線に沿って見た断面図、図3は図1の矢視
線3方向から見た図である。図において、10は管であ
り、管10内を、測定流体であるところの、例えば、L
NGや液体窒素などの極低温の流体が流れている。管1
0の外壁面には、それぞれ送信用と受信用の超音波振動
子12を保持する2つの超音波プローブ14が、プロー
ブ取付治具16によって管を挟んで対向するようにして
取り付けられて、Z法の超音波流量計を構成している。
但し、超音波プローブ14の配置は、V法等の任意の配
置を採用することが可能である。
Embodiments of the present invention will be described below with reference to the drawings. 1 is a perspective view showing an embodiment of a cryogenic ultrasonic flowmeter probe mounting jig according to the present invention, FIG. 2 is a sectional view taken along line 2-2 in FIG. 3, and FIG. It is the figure seen from the arrow line of sight 3 directions. In the figure, reference numeral 10 denotes a tube, and the inside of the tube 10 is a measuring fluid, for example, L
Cryogenic fluid such as NG or liquid nitrogen is flowing. Tube 1
0, two ultrasonic probes 14 respectively holding ultrasonic oscillators 12 for transmission and reception are attached by a probe attachment jig 16 so as to face each other with a tube interposed therebetween. The method constitutes an ultrasonic flowmeter.
However, the arrangement of the ultrasonic probe 14 can adopt an arbitrary arrangement such as the V method.

【0012】プローブ取付治具16は、略逆U字形状を
成した上側フレーム18と、略U字形状を成した下側フ
レーム19とを結合することにより形成される環状フレ
ーム20を備えており、環状フレーム20は、管10の
外周囲を締め付けることにより管10に固定される。ま
た、環状フレーム20は管10の長手方向に間隔をおい
て2つ設けられており、各環状フレーム20は、各上側
フレーム18間、及び各下側フレーム19間に架設され
た複数のレール21を介して連結されている。
The probe mounting jig 16 has an annular frame 20 formed by connecting an upper frame 18 having a substantially inverted U shape and a lower frame 19 having a substantially U shape. The annular frame 20 is fixed to the tube 10 by tightening the outer periphery of the tube 10. Further, two annular frames 20 are provided at intervals in the longitudinal direction of the pipe 10, and each annular frame 20 is provided with a plurality of rails 21 extending between the upper frames 18 and between the lower frames 19. Are connected via

【0013】図2に示すように、上側フレーム18の一
方の端部18aと、下側フレーム19の一方の端部19
aには、各端部18a、19aに設けられた長孔にはめ
込まれた取付体24、25が設けられており、ボルト2
6及び取付体25に固定されたナット27とで取付体2
4、25を挟み付けている。また、上側フレーム18の
他方の端部18bと、下側フレーム19の他方の端部1
9bにも、各端部18b、19bに設けられた長孔には
め込まれた取付体24、25が設けられており、ボルト
28及び取付体25に固定されたナット29とで取付体
24、25を挟み付けていると共に、ボルト28と取付
体24との間には、弾性体であるバネ30が配設されて
おり、取付体24、25の間隔、換言すれば上側フレー
ム18と下側フレーム19の隙間が伸縮可能な機構とな
っている。バネ30は、常に、取付体24、25の間の
間隔を小さくする方向に付勢するように、調整される。
尚、本例では、他方の端部18b、19bの間のみにバ
ネ30を配設しているが、一方の端部18a、19aの
間にもバネを配設して、伸縮可能な機構とすることも勿
論可能である。
As shown in FIG. 2, one end 18a of the upper frame 18 and one end 19 of the lower frame 19 are provided.
a is provided with mounting bodies 24 and 25 fitted in long holes provided in the respective ends 18a and 19a.
6 and the nut 27 fixed to the mounting body 25
4, 25 are sandwiched. Also, the other end 18b of the upper frame 18 and the other end 1 of the lower frame 19
9b is also provided with mounting bodies 24 and 25 fitted in long holes provided in the respective ends 18b and 19b, and the bolts 28 and nuts 29 fixed to the mounting body 25 are used to mount the mounting bodies 24 and 25. And a spring 30, which is an elastic body, is disposed between the bolt 28 and the mounting body 24, and the interval between the mounting bodies 24 and 25, in other words, the upper frame 18 and the lower frame The gap 19 is a mechanism that can expand and contract. The spring 30 is adjusted so as to always bias in a direction to reduce the distance between the attachment bodies 24 and 25.
In this example, the spring 30 is provided only between the other ends 18b and 19b. However, a spring is provided also between the one ends 18a and 19a to provide a mechanism capable of expanding and contracting. It is of course possible to do so.

【0014】また、環状フレーム20は、各上側フレー
ム18及び各下側フレーム19のそれぞれの角部におい
てネジ止めにより取り付けられた円柱状の枕部32(接
触体)を有しており、枕部32は、環状フレーム20の
内径方向に突出して、管10の外壁面と線接触してい
る。枕部32には、金属よりも熱伝導度の低いセラミッ
クス等の材質が用いられている。
The annular frame 20 has a cylindrical pillow portion 32 (contact body) attached to each corner of each upper frame 18 and each lower frame 19 by screwing. The projection 32 projects in the inner diameter direction of the annular frame 20 and is in line contact with the outer wall surface of the tube 10. The pillow portion 32 is made of a material such as ceramics having lower thermal conductivity than metal.

【0015】さらに、超音波振動子12を保持する超音
波プローブ14は、レール21を介して環状フレーム2
0に支持されており、レール21にネジ止めされる押え
ネジ34と押え板38との間に配設される弾性体である
バネ36によって、押え板38と共に管10の外壁面に
押さえ付けられている。超音波プローブ14のハウジン
グも枕部32と同様、熱伝導度の低い材質で構成される
と良い。
Further, the ultrasonic probe 14 holding the ultrasonic transducer 12 is connected to the annular frame 2 via a rail 21.
0, and is pressed together with the holding plate 38 against the outer wall surface of the pipe 10 by a spring 36 which is an elastic body disposed between a holding screw 34 screwed to the rail 21 and the holding plate 38. ing. The housing of the ultrasonic probe 14, like the pillow portion 32, is preferably made of a material having low thermal conductivity.

【0016】以上のように構成されるプローブ取付治具
16によれば、環状フレーム20の一部に伸縮可能な機
構を設けているために、環状フレーム20と管10との
間にしみ込んだ水あるいは空気中の水分が氷結しても、
その氷の成長に伴って、バネ30が収縮(環状フレーム
20全体としては伸張)し、また、常温に戻るなどして
氷が解けると、バネ30の復元力により伸張(環状フレ
ーム20全体としては収縮)することで、環状フレーム
20と管10の隙間の変化が緩和されるので、常に環状
フレーム20は、管10の外周囲を締め付ける状態を維
持し、超音波プローブ14は管10外壁面に一定に接触
して、安定した超音波伝搬、流量測定をすることができ
る。
According to the probe mounting jig 16 configured as described above, since the mechanism that can expand and contract is provided in a part of the annular frame 20, the water permeated between the annular frame 20 and the pipe 10 is provided. Or even if the moisture in the air freezes,
With the growth of the ice, the spring 30 contracts (extends as a whole the annular frame 20), and when the ice is melted by returning to normal temperature or the like, the spring 30 expands due to the restoring force of the spring 30 (as a whole the annular frame 20). By contraction, the change in the gap between the annular frame 20 and the tube 10 is reduced, so that the annular frame 20 always maintains a state in which the outer periphery of the tube 10 is tightened, and the ultrasonic probe 14 is attached to the outer wall surface of the tube 10. With constant contact, stable ultrasonic wave propagation and flow rate measurement can be performed.

【0017】超音波プローブ14を支持したプローブ取
付治具16の取付作業を行う際に、プローブ取付治具1
6は、管10の外壁面と線接触をなす枕部32とのみ接
触するため、接触面積が小さく、特に、管10の外表面
と枕部32ともその接触面が曲面となっているため、管
10の外表面の摩擦の影響を受けずに、環状フレーム2
0の締め付け力を超音波プローブ14の管10への押し
付け力に伝達することができる。
When mounting the probe mounting jig 16 supporting the ultrasonic probe 14, the probe mounting jig 1
6 is only in contact with the pillow portion 32 that makes a line contact with the outer wall surface of the tube 10, so that the contact area is small. In particular, the contact surface between the outer surface of the tube 10 and the pillow portion 32 is a curved surface. The annular frame 2 is not affected by the friction of the outer surface of the pipe 10.
The clamping force of 0 can be transmitted to the pressing force of the ultrasonic probe 14 against the tube 10.

【0018】また、管10と枕部32との接触面積が小
さいために、管10とプローブ取付治具16との間の熱
の伝搬が小さくなり、管内の液化ガスの気化等が低減さ
れる。特に、枕部32を、セラミックスのような熱伝導
率の低い断熱材から構成しているため、熱の伝搬をより
小さくすることができる。従って、管10内の液化ガス
の気化等が低減されると共に、超音波プローブの取付作
業中にプローブ取付治具16の冷却が緩和されるので、
その取付作業も容易になる。
Further, since the contact area between the tube 10 and the pillow portion 32 is small, the propagation of heat between the tube 10 and the probe mounting jig 16 is reduced, and the vaporization of the liquefied gas in the tube is reduced. . In particular, since the pillow portion 32 is made of a heat insulating material having a low thermal conductivity such as ceramics, the propagation of heat can be further reduced. Therefore, the vaporization of the liquefied gas in the pipe 10 is reduced, and the cooling of the probe mounting jig 16 is eased during the mounting operation of the ultrasonic probe.
The mounting work is also facilitated.

【0019】また、管10の径に適合した上側フレーム
18と下側フレーム19とを用いれば、上側フレーム1
8と下側フレーム19との一方の端部18a及び端部1
9a間と、他方の端部18b及び端部19b間の間隔
を、ボルト26、28及びバネ30で調節することによ
り、送信用と受信用の2つの超音波プローブ14が完全
に対向することができるように、設置することができ
る。また、レール21を管10の軸線方向と平行になる
ように調整することによって、超音波プローブ14の軸
と管10の軸線の平行度を簡単に保つことができる。
If the upper frame 18 and the lower frame 19 adapted to the diameter of the tube 10 are used, the upper frame 1
8 and one end 18a and end 1 of lower frame 19
The two ultrasonic probes 14 for transmission and reception can be completely opposed by adjusting the distance between 9a and the other end 18b and 19b with the bolts 26 and 28 and the spring 30. Can be installed as you can. Further, by adjusting the rail 21 so as to be parallel to the axial direction of the tube 10, the parallelism between the axis of the ultrasonic probe 14 and the axis of the tube 10 can be easily maintained.

【0020】尚、枕部32を設ける代わりに、上側フレ
ーム18及び下側フレーム19の内側を管10と同じ曲
率半径を持つ曲面として、直接、上側フレーム18及び
下側フレーム19を管10に接触させることもできる。
この場合、上側フレーム18及び下側フレーム19を熱
伝導度の低い、セラミック等で構成すると良い。また、
従来は、ハウジング及びプローブ取付治具全体をグラス
ファイバー等の断熱材で覆っているが、この断熱材とプ
ローブ取付治具16とを一体化してもよい。
Instead of providing the pillow portion 32, the upper frame 18 and the lower frame 19 are brought into direct contact with the pipe 10 by making the insides of the upper frame 18 and the lower frame 19 curved surfaces having the same radius of curvature as the pipe 10. It can also be done.
In this case, the upper frame 18 and the lower frame 19 are preferably made of ceramic or the like having low thermal conductivity. Also,
Conventionally, the entire housing and probe mounting jig are covered with a heat insulating material such as glass fiber. However, this heat insulating material and the probe mounting jig 16 may be integrated.

【0021】[0021]

【発明の効果】以上説明したように、本発明によれば、
管の外周囲を締め付けることにより管に固定される環状
フレームの一部に伸縮可能な機構を設けることにより、
環状フレームの管との間にしみ込んだ水あるいは空気中
の水分が氷結するときには、該伸縮可能な機構が伸張
し、また、常温に戻るなどして氷が解けると、該伸縮可
能な機構が収縮することで、常に環状フレームは管の外
周囲を締め付ける状態を維持することができる。従っ
て、超音波プローブと管との接触を一定に維持すること
ができ、極低温の環境においても常温環境においても安
定した超音波伝搬、流量測定をすることができる。
As described above, according to the present invention,
By providing an extendable mechanism on a part of the annular frame fixed to the tube by tightening the outer periphery of the tube,
When the water or air in the air that has soaked into the tube of the annular frame freezes, the expandable mechanism expands, and when the ice is melted by returning to normal temperature, the expandable mechanism contracts. By doing so, the annular frame can always maintain a state in which the outer periphery of the tube is tightened. Therefore, the contact between the ultrasonic probe and the tube can be kept constant, and stable ultrasonic wave propagation and flow measurement can be performed both in an extremely low temperature environment and in a normal temperature environment.

【0022】また、請求項2記載の発明によれば、環状
フレームの管の外壁面に接触する部位を断熱材で構成す
ることで、管とプローブ取付治具との間の熱の伝搬が小
さくなり、管内の極低温流体の気化等が低減されると共
に、超音波プローブの取付作業中にプローブ取付治具の
冷却が緩和されるので、その取付作業も容易になるとい
う、効果を有する。
According to the second aspect of the present invention, the portion of the annular frame that comes into contact with the outer wall surface of the tube is made of a heat insulating material, so that the propagation of heat between the tube and the probe mounting jig is reduced. This has the effect that vaporization of the cryogenic fluid in the pipe is reduced, and the cooling of the probe mounting jig is eased during the mounting operation of the ultrasonic probe, so that the mounting operation is also facilitated.

【0023】また、請求項3記載の発明によれば、環状
フレームは、その円周方向に適宜間隔を開けて内径方向
に突出した接触体を有しており、前記接触体が管の外壁
面と線接触することから、接触面積が少なくなり、従っ
て、管表面の摩擦の影響を小さくでき、環状フレームの
締め付け力を超音波プローブの管への押し付け力に効果
的に伝達することができる。また、管とプローブ取付治
具との間の熱の伝搬も小さくなり、管内の極低温流体の
気化等が低減されると共に、超音波プローブの取付作業
中にプローブ取付治具の冷却が緩和されるので、その取
付作業も容易になるという、効果を有する。
According to the third aspect of the present invention, the annular frame has a contact body that is appropriately spaced in the circumferential direction and protrudes in the inner diameter direction, and the contact body is an outer wall surface of the pipe. As a result, since the contact area is reduced, the influence of friction on the tube surface can be reduced, and the clamping force of the annular frame can be effectively transmitted to the pressing force of the ultrasonic probe against the tube. In addition, the propagation of heat between the tube and the probe mounting jig is also reduced, and the evaporation of the cryogenic fluid in the tube is reduced, and the cooling of the probe mounting jig during the ultrasonic probe mounting operation is eased. Therefore, there is an effect that the attachment work is also facilitated.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の極低温用超音波流量計プローブ取付治
具の実施の形態を表す斜視図である。
FIG. 1 is a perspective view illustrating an embodiment of a cryogenic ultrasonic flowmeter probe mounting jig according to the present invention.

【図2】図3の2−2線に沿って見た断面図である。FIG. 2 is a sectional view taken along line 2-2 in FIG. 3;

【図3】図1の矢視線3方向から見た図である。FIG. 3 is a view as seen from a direction of an arrow 3 in FIG. 1;

【図4】従来の極低温用超音波流量計プローブ取付治具
を表す斜視図である。
FIG. 4 is a perspective view showing a conventional cryogenic ultrasonic flow meter probe mounting jig.

【符号の説明】[Explanation of symbols]

10 管 14 超音波プローブ 16 プローブ取付治具 20 環状フレーム 30 バネ(伸縮可能な機構) 32 枕部(接触体) Reference Signs List 10 tube 14 ultrasonic probe 16 probe mounting jig 20 annular frame 30 spring (expandable mechanism) 32 pillow (contact body)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 管内を流れる極低温の流体に超音波を放
射して流体の流量を測定する超音波プローブを、管の外
壁面に取り付けるための極低温用超音波流量計プローブ
取付治具であって、 前記超音波プローブを支持すると共に、前記管の外周囲
を締め付けることにより管に固定される環状フレームを
備えており、該環状フレームの一部に伸縮可能な機構を
設けることを特徴とする極低温用超音波流量計プローブ
取付治具。
A cryogenic ultrasonic flowmeter probe mounting jig for mounting an ultrasonic probe for measuring a flow rate of a fluid by radiating ultrasonic waves to a cryogenic fluid flowing in a pipe. There is provided an annular frame that supports the ultrasonic probe and is fixed to the tube by tightening the outer periphery of the tube, and a part of the annular frame is provided with an extendable mechanism. Cryogenic ultrasonic flow meter probe mounting jig.
【請求項2】 前記環状フレームの管の外壁面に接触す
る部位は、断熱材からなることを特徴とする請求項1記
載の極低温用超音波流量計プローブ取付治具。
2. The cryogenic ultrasonic flowmeter probe mounting jig according to claim 1, wherein a portion of the annular frame that comes into contact with the outer wall surface of the tube is made of a heat insulating material.
【請求項3】 前記環状フレームは、その円周方向に適
宜間隔を開けて内径方向に突出した接触体を有してお
り、前記接触体が管の外壁面と線接触することを特徴と
する請求項1または2記載の極低温用超音波流量計プロ
ーブ取付治具。
3. The annular frame has a contact body that is appropriately spaced in the circumferential direction and protrudes in the inner diameter direction, and the contact body is in line contact with the outer wall surface of the tube. The cryogenic ultrasonic flowmeter probe mounting jig according to claim 1 or 2.
JP9026539A 1997-02-10 1997-02-10 Jig for fitting probe of cryogenic ultrasonic flowmeter Pending JPH10221137A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9026539A JPH10221137A (en) 1997-02-10 1997-02-10 Jig for fitting probe of cryogenic ultrasonic flowmeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9026539A JPH10221137A (en) 1997-02-10 1997-02-10 Jig for fitting probe of cryogenic ultrasonic flowmeter

Publications (1)

Publication Number Publication Date
JPH10221137A true JPH10221137A (en) 1998-08-21

Family

ID=12196311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9026539A Pending JPH10221137A (en) 1997-02-10 1997-02-10 Jig for fitting probe of cryogenic ultrasonic flowmeter

Country Status (1)

Country Link
JP (1) JPH10221137A (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020058785A (en) * 2000-12-30 2002-07-12 이계안 Flow meter
JP2005214647A (en) * 2004-01-27 2005-08-11 Chugoku Electric Power Co Inc:The Flow-meter attachment tool and piping managing method
JP2007017389A (en) * 2005-07-11 2007-01-25 Yamatake Corp Flow detection device
KR100682058B1 (en) * 2000-10-09 2007-02-12 써패스 공업 주식회사 Ultrasonic Flowmeter and Manufacturing Method Thereof
JP2007121299A (en) * 2005-10-25 2007-05-17 Krohne Ag Attaching method for clamp-on type flow measuring instrument, and attaching device for attaching clamp-on type flow measuring instrument
KR100775667B1 (en) 2006-07-29 2007-11-16 주식회사 하이드로소닉 Apparatus and method for installation of multi beam flow meter
KR100839621B1 (en) * 2001-02-05 2008-06-18 써패스 공업 주식회사 Ultrasonic Flow Meter
JP2010525348A (en) * 2007-04-24 2010-07-22 エンドレス ウント ハウザー フローテック アクチエンゲゼルシャフト Device for fixing a measuring device or display device to an object
KR101146518B1 (en) * 2009-12-30 2012-05-29 박준관 A Clamp-on type Multipath Ultrasonic Flowsensor and Installation Method thereof
TWI472770B (en) * 2009-03-12 2015-02-11 Pro 2000 Co Ltd Probe card for testing film package
TWI482972B (en) * 2009-03-10 2015-05-01 Pro 2000 Co Ltd Probe unit for testing panel
WO2016102156A3 (en) * 2014-12-22 2016-08-18 Endress+Hauser Gmbh+Co. Kg Measuring system for the radiometric measurement of density or of the level of a medium in a measuring tube
CN106153131A (en) * 2015-05-14 2016-11-23 株式会社基恩士 Ultrasonic flow switchs
US10190896B2 (en) 2017-01-26 2019-01-29 Keyence Corporation Ultrasonic flow sensor and method of attaching the same
US10203234B2 (en) 2017-01-26 2019-02-12 Keyence Corporation Ultrasonic flow sensor and temperature measuring method using the same
CN110410686A (en) * 2019-09-06 2019-11-05 大连理工大学 A kind of water supply line icing detection system and method based on ultrasound
EP3644021A1 (en) 2018-10-26 2020-04-29 Ryusok Co., Ltd. Ultrasonic flow measuring apparatus
KR20200124627A (en) 2019-04-24 2020-11-03 가부시키가이샤 류소쿠 Ultrasonic flow amount measuring device
CN113776607A (en) * 2021-08-18 2021-12-10 夏罗登工业科技(上海)股份有限公司 Multifunctional electromagnetic flowmeter with optical touch screen
JP2022031160A (en) * 2020-08-05 2022-02-18 株式会社琉Sok Ultrasonic flow measuring device
CN117168557A (en) * 2023-09-20 2023-12-05 宁波力擎超声科技有限公司 Embedded gas ultrasonic flowmeter

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100682058B1 (en) * 2000-10-09 2007-02-12 써패스 공업 주식회사 Ultrasonic Flowmeter and Manufacturing Method Thereof
KR20020058785A (en) * 2000-12-30 2002-07-12 이계안 Flow meter
KR100839621B1 (en) * 2001-02-05 2008-06-18 써패스 공업 주식회사 Ultrasonic Flow Meter
JP2005214647A (en) * 2004-01-27 2005-08-11 Chugoku Electric Power Co Inc:The Flow-meter attachment tool and piping managing method
JP4614666B2 (en) * 2004-01-27 2011-01-19 中国電力株式会社 Flow meter mounting jig
JP2007017389A (en) * 2005-07-11 2007-01-25 Yamatake Corp Flow detection device
JP2007121299A (en) * 2005-10-25 2007-05-17 Krohne Ag Attaching method for clamp-on type flow measuring instrument, and attaching device for attaching clamp-on type flow measuring instrument
KR100775667B1 (en) 2006-07-29 2007-11-16 주식회사 하이드로소닉 Apparatus and method for installation of multi beam flow meter
JP2010525348A (en) * 2007-04-24 2010-07-22 エンドレス ウント ハウザー フローテック アクチエンゲゼルシャフト Device for fixing a measuring device or display device to an object
TWI482972B (en) * 2009-03-10 2015-05-01 Pro 2000 Co Ltd Probe unit for testing panel
TWI472770B (en) * 2009-03-12 2015-02-11 Pro 2000 Co Ltd Probe card for testing film package
KR101146518B1 (en) * 2009-12-30 2012-05-29 박준관 A Clamp-on type Multipath Ultrasonic Flowsensor and Installation Method thereof
WO2016102156A3 (en) * 2014-12-22 2016-08-18 Endress+Hauser Gmbh+Co. Kg Measuring system for the radiometric measurement of density or of the level of a medium in a measuring tube
US10126221B2 (en) 2014-12-22 2018-11-13 Endress+Hauser Se+Co.Kg Measuring arrangement for radiometric density- or fill level measuring of a medium in a measuring tube
CN106153131A (en) * 2015-05-14 2016-11-23 株式会社基恩士 Ultrasonic flow switchs
US10190896B2 (en) 2017-01-26 2019-01-29 Keyence Corporation Ultrasonic flow sensor and method of attaching the same
US10203234B2 (en) 2017-01-26 2019-02-12 Keyence Corporation Ultrasonic flow sensor and temperature measuring method using the same
KR20200047429A (en) 2018-10-26 2020-05-07 가부시키가이샤 류소쿠 Ultrasonic flow measuring apparatus
EP3644021A1 (en) 2018-10-26 2020-04-29 Ryusok Co., Ltd. Ultrasonic flow measuring apparatus
KR20200124627A (en) 2019-04-24 2020-11-03 가부시키가이샤 류소쿠 Ultrasonic flow amount measuring device
CN110410686A (en) * 2019-09-06 2019-11-05 大连理工大学 A kind of water supply line icing detection system and method based on ultrasound
JP2022031160A (en) * 2020-08-05 2022-02-18 株式会社琉Sok Ultrasonic flow measuring device
CN113776607A (en) * 2021-08-18 2021-12-10 夏罗登工业科技(上海)股份有限公司 Multifunctional electromagnetic flowmeter with optical touch screen
CN113776607B (en) * 2021-08-18 2023-12-26 夏罗登工业科技(上海)股份有限公司 Multifunctional electromagnetic flowmeter with optical touch screen
CN117168557A (en) * 2023-09-20 2023-12-05 宁波力擎超声科技有限公司 Embedded gas ultrasonic flowmeter
CN117168557B (en) * 2023-09-20 2024-04-05 宁波力擎超声科技有限公司 Embedded gas ultrasonic flowmeter

Similar Documents

Publication Publication Date Title
JPH10221137A (en) Jig for fitting probe of cryogenic ultrasonic flowmeter
US4783997A (en) Ultrasonic transducers for high temperature applications
US5515733A (en) Ultrasonic transducer system with crosstalk isolation
JP2925319B2 (en) Pressure transducer with flow-through measurement capability
US6474175B2 (en) Coriolis mass flowmeter with a ceramic measuring tube
US5127489A (en) Suspension apparatus for engine exhaust system
US4262200A (en) Detectors, and envelope arrangements and mounts for detectors
JP2007120933A (en) Heat exchanger
US6112581A (en) Vibratory viscometer
JPS6193914A (en) Method and device for ultrasonic measurement of fluid flow rate
JPS5892701A (en) Support-earthquake-proof device particularly for pipe bundle of steam generator and its mounting method
JPH109988A (en) Pressure sensor for especially monitoring internal combustion engine for either one of or both of gaseous and liquid media
US6925883B2 (en) Non resonating close coupled probe
US6802217B2 (en) Flowmeter for compressed-air distribution systems
JPH02218184A (en) Cryostat with refrigerator
JPH05157414A (en) Temperature sensor mounting device
FR2352199A1 (en) Multi-directional joint for tubular constructions - has spherical nut with tapped holes for bolt in tube end and tightened by back nut
US6289745B1 (en) High temperature insertion type flow element and mounting extension
SU1555551A1 (en) Threaded connection
JPS6024082A (en) Laser oscillator
JP3387767B2 (en) High temperature Coriolis flowmeter
JP2001074170A (en) Earthquake resisting support for pipe
JPS61201488A (en) Axial-flow type carbon dioxide gas laser oscillator
CN210135331U (en) Pipeline bearing thrust support
JPH11257570A (en) Fluororesin coupling for fluororesin tubular member passing high temperature fluid

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060418

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061003