JPS6193914A - Method and device for ultrasonic measurement of fluid flow rate - Google Patents

Method and device for ultrasonic measurement of fluid flow rate

Info

Publication number
JPS6193914A
JPS6193914A JP59214793A JP21479384A JPS6193914A JP S6193914 A JPS6193914 A JP S6193914A JP 59214793 A JP59214793 A JP 59214793A JP 21479384 A JP21479384 A JP 21479384A JP S6193914 A JPS6193914 A JP S6193914A
Authority
JP
Japan
Prior art keywords
fluid
ultrasonic
flow rate
auxiliary rod
fluid flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59214793A
Other languages
Japanese (ja)
Inventor
Etsuo Morimoto
悦央 森本
Yutaka Katayama
片山 裕
Tomoyoshi Koyama
小山 朝良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP59214793A priority Critical patent/JPS6193914A/en
Publication of JPS6193914A publication Critical patent/JPS6193914A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
    • G01F1/662Constructional details

Abstract

PURPOSE:To make possible the measurement of the flow rate of not only fluid of a low temp. (ordinary temp.) but also high-temp. fluid with good accuracy by connecting an auxiliary bar for ultrasonic oscillation to the oscillation plane of an oscillator. CONSTITUTION:The auxiliary bar 5 is supported nearly concentrically with a dustproof socket 2 by an annular supporting member 6 made of an acoustic insulating material provided in the socket 2. A material such as aluminum, Mg, Ti or fluororesin which is strong to the heat received from the high-temp. fluid and has a good transmission characteristic of an ultrasonic wave is used for the bar 5. The ultrasonic wave from the oscillator 41 on the transmission side in such constitution propagates in the auxiliary bar 5 for ultrasonic oscillation connected to said oscillator, flows from the top end thereof into the fluid in a conduit, from which the wave passes the top end of the bar 5 connected to the oscillator on the reception side and arrives at the oscillator on the reception side by passing through the inside thereof. More specifically the flow rate of the high-temp. fluid is measured with good accuracy simply by adding the auxiliary bar to the probe of a commercially marketed device.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 不発明は低温流体だけでなく高温に体の流量も測定でき
る超音波式流体流量測定方法および装しぺに関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Industrial Application Field The present invention relates to an ultrasonic fluid flow measuring method and device capable of measuring not only low-temperature fluid but also high-temperature body flow.

(ロ)従来技術 製鉄所等における焼結、高炉或は転炉での燃焼排ガス、
石油化学工場における反応双生物質等、高温流体の流量
測定が必要となる場合が多い。これら品温流体の流量測
定は従来、オリフイ、ス流量計、ベンチュリー流量計等
が使用されているが圧損が多く省電力の面で好ましくな
く、またベンチュリー流量計は設備コストが高くなる問
題がある。
(b) Combustion exhaust gas from sintering, blast furnaces or converters in conventional technology steel works, etc.
It is often necessary to measure the flow rate of high-temperature fluids, such as reactive twin substances in petrochemical plants. Traditionally, orifice, gas flowmeters, venturi flowmeters, etc. have been used to measure the flow rate of these temperature fluids, but they suffer from high pressure loss and are unfavorable in terms of power savings, and venturi flowmeters have the problem of high equipment costs. .

近年比較的低温域(常温)の流体の測定に対して超音波
式Jc量計が取付費が安く、圧損が少ない等の利点があ
るため広く使われるようになって来た0 この超音波式測定方法は第5図に示されるように対の超
音波送受波器すなわちプローブaを流体導管すの周壁部
に対間して配置して行なう方法であるが、従来使用され
ているプローブは、第6図に示されるように、プローブ
ケースCの内周に絶チま体dを己装置してその中に両瑞
面にこ傾板fを接合した振動子eを配設し、振動子の前
端の電極板をプローブケースCの前端に設けた保護膜1
に接着剤Ag介して接合して構、截しただけにすぎない
ため、以下の■ないし■の理由により150°C〜18
0°C以上の高温流体の測定には適しなかった。
In recent years, ultrasonic type Jc meter has become widely used for measuring fluids in relatively low temperature range (room temperature) due to its advantages such as low installation cost and low pressure loss. The measurement method is to place a pair of ultrasonic transducers, that is, probes a, on the peripheral wall of a fluid conduit, as shown in FIG. 5, but conventionally used probes are As shown in FIG. 6, an insulating body d is installed on the inner periphery of the probe case C, and a vibrator e having a tilted plate f bonded to both sides of the vibrator is disposed therein. A protective film 1 in which an electrode plate at the front end of the probe case C is provided at the front end of the probe case C.
Since the structure is simply cut out and bonded via adhesive Ag, the temperature at 150°C to 18°C is due to the following reasons.
It was not suitable for measuring high temperature fluids of 0°C or higher.

■保護膜としてテフロン、SUS、Ti等の薄板’t 
W用しているが、現在の接着剤および接着技術では15
0°C〜180°C程度の温度で接着剤に剥離が発生し
、超音波の減衰が大きくなり使用不可能となる。
■A thin plate of Teflon, SUS, Ti, etc. as a protective film.
However, with current adhesives and bonding technology, 15
At temperatures of about 0° C. to 180° C., the adhesive peels off, and the attenuation of ultrasonic waves increases, making it unusable.

■超音波発信素子も高温度雰囲気中ではその発信特性が
劣化する。
■The transmission characteristics of ultrasonic transmitting elements also deteriorate in high-temperature atmospheres.

■導管内を流れる高温流体は一般的に第7図に示される
ような温度分布になって、管壁と接触する部分には温度
境界層yが発生してその近(で温度勾配が大きくなるが
、従来の測定方法ではプローブを管壁の内面に合わせる
か或はそれよりも外側に引込めて取り付けるようにして
いるため。
■The high-temperature fluid flowing inside the pipe generally has a temperature distribution as shown in Figure 7, with a temperature boundary layer y occurring at the part where it contacts the pipe wall, and a temperature gradient increasing near it. However, in conventional measurement methods, the probe is either aligned with the inner surface of the tube wall or retracted to the outside.

グローブから出た超音波が反対側のプローブに達する間
に前記温度勾配の大きな温度境界層yya’通過しなけ
ればならず、流体の温度、密LIΣ等による反射、屈折
、散乱等により第8図CA)に示されるように超音波の
減衰が大きく受信側グローブでの受波感度が十分とれず
測定不能となる。
Before the ultrasonic waves emitted from the glove reach the probe on the opposite side, they must pass through the temperature boundary layer yya' with a large temperature gradient, and due to reflection, refraction, scattering, etc. due to the temperature of the fluid, density LIΣ, etc. As shown in CA), the attenuation of the ultrasonic waves is large and the reception sensitivity of the receiving glove is not sufficient, making measurement impossible.

p−+  発明が解決しようとする問題点本発明が解決
しようとする問題は、低温(常温)の流体のみならず高
温流体の流量も精度良く測定できる超音波式流体流量」
11定装置およびその装置乞使用した測定方法7得るこ
とである。
p-+ Problem to be solved by the invention The problem to be solved by the invention is to provide an ultrasonic fluid flow rate that can accurately measure the flow rate of not only low-temperature (room-temperature) fluids but also high-temperature fluids.
11 and a measuring method 7 using the device.

に)問題点を解決するための手段 上記問題を解決するための第1番目の技術的手段は、流
体搬送用導管の周壁に対の振動子を相対向してかつ流体
通流域から隔てて配設してなる超音波式流体流量測定装
置において、該振動子の発振面に超音波振動補助棒を接
続して構成されている。
B) Means for solving the problem The first technical means for solving the above problem is to arrange a pair of vibrators on the peripheral wall of the fluid conveying conduit so as to face each other and to be separated from the fluid flow area. The ultrasonic fluid flow rate measuring device is constructed by connecting an ultrasonic vibration auxiliary rod to the oscillation surface of the vibrator.

第2番目の技術的手段は、流体搬送用導管の周壁に対の
振動子を相対向してかつ流体流通域から隔てて配設して
なる超音波式流体流量♂11定方法において、該振動子
の発振面に超音波振動補助棒を接続し、該超音波振動補
助棒の先端7該流体の温度均一帯まで突出させ、超音波
を該超音波振動補助棒と温度均一帯との間で伝播するよ
うに構成されている。
The second technical means is an ultrasonic fluid flow rate ♂11 determination method in which a pair of vibrators are disposed on the peripheral wall of a fluid conveying conduit so as to face each other and to be separated from the fluid flow area. An ultrasonic vibration auxiliary rod is connected to the oscillation surface of the child, and the tip 7 of the ultrasonic vibration auxiliary rod is projected to the uniform temperature zone of the fluid, and the ultrasonic wave is transmitted between the ultrasonic vibration auxiliary rod and the temperature uniform zone. Configured to propagate.

ωつ作用 上記構成において、発振側の振動子からの超音波はその
振動子に接続された超音波振動補助棒の中を伝ってその
先端から導管内の流体中に流れ、そこから受信側振動子
に接続された超音波振動補助棒の先端からその中を通っ
て受信側振動子に達する。
In the above configuration, the ultrasonic wave from the oscillating side transducer is transmitted through the ultrasonic vibration auxiliary rod connected to the oscillator, flows from its tip into the fluid in the conduit, and from there the receiving side vibration is transmitted. The ultrasonic vibration auxiliary rod connected to the transducer passes through the tip of the rod and reaches the receiving transducer.

(へ)実施例 以下図面を参照して本発明の実施例について説明する。(f) Example Embodiments of the present invention will be described below with reference to the drawings.

第1図にお(・て、本発明による超音波式流体流量測定
装置(以下単に測定装置と呼ぶ)の一実施例のユニット
1が示されている。このユニソトトは同じ構造のものを
導管すの取付は穴乙に従来の装置と同様に直径方向に相
対向させて配置されるものであり、片方のユニットの構
造につ℃・てのみ説明する。
Fig. 1 shows a unit 1 of an embodiment of the ultrasonic fluid flow rate measuring device (hereinafter simply referred to as measuring device) according to the present invention. The units are installed in holes 2 and diametrically opposite each other in the same manner as conventional devices, and only the structure of one unit will be explained.

ユニット1は、先端が開口して(・るSUS、セラミッ
ク等でできた長い管状の防じんソケット2と、防じんソ
ケット2の後端に固定されたカバー3と、先端がカバ−
3暑通して防じんソケット2内に突出させて設けられた
プローブ4と、プローブ4の先端に接続されかつ防じん
ソケット2内でほぼその全長に伸びている超音波振動補
助棒(以下単に補助棒)5とを備えている。
The unit 1 consists of a long tubular dust-proof socket 2 made of SUS, ceramic, etc. with an open end, a cover 3 fixed to the rear end of the dust-proof socket 2, and a cover 3 with an open end.
3. A probe 4 that is provided to protrude into the dust-proof socket 2 through the heat, and an ultrasonic vibration auxiliary rod (hereinafter simply referred to as the auxiliary rod) that is connected to the tip of the probe 4 and extends almost its entire length inside the dust-proof socket 2. 5.

プローブ4はプローブケース40内に振動子41が設け
られた従来の構造のものでよい。したがってその構造の
詳細な説明は省略する。
The probe 4 may have a conventional structure in which a vibrator 41 is provided within a probe case 40. Therefore, detailed explanation of its structure will be omitted.

補助棒5は防じんソケット内に設けられた音響絶縁物で
つくられたリング状の支持部材6により防じんソケット
とほぼ同心に支持されている。プローブ4と補助棒5と
の接合部の外周には冷却板7が取り付けられている。
The auxiliary rod 5 is supported substantially concentrically with the dustproof socket by a ring-shaped support member 6 made of an acoustic insulator provided inside the dustproof socket. A cooling plate 7 is attached to the outer periphery of the joint between the probe 4 and the auxiliary rod 5.

カバー3は冷却空気用の導入管31と排出管32とが接
続されていて防じんソケット2、カバー3および支持部
材6によって限定された空間、ノ内に冷却空気を導入し
、プローブ4と補助棒5との接続部を冷却できるように
なっている。
The cover 3 is connected to an inlet pipe 31 and an outlet pipe 32 for cooling air, and introduces cooling air into a space defined by the dustproof socket 2, cover 3, and support member 6, and connects the probe 4 and the auxiliary rod. 5 can be cooled.

補助棒5はアルミニウム、1Vfq、Tj、フッ素樹脂
等、高温流体から受ける熱に強くしかも超音波の伝達特
性の良いものがよい。
The auxiliary rod 5 is preferably made of aluminum, 1Vfq, Tj, fluororesin, or the like, which is resistant to heat received from high-temperature fluid and has good ultrasonic transmission characteristics.

プローブ4、詳しくはプローブ4内の振動子41と補助
棒5との接続方法としては、第2図〔A〕に示すように
市販のプローブ(第6図に示すものと同じ)4αの前面
の保護膜42αにエポキシ樹脂等の接着剤46αを介し
して接合してもよく、或は、第2図CB)に示されるよ
うに振動子41bの前面の電極板43bに直接接着剤4
6bにより接合してもよ(・。また第2図〔C〕に示さ
れるようにプローブケース40Cの前端に補助棒5f?
Y接合し、振動子41Cと補助棒5Cとの間の間隔内に
7リコンオイル、水、グリース等の流動性超音波振動媒
体47C’l封入してもよい。なおこの場! 合封入部に出入配管を取り付けて媒体と流通させる手段
或は媒体用ヘッダを付けて熱による膨張、収縮、気泡の
混入を防止しまた振動子の温度上昇ケ抑制する手段を構
じてもよい。
The method of connecting the probe 4, more specifically, the vibrator 41 in the probe 4 and the auxiliary rod 5, is as shown in FIG. It may be bonded to the protective film 42α via an adhesive 46α such as epoxy resin, or the adhesive 4 may be bonded directly to the electrode plate 43b on the front surface of the vibrator 41b as shown in FIG.
Alternatively, as shown in FIG. 2 [C], an auxiliary rod 5f may be attached to the front end of the probe case 40C.
A fluid ultrasonic vibration medium 47C'l such as 7 recon oil, water, or grease may be enclosed within the space between the vibrator 41C and the auxiliary rod 5C by Y-junction. In addition, this place! It is also possible to provide a means for attaching inlet/outlet piping to the joint enclosure section to communicate with the medium, or a means for attaching a header for the medium to prevent expansion, contraction, and inclusion of air bubbles due to heat, and to suppress the temperature rise of the vibrator. .

上記構成のユニットは従来の装置と同様に、補助棒が一
直線上で互いに相対向するようにして導管すの管壁に2
個一組として取り付ける。そして高温流体の流量を測定
する場合には第8図〔B〕に示すように補助棒5の先端
が流体の温度均一帯に突出するようにする。また導入管
31がら空間C内に冷却空気を導入しプローブ4並びに
プo −ブ4と補助棒5との接続部を冷却する。そして
一方のユニットのグローブの振動子から超音波を送り他
方のユニットのプローブの振動子でその超音波?受けて
流量を測定する。この場合超音波は補助棒5から温度均
一帯に伝りまた温度均一帯から補助棒5に伝わるので温
度勾配に影響されることなく精度よく測定できる。
Similar to conventional devices, the unit with the above configuration has two auxiliary rods attached to the pipe wall of the conduit, with the auxiliary rods facing each other in a straight line.
Install as a set. When measuring the flow rate of high-temperature fluid, the tip of the auxiliary rod 5 is made to protrude into the uniform temperature zone of the fluid, as shown in FIG. 8 (B). Cooling air is also introduced into the space C through the introduction pipe 31 to cool the probe 4 and the connecting portion between the probe 4 and the auxiliary rod 5. And the ultrasonic waves are sent from the transducer of the glove of one unit and the transducer of the probe of the other unit? and measure the flow rate. In this case, since the ultrasonic waves are transmitted from the auxiliary rod 5 to the temperature uniform zone and from the temperature uniform zone to the auxiliary rod 5, accurate measurement can be performed without being affected by the temperature gradient.

なお第1図の実施例では補助棒5用の支持部材6乞防じ
んソケットの後部(カバー側)に取り付! けていたが第3図に示されるように前部に取り付けても
よい。
In the embodiment shown in Figure 1, the support member 6 for the auxiliary rod 5 is attached to the rear (cover side) of the dustproof socket. However, it may be attached to the front as shown in FIG.

第4図において測定装置の他の実施例の一方のユニノ1
−1dが示されている。こb実施例において、補助棒5
dの後端にはフランジ51dが形成され、補助棒5dと
プローブ4dとは、フランジの一方にばね8d’l設け
てフランジ51dおよびフロブ4d’に囲むようにコネ
クタスリーブ9d”r外側に嵌めて止めねじ10Li、
で固定するとともに補助、棒5dの端面とプローブ4c
7.の端面との間に0 ’Jングシール11d、および
耐熱グリース(又は接着剤)1’2dY介在させて、接
続されて(・る。
In FIG. 4, one of the other embodiments of the measuring device
-1d is shown. In this embodiment, the auxiliary rod 5
A flange 51d is formed at the rear end of d, and the auxiliary rod 5d and probe 4d are fitted onto the outer side of the connector sleeve 9d''r so as to be surrounded by the flange 51d and the flob 4d' with a spring 8d'l provided on one side of the flange. Set screw 10Li,
and the end face of the rod 5d and the probe 4c.
7. A 0'J seal 11d and a heat-resistant grease (or adhesive) 1'2dY are interposed between the end face of the

防じんソケット2dの内周には耐火材製のリング6dが
複数個軸方向に隔てて固定されている。
A plurality of rings 6d made of fireproof material are fixed to the inner periphery of the dust-proof socket 2d at intervals in the axial direction.

また補助棒5dの先端には先端のリング6dと係合する
耐火材製の固定リング52dが設けられて℃・る。更に
冷却空気用の導入管31d、排出管31dは防じんソケ
ットに接合されたジヨイント用フランジ部材21d、 
K=り付けられ、防じんソケットには冷却空気の一部が
流出し得る孔22dが形成されて(・る。
Further, a fixing ring 52d made of a refractory material is provided at the tip of the auxiliary rod 5d to engage with a ring 6d at the tip. Further, the cooling air inlet pipe 31d and the exhaust pipe 31d are joined to a joint flange member 21d, which is connected to a dustproof socket.
A hole 22d is formed in the dustproof socket through which a portion of the cooling air can flow out.

次に内径850φ朋の導管で300℃を燃焼排ガス乞送
給した場合の試噴例について説明する。
Next, a test injection example will be described in which combustion exhaust gas is supplied at 300°C through a conduit having an inner diameter of 850φ.

本発明法の確認として、市販の超音波式流量制定装置の
プローブの発振面に直径60mm、長さ80朋のアルミ
ニウム製の補助棒を、耐熱グリースを介して当接した場
合(例1)と、上記補助棒を接着剤(エポキシ1幻脂)
で固着した場合(例2)について、管内壁からの補助棒
先端の突出量乞10mm、  20mm、  30朋と
変化させ、発振をサイン波形としかつ1波レベルが例1
における骨内方向の突出量30でIVとなるように基阜
設定してそれぞれ受信値ケ調べた結果、第1表に示すよ
うになった(瞬間パルス印加電圧1500v )。
As a confirmation of the method of the present invention, an aluminum auxiliary rod with a diameter of 60 mm and a length of 80 mm was brought into contact with the oscillation surface of the probe of a commercially available ultrasonic flow rate establishing device via heat-resistant grease (Example 1). , Glue the above auxiliary rod (epoxy 1 phantom resin)
In the case of fixation (Example 2), the amount of protrusion of the tip of the auxiliary rod from the inner wall of the pipe was changed to 10 mm, 20 mm, and 30 mm, the oscillation was made into a sine wave, and the level of 1 wave was changed to Example 1.
The basic setting was set so that the protrusion amount in the intraosseous direction was IV at 30, and the received values were investigated, and the results were as shown in Table 1 (instantaneous pulse applied voltage 1500 V).

一方従来法として前記本発明法で使用したのと同一プロ
ーブを使用し、発振面を耐摩耗性のT乙を接着している
のみで、補助棒はなく、発振先端位置が管内壁と同一に
なるように固定した。
On the other hand, the conventional method uses the same probe as used in the above-mentioned method of the present invention, only has a wear-resistant T-bond attached to the oscillation surface, there is no auxiliary rod, and the oscillation tip position is the same as the inner wall of the pipe. I fixed it so that

なおプローブの取付けはその軸線が導管すの軸線と60
°の角度を成すようにした。
The probe should be installed so that its axis line is 60 mm with the axis of the conduit.
It was made to form an angle of °.

上記表において10咽の場合の受信値が低いのは10−
突出させただけでは補助棒の先端が流体の温度均一帯ま
で突出できず温度境界層の範囲で終っているためと考え
られる。
In the above table, the lowest received value in the case of 10 throats is 10-
It is thought that this is because the tip of the auxiliary rod cannot protrude to the uniform temperature zone of the fluid just by protruding, and ends up within the temperature boundary layer.

なお導管内の不均一温度領域が広い場合、上流側配管内
にミキシング装置を取り付は上記本発明の装置を併用す
ることもできる。また、補助棒としてはIII定条件に
より異なる適当な材料を複合接合することにより冷却効
果、音響効果を上げる二とができる。
Note that when the non-uniform temperature region within the conduit is wide, a mixing device may be installed in the upstream piping and the device of the present invention described above may be used in combination. Further, as the auxiliary rod, the cooling effect and the acoustic effect can be increased by compositely joining suitable materials that differ depending on the III constant conditions.

また常温の流体の流量を測定する場合にも本発明の装置
を使用でき、その場合には補助棒の先扉の位置を特に制
限することはない。
The device of the present invention can also be used to measure the flow rate of fluid at room temperature, and in that case there is no particular restriction on the position of the end door of the auxiliary rod.

(ト)効果 以上の説明から明らかなように本発明によれば市販の超
音波式流量測定装置のプローブに補助棒を追加するだけ
で高温流体の流量を精度よく測定できる。
(g) Effects As is clear from the above description, according to the present invention, the flow rate of high-temperature fluid can be accurately measured simply by adding an auxiliary rod to the probe of a commercially available ultrasonic flow rate measuring device.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による超音波式流体テし量測定装置の一
方のユニットを示す断面図、第2図はプローブ内の振動
子の接続方法を示す図、第3図は防じんソケット内の支
持部材の位置の変形例を示す図、第4図は本発明のが1
1定装置の他の実施例の一方のユニットの断面を示す図
、第5図は詔音波式流体流量)11定方法を示す図、第
6図は従来のプローブの紮造を示す図、第7図は高温流
体輸送時におけろ専管内の温度分布を示す図、第8図は
従来の測定方法と本発明の方法との原理を比較して示す
図である。 l :ユニット 4.4a、41’、4d ニゲローブ 41.41cL、411!1,41d:振動子5.5a
、5b、5d :補助棒 特許出頭人  住友金属工業株式会社 (外5名) 第4図 ′32d
Fig. 1 is a sectional view showing one unit of the ultrasonic fluid test amount measuring device according to the present invention, Fig. 2 is a view showing how to connect the vibrator in the probe, and Fig. 3 is a support in the dust-proof socket. FIG. 4 is a diagram showing a modified example of the position of the members.
1. A diagram showing a cross section of one unit of another embodiment of the 1.1 constant device, 5. FIG. 7 is a diagram showing the temperature distribution in a special pipe during high-temperature fluid transportation, and FIG. 8 is a diagram comparing the principles of the conventional measurement method and the method of the present invention. l: Units 4.4a, 41', 4d Niger lobe 41.41cL, 411!1, 41d: Oscillator 5.5a
, 5b, 5d: Auxiliary rod patent applicant: Sumitomo Metal Industries, Ltd. (5 others) Figure 4'32d

Claims (1)

【特許請求の範囲】 1、流体搬送用導管の周壁に対の振動子を相対向してか
つ流体通流域から隔てて配設してなる超音波式流体流量
測定装置において、該振動子の発振面に超音波振動補助
棒を接続したことを特徴とした超音波式流体流量測定装
置。 2、流体搬送用導管の周壁に対の振動子を相対向してか
つ流体通流域から隔てて配設してなる超音波式流体流量
測定方法において、該振動子の発振面に超音波振動補助
棒を接続し、該超音波振動補助棒の先端を該流体の温度
均一帯まで突出させ、超音波を該超音波振動補助棒と温
度均一帯との間で伝播することを特徴とした超音波流体
流量測定方法。
[Claims] 1. In an ultrasonic fluid flow rate measuring device comprising a pair of vibrators disposed on the circumferential wall of a fluid conveying conduit facing each other and separated from a fluid flow area, the oscillation of the vibrators is provided. An ultrasonic fluid flow rate measurement device characterized by an ultrasonic vibration auxiliary rod connected to the surface. 2. In an ultrasonic fluid flow rate measuring method in which a pair of vibrators are disposed on the circumferential wall of a fluid conveying conduit facing each other and separated from a fluid flow area, ultrasonic vibration assistance is applied to the oscillation surface of the vibrator. An ultrasonic wave characterized by connecting rods, protruding the tip of the ultrasonic vibration auxiliary rod to a uniform temperature zone of the fluid, and propagating ultrasonic waves between the ultrasonic vibration auxiliary rod and the temperature uniform zone. Fluid flow measurement method.
JP59214793A 1984-10-13 1984-10-13 Method and device for ultrasonic measurement of fluid flow rate Pending JPS6193914A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59214793A JPS6193914A (en) 1984-10-13 1984-10-13 Method and device for ultrasonic measurement of fluid flow rate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59214793A JPS6193914A (en) 1984-10-13 1984-10-13 Method and device for ultrasonic measurement of fluid flow rate

Publications (1)

Publication Number Publication Date
JPS6193914A true JPS6193914A (en) 1986-05-12

Family

ID=16661619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59214793A Pending JPS6193914A (en) 1984-10-13 1984-10-13 Method and device for ultrasonic measurement of fluid flow rate

Country Status (1)

Country Link
JP (1) JPS6193914A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2617965A1 (en) * 1987-07-10 1989-01-13 Univ Paris Curie Device with guided elastic waves for detecting the presence of a liquid
WO1997008516A1 (en) * 1995-08-22 1997-03-06 Krohne Ag Volumetric flow meter
EP0835427A2 (en) * 1994-10-21 1998-04-15 Daniel Industries, Inc., Apparatus for and method of draining ultrasonic transducer port cavities
EP1316780A2 (en) * 2001-11-28 2003-06-04 Krohne AG Ultrasonic flow meter
DE19861186B4 (en) * 1998-03-02 2005-09-08 Schubert & Salzer Control Systems Gmbh System for through flow measurement
JP2006528357A (en) * 2003-07-21 2006-12-14 ホリバ インストルメンツ インク Acoustic transducer
JP2006528356A (en) * 2003-07-21 2006-12-14 ホリバ インストルメンツ インク Acoustic transducer
DE102007027362B3 (en) * 2007-06-11 2008-12-04 Schott Ag Method for measuring flow rate in glass melt or metallic melt for manufacturing glass or floating glass, involves generating ultrasonic measuring signals with pre-determined frequency through ultrasonic flow measuring instrument
DE102007027391B3 (en) * 2007-06-11 2009-01-08 Forschungszentrum Dresden - Rossendorf E.V. Ultrasonic sensor for measuring local flow velocities in liquid melts
DE102007027392B3 (en) * 2007-06-11 2009-01-15 Forschungszentrum Dresden - Rossendorf E.V. Method for measuring local flow velocities in liquid melts
US20140123768A1 (en) * 2012-11-05 2014-05-08 General Electric Company Ultrasonic signal coupler
JP2015087397A (en) * 2013-10-30 2015-05-07 クローネ アクチェンゲゼルシャフトKrohne AG Ultrasonic flowmeter
CN109029599A (en) * 2018-08-07 2018-12-18 北京慧怡科技有限责任公司 A kind of ultrasonic water meter

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2617965A1 (en) * 1987-07-10 1989-01-13 Univ Paris Curie Device with guided elastic waves for detecting the presence of a liquid
EP0835427A2 (en) * 1994-10-21 1998-04-15 Daniel Industries, Inc., Apparatus for and method of draining ultrasonic transducer port cavities
EP0835427A4 (en) * 1994-10-21 1998-09-16 Daniel Ind Inc Apparatus for and method of draining ultrasonic transducer port cavities
WO1997008516A1 (en) * 1995-08-22 1997-03-06 Krohne Ag Volumetric flow meter
US5824915A (en) * 1995-08-22 1998-10-20 Krohne A.G. Volumetric flow meter
DE19861186B4 (en) * 1998-03-02 2005-09-08 Schubert & Salzer Control Systems Gmbh System for through flow measurement
EP1316780A2 (en) * 2001-11-28 2003-06-04 Krohne AG Ultrasonic flow meter
EP1316780A3 (en) * 2001-11-28 2003-11-05 Krohne AG Ultrasonic flow meter
US6799475B2 (en) 2001-11-28 2004-10-05 Krohne A.G. Flowmeter
JP2006528356A (en) * 2003-07-21 2006-12-14 ホリバ インストルメンツ インク Acoustic transducer
JP2006528357A (en) * 2003-07-21 2006-12-14 ホリバ インストルメンツ インク Acoustic transducer
JP4704337B2 (en) * 2003-07-21 2011-06-15 株式会社堀場製作所 Acoustic transducer
JP4881730B2 (en) * 2003-07-21 2012-02-22 株式会社堀場製作所 Acoustic transducer
DE102007027362B3 (en) * 2007-06-11 2008-12-04 Schott Ag Method for measuring flow rate in glass melt or metallic melt for manufacturing glass or floating glass, involves generating ultrasonic measuring signals with pre-determined frequency through ultrasonic flow measuring instrument
DE102007027391B3 (en) * 2007-06-11 2009-01-08 Forschungszentrum Dresden - Rossendorf E.V. Ultrasonic sensor for measuring local flow velocities in liquid melts
DE102007027392B3 (en) * 2007-06-11 2009-01-15 Forschungszentrum Dresden - Rossendorf E.V. Method for measuring local flow velocities in liquid melts
JP2010530066A (en) * 2007-06-11 2010-09-02 フォルシュングスツェントルム ドレスデン−ローゼンドルフ エー.ファオ. Ultrasonic sensor for measuring the local flow rate of liquid melt
US20140123768A1 (en) * 2012-11-05 2014-05-08 General Electric Company Ultrasonic signal coupler
CN104755884A (en) * 2012-11-05 2015-07-01 通用电气公司 Ultrasonic waveguide
US9234777B2 (en) * 2012-11-05 2016-01-12 General Electric Company Ultrasonic signal coupler
JP2015087397A (en) * 2013-10-30 2015-05-07 クローネ アクチェンゲゼルシャフトKrohne AG Ultrasonic flowmeter
CN109029599A (en) * 2018-08-07 2018-12-18 北京慧怡科技有限责任公司 A kind of ultrasonic water meter

Similar Documents

Publication Publication Date Title
US5179862A (en) Snap-on flow measurement system
JPS6193914A (en) Method and device for ultrasonic measurement of fluid flow rate
US5159838A (en) Marginally dispersive ultrasonic waveguides
US5515733A (en) Ultrasonic transducer system with crosstalk isolation
US4286470A (en) Clamp-on ultrasonic transducer
US4610167A (en) Apparatus for measuring flow velocity of fluids
JP3715647B2 (en) Ultrasonic transducer with temporary crosstalk separation means
EP0536313A4 (en) Improved flow measurement system
US3242723A (en) Ultrasonic transducer
JPH0311649B2 (en)
US3750468A (en) Lined flow tube for electromagnetic flowmeter
US7062972B2 (en) Acoustic transducer
US6296385B1 (en) Apparatus and method for high temperature viscosity and temperature measurements
JPH02132327A (en) Ultrasonic sensor for high temperature
WO2014157907A1 (en) High temperature ultrasonic sensor and manufacturing method therefor
US3229523A (en) Apparatus employing vibratory energy
US20050016298A1 (en) Acoustic transducer
US6112581A (en) Vibratory viscometer
JP3955281B2 (en) Measuring head for ultrasonic flowmeter
US4506552A (en) Coaxial flowpath apparatus
US3204457A (en) Ultrasonic flowmeter
TWI779664B (en) Ultrasonic flow measurement device
US5974858A (en) Single flange installation densimeter
KR101287060B1 (en) Ultrasonic transducer for high temperature
US3320808A (en) Apparatus and method for acoustic instrumentation