JPH02132327A - Ultrasonic sensor for high temperature - Google Patents

Ultrasonic sensor for high temperature

Info

Publication number
JPH02132327A
JPH02132327A JP63287312A JP28731288A JPH02132327A JP H02132327 A JPH02132327 A JP H02132327A JP 63287312 A JP63287312 A JP 63287312A JP 28731288 A JP28731288 A JP 28731288A JP H02132327 A JPH02132327 A JP H02132327A
Authority
JP
Japan
Prior art keywords
ultrasonic
wedge
ultrasonic sensor
temp
nak
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63287312A
Other languages
Japanese (ja)
Inventor
Takashi Yoshida
尚 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP63287312A priority Critical patent/JPH02132327A/en
Publication of JPH02132327A publication Critical patent/JPH02132327A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Transducers For Ultrasonic Waves (AREA)

Abstract

PURPOSE:To measure the flow rate of high-temp. fluid with high accuracy by providing a recessed part in the wedge part of an object to be measured and sealing the liquid metal of an ultrasonic propagation medium therein. CONSTITUTION:The recessed part is provided in the wedge part 3 of the object to be measured and a gap part 6 is formed to the joint surface of an ultrasonic oscillator 1. A liquid metal 2, such as NaK, is sealed as the ultrasonic propagation medium into the gap part 6. The medium does not, therefore, flow out, unlike in the case of using oil, such as grease, and the ultrasonic sensor for high temp. which can measure the flow rate of the high-temp. fluid, such as liquid Na, for cooling around a boiler in thermal power generation or atomic power generation or a high-temp. breeder is obtd.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、例えば超音波を用いた超音波流量計の送・受
波器に係り、特に火力発電や原子力発電におけるボイラ
ーまわりの流量測定、あるいは高速増殖炉で冷却剤とし
て用いられる液体Naの流量測定に適した高温用超音波
センサーに関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a transmitter/receiver for an ultrasonic flowmeter using ultrasonic waves, and in particular to a boiler in thermal power generation or nuclear power generation. The present invention relates to a high-temperature ultrasonic sensor suitable for measuring the flow rate in the surrounding environment or for measuring the flow rate of liquid Na used as a coolant in a fast breeder reactor.

(従来の技術) 従来の高温用超音波流量計用センサーの例を第4図に示
す(引用文献実公昭55−72160号)。超音波振動
子(1)で発生した超音波を効率良く被測定対象側、こ
の場合くさび(3)に伝搬させるために、超音波振動子
(1)とくさび(3)の接合面にグリースなどの液状物
を用いる。しかし、被測定対象が高温の場合は、グリー
スなどの伝搬媒体は、耐熱性の点で使用できず、第3図
に示すように、耐高温性のオイル(11)と金箔(12
)を伝搬媒体として用いたものがあった。
(Prior Art) An example of a conventional sensor for a high-temperature ultrasonic flowmeter is shown in FIG. 4 (cited document Utility Model Publication No. 72160/1983). In order to efficiently propagate the ultrasonic waves generated by the ultrasonic transducer (1) to the side to be measured, in this case to the wedge (3), apply grease or the like to the joint surface between the ultrasonic transducer (1) and the wedge (3). Use a liquid substance. However, when the object to be measured is at a high temperature, propagation media such as grease cannot be used due to their heat resistance.As shown in Figure 3, high temperature resistant oil (11) and gold foil (12
) was used as a propagation medium.

(発明が解決しようとする問題点) 従来技術では伝搬媒体としてオイルを用いているが、オ
イルの場合耐熱性はせいぜい250℃位までであり、高
速増殖炉でのNa流量測定に要求される600℃には程
遠いものであった。そこで本発明は、Na流量測定にも
十分使用可能な耐熱性の高い伝搬媒体を備えた高温用超
音波センサーを実現することを課題とし、本発明の目的
もそこにある。
(Problems to be Solved by the Invention) In the conventional technology, oil is used as a propagation medium, but the heat resistance of oil is at most 250°C, which is higher than 600°C, which is required for Na flow measurement in fast breeder reactors. It was far from ℃. Therefore, an object of the present invention is to realize a high-temperature ultrasonic sensor equipped with a highly heat-resistant propagation medium that can be used to measure the flow rate of Na, and that is also the purpose of the present invention.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 本発明の高温用超音波センサーは、超音波振動子とくさ
びの接合面に、この接合面の周辺を残して前記くさびに
形成された微小深さの凹部による空隙部を設け、この空
隙部に液体金属を封入した構成である。
(Means for Solving the Problems) The high-temperature ultrasonic sensor of the present invention has a recess of minute depth formed in the joining surface of the ultrasonic vibrator and the wedge, leaving the periphery of this joining surface. It has a structure in which a cavity is provided and liquid metal is sealed in this cavity.

(作 用) 本発明の高温用超音波センサーでは、空隙部に封入する
液体金属として例えばNaK (NaとKの合金で常温
で液体)を用いれば、700’C程度までの高温域で伝
搬媒体として機能し、効率良く超音波を伝搬することが
できる。
(Function) In the high-temperature ultrasonic sensor of the present invention, if NaK (an alloy of Na and K, which is liquid at room temperature) is used as the liquid metal sealed in the cavity, the propagation medium can be used in the high-temperature range up to about 700'C. It can efficiently propagate ultrasonic waves.

(実施例) 以下.図面に示した実施例に基いて本発明を詳細に説明
する。
(Example) Below. The present invention will be explained in detail based on embodiments shown in the drawings.

第1図および第2図に本発明一実施例の高温用超音波セ
ンサーを示す。第2図は第1図のA部の拡大図である。
FIG. 1 and FIG. 2 show a high temperature ultrasonic sensor according to an embodiment of the present invention. FIG. 2 is an enlarged view of section A in FIG. 1.

超音波振動子(1)は、耐高温材(例えばステンレスな
どの金属材)で作られたくさび(3)に接合されている
。くさび(3)の接合面には、接合面の周辺を残して形
成された微小深さの凹部による空隙部(6)が設けられ
、この空隙部(6)には伝搬媒体として液体のNaK(
2)が封入されている。
The ultrasonic transducer (1) is joined to a wedge (3) made of a high temperature resistant material (for example, a metal material such as stainless steel). The joint surface of the wedge (3) is provided with a cavity (6) formed by a microscopic recess formed leaving the periphery of the joint surface, and this cavity (6) is filled with liquid NaK (
2) is included.

超音波振動子(1)は、一般にチタン酸バリウムやジル
コンチタン酸鉛などの電歪素子(4)を円板状にし、そ
の両端面に銀などの導体の蒸着などにより形成された電
極(5)を有する構造である。
The ultrasonic vibrator (1) is generally made of an electrostrictive element (4) made of barium titanate or lead zirconium titanate into a disk shape, and has electrodes (5) formed on both end surfaces by vapor deposition of a conductor such as silver. ).

空隙部(6)に封入する伝搬媒体としては、水銀(融点
−38.87℃、沸点356.6℃),ナトリウム(融
点98℃、沸点889℃)、カリウム(融点63.4℃
、沸点757℃)およびNaとKとの合金NaK (例
えばK78%、Na22%の場合、融点−11℃,沸点
784℃)などがあるが、常温で液体で且つ沸点の高い
NaKが最も適している,しかし,前記の各物質は、い
ずれも空気や水に触れると化学反応を起し物性が変って
しまうため、空気や水に触れないようにしなければなら
ない。
The propagation medium sealed in the cavity (6) includes mercury (melting point -38.87°C, boiling point 356.6°C), sodium (melting point 98°C, boiling point 889°C), potassium (melting point 63.4°C).
, boiling point: 757°C) and NaK, an alloy of Na and K (for example, in the case of 78% K and 22% Na, the melting point is -11°C and the boiling point is 784°C), but NaK, which is liquid at room temperature and has a high boiling point, is the most suitable. However, each of the above substances causes chemical reactions and changes in physical properties when they come in contact with air or water, so they must be prevented from coming into contact with air or water.

したがって、空隙部(6)を外部と気密に隔離するため
、超音波振動子(1)とくさび(3)とはその全周縁の
接触部(7)をろう付などにより接合する。
Therefore, in order to airtightly isolate the cavity (6) from the outside, the ultrasonic transducer (1) and the wedge (3) are joined together at their contact portions (7) on the entire periphery by brazing or the like.

そして空隙部(6)内を真空に引いた後、NaK(2)
を気泡等が残らないように空隙部(6)に注入し、注4
一 入口を封止する。
After drawing a vacuum inside the cavity (6), NaK (2)
Inject into the cavity (6) so that no air bubbles etc. remain, and
Seal one entrance.

上記のように構成された本発明一実施例の高温用超音波
センサーの作用を以下に述べる。超音波振動子(1)の
両端の電極(5)に電圧をかけると、電歪素子(4)が
振動し、その振動は、封入されてぃるNaK(2)を介
してくさび(3)に伝搬される。
The operation of the high temperature ultrasonic sensor according to one embodiment of the present invention constructed as described above will be described below. When voltage is applied to the electrodes (5) at both ends of the ultrasonic vibrator (1), the electrostrictive element (4) vibrates, and the vibration is transmitted through the enclosed NaK (2) to the wedge (3). is propagated to.

第3図に本実施例の高温用超音波センサーを用いた超音
波流量計の例を示す。配管(8)内を高温流体(9)、
例えばNaが矢印方向に流れている。配管(8)には、
1対のくさび(3),(3’)が図示のように設けられ
ており、くさび(3) . (3’)にはそれぞれ超音
波振動子(1),(1’)が接合されている。超音波振
動子(1)で発生した超音波は伝搬媒体のNaKを介し
てくさび(3)に伝わり、さらに配管(8)外壁を経由
して流体(9)中を伝搬し、受波側の配管壁,くさび,
NaKを介して超音波振動子(1)に伝達される。
FIG. 3 shows an example of an ultrasonic flowmeter using the high temperature ultrasonic sensor of this embodiment. High temperature fluid (9) inside the pipe (8),
For example, Na is flowing in the direction of the arrow. In the piping (8),
A pair of wedges (3), (3') are provided as shown, with wedge (3) . Ultrasonic transducers (1) and (1') are connected to (3'), respectively. The ultrasonic wave generated by the ultrasonic transducer (1) is transmitted to the wedge (3) via the propagation medium NaK, and further propagates through the fluid (9) via the outer wall of the pipe (8), and is transmitted to the receiving side. piping wall, wedge,
It is transmitted to the ultrasonic transducer (1) via NaK.

このときの超音波の伝搬時間は、高温流体(9)が流れ
ている場合はその流速に応じて変化する。この流速によ
る超音波伝搬時間の変化から流体の流速を検出し、流量
を算出する。超音波流量計の場合、流体の温度変化によ
る影響をなくすため、超音波の発信は、振動子(1)→
(1′)と(1′)→(1)とを交互に繰返し行なうと
いうように送波と受波を同じ振動子で交互に切換えて行
なう。つまり、1対設けられた超音波振動子(1),(
1’)およびくさび(3) , (3’)は同一形状の
ものでよい。
The propagation time of the ultrasonic waves at this time changes depending on the flow velocity when the high temperature fluid (9) is flowing. The flow velocity of the fluid is detected from the change in ultrasonic propagation time due to this flow velocity, and the flow rate is calculated. In the case of an ultrasonic flowmeter, in order to eliminate the influence of temperature changes in the fluid, ultrasonic waves are transmitted from the vibrator (1) →
(1') and (1')→(1) are alternately repeated, and the transmission and reception are alternately performed using the same vibrator. In other words, a pair of ultrasonic transducers (1), (
1') and wedges (3) and (3') may have the same shape.

上述したように、本発明一実施例の高温用超音波センサ
ーにおいては、超音波振動子(1)とくさび(3)の間
に伝搬媒体として液体のNaK (沸点784℃)を気
密封入しているので、超音波の伝搬効率が良く、約70
0℃までの高温で使用できるとともに、NaKを気密封
入しているためNaKの劣化が起らず、長期間の使用に
耐えることができる。
As mentioned above, in the high-temperature ultrasonic sensor according to one embodiment of the present invention, liquid NaK (boiling point 784°C) is hermetically sealed between the ultrasonic vibrator (1) and the wedge (3) as a propagation medium. Because of this, the propagation efficiency of ultrasonic waves is good, and approximately 70
It can be used at high temperatures up to 0°C, and since NaK is hermetically sealed, NaK does not deteriorate and can withstand long-term use.

〔発明の効果〕〔Effect of the invention〕

以上詳述したように本発明によれば、超音波振動子とく
さびの接合面に伝搬媒体としてNaKなどの液体金属を
気密封入した高温用超音波センサーを実現したことから
、超音波の伝搬効率が良く、しかも、約700℃までの
高温で使用可能であるとともに長期間の使用に耐える高
温用超音波センサーを提供できる。
As detailed above, according to the present invention, a high-temperature ultrasonic sensor is realized in which a liquid metal such as NaK is hermetically sealed as a propagation medium on the joint surface of an ultrasonic transducer and a wedge, which improves the propagation efficiency of ultrasonic waves. It is possible to provide a high-temperature ultrasonic sensor that has good performance, can be used at high temperatures up to about 700°C, and can withstand long-term use.

また、現在はオリフィス流量計が用いられている火力発
電の高温高圧の給水流量測定に、本発明の高温用超音波
センサーを用いた超音波流量計を使用すれば、測定精度
を約2%前後から1%程度に向上できる。また、現在は
電磁流量計が用いられている高速増殖炉のNa流量測定
にも本発明の高温用超音波センサーを用いた超音波流景
計の使用が可能となり、大幅なコストダウンが見込まれ
る。
Additionally, if an ultrasonic flowmeter using the high-temperature ultrasonic sensor of the present invention is used to measure the flow rate of high-temperature, high-pressure feed water for thermal power generation, where orifice flowmeters are currently used, the measurement accuracy can be improved by approximately 2%. This can be improved from about 1%. In addition, the ultrasonic flowmeter using the high-temperature ultrasonic sensor of the present invention can be used to measure the Na flow rate in fast breeder reactors, where electromagnetic flowmeters are currently used, and significant cost reductions are expected. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明一実施例の高温用超音波センサーを示す
概略断面図、第2図は第1図のA部の拡大図、第3図は
第1図の高温用超音波センサーを用いた超音波流量計を
示す概略図、第4図は従来の高温用超音波流量計用セン
サーの一例を示す概略図である。 1・・・超音波振動子  2・・・封入された液体金属
3・・・くさび     4・・・電歪素子5・・・電
極      6・・・空隙部7・・接触部 代理人 弁理士 大 胡 典 夫
FIG. 1 is a schematic cross-sectional view showing a high temperature ultrasonic sensor according to an embodiment of the present invention, FIG. 2 is an enlarged view of section A in FIG. FIG. 4 is a schematic diagram showing an example of a conventional sensor for a high-temperature ultrasonic flow meter. 1... Ultrasonic vibrator 2... Enclosed liquid metal 3... Wedge 4... Electrostrictive element 5... Electrode 6... Cavity part 7... Contact part agent Patent attorney Dai Hu Dianfu

Claims (2)

【特許請求の範囲】[Claims] (1)超音波振動子とくさびの接合面に、この接合面の
周辺を残して前記くさびに形成された微小深さの凹部に
よる空隙部を設け、この空隙部に液体金属を封入して成
る高温用超音波センサー。
(1) A gap formed by a micro-deep recess formed in the wedge is provided at the joint surface of the ultrasonic transducer and the wedge, leaving the periphery of the joint surface, and liquid metal is filled in this cavity. Ultrasonic sensor for high temperature.
(2)封入する液体金属にNaKを用いた請求項1記載
の高温用超音波センサー。
(2) The high temperature ultrasonic sensor according to claim 1, wherein NaK is used as the liquid metal to be sealed.
JP63287312A 1988-11-14 1988-11-14 Ultrasonic sensor for high temperature Pending JPH02132327A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63287312A JPH02132327A (en) 1988-11-14 1988-11-14 Ultrasonic sensor for high temperature

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63287312A JPH02132327A (en) 1988-11-14 1988-11-14 Ultrasonic sensor for high temperature

Publications (1)

Publication Number Publication Date
JPH02132327A true JPH02132327A (en) 1990-05-21

Family

ID=17715739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63287312A Pending JPH02132327A (en) 1988-11-14 1988-11-14 Ultrasonic sensor for high temperature

Country Status (1)

Country Link
JP (1) JPH02132327A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10055893A1 (en) * 2000-11-10 2002-05-23 Hydrometer Gmbh Ultrasound converter unit for use in a flow meter for gaseous or liquid media comprises an intermediate viscous, sound conducting layer between the sound coupling and converter elements
WO2005010864A1 (en) * 2003-07-21 2005-02-03 Horiba Instruments, Inc. Acoustic transducer
WO2007032321A1 (en) 2005-09-12 2007-03-22 Tonen Chemical Corporation Method and apparatus for plasma treatment of porous material
WO2007046496A1 (en) 2005-10-21 2007-04-26 Tonen Chemical Corporation Process for production of thermoplastic resin microporous membranes
WO2007052663A1 (en) 2005-11-01 2007-05-10 Tonen Chemical Corporation Polyolefin microporous membrane, separator for battery using the membrane, and battery
WO2007060990A1 (en) 2005-11-24 2007-05-31 Tonen Chemical Corporation Microporous polyolefin membrane, process for producing the same, separator for cell, and cell
WO2007060991A1 (en) 2005-11-24 2007-05-31 Tonen Chemical Corporation Microporous polyolefin membrane, process for producing the same, separator for cell, and cell
JP2010190662A (en) * 2009-02-17 2010-09-02 Hitachi-Ge Nuclear Energy Ltd Shoe for ultrasonic probe and method of detaching ultrasonic probe
KR101139592B1 (en) * 2010-08-11 2012-04-27 한국수력원자력 주식회사 longitudinal wave transducer wedge to maintain couplant layer and longitudinal wave transducer using the same
WO2013099607A1 (en) 2011-12-28 2013-07-04 東レバッテリーセパレータフィルム株式会社 Polyolefin microporous film and method for producing same
WO2014076994A1 (en) 2012-11-16 2014-05-22 東レバッテリーセパレータフィルム株式会社 Battery separator
CN106788376A (en) * 2015-11-19 2017-05-31 中国科学院理化技术研究所 Self-excited oscillation device, Fluid valve, contactor and light path switch
WO2018164054A1 (en) 2017-03-08 2018-09-13 東レ株式会社 Polyolefin microporous membrane
WO2019093184A1 (en) 2017-11-08 2019-05-16 東レ株式会社 Polyolefin composite porous film, method for producing same, battery separator, and battery
KR102017171B1 (en) * 2018-12-07 2019-09-02 (주)엘라켐 Phased array ultrasonic probe device for rail inspection with excellent preservation of couplant
US10411237B2 (en) 2013-05-31 2019-09-10 Toray Industries, Inc. Multilayer, microporous polyolefin membrane, and production method thereof
WO2020096061A1 (en) 2018-11-09 2020-05-14 東レ株式会社 Porous polyolefin film, cell separator, and secondary cell
WO2020149294A1 (en) 2019-01-16 2020-07-23 東レ株式会社 Polyolefin multilayer microporous film and production method therefor
WO2020203908A1 (en) 2019-03-29 2020-10-08 東レ株式会社 Microporous polyolefin film, separator for battery, and secondary battery

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10055893A1 (en) * 2000-11-10 2002-05-23 Hydrometer Gmbh Ultrasound converter unit for use in a flow meter for gaseous or liquid media comprises an intermediate viscous, sound conducting layer between the sound coupling and converter elements
DE10055893B4 (en) * 2000-11-10 2004-09-23 Hydrometer Gmbh Ultrasonic transducer arrangement for use in a flow meter for a gaseous or liquid medium
DE10055893C5 (en) * 2000-11-10 2010-04-01 Hydrometer Gmbh Ultrasonic transducer assembly for use in a flowmeter for a gaseous or liquid medium
WO2005010864A1 (en) * 2003-07-21 2005-02-03 Horiba Instruments, Inc. Acoustic transducer
US7062972B2 (en) 2003-07-21 2006-06-20 Horiba Instruments, Inc. Acoustic transducer
WO2007032321A1 (en) 2005-09-12 2007-03-22 Tonen Chemical Corporation Method and apparatus for plasma treatment of porous material
WO2007046496A1 (en) 2005-10-21 2007-04-26 Tonen Chemical Corporation Process for production of thermoplastic resin microporous membranes
WO2007052663A1 (en) 2005-11-01 2007-05-10 Tonen Chemical Corporation Polyolefin microporous membrane, separator for battery using the membrane, and battery
WO2007060990A1 (en) 2005-11-24 2007-05-31 Tonen Chemical Corporation Microporous polyolefin membrane, process for producing the same, separator for cell, and cell
WO2007060991A1 (en) 2005-11-24 2007-05-31 Tonen Chemical Corporation Microporous polyolefin membrane, process for producing the same, separator for cell, and cell
JP2010190662A (en) * 2009-02-17 2010-09-02 Hitachi-Ge Nuclear Energy Ltd Shoe for ultrasonic probe and method of detaching ultrasonic probe
KR101139592B1 (en) * 2010-08-11 2012-04-27 한국수력원자력 주식회사 longitudinal wave transducer wedge to maintain couplant layer and longitudinal wave transducer using the same
WO2013099607A1 (en) 2011-12-28 2013-07-04 東レバッテリーセパレータフィルム株式会社 Polyolefin microporous film and method for producing same
WO2014076994A1 (en) 2012-11-16 2014-05-22 東レバッテリーセパレータフィルム株式会社 Battery separator
US10411237B2 (en) 2013-05-31 2019-09-10 Toray Industries, Inc. Multilayer, microporous polyolefin membrane, and production method thereof
CN106788376A (en) * 2015-11-19 2017-05-31 中国科学院理化技术研究所 Self-excited oscillation device, Fluid valve, contactor and light path switch
CN106788376B (en) * 2015-11-19 2019-09-17 中国科学院理化技术研究所 Self-excited oscillation device, Fluid valve, circuit switch and light path switch
WO2018164054A1 (en) 2017-03-08 2018-09-13 東レ株式会社 Polyolefin microporous membrane
WO2019093184A1 (en) 2017-11-08 2019-05-16 東レ株式会社 Polyolefin composite porous film, method for producing same, battery separator, and battery
WO2020096061A1 (en) 2018-11-09 2020-05-14 東レ株式会社 Porous polyolefin film, cell separator, and secondary cell
KR102017171B1 (en) * 2018-12-07 2019-09-02 (주)엘라켐 Phased array ultrasonic probe device for rail inspection with excellent preservation of couplant
WO2020149294A1 (en) 2019-01-16 2020-07-23 東レ株式会社 Polyolefin multilayer microporous film and production method therefor
WO2020203908A1 (en) 2019-03-29 2020-10-08 東レ株式会社 Microporous polyolefin film, separator for battery, and secondary battery

Similar Documents

Publication Publication Date Title
JPH02132327A (en) Ultrasonic sensor for high temperature
EP1724559B1 (en) Ultrasonic transducer for liquid metal
US3242723A (en) Ultrasonic transducer
US3237453A (en) Ultrasonic flowmeter system
JPH06201666A (en) Ultrasonic waveguide
RU2608331C1 (en) Bending moment sensor for high-temperature vortex flow meters
US10352907B2 (en) High-temperature, high pressure acoustic resonance cell
CN104395704B (en) For the ultrasonic sensor and its manufacture method of high temperature
US7021145B2 (en) Acoustic transducer
CN105865701B (en) A kind of high temperature villiaumite pressure gauge
US7062972B2 (en) Acoustic transducer
JPS6193914A (en) Method and device for ultrasonic measurement of fluid flow rate
US3597316A (en) Nuclear reactor thermometry
Periyannan et al. Temperature gradients and material properties measurements using Ultrasonic guided waves
KR101287060B1 (en) Ultrasonic transducer for high temperature
JP3004984B1 (en) Ultrasonic temperature measurement device
US3320808A (en) Apparatus and method for acoustic instrumentation
CN109489797A (en) A kind of corrosion-and high-temp-resistant sonic transducer, sound field measure system and method
JP2011007763A (en) Ultrasonic flowmeter
JP2012167964A (en) Ultrasonic incidence method
Melnikov et al. Waveguide ultrasonic liquid level transducer for nuclear power plant steam generator
CN219038089U (en) Ultrasonic transducer and gas ultrasonic flowmeter
Anderson et al. Detecting acoustic emission in large liquid metal cooled fast breeder reactors
Papadakis et al. ULTRASONIC THERMOMETRY IN LMFBR SYSTEMS. Progress Report Covering the Quarter Ending June 30, 1970.
CN109506771A (en) With the sound field detection method and device of spatialization function in high-temp liquid medium