JPH1021956A - Battery containing organic additive - Google Patents

Battery containing organic additive

Info

Publication number
JPH1021956A
JPH1021956A JP8207548A JP20754896A JPH1021956A JP H1021956 A JPH1021956 A JP H1021956A JP 8207548 A JP8207548 A JP 8207548A JP 20754896 A JP20754896 A JP 20754896A JP H1021956 A JPH1021956 A JP H1021956A
Authority
JP
Japan
Prior art keywords
derivative
acid
battery
additive
organic additive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8207548A
Other languages
Japanese (ja)
Inventor
Akiya Ozawa
昭弥 小沢
Yoshitaka Suzuki
喜隆 鈴木
Tatsuko Takei
たつ子 武井
Masamichi Yamashita
正通 山下
Atsushi Sato
厚 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP8207548A priority Critical patent/JPH1021956A/en
Publication of JPH1021956A publication Critical patent/JPH1021956A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a battery of which terminal voltage decreases due to charging and discharging cycles is slight and which provides a high total dis charging capacity and is manufactured at low cost and durable for repeated charging and discharging by adding a specified organic additive to an electro lytic solution. SOLUTION: This battery contains a compound produced by binding sulfonic acid group or phosphonic acid group to a molecule comprising a plurality of benzene rings bound through conjugated double bonds as an additive in an electrolytic solution which is brought into contact with a zinc electrode. Moreover, the battery contains one or more organic additive selected from the following compounds A, B, C, D, E, and F in the electrolytic solution contacting the zinc electrode: A is anthraquinonesulfonic acid or its derivative; B is naphthalenesulfonic acid or its derivative; C is naphtholsulfonic acid or its derivative; D is anthraquinonephosphonic acid or its derivative; E is naphthalenephosphonic acid or its derivative; and F is naphtholphosphonic acid or its derivative.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は亜鉛を負極とした電
池の充放電サイクルに伴う容量の減少を有効に防止でき
る電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a battery capable of effectively preventing a decrease in capacity accompanying a charge / discharge cycle of a battery using zinc as a negative electrode.

【0002】[0002]

【従来の技術】亜鉛を負極、二酸化マンガンを正極、電
解質にKOHまたは塩化アンモニウムあるいは塩化亜鉛
の水溶液を用いたいわゆる乾電池は取扱が容易で且つ安
価なことから携帯用電子機器や携帯用照明器具の電源と
して広く用いられている。この内特にKOHを電解液と
するいわゆるアルカリマンガン電池は大電流放電がで
き、放電容量も大きいことから自己放電が少なく、更に
その構造として負極の亜鉛粉と電解液の混合物を円柱状
の電池の中心部に配置して正極の二酸化マンガンとの間
をセパレーター層で分離しているため、現在市販されて
いる電池でも注意深く充電を行えば数十回の充電を行う
ことは可能であるものの、充電サイクルに伴い、負極物
質表面からセパレーターに向かって導電性の樹枝状結晶
が析出し、両極を短絡させることにより電池寿命が尽き
るという問題があった。
2. Description of the Related Art A so-called dry battery using zinc as a negative electrode, manganese dioxide as a positive electrode, and an aqueous solution of KOH, ammonium chloride or zinc chloride as an electrolyte is easy to handle and inexpensive. Widely used as a power source. Of these, the so-called alkaline manganese battery using KOH as an electrolyte is capable of discharging a large current and having a large discharge capacity, so that the self-discharge is small. Since it is located in the center and separates it from the positive electrode manganese dioxide with a separator layer, it is possible to charge dozens of times with careful charging even with currently marketed batteries, but charging is possible. With the cycle, conductive dendritic crystals are deposited from the surface of the negative electrode material toward the separator, and there is a problem that the battery life is exhausted by short-circuiting both electrodes.

【0003】[0003]

【発明が解決しようとする課題】本発明はかかる問題点
に鑑み、電解液中に特定の有機添加剤を加えることによ
り、充放電特性を著しく改善した電池を提供することを
目的とするものである。
SUMMARY OF THE INVENTION In view of the above problems, an object of the present invention is to provide a battery having a remarkably improved charge / discharge characteristic by adding a specific organic additive to an electrolytic solution. is there.

【0004】[0004]

【課題を解決するための手段】本発明は、共役二重結合
を介して結合する複数のベンゼン核よりなる分子中にス
ルホン基またはホスホン基を結合してなる化合物を添加
剤として亜鉛極と接する電解液中に含むことを特徴とす
る電池、および、下記の化合物A,B,C,D,E,F
からなる群の中の少なくとも一種の有機添加剤を亜鉛極
と接する電解液中に含む電池である。 A:アントラキノンスルホン酸またはその誘導体 B:ナフタレンスルホン酸またはその誘導体 C:ナフトールスルホン酸またはその誘導体 D:アントラキノンホスホン酸またはその誘導体 E:ナフタレンホスホン酸またはその誘導体 F:ナフトールホスホン酸またはその誘導体
According to the present invention, a compound comprising a benzene nucleus bonded through a conjugated double bond and having a sulfone group or a phosphone group bonded to the molecule is used as an additive to contact the zinc electrode. A battery characterized in that it is contained in an electrolytic solution, and the following compounds A, B, C, D, E, and F
A battery comprising at least one organic additive selected from the group consisting of in an electrolytic solution in contact with a zinc electrode. A: Anthraquinonesulfonic acid or a derivative thereof B: Naphthalenesulfonic acid or a derivative thereof C: Naphtholsulfonic acid or a derivative thereof D: Anthraquinonephosphonic acid or a derivative thereof E: Naphthalenephosphonic acid or a derivative thereof F: Naphtholphosphonic acid or a derivative thereof

【0005】更に、上記の複数のベンゼン核は少なくと
も1つの水素原子が酸素原子に置換されていることが望
ましい。また、それぞれの分子中のスルホン基またはホ
スホン基の数は1または複数であることができ、一般に
その数が多い程充放電サイクル寿命を延長する効果が大
きい。本発明において、これらの化合物が電池の充放電
特性を改善するメカニズムは明らかではないが、その分
子中に電子を偏在せしめる極性基を有し、且つ共役二重
結合を介して結合された複数のベンゼン核中では電子が
自由に移動できるため、これらの極性基の働きが活発と
なり、これらの分子が亜鉛またはその化合物の特定の表
面に吸着することにより、充電時において導電性の樹枝
状結晶の特定方向への成長を防止する効果をもたらすも
のと推定する。本発明に用いる複数のベンゼン核の分子
構造の例を図2A〜Dに示す。
Furthermore, it is desirable that at least one hydrogen atom in the plurality of benzene nuclei is replaced by an oxygen atom. The number of sulfone groups or phosphone groups in each molecule can be one or more. Generally, the larger the number, the greater the effect of extending the charge / discharge cycle life. In the present invention, the mechanism by which these compounds improve the charge / discharge characteristics of the battery is not clear, but a plurality of compounds having a polar group that causes electrons to be unevenly distributed in the molecule, and bonded via a conjugated double bond. Since electrons can move freely in the benzene nucleus, the action of these polar groups becomes active, and these molecules are adsorbed on the specific surface of zinc or its compound, causing the formation of conductive dendritic crystals during charging. It is presumed to have an effect of preventing growth in a specific direction. Examples of the molecular structure of a plurality of benzene nuclei used in the present invention are shown in FIGS.

【0006】本発明に用いる電解質は、一般に乾電池に
用いられている塩化亜鉛、塩化アンモニウム、KOH、
NaOH等を用いることが出来、溶解度の点から特にK
OH、NaOHが好ましい。本発明で用いる化合物A〜
Fは電解液中に溶解せしめるか、あるいは微粉末状で電
解液と混合して加えることができ、その添加量は単3型
アルカリマンガン電池の負極の混合物中に用いた場合で
電池一個当たり5ミリグラム以上が望ましく、10ミリ
グラム以上が更に望ましい。また、導電性の結晶が析出
することにより短絡が起こりやすいセパレーター中の電
解液のみに添加剤を含浸せしめることにより更に少ない
添加量で効果をあげることも可能である。
The electrolyte used in the present invention is zinc chloride, ammonium chloride, KOH,
NaOH or the like can be used.
OH and NaOH are preferred. Compound A to be used in the present invention
F can be dissolved in the electrolytic solution or added in the form of a fine powder mixed with the electrolytic solution. The amount of F added is 5 per cell when used in the mixture of the negative electrodes of the AA alkaline manganese battery. Desirably, milligrams or more, more preferably, 10 milligrams or more. In addition, by impregnating only the electrolyte solution in the separator in which a short circuit is likely to occur due to precipitation of conductive crystals with the additive, the effect can be improved with a smaller addition amount.

【0007】[0007]

【実施例】図1の構造の単3型アルカリマンガン乾電池
の負極に、亜鉛粉末と、KOH水溶液と、ゲル化剤と、
表1の化合物粉末15ミリグラムとの混合物を用い、正
極は二酸化マンガンと黒鉛とKOH水溶液との合剤を用
い、両極をセパレーター紙を介して組み立てて試験用電
池とした。なお表1において、K2、Na2、Na12
等はそれぞれK、Na、Na12を意味する。この
それぞれの電池について、150mAで5時間放電した
後、50mAで15時間充電した。電池の端子電圧の上
限は1.7Vとした。充電終了後1時間休止し、同じ条
件で放電、充電を繰り返した。放電時の端子電圧が1.
0Vになった時点で試験を終了し、その時点までの総放
電量(AH)を求めた。その結果を表2に示す。有機添
加剤を含まない電池の総放電量5.93AHと、各種の
添加剤を含む電池の総放電量との比を次式により求め、
これを評価値とした。評価値=各電池の総放電量(A
H)/添加剤を含まない電池の総放電量(AH)すなわ
ち、評価値が大きい程、2次電池として有効であること
になる。
EXAMPLE A zinc powder, a KOH aqueous solution, a gelling agent, and a negative electrode of an AA alkaline manganese dry battery having the structure shown in FIG.
A test battery was prepared by using a mixture of 15 mg of the compound powder shown in Table 1, using a mixture of manganese dioxide, graphite and an aqueous KOH solution for the positive electrode, and assembling both electrodes via a separator paper. In Table 1, K2, Na2, Na12
Etc. mean K 2 , Na 2 and Na 12 respectively. Each battery was discharged at 150 mA for 5 hours and then charged at 50 mA for 15 hours. The upper limit of the terminal voltage of the battery was 1.7 V. After the completion of charging, the battery was suspended for one hour, and discharging and charging were repeated under the same conditions. When the terminal voltage during discharge is 1.
The test was terminated when the voltage reached 0 V, and the total discharge amount (AH) up to that point was determined. Table 2 shows the results. The ratio of the total discharge amount of the battery containing no organic additive, 5.93 AH, to the total discharge amount of the battery containing various additives is determined by the following equation.
This was used as an evaluation value. Evaluation value = total discharge amount of each battery (A
H) / Total discharge amount (AH) of the battery not containing the additive, that is, the larger the evaluation value, the more effective the secondary battery.

【0008】この評価値とそれまでに行った充放電サイ
クル数とを表2に示す。この結果、アントラキノン2,
7ジスルホン酸の添加が総放電量の増加に極めて有効で
あり、分子中のスルホン基の位置が異なる異性体(N
o.34,35,36)も有効であり、更に、分子中の
電子分布がこれらと類似する各種のナフタレンスルホン
酸(No.11,18)やフェノールレッドが有効であ
った。また、上記の各化合物のスルホン基をホスホン基
で置換した場合にも同様の効果が認められた。
Table 2 shows the evaluation values and the number of charge / discharge cycles performed so far. As a result, anthraquinone 2,
The addition of 7-disulfonic acid is extremely effective in increasing the total discharge amount, and isomers (N
o. 34, 35, 36) were also effective, and various naphthalenesulfonic acids (Nos. 11, 18) and phenol red having similar electron distributions in the molecule were also effective. Similar effects were observed when the sulfone group of each of the above compounds was replaced with a phosphone group.

【0009】[0009]

【表1】 [Table 1]

【0010】[0010]

【表2】 [Table 2]

【0011】なお表2の各番号は表1の各番号に対応し
ており、番号0は添加剤の無い場合を示す。
The numbers in Table 2 correspond to the numbers in Table 1, and the number 0 indicates the case where there is no additive.

【0012】[0012]

【発明の効果】以上の説明から明らかな通り、本発明の
有機添加剤を電解液中に含む、亜鉛を負極とした電池で
は、充放電サイクルによる端子電圧の低下が少なく、大
きな総放電量が得られることになり、低コストで且つ繰
り返し充放電に耐える電池が得られ、産業上極めて有用
である。なお、本発明の電池において、当然電極の構造
等によりその効果の大きさに差は認められ、当業者に公
知の技術によりこれを適宜選択できる。また、本発明で
用いる添加剤の溶解度を高めるため、アルコール等の溶
剤を水と併用して電解液としても良い。
As is apparent from the above description, in the battery containing zinc as the negative electrode and containing the organic additive of the present invention in the electrolytic solution, the terminal voltage is not significantly reduced by the charge / discharge cycle, and a large total discharge amount is obtained. Thus, a low-cost battery that can withstand repeated charging and discharging can be obtained, which is extremely useful in industry. In the battery of the present invention, a difference in the magnitude of the effect is naturally recognized depending on the structure of the electrode and the like, and this can be appropriately selected by a technique known to those skilled in the art. Further, in order to increase the solubility of the additive used in the present invention, a solvent such as alcohol may be used in combination with water to form an electrolyte.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の電池の一実施例の断面図である。FIG. 1 is a cross-sectional view of one embodiment of a battery of the present invention.

【図2】本発明の複数のベンゼン核の分子構造の具体例
である。
FIG. 2 is a specific example of a molecular structure of a plurality of benzene nuclei of the present invention.

【符号の説明】[Explanation of symbols]

1:負極 2:集電体 3:正極 4:ケース 5:亜鉛粉とKOH水溶液とゲル化剤と有機添加剤との
混合物 6:セパレーター紙 7:二酸化マンガンと黒鉛とKOH水溶液との混合物
1: Negative electrode 2: Current collector 3: Positive electrode 4: Case 5: Mixture of zinc powder, KOH aqueous solution, gelling agent and organic additive 6: Separator paper 7: Mixture of manganese dioxide, graphite and KOH aqueous solution

───────────────────────────────────────────────────── フロントページの続き (72)発明者 武井 たつ子 長野県長野市若里796−20 (72)発明者 山下 正通 京都府綴喜郡田辺町多々羅都谷1−3 (72)発明者 佐藤 厚 名古屋市名東区極楽4−313 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Tatsuko Takei 796-20 Wakasato, Nagano City, Nagano Prefecture (72) Inventor Masamichi Yamashita 1-3, Tatara Toya, Tanabe-cho, Tetsuki-gun, Kyoto (72) Inventor Atsushi Sato Nagoya 4-313 Gokuraku, Meito-ku

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】共役二重結合を介して結合する複数のベン
ゼン核よりなる分子中にスルホン基またはホスホン基を
結合してなる化合物を添加剤として亜鉛極と接する電解
液中に含むことを特徴とする電池。
1. A compound comprising a molecule comprising a plurality of benzene nuclei bonded through a conjugated double bond and having a sulfone group or a phosphone group bonded thereto is contained as an additive in an electrolytic solution in contact with a zinc electrode. And batteries.
【請求項2】請求項1において、前記複数のベンゼン核
の少なくとも1つの水素原子が酸素原子に置換されてい
る化合物を添加剤とする電池。
2. The battery according to claim 1, wherein a compound in which at least one hydrogen atom of the plurality of benzene nuclei is substituted with an oxygen atom is used as an additive.
【請求項3】アルカリマンガン電池よりなる請求項1ま
たは請求項2の電池。
3. The battery according to claim 1, comprising an alkaline manganese battery.
【請求項4】下記の化合物A,B,C,D,E,Fから
なる群の中の少なくとも一種を亜鉛極と接する電解液中
に含むことを特徴とする電池。 A:アントラキノンスルホン酸またはその誘導体 B:ナフタレンスルホン酸またはその誘導体 C:ナフトールスルホン酸またはその誘導体 D:アントラキノンホスホン酸またはその誘導体 E:ナフタレンホスホン酸またはその誘導体 F:ナフトールホスホン酸またはその誘導体
4. A battery comprising at least one of the following compounds A, B, C, D, E and F in an electrolyte in contact with a zinc electrode. A: Anthraquinonesulfonic acid or a derivative thereof B: Naphthalenesulfonic acid or a derivative thereof C: Naphtholsulfonic acid or a derivative thereof D: Anthraquinonephosphonic acid or a derivative thereof E: Naphthalenephosphonic acid or a derivative thereof F: Naphtholphosphonic acid or a derivative thereof
【請求項5】アルカリマンガン電池よりなる請求項4の
電池。
5. The battery according to claim 4, comprising an alkaline manganese battery.
【請求項6】請求項4または請求項5において化合物A
としてアントラキノン2,7ジスルホン酸塩を用いる電
池。
6. The compound A according to claim 4 or 5,
Using an anthraquinone 2,7 disulfonate as a battery.
JP8207548A 1996-07-02 1996-07-02 Battery containing organic additive Pending JPH1021956A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8207548A JPH1021956A (en) 1996-07-02 1996-07-02 Battery containing organic additive

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8207548A JPH1021956A (en) 1996-07-02 1996-07-02 Battery containing organic additive

Publications (1)

Publication Number Publication Date
JPH1021956A true JPH1021956A (en) 1998-01-23

Family

ID=16541566

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8207548A Pending JPH1021956A (en) 1996-07-02 1996-07-02 Battery containing organic additive

Country Status (1)

Country Link
JP (1) JPH1021956A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0955683A1 (en) * 1998-05-07 1999-11-10 Alcatel Alkaline electrolyte secondary battery comprising negative zinc electrode
EP1390995A1 (en) * 2001-03-15 2004-02-25 Massey University Rechargeable zinc electrode
JP2017033717A (en) * 2015-07-30 2017-02-09 株式会社Gsユアサ Storage battery
US10693127B2 (en) 2015-07-30 2020-06-23 Gs Yuasa International Ltd. Alkaline storage battery
CN118073670A (en) * 2024-04-24 2024-05-24 锦州凯美能源有限公司 Zinc-nickel battery electrolyte containing hydroxyl and sulfonic acid group organic micromolecules and application thereof

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0955683A1 (en) * 1998-05-07 1999-11-10 Alcatel Alkaline electrolyte secondary battery comprising negative zinc electrode
FR2778498A1 (en) * 1998-05-07 1999-11-12 Alsthom Cge Alcatel ALKALINE ELECTROLYTE BATTERY CONTAINING A ZINC NEGATIVE ELECTRODE
EP1390995A1 (en) * 2001-03-15 2004-02-25 Massey University Rechargeable zinc electrode
EP1390995A4 (en) * 2001-03-15 2009-03-25 Univ Massey Rechargeable zinc electrode
US7811704B2 (en) 2001-03-15 2010-10-12 Massey University Method of making zinc electrode including a fatty acid
US8361655B2 (en) 2001-03-15 2013-01-29 Anzode, Inc. Battery zinc electrode composition
JP2017033717A (en) * 2015-07-30 2017-02-09 株式会社Gsユアサ Storage battery
CN106410291A (en) * 2015-07-30 2017-02-15 株式会社杰士汤浅国际 Storage battery
US10693127B2 (en) 2015-07-30 2020-06-23 Gs Yuasa International Ltd. Alkaline storage battery
CN106410291B (en) * 2015-07-30 2021-08-24 株式会社杰士汤浅国际 Electric storage element
CN118073670A (en) * 2024-04-24 2024-05-24 锦州凯美能源有限公司 Zinc-nickel battery electrolyte containing hydroxyl and sulfonic acid group organic micromolecules and application thereof

Similar Documents

Publication Publication Date Title
JP2020064866A (en) Aqueous slurry for battery electrode
JP2001516130A (en) Electrolyte for storage battery
WO2017170422A1 (en) Lead storage battery, micro-hybrid vehicle and start-stop system vehicle
JP6202477B1 (en) Lead acid battery
JP2023078313A5 (en)
CN113054263A (en) Zinc ion battery and preparation method thereof
CN111584853A (en) Pre-lithiated negative electrode material and preparation method and application thereof
JP2003123760A (en) Negative electrode for lead-acid battery
JPH1021956A (en) Battery containing organic additive
JP2002260714A (en) Valve controlled lead storage battery
CN113594547A (en) Electrolyte and lithium ion battery
CN112242571A (en) Electrolyte for protecting zinc ion battery electrode and zinc ion battery
JP2001043849A (en) Sealed lead-acid battery
JPH04248276A (en) Lithium secondary battery
Pavlov et al. Lead-carbon electrode with inhibitor of PbSO4 recrystallization in lead-acid batteries operating on HRPSoC duty
JP2021111445A (en) Lead-acid battery
KR20200132708A (en) Metal secondary battery including metal electrode having dendrite- and oxygen-proof protective layer thereon
JPH09147872A (en) Negative electrode plate for lead-acid battery
KR102117509B1 (en) Electrolyte composition for lithium secondary battery and lithium secondary battery using the same
JP2002100347A (en) Lead-acid battery
EP0667032A1 (en) Rechargeable electrical energy storage device having organometallic electrodes
JPS58197662A (en) Pasted positive electrode for lead storage battery
JP3503143B2 (en) Anode plate for sealed lead-acid battery
JP2991758B2 (en) Non-aqueous electrolyte for lithium secondary batteries
TW202306228A (en) Control valve-type lead storage battery, manufacturing method therefor, and power storage system having control valve-type lead storage battery