JPH10219392A - Parts for induction hardening and production thereof - Google Patents

Parts for induction hardening and production thereof

Info

Publication number
JPH10219392A
JPH10219392A JP1883997A JP1883997A JPH10219392A JP H10219392 A JPH10219392 A JP H10219392A JP 1883997 A JP1883997 A JP 1883997A JP 1883997 A JP1883997 A JP 1883997A JP H10219392 A JPH10219392 A JP H10219392A
Authority
JP
Japan
Prior art keywords
steel
rolling
induction hardening
fatigue
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1883997A
Other languages
Japanese (ja)
Other versions
JP3562192B2 (en
Inventor
Yasuhiro Omori
靖浩 大森
Toshiyuki Hoshino
俊幸 星野
Kenichi Amano
虔一 天野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP01883997A priority Critical patent/JP3562192B2/en
Publication of JPH10219392A publication Critical patent/JPH10219392A/en
Application granted granted Critical
Publication of JP3562192B2 publication Critical patent/JP3562192B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain parts for induction hardening excellent in machinability and furthermore capable of securing characteristics as parts such as a gear or the like by specifying the compsn. of C, Si, Mn, P, S, Al, O, N and Fe, oxide nonmetallic inclusions and induction hardenability. SOLUTION: A steel contg., by weight, 0.5 to 0.75% C, 0.5 to 1.8% Si, 0.4 to 1.5% Mn, 0.010 to 0.020% P, <=0.020% S, 0.019 to 0.05% Al, <=0.0015% O and 0.006 to 0.015% N, furthermore contg., at need, prescribed amounts of Mo, B, Ti, Ni, V and Nb, and the balance Fe with inevitable impurities is heated at 1100 to 1250 deg.C and is subjected to hot rolling at >=95% reduction of area, and the rolling is finished at >=1000 deg.C. In this way, the parts for induction hardening composed of the steel in which the number of oxide nonmetallic inclusions is regulated to <=2.5/mm, also, the maximum size thereof is regulated to <=19μm, and moreover, the grain size of austenite at the time of induction hardening is regulated to <=16μm and capable of obtaining characteristics equal to or above those by the conventional carburizing process can be obtd.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は,高周波焼入部品及
びその製造方法に関し、特に、従来は炭素鋼に浸炭,窒
化などの表面処理を施すことにより製造される歯車等の
部品に好適に適用できるものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an induction hardened part and a method of manufacturing the same, and more particularly, to a gear and other parts which are conventionally manufactured by subjecting carbon steel to surface treatment such as carburizing and nitriding. You can do it.

【0002】[0002]

【従来の技術】従来、自動車,産業機械に用いられる歯
車は、0.2%程度の炭素を含有する浸炭用合金鋼に鍛
造,切削,旋削,歯切りを順に施すことにより所定の形
状に加工し、その後に浸炭焼入れ焼戻し処理を行って歯
車として必要な機能を確保するという方法で製造されて
いる。このような浸炭プロセスによる製造は従来の歯車
製造工程の主流となっているが、浸炭には800から9
50℃程度の温度で数時間の処理が必要なため、歯車製
造ライン中に組み入れることが困難であり、生産性を向
上させることに限界がある。その結果、製造コストの低
減にも自ずから限度が生じていた。
2. Description of the Related Art Conventionally, gears used in automobiles and industrial machines are processed into a predetermined shape by sequentially forging, cutting, turning, and gear-cutting a carburizing alloy steel containing about 0.2% of carbon. After that, it is manufactured by a method of performing a carburizing, quenching and tempering treatment to secure a necessary function as a gear. Manufacturing by such a carburizing process is the mainstream of the conventional gear manufacturing process.
Since processing at a temperature of about 50 ° C. for several hours is necessary, it is difficult to incorporate it into a gear manufacturing line, and there is a limit in improving productivity. As a result, there has been a natural limitation in reducing the manufacturing cost.

【0003】また、浸炭は通常、ガス浸炭法によるのが
一般的であるが、ガス浸炭時に被処理材の表面層に不可
避的に表面異常層が発生し、この異常層が疲労強度及び
衝撃特性を低下させるために、疲労強度及び衝撃特性の
向上に限度があった。また、浸炭焼入れ時に発生する熱
処理歪みにより被処理材に変形が生じるため、熱処理条
件の厳密な制御が要求される。
In general, carburizing is generally performed by a gas carburizing method. However, during gas carburizing, an abnormal surface layer is inevitably generated on the surface layer of the material to be treated, and this abnormal layer causes fatigue strength and impact characteristics. Therefore, there is a limit to the improvement in fatigue strength and impact properties. In addition, since the material to be processed is deformed by heat treatment distortion generated during carburizing and quenching, strict control of heat treatment conditions is required.

【0004】上記した従来の浸炭焼入れ焼戻し処理に伴
う問題点を克服するために、浸炭プロセスを前提とし
て、鋼材中のSi,Mn,Crの量を減らすと共にM
o,Ni等を添加することによりガス浸炭時に発生する
表面異常層を低減し、疲労強度及び衝撃特性の改善を意
図した高強度浸炭用鋼が開発されるに至っている。しか
しその場合も、高価な合金元素を多量に用いるために鋼
材コストの上昇を招くとともに被削性等の加工性を劣化
させるため、高強度化は図れるものの製造コストの上昇
を招くという問題がある.また,JIS規格SCM43
5及びS55C等の機械構造用合金鋼及び炭素鋼を用い
て、浸炭焼入プロセスよりも生産能率が高い高周波焼入
による歯車の製造が試みられているが、これらの鋼は本
来、歯車への適用を考慮して決定された化学組成でない
ために、浸炭プロセスにより製造される歯車のごとく自
動車のトランスミッションやデファレンシャルに用いら
れる高強度の歯車への適用は困難であり、比較的低強度
の歯車のみへの適用に留まっている。
[0004] In order to overcome the problems associated with the conventional carburizing, quenching and tempering processes, the amounts of Si, Mn, and Cr in steel are reduced and M
The addition of o, Ni, etc. has reduced the surface abnormal layer generated during gas carburization, and has led to the development of high-strength carburizing steel intended to improve fatigue strength and impact characteristics. However, even in that case, there is a problem that the use of a large amount of expensive alloying elements causes an increase in steel material cost and deteriorates machinability such as machinability, so that high strength can be achieved but manufacturing cost increases. . In addition, JIS standard SCM43
Production of gears by induction hardening, which has a higher production efficiency than the carburizing and quenching process, has been attempted using alloy steels for machine structural use such as No. 5 and S55C and carbon steel, but these steels are originally used for gears. Because it is not a chemical composition determined in consideration of application, it is difficult to apply it to high-strength gears used in automobile transmissions and differentials like gears manufactured by carburizing process, and only relatively low-strength gears Application only.

【0005】[0005]

【発明が解決しようとする課題】こうした高強度部品を
製造する際の従来の諸問題を解決するために、たとえば
特開昭60‐169544号公報には、鋼の化学組成を
特定の範囲に規制することにより高周波焼入プロセスに
よる高強度の歯車製造を可能とする技術が開示されてい
る。
In order to solve the conventional problems in producing such high-strength parts, for example, Japanese Patent Application Laid-Open No. 60-169544 discloses that the chemical composition of steel is restricted to a specific range. Thus, there is disclosed a technology that enables high-strength gears to be manufactured by an induction hardening process.

【0006】しかしながら、本発明者らの検討によれ
ば、前記特開昭60‐169544号公報に開示の技術
では、鋼中に存在する非金属介在物のサイズが大きく
て、歯車用鋼等に要求される疲労強度及び転動疲労寿命
が確保できないという未解決の課題がある。
However, according to the study of the present inventors, according to the technique disclosed in Japanese Patent Application Laid-Open No. 60-169544, the size of nonmetallic inclusions present in steel is large, and the size of non-metallic inclusions in steel is large. There is an unsolved problem that required fatigue strength and rolling fatigue life cannot be secured.

【0007】また、Pの含有量が0.01重量%以下に
限定されているため、製鋼コストが上昇するという他の
未解決の課題がある。また、上記公報に開示の化学組成
では、従来の浸炭用鋼に比較して被削性が極端に低下す
るために、製造工程において必須のプロセスである切削
工程での生産能率が低く、浸炭焼入れより高周波焼入れ
へのプロセスの変更による生産性の向上に限度があると
いう更に他の未解決の課題がある。
[0007] Further, since the content of P is limited to 0.01% by weight or less, there is another unsolved problem that the steel making cost is increased. Further, in the chemical composition disclosed in the above publication, the machinability is extremely reduced as compared with the conventional carburizing steel, so that the production efficiency in the cutting process, which is an essential process in the manufacturing process, is low, and carburizing and quenching are performed. Yet another unsolved problem is that there is a limit to improving productivity by changing the process to induction hardening.

【0008】本発明は、このような従来技術の未解決の
課題に着目してなされたものであり、被削性にも優れる
と同時に、従来の浸炭プロセスで製造される歯車等の部
品に比較して同等以上の特性を確保することが可能な高
周波焼入用部品およびその製造方法を提供することを目
的とする。
The present invention has been made in view of such unresolved problems of the prior art, and is excellent in machinability and at the same time, compared with parts such as gears manufactured by a conventional carburizing process. It is an object of the present invention to provide a component for induction hardening and a method for manufacturing the same, which can secure the same or better characteristics.

【0009】[0009]

【課題を解決するための手段】本発明者らは、上記の目
的を達成するために、歯車に要求される特性を高周波焼
入プロセスにおいて確保するための鋼材の化学組成を検
討し、以下のような知見を得るに至った。
Means for Solving the Problems In order to achieve the above object, the present inventors have studied the chemical composition of a steel material for securing the characteristics required for a gear in an induction hardening process, and have studied the following. Such knowledge was obtained.

【0010】すなわち、歯車には,歯元強度,歯面強度
及び衝撃特性が要求される。歯元強度は歯部が繰り返し
応力を受け歯元部から疲労破壊を生じない最大の応力を
意味する。この歯元強度は回転曲げ等の疲労試験による
疲労強度と良い相関が有ることから、本発明者らは回転
曲げ疲労試験により鋼材化学組成を検討した。
That is, gears are required to have root strength, tooth surface strength and impact characteristics. The root strength means the maximum stress at which the tooth portion is repeatedly subjected to stress and does not cause fatigue fracture from the root portion. Since the tooth root strength has a good correlation with the fatigue strength obtained by a fatigue test such as rotary bending, the present inventors examined the chemical composition of steel by a rotary bending fatigue test.

【0011】疲労強度に影響を与える基本的な因子は、
材料の硬さ及び非金属介在物である。材料硬さが低下す
ると疲労強度も低下する。この材料の硬さについて浸炭
焼入材とほぼ同等の値を高周波焼入により確保しようと
すると、約0.5重量%程度以上の炭素含有量(C量)
が必要である。
The basic factors affecting fatigue strength are:
Material hardness and non-metallic inclusions. As the material hardness decreases, the fatigue strength also decreases. In order to secure the same hardness as that of the carburized and quenched material by induction hardening, the carbon content (C content) of about 0.5% by weight or more is required.
is necessary.

【0012】疲労強度を向上させるためには、そればか
りでなくオーステナイト粒径を細粒にすることが有効に
なる。その理由は、疲労亀裂が旧オーステナイト粒径に
沿って伸展していくため、これを細粒にすることにより
疲労亀裂伝播に対する抵抗が増加することの他に、粒界
に偏析してこれを脆化させるP等の元素の濃度が細粒化
により減少するからである。そのオーステナイトの細粒
化に対しては、急速短時間加熱の処理である高周波焼入
が極めて有効である。また、オーステナイト粒の成長を
抑制する析出物を形成するN,Al等の添加により一層
細粒化が促進され、疲労強度の向上に有効である。
In order to improve the fatigue strength, it is effective to make the austenite grain size finer. The reason is that fatigue cracks extend along the prior austenite grain size, so making them finer increases resistance to fatigue crack propagation and segregates at grain boundaries to make them brittle. This is because the concentration of an element such as P to be reduced is reduced by the fine graining. In order to reduce the grain size of austenite, induction quenching, which is a process of heating in a short time, is very effective. Further, the addition of N, Al, or the like, which forms precipitates that suppress the growth of austenite grains, further promotes grain refinement, and is effective in improving fatigue strength.

【0013】また、素材硬さを得るためには、焼入性を
確保するとの観点から合金元素の添加が必要となる。こ
れらの合金元素は歯車のサイズに応じて適正量添加すれ
ば良い。
Further, in order to obtain the material hardness, it is necessary to add an alloy element from the viewpoint of securing hardenability. These alloying elements may be added in appropriate amounts according to the size of the gear.

【0014】さらに、疲労強度を向上させるためには、
上記したような素材硬さを確保するのみでは不十分であ
り、非金属介在物の低減も必要である。すなわち、素材
硬度を確保することができても、酸化物系非金属介在物
が存在すると、この部分から疲労破壊を生じ、極めて疲
労強度が低下するからである。特に、アルミナのような
硬質な非金属介在物は有害であり,このためには含有酸
素量(O量)の低減が必須である。本発明者らの検討に
よれば、O量を0.0015重量%以下にすることが少
なくとも必要であるが、それのみでは不十分である。
Further, in order to improve the fatigue strength,
It is not enough to secure the material hardness as described above, and it is necessary to reduce nonmetallic inclusions. That is, even if the material hardness can be ensured, if oxide-based nonmetallic inclusions are present, fatigue fracture occurs from this portion, and the fatigue strength is extremely reduced. In particular, hard nonmetallic inclusions such as alumina are harmful, and for this purpose, a reduction in the oxygen content (O content) is essential. According to the study of the present inventors, it is necessary at least to make the O content 0.0015% by weight or less, but this alone is not sufficient.

【0015】さらに本発明者らが検討した結果、従来の
浸炭処理材と同等の疲労強度を確保するためには、酸化
物の個数およびサイズを限定することが必要なことが明
らかとなった。非金属介在物が存在すると、これを起点
として疲労破壊が進行することは先述したとおりである
が、非金属介在物が大きいほどその介在物に発生する応
力集中の程度が顕著となり、疲労初期亀裂が容易に発生
する。
Further, as a result of investigations by the present inventors, it has become clear that it is necessary to limit the number and size of oxides in order to secure the same fatigue strength as that of the conventional carburized material. As described above, the presence of non-metallic inclusions causes fatigue fracture to proceed from this point, but as the non-metallic inclusions are larger, the degree of stress concentration at the inclusions becomes more pronounced and the initial cracks in fatigue Easily occur.

【0016】また、その初期亀裂も、非金属介在物が大
きく応力集中の程度が大きい程顕著である。大きな初期
亀裂がいったん発生すると、疲労亀裂は迅速に進展して
疲労破壊に至る。本発明者の検討によれば、従来の浸炭
焼き入れ材以上の疲労強度を確保するためには、19μ
mを越えるサイズの酸化物系非金属介在物が存在しない
ことが必要なことが解った。
Further, the initial cracks are more remarkable as the nonmetallic inclusions are larger and the degree of stress concentration is larger. Once a large initial crack has occurred, the fatigue crack will quickly propagate and lead to fatigue failure. According to the study of the present inventor, in order to secure a fatigue strength higher than that of the conventional carburized and quenched material, it is required that
It has been found that it is necessary that no oxide-based nonmetallic inclusions having a size exceeding m exist.

【0017】更に、非金属介在物個数の影響を検討した
結果、非金属介在物が19μm以下であっても、その個
数が2.5個/mm2 を越えて存在すると、従来の浸炭
焼き入れ材と同程度の疲労強度は得られないことが判明
した。これは、非金属介在物が小さい場合、その部分よ
り発生する初期亀裂は小さいが、これが成長すると他の
非金属介在物より発生した疲労亀裂と合体して大きな疲
労亀裂となり、その後急速に疲労亀裂は成長して短時間
で疲労破壊に至るためである。
Further, as a result of examining the effect of the number of non-metallic inclusions, it was found that even if the number of non-metallic inclusions was 19 μm or less, if the number exceeded 2.5 / mm 2 , the conventional carburizing and quenching It was found that the same level of fatigue strength as the material could not be obtained. This is because when the non-metallic inclusions are small, the initial cracks generated from that part are small, but when they grow, they combine with the fatigue cracks generated from other non-metallic inclusions to become large fatigue cracks, and then rapidly the fatigue cracks Is to grow and lead to fatigue failure in a short time.

【0018】以上述べたとおり、疲労強度の確保のため
には、O量の限定のみでなく酸化物系非金属介在物の個
数およびサイズの制御が必須である。さらに、本発明者
らは、酸化物系非金属介在物の量及びサイズを上記の範
囲に低減する方法を検討した。その結果、鋼中のO量を
15ppm以下に制限することにより、酸化物系非金属
介在物の量は目標とする2.5個/mm2 以下に低減で
きることが判明したが、サイズについてはO量の規定の
みでは不十分である。本発明者らは、鋳造時の鋳片サイ
ズより最終的に鋼材に圧延する際の断面減少率が非金属
介在物サイズと強い相関を持ち、当該断面減少率が増加
するにしたがって非金属介在物サイズが減少することを
見いだした。これは、圧延により、粗大な非金属介在物
が機械的に砕かれることによるものである。その結果、
目標とする19μm以下のサイズとするには、O量を1
5ppm以下に制御した鋼では、断面減少率として95
%以上の圧下が必要なことが判明した。
As described above, in order to ensure the fatigue strength, it is essential to control not only the amount of O but also the number and size of the oxide-based nonmetallic inclusions. Furthermore, the present inventors have studied a method for reducing the amount and size of the oxide-based nonmetallic inclusion to the above-mentioned range. As a result, it was found that by limiting the amount of O in the steel to 15 ppm or less, the amount of oxide-based nonmetallic inclusions can be reduced to the target 2.5 or less / mm 2 or less. A stipulation of the quantity alone is not sufficient. The present inventors have found that the cross-sectional reduction rate when finally rolling to steel material from the slab size during casting has a strong correlation with the non-metallic inclusion size, and as the cross-sectional reduction rate increases, the non-metallic inclusions The size was found to decrease. This is because coarse non-metallic inclusions are mechanically crushed by rolling. as a result,
In order to achieve the target size of 19 μm or less, the O amount should be 1
For steel controlled to 5 ppm or less, the area reduction rate is 95%.
It was found that a reduction of at least% was required.

【0019】一方、歯車の歯面部には、繰り返し接触応
力により、ピッチングと呼ばれる疲労損傷が生じる。こ
れが生じると歯車は正常な機能を発揮することが困雛と
なるので、歯面強度が必要とされる。
On the other hand, fatigue damage called pitching occurs on the tooth surface of the gear due to repeated contact stress. When this occurs, it is difficult for the gears to perform their normal functions, so tooth surface strength is required.

【0020】この歯面強度は、転動疲労試験との相関が
良好であり,この試験により評価することが可能であ
る。ただし、歯車の場合には歯面部に相対すべりが発生
するので、その摩擦により著しい温度上昇が生じる。こ
の温度上昇により鋼材は軟化し、ピッチングが発生す
る。これを抑制するためには、鋼の焼もどし軟化抵抗を
高めるSi,Mo,V及びNb等の添加が有効であり、
これらの添加により歯面強度を高めることができる。
The tooth surface strength has a good correlation with the rolling fatigue test, and can be evaluated by this test. However, in the case of a gear, relative slip occurs on the tooth surface portion, and the friction causes a significant temperature rise. Due to this temperature rise, the steel material is softened and pitting occurs. In order to suppress this, it is effective to add Si, Mo, V, Nb, etc., which increase the tempering softening resistance of steel.
These additions can increase the tooth surface strength.

【0021】また、転動疲労寿命に関しては、疲労強度
と同様に酸化物系非金属介在物の量及びサイズが影響す
るが、上記したO量の制御と共に鋳片より最終鋼材に圧
延する際の断面減少率を制御することにより非金属介在
物の量及びサイズを制御すれば、従来の浸炭鋼と同程度
の転動疲労寿命を確保することが判明した。
The rolling fatigue life is influenced by the amount and size of the oxide-based nonmetallic inclusions as in the case of the fatigue strength. It was found that if the amount and size of the nonmetallic inclusions were controlled by controlling the cross-sectional reduction rate, the same rolling fatigue life as that of the conventional carburized steel was secured.

【0022】歯元に衝撃的な荷重が作用した場合、鋼材
の衝撃特性が低いと歯元部より歯が折損し、歯車のみな
らず歯車の組み込まれている機械全体が回復が困難な損
傷を受けるにいたる。このため衝撃特性は極めて重要な
特性である。
When an impact load is applied to the tooth root, if the impact characteristics of the steel material are low, the teeth are broken from the tooth root, and not only the gear but also the entire machine in which the gear is incorporated is damaged, which is difficult to recover. To receive. Therefore, impact characteristics are extremely important characteristics.

【0023】衝撃特性に影響を及ぽす因子としてはC量
が最も影響が大きい。しかし、浸炭プロセスを経て浸炭
を施された部分のC濃度は約0.8重量%程度であるの
に対し、高周波焼入により同等の鋼材硬さを得るために
必要なC濃度は0.5〜0.7重量%程度であるので、
衝撃特性確保の観点からは高周波焼入が有利である。し
かしながら、衝撃特性に影響を及ぼす因子はそればかり
でなく、高周波焼入時のオーステナイト粒径及び粒界に
偏析したP等の不純物元素も影響を及ぼすから、γ粒径
細粒化及びP等の不純物元素の低減が衝撃特性向上の上
でも有効である。
As a factor affecting the impact characteristics, the amount of C has the largest effect. However, while the C concentration in the portion carburized through the carburizing process is about 0.8% by weight, the C concentration required to obtain the same steel hardness by induction hardening is 0.5%. About 0.7% by weight,
Induction hardening is advantageous from the viewpoint of ensuring the impact characteristics. However, not only are the factors affecting the impact characteristics, but also the austenite grain size during induction quenching and the impurity elements such as P segregated at the grain boundaries also affect the γ grain size reduction and P etc. Reduction of impurity elements is also effective in improving impact characteristics.

【0024】上述したように、Pは粒界に偏析して粒界
を脆化させるから、これを低減することは歯元強度およ
び衝撃特性の向上に有効である。しかし、Pの低減は製
鋼工程におけるコスト上昇につながる。Pを低減するこ
となく粒界偏析P量を低下させて粒界強度を高める手段
として、結晶粒を細粒化して粒界面積を増やし、相対的
な偏析P量を減少させるということが考えられる。この
点に関して検討した結果、P含有量が0.020%まで
の場合においては、高周波焼入れ時のオーステナイト粒
径を16μm以下にすれば、十分な歯元強度および衝撃
特性が得られることがわかった。
As described above, since P segregates at the grain boundary to embrittle the grain boundary, reducing P is effective for improving the tooth root strength and impact characteristics. However, reducing P leads to an increase in cost in the steel making process. As a means of lowering the amount of grain boundary segregation P without reducing P to increase the grain boundary strength, it is conceivable to refine the grains to increase the grain boundary area and reduce the relative amount of segregation P. . As a result of examination on this point, it was found that when the P content is up to 0.020%, sufficient tooth root strength and impact characteristics can be obtained if the austenite particle size during induction hardening is 16 μm or less. .

【0025】上記したような歯車として必要とされる特
性を確保するのみの対応では、高周波焼入による歯車の
製造には不十分であり、加工性特に被削性の確保が重要
である。この点については、浸炭プロセスの場合には、
低C鋼が使用されるため、浸炭焼入前の状態では比較的
高い被削性を持っているが、一方、高周波焼入プロセス
の場合には浸炭鋼よりも高C化は必須であり、被削性確
保の点で極めて不利である。そこで本発明者らは高C鋼
における被削性に及ぽす諸因子を検討した結果、以下の
ような知見を得るに至った。すなわち、0.5%C以上
の鋼においては、快削性元素を一定とした場合、最も被
削性に影響を及ぽす因子はそのミクロ組織である。特に
フェライト量とパーライトの形態が最も顕著な影響を及
ぽすことが解った。すなわち、高C鋼の場合、ミクロ組
織としてはフェライトーパーライト組織となるが、フェ
ライトが増加すると被削性は向上する。これは、フェラ
イト量が増加することにより鋼材の硬さが減少すること
及びフェライトが増加することにより、切削時の亀裂の
発生部であるフェライト/パーライトの界面が増加して
被削性が向上するのである。また、パーライトの形態も
極めて大きな影響を及ぼす。すなわち、パーライトラメ
ラーが層状に良く発達した組織の場合、パーライト部の
延性が高く、切削時の亀裂の発生部はフェライト/パー
ライトの界面に限定されるが、ラメラーが発達していな
い組織の場合には、切削時に変形を受ける部分ではフェ
ライト/パーライトの界面の他にパーライト中のセメン
タイト/フェライト界面からも亀裂が容易に発生するよ
うになることにより、被削性が飛躍的に向上するのであ
る。このような未発達のパーライトを形成させるために
は、鋼中の合金元素の選択及び適正化が必要であり、変
態点を低下させてラメラーの層状化を促進するMn及び
Crの低減が極めて効果的である。また、Moの添加は
ラメラーの層状化を抑制し、セメンタイトの分断された
組織を形成させるので被削性の向上に有効である。
The above-described measures only for securing the characteristics required for a gear are not sufficient for manufacturing gears by induction hardening, and it is important to ensure workability, especially machinability. In this regard, in the case of the carburizing process,
Since low-C steel is used, it has relatively high machinability before carburizing and quenching, but on the other hand, in the case of induction hardening process, higher C than carburizing steel is essential, This is extremely disadvantageous in terms of ensuring machinability. The present inventors have studied various factors affecting the machinability of the high-C steel, and as a result, have obtained the following knowledge. That is, in the steel of 0.5% C or more, when the free-machining element is fixed, the factor that most affects the machinability is its microstructure. In particular, it was found that the amount of ferrite and the form of pearlite had the most significant effects. That is, in the case of a high-C steel, the microstructure has a ferrite-pearlite structure, but the machinability improves with an increase in ferrite. This is because the hardness of the steel material decreases due to an increase in the amount of ferrite, and the ferrite / pearlite interface, which is a portion where cracks occur during cutting, increases due to an increase in ferrite, thereby improving machinability. It is. Also, the form of pearlite has a very large effect. That is, in the case of a structure in which the pearlite lamellar is well-developed in a layered manner, the ductility of the pearlite portion is high, and the portion where cracks are generated during cutting is limited to the ferrite / pearlite interface. In a part that undergoes deformation during cutting, cracks are easily generated from the cementite / ferrite interface in pearlite in addition to the ferrite / pearlite interface, thereby greatly improving machinability. In order to form such undeveloped pearlite, it is necessary to select and optimize alloying elements in steel, and the reduction of Mn and Cr, which lowers the transformation point and promotes lamellar layering, is extremely effective. It is a target. Further, the addition of Mo is effective in improving the machinability because it suppresses lamellar layering and forms a cementite-separated structure.

【0026】さらに、本発明者らはそれらの鋼の製造方
法を検討し、以下の知見をうるに至った。すなわち、鋼
中に形成されるMnSは熱問圧延に伴って圧延方向に伸
長するが、その程度は熱間圧延条件により異なる。Mn
Sが伸長する結果、その伸長方向に対し直角方向から採
取した疲労試験片により測定される疲労強度は極端に低
下する。これは、伸長したMnSが疲労亀裂の起点とな
るためである。ところで、実際の歯車においてはMnS
の伸長方向に直角に歯が形成されることが多く、MnS
の伸長が実体の歯車の疲労強度を低下させるおそれがあ
る。
Furthermore, the present inventors have studied methods for producing such steels, and have obtained the following findings. That is, MnS formed in steel elongates in the rolling direction along with hot rolling, but the extent varies depending on hot rolling conditions. Mn
As a result of the elongation of S, the fatigue strength measured by a fatigue test piece taken from a direction perpendicular to the elongation direction is extremely reduced. This is because the elongated MnS becomes the starting point of the fatigue crack. By the way, in an actual gear, MnS
Are often formed at right angles to the extension direction of MnS
Elongation may reduce the fatigue strength of the actual gear.

【0027】また,MnSの形状は被削性にも影響を及
ぼし、MnSの伸長が被削性を劣化させることは周知で
ある。したがって、被削性及び疲労強度の一層の向上の
ためには熱間圧延時のMnSの伸長を抑制させる必要が
ある。
It is well known that the shape of MnS also affects the machinability, and that elongation of MnS deteriorates machinability. Therefore, it is necessary to suppress the elongation of MnS during hot rolling in order to further improve machinability and fatigue strength.

【0028】MnSの伸長抑制のために、Caの添加に
よりCaSを形成し伸長を抑制させるとの方法が知られ
ているが。Caの添加は粗大なCa系の酸化物系非金属
介在物を形成する。この結果、転動疲労寿命を低下させ
るとの問題がある。そこで、本願発明者らはMnSの形
状に及ぽす熱問圧延時の加熱温度及び熱間圧延条件につ
いて検討した。その結果、以下の知見を得た。
There is known a method for suppressing the elongation of MnS by adding Ca to form CaS to suppress the elongation. Addition of Ca forms coarse Ca-based oxide-based nonmetallic inclusions. As a result, there is a problem that the rolling fatigue life is reduced. Therefore, the inventors of the present application have studied the heating temperature and hot rolling conditions during hot rolling that affect the shape of MnS. As a result, the following findings were obtained.

【0029】熱問圧延時の加熱温度を上げるに伴ってM
nSが一部固溶し、鋳片段階よりもMnSの粒径は減少
する。これを熱間圧延すると、粒径の減少によりMnS
はより低温加熱の場合よりも伸長度は小さい。また、一
旦固溶したMnSは圧延途中で比較的微細に再析出する
ので、鋼材の平均的なMnSの伸長程度は低温加熱の場
合に比較して抑制される。加熱圧延前のMnSの形状に
関して検討した結果、MnSがより伸長された形状もの
の方がその後の圧延による伸長も大きいことが判明し
た。
As the heating temperature during hot rolling is increased, M
nS is partially dissolved, and the particle size of MnS is smaller than that in the slab stage. When this is hot-rolled, MnS
Is smaller in elongation than in the case of heating at a lower temperature. Further, since once dissolved MnS precipitates relatively finely in the middle of rolling, the average degree of elongation of MnS of the steel material is suppressed as compared with the case of low temperature heating. As a result of examining the shape of MnS before the hot rolling, it was found that the MnS having a more elongated shape had a greater elongation by subsequent rolling.

【0030】圧延条件の影響を検討すると、最もMnS
が伸長する領域は900〜1000℃の温度領域であ
り、この温度よりも高い領域及び低い領域においてはそ
の伸長の程度は小さいことが判明した。したがって、加
熱温度を高め、圧延温度領域として900〜1000℃
の間を回避することによりMnSの伸長は顕著に改善で
き、疲労強度及び被削性を改善できることが判明した。
Considering the effect of the rolling conditions, the largest MnS
The region where elongation extends is a temperature region of 900 to 1000 ° C., and it has been found that the degree of elongation is small in regions higher and lower than this temperature. Therefore, the heating temperature is increased and the rolling temperature range is 900 to 1000 ° C.
It has been found that, by avoiding the period, the elongation of MnS can be remarkably improved, and the fatigue strength and machinability can be improved.

【0031】本発明は、以上の知見をもとになされたも
のであり、その要旨とするところは以下の通りである。
すなわち、本発明の高周波焼入用部品に係る発明は、重
量比で、C:0.5〜0.75%、Si:0.5〜1.
8%、Mn:0.4〜1.5%、P:0.010〜0.
020%、S:0.020%以下、Al:0.019〜
0.05%、O:0.0015%以下、N:0.006
〜0.015%を含有し、さらに必要に応じて、Mo:
0.05〜0.5%、B:0.0003〜0.005
%、Ti:0.005〜0.05%、Ni:0.1〜
1.0%およびV:0.05〜0.5%、Nb:0.0
1〜0.5%の少なくとも一種を含有し、残部Fe及び
不可避的不純物よりなり、酸化物系非金属介在物個数が
2.5/mm2 以下でかつその最大サイズが19μm以
下であることに加えて、高周波焼入れ時のオーステナイ
ト粒径が16μm以下である鋼材よりなることを特徴と
する。
The present invention has been made based on the above findings, and the gist thereof is as follows.
That is, the invention relating to the component for induction hardening of the present invention has a weight ratio of C: 0.5 to 0.75% and Si: 0.5 to 1.0.
8%, Mn: 0.4-1.5%, P: 0.010-0.
020%, S: 0.020% or less, Al: 0.019-
0.05%, O: 0.0015% or less, N: 0.006
0.010.015%, and optionally Mo:
0.05-0.5%, B: 0.0003-0.005
%, Ti: 0.005 to 0.05%, Ni: 0.1 to
1.0% and V: 0.05 to 0.5%, Nb: 0.0
1 to 0.5% of at least one, the balance being Fe and inevitable impurities, the number of oxide-based nonmetallic inclusions is 2.5 / mm 2 or less, and the maximum size is 19 μm or less. In addition, it is characterized by being made of a steel material having an austenite grain size of 16 μm or less during induction hardening.

【0032】本発明の製造方法に係る発明の要旨とする
ところは、重量比で、C:0.5〜0.75%、Si:
0.5〜1.8%、Mn:0.4〜1.5%、P:0.
010〜0.020%、S:0.020%以下、Al:
0.019〜0.05%、O:0.0015%以下、
N:0.006〜0.015%を含有し、さらに必要に
応じて、Mo:0.05〜0.5%、B:0.0003
〜0.005%、Ti:0.005〜0.05%、N
i:0.1〜1.0%およびV:0.05〜0.5%、
Nb:0.01〜0.5%の少なくとも一種を含有し、
残部Fe及び不可避的不純物よりなり、酸化物系非金属
介在物個数が2.5/mm2 以下でかつその最大サイズ
が19μm以下であることに加えて、高周波焼入れ時の
オーステナイト粒径が16μm以下である鋼材を鋳片よ
り熱間圧延するに際して、当該鋳片を1100〜125
0℃の温度領域に加熱し、1000℃以上の温度領域で
圧延を終了することを特徴とする高周波焼入用部品の製
造方法である。ここで、上記の鋼材を鋳片より熱間圧延
するに際して、当該鋳片を1100〜1250℃の温度
領域に加熱し1000℃以上の温度領域で第1段の圧延
を終了し、さらに1050〜1150℃の温度領域に加
熱し1000℃以上の温度領域で第2段の圧延を終了す
ることを特徴とするものとすることができる。
The gist of the invention according to the production method of the present invention is that C: 0.5 to 0.75% by weight, Si:
0.5-1.8%, Mn: 0.4-1.5%, P: 0.
010-0.020%, S: 0.020% or less, Al:
0.019-0.05%, O: 0.0015% or less,
N: 0.006 to 0.015%, and if necessary, Mo: 0.05 to 0.5%, B: 0.0003
-0.005%, Ti: 0.005-0.05%, N
i: 0.1-1.0% and V: 0.05-0.5%,
Nb: contains at least one of 0.01 to 0.5%,
In addition to the balance of Fe and unavoidable impurities, the number of oxide-based nonmetallic inclusions is 2.5 / mm 2 or less and the maximum size is 19 μm or less, and the austenite grain size during induction hardening is 16 μm or less. Is hot rolled from a slab, the slab is 1100 to 125
A method for producing a component for induction hardening, characterized in that the component is heated to a temperature range of 0 ° C. and rolling is completed in a temperature range of 1000 ° C. or higher. Here, when the above-mentioned steel material is hot-rolled from a slab, the slab is heated to a temperature range of 1100 to 1250 ° C., and the first-stage rolling is completed in a temperature range of 1000 ° C. or more, and further, 1050 to 1150 And the second stage of rolling is completed in a temperature range of 1000 ° C. or higher.

【0033】また、上記の鋼材を前記鋳片から熱間圧延
する際に、断面減少率が95%以上となる圧延を施すこ
とを特徴とするものとすることができる。
[0033] Further, when the above-mentioned steel material is hot-rolled from the slab, rolling is performed so that the cross-sectional reduction rate becomes 95% or more.

【0034】[0034]

【発明の実施の形態】以下、本発明の実施の形態を述べ
る。まず、本発明に用いる鋼材の成分等の限定理由につ
いて説明する。
Embodiments of the present invention will be described below. First, the reasons for limiting the components of the steel material used in the present invention will be described.

【0035】〔C:0.5〜0.75%〕Cは高周波焼
入により従来の浸炭鋼と同定度の表面硬さを得るために
必須の成分であり、少なくとも0.5%以上の添加が必
要である。しかし、0.75%を超えて添加すると、歯
車に必要とされる衝撃特性及び被削性が劣化するので、
0.75%までの添加とする。
[C: 0.5 to 0.75%] C is an essential component for obtaining a surface hardness of the same degree as that of conventional carburized steel by induction hardening, and at least 0.5% or more is added. is required. However, if added in excess of 0.75%, the impact characteristics and machinability required for the gears deteriorate, so that
Add up to 0.75%.

【0036】〔Si:0.5〜1.8%〕Siは焼もど
し軟化抵抗を向上させる元素である。このことにより歯
面強度を向上させるが、従来の浸炭プロセスによる歯車
と同程度の歯面強度を確保するためには、少なくとも
0.5%以上の添加が必要である。しかし、1.8%を
超えて添加すると、フェライトの固溶硬化により硬さが
上昇し被削性の低下を招くので1.8%以下の添加とす
る. 〔Mn:0.4〜1.5%〕Mnは焼入性を向上させ、
高周波焼入時の硬化深さを確保する上で必須の成分であ
り積極的に添加するが、0.4%未満の添加ではその効
果に乏しい。一方、1.5%を超えて添加すると、高周
波焼入後の残留オーステナイトを増加させることによ
り、かえって表面硬度を低下させ疲労強度及び転動疲労
寿命を低下させるので1.5%以下の添加とする。
[Si: 0.5 to 1.8%] Si is an element for improving tempering softening resistance. Although the tooth surface strength is improved by this, at least 0.5% or more is necessary in order to secure the same tooth surface strength as the gear by the conventional carburizing process. However, if it is added in excess of 1.8%, the hardness increases due to solid solution hardening of the ferrite and the machinability is reduced. Therefore, the addition is made 1.8% or less. [Mn: 0.4-1.5%] Mn improves hardenability,
It is an essential component for securing the hardening depth during induction hardening and is positively added. However, if it is less than 0.4%, the effect is poor. On the other hand, if added in excess of 1.5%, the residual austenite after induction hardening is increased, which in turn lowers the surface hardness and lowers the fatigue strength and rolling fatigue life. I do.

【0037】〔P:0.010〜0.020%〕Pはオ
ーステナイトの粒界に偏析し、粒界強度を低下させるこ
とにより歯元強度を低下させるばかりでなく、同時に衝
撃特性を低下させるのでできるだけ低下させることが望
ましいが0.020%まで許容される。0.010%未
満とすると製鋼コストの上昇につながるため0.010
%以下にすることは実際的ではない。また、0.020
%以下の添加ならば、オーステナイト粒径を16μm以
下とすることにより十分な歯元強度および衝撃特性が得
られるため、0.010〜0.020%の添加は許容さ
れる。
[P: 0.010-0.020%] P segregates at the grain boundaries of austenite and lowers the grain boundary strength, thereby not only lowering the tooth root strength but also lowering the impact characteristics. It is desirable to lower it as much as possible, but it is acceptable up to 0.020%. If the content is less than 0.010%, it leads to an increase in steel making cost.
It is not practical to make it below%. Also, 0.020
% Or less, sufficient tooth root strength and impact characteristics can be obtained by setting the austenite particle size to 16 μm or less, so that 0.010 to 0.020% is allowable.

【0038】〔S:0.020%以下〕SはMnSを形
成し、これが疲労破壊の起点となることにより疲労強度
を低下させるが、他方でMnSは被削性を向上させる元
素でもあるので0.020%以下の添加は許容される。
[S: 0.020% or less] S forms MnS, and this serves as a starting point of fatigue fracture, thereby lowering the fatigue strength. On the other hand, MnS is also an element which improves machinability, so that it forms 0%. Additions of 0.020% or less are acceptable.

【0039】〔Al:0.019〜0.05%〕A1は
脱酸に有効な元素であり、低酸素化のために有用な元素
であるとともに、Nと結合してAlNを形成し、これが
高周波加熱時のオーステナイト粒の成長を抑制する。こ
れにより衝撃特性及び歯元疲労強度を向上させるので積
極的に添加するが、0.019%未満の添加ではその効
果が小さく、一方0.05%を超えて添加してもその効
果が飽和するので0.019〜0.05%の添加とす
る。
[Al: 0.019-0.05%] A1 is an element effective for deoxidation, is an element useful for reducing oxygen, and combines with N to form AlN. Suppresses growth of austenite grains during high frequency heating. Accordingly, the impact characteristics and the tooth root fatigue strength are improved, so that the addition is positive. However, if the addition is less than 0.019%, the effect is small, and if the addition exceeds 0.05%, the effect is saturated. Therefore, it is added 0.019 to 0.05%.

【0040】〔N:0.006〜0.015%〕NはA
l,Tiと結合してAlN,TiNを形成する。これが
高周波加熱時のオーステナイトの成長を抑制することに
より、衝撃特性及び疲労強度を向上させるので積極的に
添加するが、0.006%未満の添加では、高周波加熱
時のオーステナイト粒径が本発明の目標とする16μm
以下とならずに粒界に偏析するPによる粒界脆化が生じ
て、衝撃特性及び疲労強度が低下するため0.006%
以上の添加とする。しかし、0.015%を超えて添加
すると熱間変形能を低下させることにより連続鋳造時に
鋳片の表面欠陥を著しく増加させるので0.015%以
下の添加とする。
[N: 0.006 to 0.015%] N is A
AlN and TiN are formed by combining with l and Ti. This is positively added because it suppresses the growth of austenite during high-frequency heating, thereby improving impact characteristics and fatigue strength. However, when added less than 0.006%, the austenite grain size during high-frequency heating is reduced according to the present invention. Target 16μm
0.006% because the grain boundary embrittlement due to P segregating at the grain boundary occurs and the impact properties and fatigue strength are reduced.
The above addition is made. However, if added in excess of 0.015%, the hot deformability is reduced and the surface defects of the slab are significantly increased during continuous casting, so the addition is made 0.015% or less.

【0041】本発明においては、上記の化学組成の他
に、さらにMo:0.05〜0.5%、B:0.000
3〜0.005%、Ti:0.005〜0.05%、N
i:0.1〜1.0%の一種以上を含有させることがで
きる。
In the present invention, in addition to the above chemical composition, Mo: 0.05 to 0.5%, B: 0.000%
3 to 0.005%, Ti: 0.005 to 0.05%, N
i: One or more of 0.1 to 1.0% can be contained.

【0042】これらの元素の作用及び限定理由は、以下
の通りである. 〔Mo:0.05〜0.5%〕Moは焼入性向上に有用
な元素であり、焼入性を調整するために用いる。Moの
添加は同時にパーライトの組織形態に著しい影響を及ぼ
し、セメンタイトが分断されたパーライトを形成する。
この結果、被削性を著しく向上させる。また、Moは焼
もどし軟化抵抗を向上させるので、歯面強度も向上させ
ることができる。さらに、Moは粒界に偏析するP等の
不純物元素を低減させることにより歯元強度及び衝撃特
性を向上させる作用があり、本発明においては好適な元
素であるので積極的に添加するが、0.05%未満の添
加ではその効果が小さく、一方0.5%を超えて添加す
ると高周波焼入のような急速短時間の加熱ではオーステ
ナイト中への溶解が困難な炭化物を形成するので0.0
5〜0.5%の範囲の添加とする。
The action of these elements and the reasons for limitation are as follows. [Mo: 0.05 to 0.5%] Mo is an element useful for improving hardenability and is used for adjusting hardenability. The addition of Mo at the same time has a significant effect on the morphology of the pearlite, forming cementite with a fragmented pearlite.
As a result, the machinability is significantly improved. Further, Mo improves the resistance to tempering and softening, so that the tooth surface strength can also be improved. Further, Mo has an effect of improving the tooth root strength and impact characteristics by reducing impurity elements such as P segregated at the grain boundary. In the present invention, Mo is a suitable element, so it is positively added. When the addition is less than 0.05%, the effect is small. On the other hand, when the addition is more than 0.5%, carbides which are difficult to dissolve in austenite by rapid and short-time heating such as induction quenching are formed.
It is added in the range of 5 to 0.5%.

【0043】〔B:0.0003〜0.005%〕Bは
微量の添加で焼入性を向上させる元素であるので、その
他の合金元素を低減させることができる。また、Bは粒
界に優先的に偏析し、粒界に偏析するPの濃度を低減し
て歯元強度及び衝撃特性を著しく向上させる元素であ
る。このためには0.0003%以上の添加が必要であ
るが、0.005%を超えて添加してもその効果は飽和
するので0.005%以下の添加とする。
[B: 0.0003 to 0.005%] Since B is an element which improves hardenability by adding a small amount, other alloying elements can be reduced. B is an element that segregates preferentially at the grain boundaries, reduces the concentration of P segregated at the grain boundaries, and significantly improves tooth root strength and impact characteristics. For this purpose, 0.0003% or more must be added, but if it exceeds 0.005%, the effect is saturated, so the addition is made 0.005% or less.

【0044】〔Ti:0.005〜0.05%〕Bの焼
入性向上効果はBが単独に存在する場合に顕著である
が、一方でBはNと結合しやすい元素であり、この場合
には上記した好適な効果が消失する。このBの焼入性向
上効果を、B以上にNと結合しやすいTiを添加するこ
とにより十分発揮させることができるので、Tiをこの
ような場合に用いてもよい。もっとも0.005%未満
の添加ではその効果は小さい。一方、0.05%を超え
て添加するとTiNが多量に形成される結果、これが疲
労破壊の起点となって歯元強度及び歯面強度を低下させ
るので0.05%未満の添加とする。
[Ti: 0.005 to 0.05%] The effect of improving the hardenability of B is remarkable when B is present alone, but B is an element that easily bonds to N. In such a case, the above-described advantageous effects disappear. Since the effect of improving the hardenability of B can be sufficiently exerted by adding Ti which easily bonds to N more than B, Ti may be used in such a case. However, the effect is small when the addition is less than 0.005%. On the other hand, if added in excess of 0.05%, a large amount of TiN will be formed, and this will be the starting point of fatigue failure, lowering the tooth root strength and tooth surface strength.

【0045】また、TiNは高周波加熱時のオーステナ
イト粒径を細粒化する作用があるので、Tiの単独添加
のみでも歯面強度及び疲労強度を向上させる作用があ
る。この場合にもTi添加量としては0.005〜0.
05%の範囲が好適である。
Since TiN has the effect of reducing the austenite grain size during high-frequency heating, the addition of Ti alone alone has the effect of improving tooth surface strength and fatigue strength. Also in this case, the addition amount of Ti is 0.005 to 0.5.
A range of 05% is preferred.

【0046】〔Ni:0.1〜1.0%〕Niはその添
加により焼入性を向上させる元素であるのみでなく、衝
撃特性を改善する元素であるので、焼入性を調整する場
合または衝撃特性の改善が必要とされる場合に用いても
良いが、0.1%未満の添加ではその効果が小さいので
0.1%以上の添加とする。一方、Niは極めて高価な
元素であるので、1.0%を超えて添加すると鋼材のコ
ストが上昇し、本発明の目的に反するので1.0%未満
の添加とする。
[Ni: 0.1-1.0%] Ni is not only an element which improves hardenability by its addition, but also an element which improves impact characteristics. Alternatively, it may be used when the impact characteristics need to be improved. However, if the addition is less than 0.1%, the effect is small, so the addition is 0.1% or more. On the other hand, Ni is an extremely expensive element, and if added in excess of 1.0%, the cost of the steel material rises, which is contrary to the purpose of the present invention, so that the addition is less than 1.0%.

【0047】本発明においては、またさらに、V,Nb
の一種以上を含有させることができる。これらの元素の
作用を説明する。
In the present invention, V, Nb
One or more of the above. The effects of these elements will be described.

【0048】高周波焼入プロセスを経る場合には、被処
理材の中心部の硬さを確保するために、前熱処理として
焼入焼もどし処理を施すのが一般的である。しかし、こ
の熱処理はコストを増大させるので、なるべくはこれを
省略することが望ましい。前処理としての焼入を省略す
るには、高周波焼入前の素材硬さを上昇させておく必要
がある。そのためには析出強化作用を有するV及びNb
の添加が効果的である。
When an induction hardening process is performed, a quenching and tempering process is generally performed as a pre-heat treatment in order to secure the hardness of the central portion of the material to be processed. However, since this heat treatment increases the cost, it is desirable to omit this as much as possible. In order to omit quenching as pretreatment, it is necessary to increase the material hardness before induction hardening. For this purpose, V and Nb having a precipitation strengthening action
Is effective.

【0049】V及びNbの添加量の限定理由は次の通り
である。 〔V:0.05〜0.5%〕Vは析出強化作用の極めて
強い元素であるので、高周波焼入前の前熱処理としての
焼入焼もどし処理を省略する必要の有る場合に添加する
が、0.05%未満の添加ではその効果が小さく、一
方、0.5%を超えて添加してもその効果が飽和するの
で0.05〜0.5%の添加とする。
The reasons for limiting the added amounts of V and Nb are as follows. [V: 0.05-0.5%] V is an element having a very strong precipitation strengthening effect, and is added when it is necessary to omit the quenching and tempering treatment as a pre-heat treatment before induction hardening. , Less than 0.05%, the effect is small, while adding more than 0.5% saturates the effect.

【0050】また,Vは鋼材の焼もどし軟化抵抗を向上
させる元素であるから、歯面強度の向上に極めて有効で
もある。 〔Nb:0.01〜0.5%〕Nbは析出強化作用の極
めて強い元素であるので、高周波焼入前の前熱処理とし
ての焼入焼もどし処理を省略する必要の有る場合に添加
するが、0.01%未満の添加ではその効果が小さく、
一方、0.5%を超えて添加してもその効果が飽和する
ので0.01〜0.5%の添加とする。また、Nbの添
加は鋼材の焼もどし軟化抵抗を向上させる元素であるか
ら、歯面強度の向上に極めて有効でもある。
Further, V is an element for improving the tempering softening resistance of the steel material, and is therefore very effective for improving the tooth surface strength. [Nb: 0.01 to 0.5%] Since Nb is an element having an extremely strong precipitation strengthening effect, it is added when it is necessary to omit the quenching and tempering treatment as a pre-heat treatment before induction hardening. , Less than 0.01%, the effect is small,
On the other hand, if the content exceeds 0.5%, the effect is saturated, so the content is set to 0.01 to 0.5%. In addition, since Nb is an element that improves the tempering softening resistance of a steel material, it is also extremely effective in improving the tooth surface strength.

【0051】また、本発明においては、疲労強度の確保
のために、酸化物系非金属介在物の量(個数)およびサ
イズについて、それぞれ2.5個/mm2 以下および1
9μm以下に規定する。この個数を越える酸化物系非金
属介在物が存在すると、それぞれの非金属介在物より発
生した疲労亀裂が合体して急速に疲労亀裂が進展し疲労
破壊にいたる結果、目標とする疲労強度を確保する事が
困難となるためである。また、サイズが19μmを越え
る酸化物系非金属介在物が存在すると、この非金属介在
物より発生する初期亀裂が大きくなり、その結果急速に
疲労亀裂が進展して早期に疲労破壊が生じるためであ
る。
In the present invention, in order to secure the fatigue strength, the amount (number) and size of the oxide-based nonmetallic inclusions are not more than 2.5 / mm 2 and 1 respectively.
It is specified to be 9 μm or less. If the number of oxide-based nonmetallic inclusions exceeds this number, the fatigue cracks generated from each nonmetallic inclusion will coalesce, and the fatigue cracks will grow rapidly, leading to fatigue fracture, thereby securing the target fatigue strength. This is because it becomes difficult to do so. In addition, if oxide-based nonmetallic inclusions having a size exceeding 19 μm are present, the initial cracks generated from the nonmetallic inclusions become large, and as a result, fatigue cracks rapidly develop and early fatigue fracture occurs. is there.

【0052】〔O:0.0015%以下〕上記の酸化物
系非金属介在物の量およびサイズを上記した目標の値以
下に制御するためには、アルミナ等の酸化物系非金属介
在物を形成するOの量を低減する必要がある。このため
には、少なくとも0.0015%以下にOの量を低減す
る必要がある。そこで本発明にあっては、鋼中の酸素含
有量をO:0.0015%以下に限定する。
[O: 0.0015% or less] In order to control the amount and size of the above-mentioned oxide-based nonmetallic inclusions to below the above-mentioned target values, oxide-based nonmetallic inclusions such as alumina are required. It is necessary to reduce the amount of O to be formed. For this purpose, it is necessary to reduce the amount of O to at least 0.0015% or less. Therefore, in the present invention, the oxygen content in steel is limited to O: 0.0015% or less.

【0053】本発明において、高周波焼入れ時のオース
テナイト粒径を16μm以下と規定する。その理由は次
の通りである。オーステナイト粒径は、細粒となればな
るほど、オーステナイト粒界に偏析して粒界脆化を引き
起こすPの濃度が低下する。P含有量が0.020%以
下のとき、オーステナイト粒径が16μmより大きい場
合は、Pの粒界濃度が高まり粒界が脆化して十分な歯元
強度および衝撃特性が得られない。逆に16μm以下と
すれば、粒界の脆化がかなり軽減され、このことと細粒
化の効果とが相まって十分な歯元強度および衝撃特性が
得られる。このため、高周波焼入れ時のオーステナイト
粒径を16μm以下と規定する。更に、本発明において
は鋳片より鋼材へ圧延時の断面減少率を95%以上とす
る。これも酸化物系非金属介在物のサイズを目標とする
19μm以下とするためであり、95%未満の断面減少
率では酸化物系非金属介在物のサイズの目標を達成でき
ず早期に疲労破壊が生じるからである。
In the present invention, the austenite grain size during induction hardening is specified to be 16 μm or less. The reason is as follows. The finer the austenite grain size, the lower the concentration of P that segregates at the austenite grain boundaries and causes grain boundary embrittlement. When the P content is 0.020% or less and the austenite particle size is larger than 16 μm, the grain boundary concentration of P increases and the grain boundaries become brittle, so that sufficient root strength and impact properties cannot be obtained. Conversely, when the thickness is 16 μm or less, embrittlement of the grain boundary is considerably reduced, and this effect is combined with the effect of grain refinement, whereby sufficient root strength and impact characteristics can be obtained. For this reason, the austenite grain size during induction hardening is specified to be 16 μm or less. Furthermore, in the present invention, the cross-sectional reduction rate at the time of rolling from a slab to a steel material is 95% or more. This is also for the purpose of reducing the size of the oxide-based nonmetallic inclusion to 19 μm or less, and the target of the size of the oxide-based nonmetallic inclusion cannot be achieved at a cross-sectional reduction rate of less than 95%, resulting in early fatigue fracture. Is caused.

【0054】続いて、本発明の高周波焼入部品の製造条
件の限定理由について説明する。本発明においては、M
nSの伸長の抑制のために、熱間圧延時の加熱温度及び
圧延条件を規定する。本発明の高周波焼入用部品の製造
にあたり熱間圧延の加熱温度を1100〜1250℃と
するのは、1100℃未満の温度ではMnSが全く固溶
せず鋳造時の粗大なMnSのまま圧延されることにな
り、伸長が著しいためである。また、1250℃以下と
するのは、この温度以上では部分的に粒界が溶融し、熱
間変形能が低下するため熱間圧延が困難になるからであ
る。また、圧延温度を1000℃以上とするのは、これ
を下回る温度域においては、MnSの伸長が顕著となる
ためである。
Next, the reason for limiting the manufacturing conditions of the induction hardened part of the present invention will be described. In the present invention, M
In order to suppress the elongation of nS, the heating temperature and the rolling conditions during hot rolling are specified. In the production of the induction hardening part of the present invention, the heating temperature of the hot rolling is set to 1100 to 1250 ° C. At a temperature lower than 1100 ° C., MnS does not form a solid solution at all and is rolled as coarse MnS at the time of casting. This is because extension is remarkable. Further, the reason why the temperature is set to 1250 ° C. or less is that if the temperature is higher than this temperature, the grain boundary is partially melted and the hot deformability is reduced, so that hot rolling becomes difficult. In addition, the reason why the rolling temperature is set to 1000 ° C. or higher is that the MnS elongation becomes remarkable in a temperature range below the rolling temperature.

【0055】本発明の製造方法においては,鋳片より2
回の圧延により最終形状に成形する場合もあり、その場
合の熱間圧延温度条件についても規定するが、第1段の
圧延温度については、上記と同一である。第2段の圧延
温度条件については、第1段の圧延によりMnSが微細
化されているので、加熱温度はMnSが固溶しない温度
まで低下させてもよい。しかし、熱間圧延温度について
は1000℃を下回るとMnSの伸長が生じるので10
00℃以上の温度で圧延する必要がある。すなわち、第
2段加熱温度を1050とするのは、それを下回る温度
では熱間圧延温度を1000℃以上に維持することが困
難であるためであり、また上限を1250℃とするのは
これを越える温度では熱間変形能が低下し熱間圧延が困
難となるためである。
In the manufacturing method of the present invention, two
In some cases, the final shape is formed by multiple rollings. In this case, the hot rolling temperature conditions are also specified, but the rolling temperature of the first stage is the same as described above. Regarding the second-stage rolling temperature condition, since the MnS is refined by the first-stage rolling, the heating temperature may be reduced to a temperature at which MnS does not form a solid solution. However, when the hot rolling temperature is lower than 1000 ° C., the MnS elongation occurs.
It is necessary to roll at a temperature of 00 ° C. or higher. That is, the reason why the second-stage heating temperature is set to 1050 is that it is difficult to maintain the hot rolling temperature at 1000 ° C. or higher at a lower temperature, and the upper limit is set to 1250 ° C. If the temperature exceeds this, the hot deformability decreases and hot rolling becomes difficult.

【0056】以下,本発明を実施例に基づいて説明す
る。 (実施例1)この実施例は、高周波焼入用部品の材料鋼
の化学組成や、オーステナイト粒径,非金属介在物の状
態等と部品特性との関係を検討したものである。
Hereinafter, the present invention will be described with reference to examples. (Example 1) In this example, the relationship between the chemical composition of the material steel of the component for induction hardening, the austenite grain size, the state of nonmetallic inclusions, and the like and the component characteristics was examined.

【0057】表1に示す化学組成の鋼を転炉‐連続鋳造
プロセスにより溶製した。表中のNo.は試験No.と
鋼No.とを兼ねている。
Steel having the chemical composition shown in Table 1 was produced by the converter-continuous casting process. No. in the table. Is the test No. And steel No. And also serves as.

【0058】[0058]

【表1】 [Table 1]

【0059】鋳造時の抽片サイズは200×225mm
であった。この鋳片をブレークダウン工程を経て150
mm角ビレットに圧延したのち、所定の断面減少率(後
述の表2に記載)で棒鋼に圧延した。これを845℃×
30min焼入れ後、550℃で焼もどしの処理を施し
た。これらを素材として、直径8mm平滑の回転曲げ疲
労試験片及び直径27mmの転動疲労試験片を作製し、
15kHzの高周波焼入試験機により表面焼入をおこな
い、その後180℃×lhの焼もどし処理を行った。ま
た、焼入焼もどし材に同一の高周波焼入処理焼入焼もど
し処理を行い、この表面近傍より2mml0Rノッチの
衝撃試験片を作製した。
The size of the piece at the time of casting is 200 × 225 mm.
Met. This slab is subjected to 150
After being rolled into a mm square billet, it was rolled into a bar at a predetermined cross-sectional reduction rate (described in Table 2 below). This is 845 ° C x
After quenching for 30 minutes, tempering treatment was performed at 550 ° C. Using these as raw materials, a rotating bending fatigue test piece having a diameter of 8 mm and a rolling fatigue test piece having a diameter of 27 mm were prepared.
Surface quenching was performed by a 15 kHz induction hardening tester, followed by tempering at 180 ° C. × 1 h. The same quenching and tempering material was subjected to the same induction quenching and quenching and tempering treatments to produce impact test pieces of 2 mm 0R notch from near the surface.

【0060】また転炉‐連鋳鋳造プロセスにて溶製し、
上記と同じプロセスを経て表2に記載の断面減少率で圧
延したSCM420鋼を用いて上記と同様の試験片を作
製し、これらに930℃×4h(炭素ポテンシャル0.
88)→焼入の浸炭処理を施し、180℃×2hの焼も
どしを施した。
Further, it is melted in a converter-continuous casting process,
Test pieces similar to the above were prepared using SCM420 steel rolled at the cross-sectional reduction rate shown in Table 2 through the same process as above, and these were subjected to 930 ° C. × 4 h (carbon potential 0.
88) → Carburizing treatment of quenching was performed, and tempering was performed at 180 ° C. for 2 hours.

【0061】表2に圧延時の断面減少率,非金属介在物
の個数,サイズ等の詳細を示す。
Table 2 shows details such as the cross-sectional reduction rate during rolling and the number and size of nonmetallic inclusions.

【0062】[0062]

【表2】 [Table 2]

【0063】これらの試料を用いて衝撃試験,回転曲げ
疲労試験及び転動疲労試験を実施した。衝撃試験は、シ
ャルピー衝撃試験機を用いて+20℃の条件により行っ
た。
Using these samples, an impact test, a rotating bending fatigue test and a rolling fatigue test were carried out. The impact test was performed using a Charpy impact tester at + 20 ° C.

【0064】疲労試験は、小野式回転曲げ疲労試験機を
用いて常温で3600rpmの速度で実施した。転動疲
労試験は、試験片に直径130mmのローラを押し付け
ることにより、3677MPaの接触応力を与え、表面
にピッチングが生じるまでの時間で寿命を評価した。
The fatigue test was carried out at room temperature at a speed of 3600 rpm using an Ono-type rotary bending fatigue tester. In the rolling fatigue test, a roller having a diameter of 130 mm was pressed against a test piece to give a contact stress of 3677 MPa, and the life was evaluated by the time until pitting occurred on the surface.

【0065】これらの試験結果を表3に示す。Table 3 shows the test results.

【0066】[0066]

【表3】 [Table 3]

【0067】No.1〜No.12は本発明例である。
No.29は従来例で、浸炭鋼として多用されているJ
IS SCr420相当鋼である。
No. 1 to No. 12 is an example of the present invention.
No. Reference numeral 29 denotes a conventional example, which is commonly used as carburized steel.
IS SCr420 equivalent steel.

【0068】No.30も従来例で、JIS鋼を改良し
た高強度浸炭鋼である。No.13〜15は比較例で、
圧延の際の断面減少率が本発明の範囲外であり、その結
果酸化物系非金属介在物のサイズが本発明の範囲から外
れている場合である。上記SCr420鋼よりは優れた
特性を有しているが、本発明例に比較して疲労強度及び
転動疲労寿命が劣化している。
No. Reference numeral 30 is also a conventional example and is a high-strength carburized steel obtained by improving JIS steel. No. 13 to 15 are comparative examples,
This is the case where the cross-sectional reduction rate during rolling is out of the range of the present invention, and as a result, the size of the oxide-based nonmetallic inclusion is out of the range of the present invention. Although it has better characteristics than the above-mentioned SCr420 steel, the fatigue strength and the rolling fatigue life are deteriorated as compared with the examples of the present invention.

【0069】No.16〜18の比較例は、オーステナ
イト粒径が本発明の範囲外の場合であり、本発明例に比
較して衝撃値および疲労強度がかなり劣化している。N
o.19〜No.28の比較例は、化学組成のいずれか
が本発明の範囲外になっている。
No. Comparative Examples 16 to 18 are cases where the austenite particle size is out of the range of the present invention, and the impact value and the fatigue strength are considerably deteriorated as compared with the inventive examples. N
o. 19-No. Comparative Example 28 has any of the chemical compositions outside the scope of the present invention.

【0070】すなわち、No.19は、N量が本発明の
範囲を下回る場合であり、オーステナイト粒径が粗大と
なった結果、衝撃値および疲労強度が本発明例に比べか
なり低下しており、No.30の高強度浸炭鋼に比較し
てもそれらは劣っている。
That is, No. No. 19 is the case where the N content is below the range of the present invention, and as a result of the coarse austenite grain size, the impact value and the fatigue strength are considerably lower than those of the present invention. They are inferior even compared to 30 high strength carburized steels.

【0071】No.20は、C量が本発明の上限を超え
る場合であり、衝撃値が従来鋼よりも極端に低下してい
る。No.21は、C量が本発明の範囲を下回る場合で
あり、表面硬さが低い結果、疲労強度及び転動疲労寿命
の低下が著しく、SCr420よりもその特性は劣って
いる。
No. No. 20 is a case where the C content exceeds the upper limit of the present invention, and the impact value is extremely lower than that of the conventional steel. No. No. 21 is a case where the C content is less than the range of the present invention, and as a result of the low surface hardness, the fatigue strength and the rolling fatigue life are significantly reduced, and the properties are inferior to SCr420.

【0072】No.22は、Si量が本発明の範囲を下
回る場合であり、転動疲労寿命が極端に低下しており、
SCr420より特性が低下している。No.23は、
Mn量が本発明の範囲を超える場合であり、疲労強度及
び転動疲労寿命が低下している。
No. 22 is a case where the amount of Si is below the range of the present invention, the rolling fatigue life is extremely reduced,
The properties are lower than SCr420. No. 23 is
In this case, the Mn content exceeds the range of the present invention, and the fatigue strength and the rolling fatigue life are reduced.

【0073】No.24は、P量が本発明の上限を超え
る場合であり、衝撃値及び疲労強度の低下が著しい。N
o.25は、S量が本発明の上限を超える場合であり、
疲労強度が低下している。
No. No. 24 is the case where the P content exceeds the upper limit of the present invention, and the impact value and the fatigue strength are significantly reduced. N
o. 25 is a case where the amount of S exceeds the upper limit of the present invention,
The fatigue strength has decreased.

【0074】No.26は、Al量が本発明を下回る場
合であり、この結果AlN生成量が減少してオーステナ
イト粒径が粗粒となり、衝撃特性および疲労強度が低下
している。特に衝撃値は、SCr420を下回ってい
る。
No. In No. 26, the Al content was lower than that of the present invention. As a result, the amount of AlN produced decreased, the austenite grain size became coarse, and the impact properties and fatigue strength were reduced. In particular, the impact value is lower than SCr420.

【0075】No.27は、Ti量が本発明の上限を超
える場合であり、疲労強度及び転勤疲労寿命の低下が著
しい。No.28は,O量が本発明の上限を超える場合
であり、その結果酸化物系非金属介在物の個数が多く、
疲労強度及び転動疲労寿命が極端に低下している。その
値はSCr420よりも劣っている。
No. No. 27 is the case where the amount of Ti exceeds the upper limit of the present invention, and the fatigue strength and the transfer fatigue life are remarkably reduced. No. 28 is the case where the O content exceeds the upper limit of the present invention, and as a result, the number of oxide-based nonmetallic inclusions is large,
Fatigue strength and rolling fatigue life are extremely reduced. Its value is inferior to SCr420.

【0076】すなわち、本発明の範囲外の鋼の場合に
は、諸特性の内いずれかがSCr420あるいは高強度
浸炭用鋼よりも低い値となっているのに対し、本発明鋼
の場合はいずれの特性も従来浸炭鋼SC420よりも優
れ、さらに高強度浸炭用鋼とほぽ同等またはそれ以上の
値である。
That is, in the case of a steel outside the scope of the present invention, any of the various properties are lower than those of SCr420 or high-strength carburizing steel, whereas in the case of the steel of the present invention, Is also superior to that of the conventional carburized steel SC420, and is almost equal to or higher than that of the high-strength carburizing steel.

【0077】(実施例2)この実施例は、高周波焼入用
部品の材料鋼の化学組成,オーステナイト粒径,非金属
介在物等の材料条件に加えて、熱間圧延温度等の製造条
件と部品特性との関係を検討したものである。
(Example 2) In this example, in addition to the material conditions such as the chemical composition of the material steel, the austenite grain size, and the nonmetallic inclusions of the material for the induction hardening part, the manufacturing conditions such as the hot rolling temperature and the like were determined. The relationship with the component characteristics was examined.

【0078】表4に示す組成の鋼を転炉−連続鋳造プロ
セスにより560×400mmのブルームに溶製した。
表5に圧延の断面減少率,非金属介在物の個数,サイズ
等の詳細を示す。
Steel having the composition shown in Table 4 was melted into a 560 × 400 mm bloom by a converter-continuous casting process.
Table 5 shows details such as the reduction ratio of the cross-section of rolling and the number and size of nonmetallic inclusions.

【0079】[0079]

【表4】 [Table 4]

【0080】[0080]

【表5】 [Table 5]

【0081】なお、表中のNo.31〜57は試料鋼の
No.である。このブルームを後述の表6に示す熱間圧
延条件により直径100mmの棒鋼に圧延した。この素
材より、圧延方向の直角方向及び圧延方向より直径30
mmの素材を作製し、これを845℃×30min焼入
れ処理した後、550℃焼もどしの処理を施した。これ
らを素材として、直径8mm平滑の転曲げ疲労試験片及
び直径27mmの転動疲労試験片を作製し、15kHz
の高周波焼人試験機により表面焼入をおこない、その後
180度℃×1hの焼もどし処理を行った。
In the table, No. Nos. 31 to 57 are sample steel Nos. It is. This bloom was rolled into a steel bar having a diameter of 100 mm under the hot rolling conditions shown in Table 6 below. From this material, the diameter 30 degrees from the direction perpendicular to the rolling direction and from the rolling direction.
A 850 mm x 30 min quenching treatment was performed on the material, and then a 550 C tempering treatment was performed. Using these as raw materials, rolling-bending fatigue test specimens having a diameter of 8 mm and rolling fatigue specimens having a diameter of 27 mm were prepared, and 15 kHz.
Was subjected to surface quenching with a high-frequency induction tester, and then tempered at 180 ° C. × 1 h.

【0082】また、直径30mmの焼入焼もどし材に同
一の高周波焼入処理焼入焼もどし処理を行い、この表面
近傍より2mm10Rノッチの衝撃試験片を作製した。
一方、転炉‐連鋳プロセスにて溶製し、直径90mmの
棒鋼に圧延後、その棒鋼より直径30mmの素材を切削
加工により作製したSCr420鋼を用いて上記と同様
の試験片を作製し、これらに930℃×4h(炭素ボテ
ンシャル0.88)→焼入の浸炭処理を施した後、18
0℃×2hの焼もどしを行った。
Further, the same induction hardening treatment and quenching and tempering treatment were applied to the quenched and tempered material having a diameter of 30 mm, and an impact test piece having a notch of 2 mm and 10R was prepared from the vicinity of the surface.
On the other hand, the melted in the converter-continuous casting process, after rolling into a steel bar of 90 mm in diameter, and then preparing a test piece similar to the above using SCr420 steel prepared by cutting a material having a diameter of 30 mm from the steel bar, These were subjected to 930 ° C. × 4 h (carbon potential 0.88) → carburizing treatment of quenching,
Tempering at 0 ° C. × 2 h was performed.

【0083】これらの試料を用いて衝撃試験,回転曲げ
疲労試験及び転動疲労試験を、実施例1の場合と同一の
条件で実施した。また、熱間圧延のままの状態で超硬工
具P10を用いて、切り込み2mm,送り0.25mm
/rev,切削速度200/minの条件で切削試験を
行った。被削性は、逃げ面摩耗が0.2mmに達するま
での切削時間(工具寿命)により評価した。
Using these samples, an impact test, a rotating bending fatigue test and a rolling fatigue test were carried out under the same conditions as in Example 1. In addition, in the state of hot rolling, using a cemented carbide tool P10, cut 2 mm, feed 0.25 mm
A cutting test was performed under the conditions of / rev and a cutting speed of 200 / min. The machinability was evaluated by the cutting time (tool life) until the flank wear reached 0.2 mm.

【0084】本第2の実施例の試験No.2−1〜2−
39の各試験の結果を表6及び表7に示す。
In the test No. of the second embodiment. 2-1 to 2-
Tables 6 and 7 show the results of the 39 tests.

【0085】[0085]

【表6】 [Table 6]

【0086】[0086]

【表7】 [Table 7]

【0087】表中の鋼No.31〜57は、表4の鋼N
o.に対応している。試験No.2−1〜2−12は本
発明例である。試験No.2−13〜2−24は、化学
組成は本発明の範囲内であるが、熱間圧延条件が本発明
の範囲外の場合である。
In the table, the steel No. 31 to 57 are steel N of Table 4
o. It corresponds to. Test No. 2-1 to 2-12 are examples of the present invention. Test No. 2-13 to 2-24 are cases where the chemical composition falls within the range of the present invention, but the hot rolling conditions are outside the range of the present invention.

【0088】試験No.2−25〜2−37は、化学組
成が本発明の範囲外あるいは圧延の際の断面減少率が本
発明の範囲外であり、その結果、酸化物系非金属介在物
のサイズが本発明の範囲から外れている場合である。
Test No. 2-25 to 2-37, the chemical composition is out of the range of the present invention or the cross-sectional reduction rate during rolling is out of the range of the present invention, and as a result, the size of the oxide-based nonmetallic inclusions is smaller than that of the present invention. This is the case when it is out of the range.

【0089】試験No.2−38,39は従来例であ
り、試験No.2−38は浸炭鋼として多用されている
JIS SCr420相当鋼である。また、試験No.
39はJIS鋼を改良した高強度浸炭鋼である。
Test No. Test pieces Nos. 2-38 and 39 are conventional examples. 2-38 is JIS SCr420 equivalent steel that is frequently used as carburized steel. Test No.
39 is a high-strength carburized steel obtained by improving JIS steel.

【0090】試験No.2−1〜No.2−12の本発
明例は、浸炭鋼SCr420に比べて衝撃特性,疲労強
度,転動疲労寿命および被削性のいずれにおいても優れ
ている。
Test No. 2-1 to No. The inventive examples 2-12 are superior in all of the impact characteristics, the fatigue strength, the rolling fatigue life and the machinability as compared with the carburized steel SCr420.

【0091】一方、試験No.2−13〜2−24の比
較例は、本発明例に比較しC方向の疲労強度が低下して
おり、従来鋼のSCr420よりも低くなっている。こ
の事実は、熱間圧延条件が本発明を満足しないとSCr
420と同等の特性を確保することは困難であることを
示している。
On the other hand, Test No. In Comparative Examples 2-13 to 2-24, the fatigue strength in the C direction is lower than that of the present invention, and is lower than SCr420 of the conventional steel. This fact indicates that if the hot rolling conditions do not satisfy the present invention, SCr
This indicates that it is difficult to secure characteristics equivalent to 420.

【0092】試験No.2−25〜2−37は、化学組
成あるいは酸化物系非金属介在物の規定が本発明の範囲
外の場合であり、衝撃特性,疲労強度,転動疲労寿命お
よび被削性のうちのいずれか、あるいは複数の特性がS
Cr420よりも劣っている。
Test No. 2-25 to 2-37 are cases where the chemical composition or the definition of oxide-based non-metallic inclusions are out of the range of the present invention, and include any one of impact characteristics, fatigue strength, rolling fatigue life and machinability. Or several characteristics are S
Inferior to Cr420.

【0093】すなわち、本実施例によれば、本発明の範
囲外の鋼の場合には、諸特性のうちのいずれかがSCr
420あるいは高強度浸炭用鋼よりも低い値となってい
るのに対し、本発明鋼の場合はいずれの特性も従来浸炭
鋼SCr420よりも優れ、さらに高強度浸炭用鋼とほ
ぼ同等またはそれ以上の値であることが明らかである。
That is, according to the present embodiment, in the case of steel outside the scope of the present invention, one of the various characteristics is SCr
420 or a lower value than the high-strength carburizing steel, whereas in the case of the steel of the present invention, any of the characteristics is superior to the conventional carburizing steel SCr420, and furthermore, almost equal to or higher than the high-strength carburizing steel It is clear that it is a value.

【0094】(実施例3)この実施例は、高周波焼入用
部品の材料鋼の製造条件、特に第1段,第2段と二段圧
延を行った場合について、部品特性との関係を検討した
ものである。
(Embodiment 3) In this embodiment, the relationship between the characteristics of parts for the induction hardening and the characteristics of the parts in the case where the first and second steps are subjected to two-step rolling is examined. It was done.

【0095】表4に示す化学組成の鋼(鋼No.31〜
57)を、転炉・連続鋳造プロセスにより560×40
0mmのブルームに溶製した。このブルームを表7に示
す熱間圧延条件により150mm角ビレットに圧延し、
さらに熱間圧延により直径50mmの棒鋼に圧延した。
この素材より、圧延方向の直角方向及び圧延方向より直
径30mmの素材を作製し、これを845℃×30mi
n焼入れ後、550℃で焼もどしの処理を施した。これ
らを素材として、直径8mm平滑の回転曲げ疲労試験片
及び直径27mmの転動疲労試験片を作製し、15kH
zの高周波焼入試験機により表面焼入をおこない、その
後180℃×1hの焼もどし処理を行った。また、直径
30mmの焼入焼もどし材に同一の高周波焼入処理焼入
焼もどし処理を行い、この表面近傍より2mml0Rノ
ッチの衝撃試験片を作製した。
Steels having the chemical compositions shown in Table 4 (steel Nos. 31 to 31)
57) is converted to 560 × 40 by the converter / continuous casting process.
It was melted in a 0 mm bloom. This bloom was rolled into a 150 mm square billet under the hot rolling conditions shown in Table 7,
Further, it was rolled into a steel bar having a diameter of 50 mm by hot rolling.
From this material, a material having a diameter of 30 mm from the direction perpendicular to the rolling direction and from the rolling direction was prepared, and this was 845 ° C. × 30 mi.
After n quenching, tempering treatment was performed at 550 ° C. Using these as raw materials, a rotating bending fatigue test piece having a diameter of 8 mm and a rolling fatigue test piece having a diameter of 27 mm were prepared, and a 15 kHz
z was subjected to surface quenching by an induction hardening tester, followed by tempering at 180 ° C. × 1 h. In addition, the same induction hardening treatment and quenching and tempering treatment were applied to a quenched and tempered material having a diameter of 30 mm, and an impact test piece having a 2 mm notR notch was produced from the vicinity of the surface.

【0096】また、上記と同一のプロセスで製造したS
Cr420を用いて、上記と同様の試験片を作製し、こ
れらに930℃×4h(炭素ボテンシャル0.88)→
焼入の浸炭処理を施した後、180℃×2hの焼もどし
を行った。
Further, S manufactured by the same process as described above
Test pieces similar to the above were prepared using Cr420, and these were subjected to 930 ° C. × 4 h (carbon potential 0.88) →
After carburizing treatment of quenching, tempering at 180 ° C. × 2 h was performed.

【0097】これらの試料を用いて衝撃試験,回転曲げ
疲労試験及び転動疲労試験を、実施例1の場合と同一の
条件で実施した。また、熱間圧延のままの状態で超硬工
具P10を用いて、切り込み2mm,送り0.25mm
/rev,切削速度200/minの条件で切削試験を
行った。被削性は、逃げ面摩耗が0.2mmに達するま
での切削時間(工具寿命)により評価した。
Using these samples, an impact test, a rotating bending fatigue test and a rolling fatigue test were carried out under the same conditions as in Example 1. In addition, in the state of hot rolling, using a cemented carbide tool P10, cut 2 mm, feed 0.25 mm
A cutting test was performed under the conditions of / rev and a cutting speed of 200 / min. The machinability was evaluated by the cutting time (tool life) until the flank wear reached 0.2 mm.

【0098】本第3の実施例の試験No.3−1〜3−
51の各試験の結果を表8及び表9に示した。
In the test No. of the third embodiment. 3-1 to 3-
Tables 8 and 9 show the results of the 51 tests.

【0099】[0099]

【表8】 [Table 8]

【0100】[0100]

【表9】 [Table 9]

【0101】表中の試験No.3−1〜3−12は本発
明例である。いずれの特性もSCr420よりも高く、
高強度浸炭鋼と同等以上の特性を有する例もある。本発
明例の二段熱間圧延を適用すれば、高周波焼入により浸
炭鋼と同等以上の特性を得ることが可能なことが明らか
である。
Test No. in the table 3-1 to 3-12 are examples of the present invention. Both properties are higher than SCr420,
Some examples have properties equal to or higher than high-strength carburized steel. It is clear that if the two-stage hot rolling of the present invention is applied, it is possible to obtain characteristics equal to or higher than that of carburized steel by induction hardening.

【0102】試験No.3−13〜3−24は第1熱間
圧延の条件が本発明の範囲外にある場合である。また、
試験No.3−25〜3−36は第2段熱間圧延の条件
が本発明の範囲外の場合である。いずれの場合も、本発
明例に比較するとC方向の疲労強度の低下が著しく、S
Cr420に比較しても値が低くなっているものがあ
る。また、被削性も本発明例に比較して低下しており、
本発明の熱間圧延条件を適用することにより被削性も向
上させることが可能なことが判る。
Test No. 3-13 to 3-24 are cases where the conditions of the first hot rolling are out of the range of the present invention. Also,
Test No. 3-25 to 3-36 are cases where the conditions of the second-stage hot rolling are out of the range of the present invention. In each case, the fatigue strength in the C direction was significantly reduced as compared with the examples of the present invention.
In some cases, the value is lower than that of Cr420. In addition, the machinability is also reduced compared to the present invention example,
It is understood that the machinability can be improved by applying the hot rolling conditions of the present invention.

【0103】試験No.3−37〜3−39は、酸化物
系非金属介在物の規定が、また試験No.3−40〜3
−49は化学組成が、それぞれ本発明の範囲外にある場
合である。本発明例に比較して、いずれかの特性あるい
は複数の特性が著しく低下していることがわかる。
Test No. 3-37 to 3-39 specify oxide-based nonmetallic inclusions. 3-40-3
-49 is a case where the chemical composition is out of the range of the present invention. It can be seen that one or more of the characteristics are significantly reduced as compared with the example of the present invention.

【0104】以上述べたように、本発明を適用すること
により、歯車の製造プロセスを、浸炭鋼より生産性の高
い高周波焼入に変更することが可能となり、歯車の製造
コストの低減に資するところ大である。
As described above, by applying the present invention, the gear manufacturing process can be changed to induction hardening, which is more productive than carburized steel, which contributes to reduction of gear manufacturing costs. Is big.

【0105】[0105]

【発明の効果】本発明によれば、鋼の化学組成、酸化物
系非金属介在物の個数及びサイズを規制し、かつ二次加
工プロセスにおける熱間鍛造条件を規定することによ
り、従来は浸炭プロセスで製造される高強度の歯車等の
機械部品に生産性の良い高周波焼入れを適用することが
可能となり、その結果、浸炭品と同等以上の特性を有す
る部品を容易に量産できるという効果を奏する。
According to the present invention, the chemical composition of steel, the number and size of oxide-based nonmetallic inclusions are regulated, and the hot forging conditions in the secondary working process are regulated. High-productivity induction hardening can be applied to mechanical parts such as high-strength gears manufactured by the process, and as a result, it is possible to easily mass-produce parts having the same or better characteristics as carburized products. .

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 重量比で、C:0.5〜0.75%、S
i:0.5〜1.8%、Mn:0.4〜1.5%、P:
0.010〜0.020%、S:0.020%以下、A
l:0.019〜0.05%、O:0.0015%以
下、N:0.006〜0.015%を含有し残部Fe及
び不可避的不純物よりなり、酸化物系非金属介在物個数
が2.5/mm2 以下でかつその最大サイズが19μm
以下であることに加えて、高周波焼入れ時のオーステナ
イト粒径が16μm以下である鋼材よりなることを特徴
とする高周波焼入用部品。
1. C: 0.5 to 0.75% by weight, S
i: 0.5 to 1.8%, Mn: 0.4 to 1.5%, P:
0.010-0.020%, S: 0.020% or less, A
1: 0.019 to 0.05%, O: 0.0015% or less, N: 0.006 to 0.015%, the balance is composed of Fe and unavoidable impurities, and the number of oxide-based nonmetallic inclusions is 2.5 / mm 2 or less and the maximum size is 19 μm
In addition to the following, a component for induction hardening characterized by being made of a steel material having an austenite grain size of 16 μm or less during induction hardening.
【請求項2】 前記鋼材は、組成中にさらに、重量比
で、Mo:0.05〜0.5%、B:0.0003〜
0.005%、Ti:0.005〜0.05%、Ni:
0.1〜1.0%の一種以上を含有していることを特徴
とする請求項1記載の高周波焼入用部品。
2. The steel material further comprises, by weight ratio, Mo: 0.05-0.5% and B: 0.0003-
0.005%, Ti: 0.005 to 0.05%, Ni:
The component for induction hardening according to claim 1, wherein the component contains at least one of 0.1 to 1.0%.
【請求項3】 前記鋼材は、組成中にさらに、重量比
で、V:0.05〜0.5%、Nb:0.01〜0.5
%の少なくとも一種を含有していることを特徴とする請
求項1記載の高周波焼入用部品。
3. The composition according to claim 1, wherein said steel material further comprises, by weight, V: 0.05 to 0.5% and Nb: 0.01 to 0.5.
2. The component for induction hardening according to claim 1, wherein the component contains at least one of the following components.
【請求項4】 前記鋼材は、組成中にさらに、重量比
で、Mo:0.05〜0.5%、B:0.0003〜
0.005%、Ti:0.005〜0.05%、Ni:
0.1〜1.0%の一種以上とV:0.05〜0.5
%、Nb:0.01〜0.5%の少なくとも一種とを含
有していることを特徴とする請求項1記載の高周波焼入
用部品。
4. The steel material further comprises, by weight ratio, Mo: 0.05-0.5%, B: 0.0003-
0.005%, Ti: 0.005 to 0.05%, Ni:
0.1-1.0% or more and V: 0.05-0.5
% And Nb: at least one of 0.01 to 0.5%.
【請求項5】 請求項1ないし請求項4のいずれかに記
載の鋼材を鋳片より熱間圧延するに際して、当該鋳片を
1100〜1250℃の温度領域に加熱し、1000℃
以上の温度領域で圧延を終了することを特徴とする高周
波焼入用部品の製造方法。
5. When the steel material according to claim 1 is hot-rolled from a slab, the slab is heated to a temperature range of 1100 to 1250 ° C. and 1000 ° C.
A method for producing a component for induction hardening, wherein rolling is completed in the above temperature range.
【請求項6】 請求項1ないし請求項4のいずれかに記
載の鋼材を鋳片より熱間圧延するに際して、当該鋳片を
1100〜1250℃の温度領域に加熱し1000℃以
上の温度領域で第1段の圧延を終了し、さらに1050
〜1150℃の温度領域に加熱し1000℃以上の温度
領域で第2段の圧延を終了することを特徴とする高周波
焼入用部品の製造方法。
6. When hot rolling the steel material according to any one of claims 1 to 4 from a slab, the slab is heated to a temperature range of 1100 to 1250 ° C. and is heated to a temperature range of 1000 ° C. or more. The first stage of rolling is completed and an additional 1050
A method for producing a component for induction hardening, comprising heating to a temperature range of about 1150 ° C. and finishing the second-stage rolling in a temperature range of 1000 ° C. or more.
【請求項7】 前記鋳片から鋼材を熱間圧延する際に、
断面減少率が95%以上となる圧延を施すことを特徴と
する請求項5または請求項6記載の高周波焼入用部品の
製造方法。
7. When hot rolling a steel material from the slab,
The method for producing a component for induction hardening according to claim 5 or 6, wherein rolling is performed so that a cross-sectional reduction rate becomes 95% or more.
JP01883997A 1997-01-31 1997-01-31 Component for induction hardening and method of manufacturing the same Expired - Fee Related JP3562192B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01883997A JP3562192B2 (en) 1997-01-31 1997-01-31 Component for induction hardening and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01883997A JP3562192B2 (en) 1997-01-31 1997-01-31 Component for induction hardening and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH10219392A true JPH10219392A (en) 1998-08-18
JP3562192B2 JP3562192B2 (en) 2004-09-08

Family

ID=11982736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01883997A Expired - Fee Related JP3562192B2 (en) 1997-01-31 1997-01-31 Component for induction hardening and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3562192B2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004285474A (en) * 2003-03-04 2004-10-14 Komatsu Ltd Rolling member and its manufacturing method
JP2004292945A (en) * 2003-03-11 2004-10-21 Komatsu Ltd Rolling member, and its production method
WO2005031021A1 (en) * 2003-09-29 2005-04-07 Jfe Steel Corporation Steel parts for machine structure, material therefor, and method for manufacture thereof
WO2006008960A1 (en) * 2004-07-16 2006-01-26 Jfe Steel Corporation Component for machine structure, method for producing same, and material for high-frequency hardening
EP1669468A1 (en) * 2003-09-29 2006-06-14 JFE Steel Corporation Steel product for induction hardening, induction-hardened member using the same, and methods for producing them
EP1584701A4 (en) * 2003-01-17 2006-10-25 Jfe Steel Corp Steel product for induction hardening, induction-hardened member using the same, and methods for producing them
CN100436628C (en) * 2003-01-17 2008-11-26 杰富意钢铁株式会社 Steel product for induction hardening, induction-hardened member using the same, and methods for producing them
JP2009102733A (en) * 2003-03-04 2009-05-14 Komatsu Ltd Method for producing rolling member
JP2010024503A (en) * 2008-07-22 2010-02-04 Sumitomo Metal Ind Ltd Semifinished product made from high-strength steel and manufacturing method therefor
JP2010242114A (en) * 2009-04-01 2010-10-28 Sumitomo Metal Ind Ltd Method for manufacturing rough-shaped product made of high strength steel
JP2014189860A (en) * 2013-03-28 2014-10-06 Aichi Steel Works Ltd Steel plate excellent in fatigue strength and production method of the same
US9039962B2 (en) 2010-03-30 2015-05-26 Nippon Steel & Sumitomo Metal Corporation Steel for induction hardening, roughly shaped material for induction hardening, producing method thereof, and induction hardening steel part
EP2889392A1 (en) * 2013-12-30 2015-07-01 Hyundai Dymos Incorporated High frequency heat treatment material and method of manufacturing gear using the same
US9149868B2 (en) 2005-10-20 2015-10-06 Nucor Corporation Thin cast strip product with microalloy additions, and method for making the same
US9999918B2 (en) 2005-10-20 2018-06-19 Nucor Corporation Thin cast strip product with microalloy additions, and method for making the same
US10071416B2 (en) 2005-10-20 2018-09-11 Nucor Corporation High strength thin cast strip product and method for making the same
US11193188B2 (en) 2009-02-20 2021-12-07 Nucor Corporation Nitriding of niobium steel and product made thereby

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3489381A4 (en) * 2016-07-19 2020-02-26 Nippon Steel Corporation Steel for induction hardening
KR20190031278A (en) * 2016-07-19 2019-03-25 신닛테츠스미킨 카부시키카이샤 High frequency quenching steel

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7678207B2 (en) 2003-01-17 2010-03-16 Jfe Steel Corporation Steel product for induction hardening, induction-hardened member using the same, and methods producing them
CN100436628C (en) * 2003-01-17 2008-11-26 杰富意钢铁株式会社 Steel product for induction hardening, induction-hardened member using the same, and methods for producing them
EP1584701A4 (en) * 2003-01-17 2006-10-25 Jfe Steel Corp Steel product for induction hardening, induction-hardened member using the same, and methods for producing them
JP2004285474A (en) * 2003-03-04 2004-10-14 Komatsu Ltd Rolling member and its manufacturing method
JP2009102733A (en) * 2003-03-04 2009-05-14 Komatsu Ltd Method for producing rolling member
JP2004292945A (en) * 2003-03-11 2004-10-21 Komatsu Ltd Rolling member, and its production method
WO2005031021A1 (en) * 2003-09-29 2005-04-07 Jfe Steel Corporation Steel parts for machine structure, material therefor, and method for manufacture thereof
EP1669468A1 (en) * 2003-09-29 2006-06-14 JFE Steel Corporation Steel product for induction hardening, induction-hardened member using the same, and methods for producing them
EP1669468A4 (en) * 2003-09-29 2007-03-07 Jfe Steel Corp Steel product for induction hardening, induction-hardened member using the same, and methods for producing them
WO2006008960A1 (en) * 2004-07-16 2006-01-26 Jfe Steel Corporation Component for machine structure, method for producing same, and material for high-frequency hardening
US9999918B2 (en) 2005-10-20 2018-06-19 Nucor Corporation Thin cast strip product with microalloy additions, and method for making the same
US9149868B2 (en) 2005-10-20 2015-10-06 Nucor Corporation Thin cast strip product with microalloy additions, and method for making the same
US10071416B2 (en) 2005-10-20 2018-09-11 Nucor Corporation High strength thin cast strip product and method for making the same
JP2010024503A (en) * 2008-07-22 2010-02-04 Sumitomo Metal Ind Ltd Semifinished product made from high-strength steel and manufacturing method therefor
US11193188B2 (en) 2009-02-20 2021-12-07 Nucor Corporation Nitriding of niobium steel and product made thereby
JP2010242114A (en) * 2009-04-01 2010-10-28 Sumitomo Metal Ind Ltd Method for manufacturing rough-shaped product made of high strength steel
US9039962B2 (en) 2010-03-30 2015-05-26 Nippon Steel & Sumitomo Metal Corporation Steel for induction hardening, roughly shaped material for induction hardening, producing method thereof, and induction hardening steel part
US9890446B2 (en) 2010-03-30 2018-02-13 Nippon Steel & Sumitomo Metal Corporation Steel for induction hardening roughly shaped material for induction hardening
JP2014189860A (en) * 2013-03-28 2014-10-06 Aichi Steel Works Ltd Steel plate excellent in fatigue strength and production method of the same
EP2889392A1 (en) * 2013-12-30 2015-07-01 Hyundai Dymos Incorporated High frequency heat treatment material and method of manufacturing gear using the same

Also Published As

Publication number Publication date
JP3562192B2 (en) 2004-09-08

Similar Documents

Publication Publication Date Title
JP5614426B2 (en) Manufacturing method of machine parts
JP5378512B2 (en) Carburized parts and manufacturing method thereof
JP3562192B2 (en) Component for induction hardening and method of manufacturing the same
CN113737087B (en) Ultrahigh-strength dual-phase steel and manufacturing method thereof
WO1999005333A1 (en) Case hardened steel excellent in the prevention of coarsening of particles during carburizing thereof, method of manufacturing the same, and raw shaped material for carburized parts
JP2001240940A (en) Bar wire rod for cold forging and its production method
JPH0892690A (en) Carburized parts excellent in fatigue resistance and its production
JP5649886B2 (en) Case-hardened steel and method for producing the same
JP3606024B2 (en) Induction-hardened parts and manufacturing method thereof
JP5649887B2 (en) Case-hardened steel and method for producing the same
CN112195412B (en) Nb-V microalloyed high-strength high-toughness bainite non-quenched and tempered steel for high-power engine crankshaft and preparation method thereof
JP3550886B2 (en) Manufacturing method of gear steel for induction hardening excellent in machinability and fatigue strength
JP2004027334A (en) Steel for induction tempering and method of producing the same
JPH06172867A (en) Production of gear excellent in impact fatigue life
JP3458604B2 (en) Manufacturing method of induction hardened parts
JP3644217B2 (en) Induction-hardened parts and manufacturing method thereof
JP5445345B2 (en) Steel bar for steering rack bar and manufacturing method thereof
EP1584700A1 (en) High-strength steel product excelling in fatigue strength and process for producing the same
JP2004124190A (en) Induction-tempered steel having excellent twisting property
CN114752848A (en) Steel for high-hardenability gear and manufacturing method thereof
JPH08260039A (en) Production of carburized and case hardened steel
JP3428282B2 (en) Gear steel for induction hardening and method of manufacturing the same
JP3823413B2 (en) Induction hardening component and manufacturing method thereof
JP3623313B2 (en) Carburized gear parts
JP2008144270A (en) Non-heat-treated steel for machine structure excellent in fatigue property and toughness, its manufacturing method, component for machine structure, and its manufacturing method

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040511

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040524

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080611

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090611

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100611

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110611

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120611

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120611

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140611

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees