JPH10219350A - Production of direct hot rolled steel sheet excellent in plating blistering resistance - Google Patents

Production of direct hot rolled steel sheet excellent in plating blistering resistance

Info

Publication number
JPH10219350A
JPH10219350A JP2265697A JP2265697A JPH10219350A JP H10219350 A JPH10219350 A JP H10219350A JP 2265697 A JP2265697 A JP 2265697A JP 2265697 A JP2265697 A JP 2265697A JP H10219350 A JPH10219350 A JP H10219350A
Authority
JP
Japan
Prior art keywords
rolling
hot
steel sheet
plating
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2265697A
Other languages
Japanese (ja)
Other versions
JP3374693B2 (en
Inventor
Yoshimasa Funakawa
義正 船川
Toru Inazumi
透 稲積
Taro Kizu
太郎 木津
Takeshi Nakahara
健 中原
Jun Taniai
潤 谷合
Takumasa Terauchi
琢雅 寺内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP02265697A priority Critical patent/JP3374693B2/en
Publication of JPH10219350A publication Critical patent/JPH10219350A/en
Application granted granted Critical
Publication of JP3374693B2 publication Critical patent/JP3374693B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Metal Rolling (AREA)
  • Coating With Molten Metal (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a hot rolled steel sheet for the substrate of hot dip galvanizing excellent in plating blistering resistance even in direct rolling. SOLUTION: In direct rolling in which a steel contg., by mass, <=0.2% C, <=0.1% Si, 0.05 to 2.0% Mn, 0.003 to 0.050% S, <=0.030% P, <=0.1% Sol.Al, <=0.01% N, and the balance Fe with inevitable impurities is subjected to continuous casting and is subsequently, as it is or after heat holding treatment, subjected to hot rolling, a rough bar after rough rolling is rapidly heated by >=50 deg.C at the average temp. rising rate of >=10 deg.C per sec, furthermore, the temp. of the rough bar after the rapid heating is regulated to <=1000 deg.C, and subsequently, finish rolling is executed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、自動車や家電製
品、さらにはスチールハウス等の建材などに使用される
溶融亜鉛めっき熱延鋼板を製造する際に、製造コストの
低い直送圧延を用いてもめっきふくれなどのめっき欠陥
を発生しない溶融亜鉛めっき下地用熱延鋼板の製造方法
に関する。
The present invention relates to a hot-rolled hot-rolled steel sheet used for building materials such as automobiles and home electric appliances, and steel houses and the like, which can be manufactured by using direct-feed rolling at a low manufacturing cost. The present invention relates to a method for producing a hot-rolled steel sheet for hot dip galvanizing that does not generate plating defects such as plating swelling.

【0002】[0002]

【従来の技術】近年、溶融亜鉛めっき鋼板のコストを低
減するため、熱延板に直接めっきした板厚0.8〜1.
8mm程度の溶融亜鉛めっき熱延鋼板が注目されるよう
になった。この溶融亜鉛めっき熱延鋼板は自動車や家電
製品はもとより、スチールハウス等に代表されるような
土木・建築材料としての使用も拡大しつつある。このめ
っき下地用熱延鋼板には、製造コストが安価であること
から、加熱炉装入による再加熱を行わず、連続鋳造後の
そのまま、熱間圧延を行う直送圧延による製造が最適で
ある。
2. Description of the Related Art In recent years, in order to reduce the cost of hot-dip galvanized steel sheets, hot-rolled sheets have a thickness of 0.8-1.
Hot-dip galvanized steel sheets of about 8 mm have attracted attention. This hot-dip galvanized hot-rolled steel sheet is increasingly used not only for automobiles and home appliances, but also for civil engineering and building materials such as steel houses. The production cost of this hot-rolled steel sheet for plating base is low, and therefore, production by direct-feed rolling in which hot rolling is performed as it is after continuous casting without reheating by heating furnace charging is optimal.

【0003】ところが、この直送圧延熱延鋼板に溶融亜
鉛めっきを行った後、数日放置しておくと、ブリスター
と呼ばれるめっきふくれが発生し、外観を損なうばかり
かめっき密着性や耐食性を劣化させるという問題が生じ
る。この原因は以下に示すメカニズムによっている。す
なわち、連続溶融亜鉛めっきラインの酸化膜還元清浄工
程において鋼板は高温に加熱され、雰囲気中の水素を吸
収する。その後、鋼板が常温まで冷却されると、吸収さ
れた水素が鋼中より放出され、めっき層と鋼板界面に集
積し、これがめっきを押し上げふくれ(ブリスター)と
なる。
However, if the hot rolled steel sheet is hot-dip galvanized and left to stand for several days, blisters, called blisters, are generated, which not only impairs the appearance but also deteriorates the adhesion of the plating and the corrosion resistance. The problem arises. This is due to the following mechanism. That is, in the oxide film reduction cleaning step of the continuous galvanizing line, the steel sheet is heated to a high temperature and absorbs hydrogen in the atmosphere. Thereafter, when the steel sheet is cooled to room temperature, the absorbed hydrogen is released from the steel and accumulates at the interface between the plating layer and the steel sheet, which pushes up the plating to form blisters.

【0004】このようなめっきふくれを防止する方法と
して、特開昭54−026928号公報にめっき浴中の
Al濃度を上げ、めっき浴を活性化してブリスターの発
生を低減する方法が開示されている。
As a method for preventing such plating blisters, Japanese Patent Application Laid-Open No. 54-026928 discloses a method of increasing the Al concentration in a plating bath and activating the plating bath to reduce the occurrence of blisters. .

【0005】また、特開平1−316444号公報に
は、めっき浴中のAl濃度を上げるとともに、浴温度と
めっき前鋼板の温度を低減し、ブリスターの発生を防止
する方法が開示されている。
Japanese Patent Application Laid-Open No. 1-316444 discloses a method of increasing the Al concentration in a plating bath, reducing the bath temperature and the temperature of a steel sheet before plating, and preventing the occurrence of blisters.

【0006】しかし、これらの従来方法はいずれもめっ
き密着性を向上させるためにめっき浴中のAl濃度を上
げており、ブリスター発生頻度が軽減されるもののドロ
スが多量に発生し、めっき表面性状が劣化するという問
題がある。
However, in all of these conventional methods, the Al concentration in the plating bath is increased in order to improve the plating adhesion. Although the frequency of blister generation is reduced, a large amount of dross is generated, and the surface properties of the plating are reduced. There is a problem of deterioration.

【0007】そこで、解決策として鋼板表面の酸化膜還
元に水素を用いないか、もしくは水素を用いて鋼板中に
水素が侵入しても鋼板内にトラップし、常温に冷却後も
鋼板中より放出されないようにすることが考えられる。
ここで、水素を用いずに酸化膜を除去する方法として
は、水溶液による化学的方法や砥石などにより物理的方
法が考えられるが、いずれにしても連続亜鉛めっき設備
の大幅変更を伴ったり、均一な処理が困難であるという
問題がある。
Therefore, as a solution, hydrogen is not used for reducing the oxide film on the steel sheet surface, or even if hydrogen enters the steel sheet using hydrogen, the hydrogen is trapped in the steel sheet and released from the steel sheet even after cooling to room temperature. It is conceivable that this is not done.
Here, as a method of removing the oxide film without using hydrogen, a chemical method using an aqueous solution or a physical method using a grindstone can be considered, but in any case, there is a significant change in the continuous galvanizing equipment or a uniform method. There is a problem that difficult processing is difficult.

【0008】一方、鋼板中に侵入した水素を冷却後でも
鋼板中にトラップしたままとするには、ほうろう用鋼板
に見られる鋼中の粗大析出物が有効である。例えば、
(社)日本琺瑯工業会発行の『連鋳鋼のほうろう性の研
究』第97頁には、MnO、TiN、TiS、BNなど
の析出物やその周りの空隙が主な水素吸蔵源になるとの
記述がある。しかしながら、直送圧延においては、析出
物はほとんど固溶した状態で圧延工程に入り、歪み誘起
析出により微細析出するため、通常のスラブ加熱による
圧延材のように析出物を粗大化することは困難である。
また、ほうろう性やめっきふくれとの関連性は言及され
ていないが、直送圧延熱延鋼板の析出物を粗大化する方
法として、特開平4−253501号公報に連続鋳造後
に表層の温度のみを700〜1000℃に一度冷却し、
MnSを微細析出させ、鋳片内部の熱により復熱するこ
とにより復熱過程でMnSを粗大化させる方法が開示さ
れている。ただし、この方法では、表層のMnSを粗大
化させることは可能であるが、鋼板内部のMnSは相変
わらず微細であるため、水素の吸蔵能力は十分ではな
く、製造条件や成分によってはめっきふくれが発生し、
安定製造ができないと言う問題点があった。
On the other hand, in order to keep the hydrogen that has infiltrated into the steel sheet trapped in the steel sheet even after cooling, coarse precipitates in the steel found in the steel sheet for enamel are effective. For example,
On page 97 of the "Study of Enamelling of Continuously Cast Steel" published by Japan Enamel Industry Association, it is stated that precipitates such as MnO, TiN, TiS and BN and voids around them are the main hydrogen storage sources. There is. However, in direct-feed rolling, the precipitate enters the rolling process in a state of almost solid solution, and is finely precipitated by strain-induced precipitation, so that it is difficult to coarsen the precipitate like a rolled material by ordinary slab heating. is there.
No mention is made of the relationship between enamelness and plating swelling. However, as a method for coarsening the precipitates of a hot-rolled hot-rolled steel sheet, Japanese Patent Application Laid-Open No. 4-253501 discloses a method in which only the temperature of the surface layer is increased by 700 after continuous casting. Once cooled to ~ 1000 ° C,
A method is disclosed in which MnS is finely precipitated and the MnS is coarsened in a recuperation process by recuperating by heat inside the slab. However, in this method, it is possible to coarsen the MnS in the surface layer, but since the MnS inside the steel sheet is still fine, the hydrogen storage capacity is not sufficient, and plating blisters may occur depending on production conditions and components. And
There was a problem that stable production was not possible.

【0009】[0009]

【発明が解決しようとする課題】本発明の目的は、従来
の直送圧延では微細析出していたMnSを粗大化させ、
水素吸蔵サイトとすることにより、直送圧延においても
耐めっきふくれ性に優れた溶融亜鉛めっき下地用熱延鋼
板の製造方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to coarsen MnS which has been finely precipitated by conventional direct rolling,
An object of the present invention is to provide a method for producing a hot-rolled steel sheet for hot-dip galvanizing, which has excellent resistance to blistering even in direct-feed rolling by using a hydrogen storage site.

【0010】[0010]

【課題を解決するための手段】本発明に係る耐めっきふ
くれ性に優れた直送圧延熱延鋼板の製造方法は、mas
s%でC≦0.2%、Si≦0.1%、0.05≦Mn
≦2.0%、0.003≦S≦0.050%、P≦0.
030%、Sol.Al≦0.1%、N≦0.01%を
含み残部がFe及び不可避不純物よりなる鋼を連続鋳造
後、そのまま、もしくは保熱処理をして熱間圧延を行う
直送圧延において、粗圧延後の粗バーを毎秒10℃以上
の平均昇温速度で50℃以上急速加熱し、かつ急速加熱
後の粗バーの温度を1000℃以上とした後に仕上げ圧
延を行うことを特徴とする。
According to the present invention, there is provided a method for producing a hot rolled steel sheet which is excellent in resistance to blistering by direct rolling.
C ≦ 0.2%, Si ≦ 0.1%, 0.05 ≦ Mn in s%
≦ 2.0%, 0.003 ≦ S ≦ 0.050%, P ≦ 0.
030%, Sol. After continuous casting of steel containing Al ≦ 0.1%, N ≦ 0.01% and the balance being Fe and unavoidable impurities, as it is, or in direct-feed rolling in which hot rolling is performed by heat treatment, rough rolling is performed. The rough bar is rapidly heated at an average temperature rise rate of 10 ° C. or more per second at 50 ° C. or more, and finish rolling is performed after the temperature of the rough bar after the rapid heating is set to 1000 ° C. or more.

【0011】[0011]

【発明の実施の形態】本発明は、以下の知見に基づきな
されたものである。直送圧延においては、ほとんどの析
出物は固溶した状態で圧延が開始されるため、粗圧延の
大圧下による歪みエネルギーにより、析出物は微細に析
出してしまう。さらに、これらの析出物は、高温巻取を
行ったとしても、水素の吸蔵量が増加するほどには著し
くは粗大化しない。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention has been made based on the following findings. In the direct rolling, since most of the precipitates start rolling in a solid solution state, the precipitates are finely precipitated due to strain energy caused by the large pressure of the rough rolling. Furthermore, even if high temperature winding is performed, these precipitates do not become so coarse as to increase the amount of absorbed hydrogen.

【0012】そこで、発明者らは鋭意研究を重ねた結
果、Mn及びSを含有する鋼において直送圧延の粗圧延
後、粗バーを毎秒10℃以上の平均昇温速度で50℃以
上急速加熱して1000℃以上とすることにより水素吸
蔵の能力のある析出物のうちMnSのみが粗大化し、そ
の粗大化したMnSの周囲に水素がトラップされ耐めっ
きふくれ性が向上することを見出した。これにより、直
送圧延においても耐めっきふくれ性に優れた溶融亜鉛め
っき下地用熱延鋼板を製造することがはじめて可能とな
った。
Therefore, the present inventors have conducted intensive studies and found that after rough rolling by direct rolling in steel containing Mn and S, the rough bar was rapidly heated at 50 ° C. or more at an average temperature rising rate of 10 ° C. or more per second. It was found that by setting the temperature to 1000 ° C. or higher, only MnS among the precipitates capable of absorbing hydrogen became coarse, hydrogen was trapped around the coarsened MnS, and the plating blistering resistance was improved. As a result, it has become possible for the first time to manufacture a hot-rolled steel sheet for hot dip galvanizing excellent in plating swelling resistance even in direct rolling.

【0013】以下にその基礎となった実験結果について
説明する。mass%でC=0.03%、Si=0.0
1%、Mn=0.18%、S=0.010%、P=0.
012%、Sol.Al=0.035%、N=0.00
30%含む鋼を鋳造し、その後冷却することなくそのま
ま熱間圧延を行った。粗圧延後、粗バー温度が900℃
となったところで誘導加熱炉により昇温速度を変えて1
050℃まで加熱し、仕上げ圧延を行った。その後、6
50℃で巻取り熱延板とした。
The following is a description of the experimental results on which this is based. mass = C = 0.03%, Si = 0.0
1%, Mn = 0.18%, S = 0.010%, P = 0.
012%, Sol. Al = 0.035%, N = 0.00
A steel containing 30% was cast, and then hot-rolled without cooling. After rough rolling, the rough bar temperature is 900 ° C
When the temperature became 1
It heated to 050 degreeC and performed the finish rolling. Then 6
A rolled hot rolled sheet was formed at 50 ° C.

【0014】得られた熱延板を酸洗し、連続溶融亜鉛め
っきを行い、ブリスターの発生状況を調査した。めっき
条件は、Al濃度を0.13%、浴温を470℃とし
た。評価については、めっき表面10cm×10cm当
たりに存在するブリスターの個数で行った。
The obtained hot rolled sheet was pickled, subjected to continuous hot-dip galvanizing, and the occurrence of blisters was examined. The plating conditions were such that the Al concentration was 0.13% and the bath temperature was 470 ° C. The evaluation was performed based on the number of blisters existing per 10 cm × 10 cm of the plating surface.

【0015】その結果を図1に示す。図1は横軸に粗バ
ー加熱昇温速度(℃/秒)をとり、縦軸にめっき表面1
0cm×10cm当たりに発生したブリスターの個数を
とって、両者の関係について調べた結果を示すグラフ図
である。図から明らかなように、昇温速度が上昇するに
つれてブリスターの発生個数が少なくなり、昇温速度が
毎秒10℃以上になるとブリスターがまったく発生しな
くなった。すなわち、急速加熱することにより、ブリス
ターの発生が抑制されることが判明した。
FIG. 1 shows the results. In FIG. 1, the horizontal axis represents the heating rate of the coarse bar heating (° C./second), and the vertical axis represents the plating surface 1.
It is a graph which shows the result of having investigated the number of the blister which generate | occur | produced per 0 cm x 10 cm, and investigated the relationship between both. As is apparent from the figure, the number of blisters generated decreased as the heating rate increased, and no blisters were generated at a heating rate of 10 ° C. or more per second. That is, it was found that the rapid heating suppressed the generation of blisters.

【0016】次に、粗バー加熱温度の下限について調査
した。上記成分の鋼を鋳造し、その後冷却することなく
そのまま熱間圧延を行った。粗圧延後、粗バー温度が9
00℃となったところで誘導加熱炉により毎秒20℃で
各温度まで昇温し、仕上げ圧延を行った。その後、60
0℃で巻取り熱延板とした。
Next, the lower limit of the heating temperature of the coarse bar was investigated. The steel having the above composition was cast and then hot-rolled without cooling. After rough rolling, the coarse bar temperature is 9
When the temperature reached 00 ° C., the temperature was raised to each temperature at 20 ° C./second by an induction heating furnace, and finish rolling was performed. Then 60
The rolled hot rolled sheet was taken at 0 ° C.

【0017】得られた熱延板を酸洗し、連続溶融亜鉛め
っきを行い、ブリスターの発生状況をめっき表面10c
m×10cm当たりに存在する個数で評価した。その結
果を図2に示す。図2は横軸に粗バー加熱温度(℃/
秒)をとり、縦軸にめっき表面10cm×10cm当た
りに発生したブリスターの個数をとって、両者の関係に
ついて調べた結果を示すグラフ図である。図から明らか
なように、粗バーの加熱温度が1000℃以上になると
ブリスターが発生しなくなった。
The obtained hot-rolled sheet is pickled, subjected to continuous hot-dip galvanizing, and the occurrence of blisters is determined on the plating surface 10c.
The evaluation was based on the number existing per m × 10 cm. The result is shown in FIG. In FIG. 2, the horizontal axis shows the coarse bar heating temperature (° C. /
FIG. 6 is a graph showing the result of examining the relationship between the number of blisters generated per 10 cm × 10 cm of the plating surface on the vertical axis. As is clear from the figure, when the heating temperature of the coarse bar was 1000 ° C. or higher, blisters were not generated.

【0018】これらの現象は未だ完全には明らかとなっ
ていないが、以下に上記実験結果について、析出物の状
態を絡めて説明する。MnSは粗圧延中から析出を開始
し、粗圧延終了時には微細に析出しているが、この状態
から急速加熱を行うと、微細MnSのうちより微細なM
nSが再固溶する。この原因は定かではないが、急速加
熱により急激に固溶限が上昇し、固溶への駆動力が非常
に大きい状態においては、界面エネルギーの比較的大き
いより微細なMnSが優先的に固溶するためと考えられ
る。従って、粗バー加熱後は、粗バー加熱時に選択残留
した微細析出物の中でもやや大きいMnSを核として再
固溶MnSが再析出するため、熱延板中のMnSの数は
少なくなり、粗大析出物となる。このように、粗バーの
急速加熱を行うことにより直送圧延においてもMnSを
粗大化することが可能であり、この粗大MnSが鋼中水
素のトラップサイトとなることにより、耐めっきふくれ
性に優れた溶融亜鉛めっき下地用直送圧延熱延鋼板を製
造することが可能となる。
Although these phenomena have not yet been completely elucidated, the results of the above experiments will be described below in connection with the state of precipitates. MnS starts to precipitate during the rough rolling and precipitates finely at the end of the rough rolling. However, when rapid heating is performed from this state, finer MnS of the fine MnS is obtained.
nS re-dissolves. Although the cause is not clear, the solid solution limit is rapidly increased by rapid heating, and in a state where the driving force for solid solution is extremely large, finer MnS having a relatively large interfacial energy is preferentially dissolved in the solid solution. It is thought to be. Therefore, after heating the coarse bar, since the re-dissolved MnS is re-precipitated with slightly larger MnS as a nucleus among the fine precipitates selectively remaining during the coarse bar heating, the number of MnS in the hot-rolled sheet decreases, and the coarse precipitate Things. Thus, by performing rapid heating of the coarse bar, it is possible to coarsen MnS even in direct-feed rolling, and since the coarse MnS becomes a trap site for hydrogen in steel, it has excellent plating blister resistance. It is possible to manufacture a hot-rolled hot-rolled steel sheet for hot dip galvanizing.

【0019】以下に各成分の限定理由をのべる。 1)C:0.2%以下 Cは0.2%を越えると炭化物が多量に析出し、延性を
低下させ、成形性を阻害することから0.2%以下とし
た。 2)Si:0.1%以下 Siは過剰に添加すると、めっき性を劣化させると同時
に強度が上がり成形性を劣化させることから、0.1%
以下とした。 3)Mn:0.05%〜2.0% Mnは本発明で重要なはたらきをする、粗大MnSとし
て水素のトラップサイトとなるため、0.05%以上添
加する必要がある。ただし、過剰な添加は鋼の硬質化を
もたらし、成形性を劣化させるため、上限を2.0%と
した。 4)S:0.003%〜0.050% SもMnと同様にMnSとして水素のトラップサイトと
なる。あまり少ないとMnSが十分成長しないことか
ら、0.003%以上添加する必要がある。但し、過剰
に添加されるとMnS量が過剰となり成形性が劣化する
ことから、上限を0.050%とした。 5)P:0.030%以下 Pは固溶強化元素であり、過剰な添加は鋼の硬質化をも
たらすことから上限を0.030%とした。 6)Sol.Al:0.1%以下 Alは脱酸剤ならびにNをAlNの形で固定するため、
必要不可欠な元素である。しかし、過剰のAlの添加は
鋼中の微細析出物を多量に発生させ、加工性を劣化させ
ることから、その上限を0.1%とした。脱酸およびA
lNを固定する効果が十分に発揮されるには、0.00
5%以上添加することが望ましい。 7)N:0.01%以下 Nは極力低減することが望ましいが、コストの面から必
ずしも0とはできない。しかし、Nは過剰に存在する
と、結晶粒が微細になり加工性が低下するので、その上
限を0.01%とした。 8)その他の任意添加成分 本発明においては、以上の元素の他に目的に応じて、C
a、Zr、V、Nb、Ni、Co、Cr等を添加するこ
とができる。また、スクラップ再利用時に混入する元
素、特にSnやCu等が添加されても発明の効果に変わ
りはなく、まったく問題はない。
The reasons for limiting each component will be described below. 1) C: 0.2% or less When C exceeds 0.2%, a large amount of carbide precipitates, lowers the ductility and impairs the formability. 2) Si: 0.1% or less When Si is excessively added, the plating property is deteriorated, and at the same time, the strength is increased and the formability is deteriorated.
It was as follows. 3) Mn: 0.05% to 2.0% Since Mn plays an important role in the present invention and serves as hydrogen trapping sites as coarse MnS, it is necessary to add 0.05% or more. However, excessive addition causes hardening of the steel and deteriorates the formability, so the upper limit was made 2.0%. 4) S: 0.003% to 0.050% S also becomes a hydrogen trap site as MnS similarly to Mn. If the amount is too small, MnS does not grow sufficiently, so it is necessary to add 0.003% or more. However, if added excessively, the amount of MnS becomes excessive and moldability deteriorates, so the upper limit was made 0.050%. 5) P: 0.030% or less P is a solid solution strengthening element, and an excessive addition causes hardening of steel, so the upper limit was made 0.030%. 6) Sol. Al: 0.1% or less Al fixes the deoxidizing agent and N in the form of AlN.
It is an indispensable element. However, since excessive addition of Al generates a large amount of fine precipitates in steel and deteriorates workability, the upper limit is set to 0.1%. Deacidification and A
In order to sufficiently exert the effect of fixing 1N, 0.00
It is desirable to add 5% or more. 7) N: 0.01% or less It is desirable to reduce N as much as possible, but it is not necessarily 0 from the viewpoint of cost. However, if N is present in excess, the crystal grains become finer and workability deteriorates, so the upper limit was made 0.01%. 8) Other optional components In the present invention, in addition to the above-mentioned elements, C
a, Zr, V, Nb, Ni, Co, Cr and the like can be added. In addition, even if an element mixed at the time of scrap recycling, particularly Sn or Cu, is added, the effect of the present invention does not change and there is no problem at all.

【0020】さらに、鋼中にBが添加されてもBNが水
素のトラップサイトとなることにより、ブリスターの発
生率は低下する。よって、本発明鋼にBを添加してもよ
い。さらに、製造条件について、以下に述べる。
Furthermore, even if B is added to steel, BN becomes a trap site for hydrogen, so that the blister generation rate decreases. Therefore, B may be added to the steel of the present invention. Further, manufacturing conditions will be described below.

【0021】本発明において、各工程の温度は重要な意
味を持っており、このどれか一つでも欠けた場合、本発
明の効果は得られない。 9)粗バー昇温速度 本発明において、粗バー昇温速度は重要である。平均昇
温速度が毎秒10℃以上では、粗圧延後に一度微細析出
したMnSのうちより微細なものが選択的に溶解し、粗
バー加熱後のMnSの析出核が減少することにより、熱
延板中のMnSの粗大化が促進される。これに対して、
平均昇温速度が毎秒10℃未満では、粗圧延時に析出し
た微細MnSがすべて均等に解けてしまうため、MnS
の粗大化効果が得られない。よって、平均昇温速度の下
限を毎秒10℃とした。 10)粗バー加熱温度差 粗バー加熱温度差も本発明において重要な役割を示す。
粗バー加熱後に残留したMnSを再析出によって粗大化
するには、ある程度のMnSを粗バー加熱中に固溶させ
なければならない。よって、加熱前後の温度差の下限を
50℃とした。 11)粗バー加熱温度 粗バー加熱は一度微細に析出したMnSを溶かし込むた
めに十分な温度とする必要がある。1000℃未満では
MnSの再固溶量が少なく、MnSの粗大化を図れなく
なることから、下限を1000℃とした。 12)仕上温度 仕上温度については、加工性を確保するためにAr3
上が望ましいが、α域圧延またはα域圧延後焼鈍しても
本発明の効果に変わりはない。その際の焼鈍方法は、連
続溶融亜鉛めっきラインにおける連続焼鈍が好ましい。
ただし、箱焼鈍を行ってもなんら問題は生じない。巻取
温度についてはMnSの形態に影響を与えないことか
ら、巻取温度についての規定は特にない。さらに、調質
圧延の条件についての制限はないが、あまり高いと延性
の低下が激しいことから、2%以下が望ましい。なお、
本発明鋼の成分調整には、転炉と電気炉のどちらも使用
可能である。直送圧延については、従来の加熱炉を使用
しない温度補償を目的としたエッジヒーターなどによる
加熱を行ってもよい。
In the present invention, the temperature of each step has an important meaning, and if any one of them is missing, the effect of the present invention cannot be obtained. 9) Rough Bar Heating Rate In the present invention, the rough bar heating rate is important. When the average heating rate is 10 ° C. or more per second, the finer ones of the finely precipitated MnS after the rough rolling are selectively dissolved, and the precipitation nuclei of the MnS after the coarse bar heating are reduced, whereby the hot-rolled sheet is reduced. The coarsening of MnS therein is promoted. On the contrary,
If the average heating rate is less than 10 ° C. per second, all of the fine MnS precipitated during the rough rolling will be uniformly melted.
The effect of coarsening cannot be obtained. Therefore, the lower limit of the average heating rate was set to 10 ° C. per second. 10) Rough Bar Heating Temperature Difference The rough bar heating temperature difference also plays an important role in the present invention.
In order to coarsen MnS remaining after heating the coarse bar by reprecipitation, a certain amount of MnS must be dissolved during the heating of the coarse bar. Therefore, the lower limit of the temperature difference before and after heating was set to 50 ° C. 11) Coarse Bar Heating Temperature Coarse bar heating requires a sufficient temperature to dissolve the MnS once finely precipitated. If the temperature is lower than 1000 ° C., the amount of re-dissolved MnS is small and the MnS cannot be coarsened. 12) Finishing Temperature The finishing temperature is desirably Ar 3 or more in order to ensure workability, but the effect of the present invention does not change even if α region rolling or annealing after α region rolling is performed. As the annealing method at that time, continuous annealing in a continuous galvanizing line is preferable.
However, there is no problem even if the box annealing is performed. Since the winding temperature does not affect the form of MnS, there is no particular definition for the winding temperature. Further, there is no limitation on the condition of the temper rolling, but if it is too high, the ductility is drastically reduced. In addition,
For the composition adjustment of the steel of the present invention, both a converter and an electric furnace can be used. In the direct rolling, heating may be performed by an edge heater or the like for the purpose of temperature compensation without using a conventional heating furnace.

【0022】なお、めっき条件については特に条件はな
く、めっき前の加熱温度、浴温度、めっき浴のAl濃度
などについても特に指定はない。さらに、めっき前の熱
延板については、熱延ままの黒皮材でも酸洗材でも発明
の効果に変わりはない。
There are no particular conditions for the plating, and there is no particular designation for the heating temperature before plating, the bath temperature, the Al concentration in the plating bath, or the like. Further, as for the hot-rolled sheet before plating, the effect of the present invention does not change whether the hot-rolled black scale material or the pickling material is used.

【0023】[0023]

【実施例】以下、本発明の種々の実施例について説明す
る。 (実施例1)表1に示す成分の鋼を鋳造し、その後直ち
に熱間圧延を行った。仕上温度を860℃、巻取温度を
650℃とした。得られた熱延鋼板を酸洗し、水素−窒
素雰囲気にて700℃に加熱後、浴温度470℃でAl
濃度0.12%の亜鉛めっきに浸漬し、亜鉛めっき鋼板
とした。めっき後、数日した後にブリスターの有無を目
視調査した。評価は、ブリスターの発生しなかったもの
を記号マル(サークルマーク)で表示し、ブリスターの
発生していたものを記号バツ(クロスマーク)で表示し
た。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Various embodiments of the present invention will be described below. (Example 1) Steel having the components shown in Table 1 was cast, and immediately thereafter hot-rolled. The finishing temperature was 860 ° C and the winding temperature was 650 ° C. The resulting hot-rolled steel sheet was pickled, heated to 700 ° C. in a hydrogen-nitrogen atmosphere, and then heated at a bath temperature of 470 ° C.
It was immersed in a galvanized steel sheet having a concentration of 0.12% to obtain a galvanized steel sheet. Several days after plating, the presence or absence of blisters was visually inspected. In the evaluation, those in which blisters did not occur were indicated by symbols (circle mark), and those in which blisters occurred were indicated by crosses (cross marks).

【0024】表1より、各実施例の条件下ではブリスタ
ーが発生しないことが判明した。一方、粗バー加熱前後
の温度差、粗バー昇温速度、粗バー加熱温度のどれか1
つでも欠けた条件下(比較例)では、本発明の効果は得
られないことが判明した。 (実施例2)表2に示す成分の鋼を鋳造し、その後直ち
に熱間圧延を行った。仕上温度を850℃、巻取温度を
600℃とした。得られた熱延板を酸洗することなく、
黒皮のままで溶融亜鉛めっきを行った。850℃に加熱
後、浴温度480℃でAl濃度0.14%の亜鉛めっき
に浸漬し、亜鉛めっき鋼板とした。めっき後数日した後
にブリスターの有無を目視調査した。評価は、ブリスタ
ーの発生しなかったものを記号マル(サークルマーク)
で表示し、ブリスターの発生していたものを記号バツ
(クロスマーク)で表示した。
From Table 1, it was found that blisters did not occur under the conditions of each example. On the other hand, any one of the temperature difference before and after the coarse bar heating, the coarse bar heating rate, and the coarse bar heating temperature
It was found that the effect of the present invention could not be obtained under the condition lacking at least one (Comparative Example). (Example 2) Steel having the components shown in Table 2 was cast, and immediately thereafter hot-rolled. The finishing temperature was 850 ° C and the winding temperature was 600 ° C. Without pickling the obtained hot rolled sheet,
Hot-dip galvanizing was performed with the black scale. After heating to 850 ° C., it was immersed in zinc plating with an Al concentration of 0.14% at a bath temperature of 480 ° C. to obtain a galvanized steel sheet. Several days after plating, the presence or absence of blisters was visually inspected. In the evaluation, those that did not generate blisters are marked with a circle (circle mark).
, And those having blisters are indicated by crosses (cross marks).

【0025】表2より各実施例の条件下ではブリスター
が発生しないことが判明した。一方、粗バー加熱前後の
温度差、粗バー昇温速度、粗バー加熱温度のどれか1つ
でも欠けた条件下(比較例)では、本発明の効果は得ら
れないことが判明した。
From Table 2, it was found that blisters did not occur under the conditions of each example. On the other hand, it was found that the effect of the present invention could not be obtained under the condition (comparative example) in which any one of the temperature difference before and after the heating of the rough bar, the heating rate of the rough bar, and the heating temperature of the rough bar was missing.

【0026】[0026]

【表1】 [Table 1]

【0027】[0027]

【表2】 [Table 2]

【0028】[0028]

【発明の効果】本発明によって得られる直送圧延により
製造した熱延鋼板を用いれば、溶融亜鉛めっきを施して
もブリスターが発生せず、安価に溶融亜鉛めっき鋼板を
製造することが可能である。
By using the hot-rolled steel sheet produced by the direct-feed rolling obtained by the present invention, blister does not occur even when hot-dip galvanizing is performed, and a hot-dip galvanized steel sheet can be manufactured at low cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】粗バー加熱昇温速度(℃/秒)とめっき表面1
0cm×10cm当たりに発生したブリスターの個数と
の関係について調べた結果を示すグラフ図。
FIG. 1 Coarse bar heating rate (° C./sec) and plating surface 1
The graph which shows the result of having investigated about the relationship with the number of blisters generated per 0 cm x 10 cm.

【図2】粗バー加熱温度(℃)とめっき表面10cm×
10cm当たりに発生したブリスターの個数との関係に
ついて調べた結果を示すグラフ図。
Fig. 2 Rough bar heating temperature (° C) and plating surface 10cm x
FIG. 9 is a graph showing the results of an investigation on the relationship with the number of blisters generated per 10 cm.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中原 健 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 谷合 潤 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 寺内 琢雅 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Ken Nakahara, Inventor: 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Nihon Kokan Co., Ltd. (72) Inventor Jun Taniai 1-2-1, Marunouchi, Chiyoda-ku, Tokyo, Japan Inside Honko Tube Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 mass%でC≦0.2%、Si≦0.
1%、0.05≦Mn≦2.0%、0.003≦S≦
0.050%、P≦0.030%、Sol.Al≦0.
1%、N≦0.01%を含み残部がFe及び不可避不純
物よりなる鋼を連続鋳造後、そのまま、もしくは保熱処
理をして熱間圧延を行う直送圧延において、粗圧延後の
粗バーを毎秒10℃以上の平均昇温速度で50℃以上急
速加熱し、かつ急速加熱後の粗バーの温度を1000℃
以上とした後に仕上げ圧延を行うことを特徴とする耐め
っきふくれ性に優れた直送圧延熱延鋼板の製造方法。
1. A mass% of C ≦ 0.2% and Si ≦ 0.
1%, 0.05 ≦ Mn ≦ 2.0%, 0.003 ≦ S ≦
0.050%, P ≦ 0.030%, Sol. Al ≦ 0.
After continuous casting of steel containing 1%, N ≦ 0.01% and the balance consisting of Fe and unavoidable impurities, in the direct-feed rolling in which hot rolling is performed as it is or after heat treatment, the rough bar after rough rolling is removed every second. Rapidly heating at 50 ° C or more at an average heating rate of 10 ° C or more, and raising the temperature of the coarse bar after the rapid heating to 1000 ° C.
A method for producing a directly-rolled hot-rolled steel sheet having excellent resistance to plating swelling, wherein finish rolling is performed after the above.
JP02265697A 1997-02-05 1997-02-05 Manufacturing method of hot rolled steel sheet rolled directly with excellent plating blister resistance Expired - Fee Related JP3374693B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02265697A JP3374693B2 (en) 1997-02-05 1997-02-05 Manufacturing method of hot rolled steel sheet rolled directly with excellent plating blister resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02265697A JP3374693B2 (en) 1997-02-05 1997-02-05 Manufacturing method of hot rolled steel sheet rolled directly with excellent plating blister resistance

Publications (2)

Publication Number Publication Date
JPH10219350A true JPH10219350A (en) 1998-08-18
JP3374693B2 JP3374693B2 (en) 2003-02-10

Family

ID=12088894

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02265697A Expired - Fee Related JP3374693B2 (en) 1997-02-05 1997-02-05 Manufacturing method of hot rolled steel sheet rolled directly with excellent plating blister resistance

Country Status (1)

Country Link
JP (1) JP3374693B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015079699A1 (en) * 2013-11-28 2015-06-04 Jfeスチール株式会社 Bake-hardened hot-dip galvanized steel sheet

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015079699A1 (en) * 2013-11-28 2015-06-04 Jfeスチール株式会社 Bake-hardened hot-dip galvanized steel sheet
JP2015105385A (en) * 2013-11-28 2015-06-08 Jfeスチール株式会社 Bake hardenable hot-dip galvanized steel sheet
CN105793457A (en) * 2013-11-28 2016-07-20 杰富意钢铁株式会社 Bake-hardened hot-dip galvanized steel sheet
US9920394B2 (en) 2013-11-28 2018-03-20 Jfe Steel Corporation Bake-hardening galvanized steel sheet

Also Published As

Publication number Publication date
JP3374693B2 (en) 2003-02-10

Similar Documents

Publication Publication Date Title
JP5408314B2 (en) High-strength cold-rolled steel sheet excellent in deep drawability and material uniformity in the coil and method for producing the same
JP2001335890A (en) High tensile steel sheet excellent in bendability, and its production method
JPH0757892B2 (en) Method for manufacturing cold-rolled steel sheet for deep drawing with excellent secondary workability and surface treatment
JP4752522B2 (en) Manufacturing method of high strength cold-rolled steel sheet for deep drawing
JP2006283070A (en) Method for producing galvannealed steel sheet having good workability
JP2017115238A (en) High strength cold rolled steel sheet excellent in bending workability and production method therefor
JPH11310827A (en) Manufacture of cold rolled steel sheet excellent in aging resistance at normal temperature and panel characteristic and hot dip galvanized steel sheet
JP3374693B2 (en) Manufacturing method of hot rolled steel sheet rolled directly with excellent plating blister resistance
JP3374694B2 (en) Manufacturing method of hot rolled steel sheet rolled directly with excellent plating blister resistance
JP2812770B2 (en) Manufacturing method of alloyed hot-dip galvanized cold-rolled steel sheet for deep drawing with excellent bake hardenability and powdering resistance
JP2002249849A (en) High tensile strength cold rolled steel sheet and production method therefor
JP3911075B2 (en) Manufacturing method of steel sheet for ultra deep drawing with excellent bake hardenability
JP5040069B2 (en) High tensile cold-rolled steel sheet and method for producing the same
JP4301013B2 (en) Cold-rolled steel sheet with excellent dent resistance
JPH07102341A (en) Ultrahigh strength cold rolled steel sheet excellent in hydrogen embrittlement resistance and its production
JP2001192795A (en) High tensile strength hot dip plated steel plate and producing method therefor
JPH05230542A (en) Production of high tensile strength hot dip plated steel sheet excellent in workability
JP3915345B2 (en) Manufacturing method of high-tensile hot-dip steel sheet
JP2571585B2 (en) Manufacturing method of hot-dip galvanized steel sheet for processing
JP3834100B2 (en) Method for producing cold-rolled steel sheet and hot-dip galvanized steel sheet with excellent workability uniformity
JP3613040B2 (en) Method for producing cold-rolled steel sheet with excellent workability and surface properties after processing
JPS581170B2 (en) Manufacturing method for hot-rolled steel sheets with excellent enameling properties
WO2023057106A1 (en) Hot-rolled enamelling steel sheet and method for its production
JPH03111519A (en) Production of high strength hot dip galvanized steel sheet having high r-value
JPS63179024A (en) Production of hot dip galvanized sheet

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees