JPH10218623A - Removal of ammonium salt in nickel sulfate - Google Patents

Removal of ammonium salt in nickel sulfate

Info

Publication number
JPH10218623A
JPH10218623A JP2248097A JP2248097A JPH10218623A JP H10218623 A JPH10218623 A JP H10218623A JP 2248097 A JP2248097 A JP 2248097A JP 2248097 A JP2248097 A JP 2248097A JP H10218623 A JPH10218623 A JP H10218623A
Authority
JP
Japan
Prior art keywords
nickel sulfate
ammonium salt
nickel
carrier gas
ammonium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2248097A
Other languages
Japanese (ja)
Inventor
Yoshio Matsuki
宣雄 松木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2248097A priority Critical patent/JPH10218623A/en
Publication of JPH10218623A publication Critical patent/JPH10218623A/en
Pending legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To efficiently remove ammonium salt in nickel sulfate crystals through simple operations and not via complicated dissolution or neutralization steps by firing nickel sulfate containing ammonium salts while a carrier gas is fed at a specific rate and the nickel sulfate is heated at a specific temperature. SOLUTION: Ammonium salt-containing nickel sulfate is fired by heating at 550-800 deg.C for more than 90 minutes, as the flow rate of the carrier gas as air or nitrogen is kept at >=0.1m/min. In a preferred embodiment, the flow rate of the carrier gas is pref. set to 0.3-1.5m/min. Under the firing conditions, the ammonium salt can be removed whereby high-purity nickel sulfate is obtained for nickel plating with an ammonium content of <=0.05% ammonium. The removed ammonium salt can be recovered in a solid form by cooing the carrier gas.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術範囲】本発明は、高純度な硫酸ニッ
ケルを製造する方法に関し、特にアンモニウム塩を含有
する硫酸ニッケルからのアンモニウム塩の除去方法に関
する。
The present invention relates to a method for producing high-purity nickel sulfate, and more particularly to a method for removing ammonium salts from nickel sulfate containing ammonium salts.

【0002】[0002]

【従来の技術】硫酸ニッケルは、ニッケルめっき用原
料、アルミニウム発色剤、電池材料、各種の化成品を製
造する原料等として用いられている。このような硫酸ニ
ッケル結晶中には、不純物として通常はアンモニウム塩
が硫酸アンモニウム及び硫酸ニッケルアンモニウムの形
態で含まれている。
2. Description of the Related Art Nickel sulfate is used as a raw material for nickel plating, an aluminum color former, a battery material, and a raw material for producing various chemical products. Such nickel sulfate crystals usually contain ammonium salts as impurities in the form of ammonium sulfate and nickel ammonium sulfate.

【0003】しかし、近年の技術革新に伴って、ある種
の用途に使用される硫酸ニッケルでは一層高純度である
ことが要求されるようになり、特にニッケルめっき用原
料に使用される硫酸ニッケルは、アンモニウム塩の含有
量がアンモニアとして0.05重量%以下であることが
要求されている。このような品質要求を満たすため、硫
酸ニッケルからアンモニウム塩を除去する必要が生じ、
以下のような方法が用いられていた。
However, with the recent technological innovation, nickel sulfate used for certain applications has been required to have higher purity. In particular, nickel sulfate used as a raw material for nickel plating is , The content of ammonium salt is required to be 0.05% by weight or less as ammonia. In order to meet such quality requirements, it is necessary to remove ammonium salts from nickel sulfate,
The following method was used.

【0004】即ち、アンモニウム塩を含有する硫酸ニッ
ケルに水を加えて再溶解し、硫酸ニッケルとアンモニウ
ム塩を含む水溶液とした後、水酸化ナトリウム又は炭酸
ナトリウムを添加して、ニッケルを水酸化物又は炭酸塩
として固液分離する。このようにして得られたニッケル
の水酸化物又は炭酸塩を水で洗浄した後、硫酸で溶解
し、更に濃縮晶折させることにより、アンモニウム塩を
含まない硫酸ニッケルの結晶が得られる。
That is, water is added to nickel sulfate containing an ammonium salt and redissolved to form an aqueous solution containing nickel sulfate and an ammonium salt. Then, sodium hydroxide or sodium carbonate is added to convert nickel to a hydroxide or nickel hydroxide. Solid-liquid separation as carbonate. The nickel hydroxide or carbonate obtained in this manner is washed with water, dissolved in sulfuric acid, and further concentrated and crystallized to obtain nickel sulfate-free crystals.

【0005】しかしながら、かかる従来のアンモニウム
塩の除去方法は、溶解−中和−溶解の工程を含むため、
水酸化ナトリウムや炭酸ナトリウムなどの中和剤が必要
であり、固液分離などに繁雑な操作と複雑な設備が要求
されるうえ、ニッケルの水酸化物又は炭酸塩の洗浄に多
量の水を必要とするという問題があった。
[0005] However, such a conventional method for removing ammonium salts includes a dissolution-neutralization-dissolution step.
Neutralizing agents such as sodium hydroxide and sodium carbonate are required, complicated operations and complicated facilities are required for solid-liquid separation, and a large amount of water is required for washing nickel hydroxide or carbonate. There was a problem that.

【0006】[0006]

【発明が解決しようとする課題】本発明は、このような
従来の事情に鑑み、繁雑な溶解や中和等の工程を経るこ
となく、簡単な操作で、硫酸ニッケル結晶中からアンモ
ニウム塩を効率良く除去する方法を提供することを目的
とする。
SUMMARY OF THE INVENTION In view of the above-mentioned circumstances, the present invention provides a method for efficiently removing an ammonium salt from nickel sulfate crystals by a simple operation without performing complicated steps such as dissolution and neutralization. It is an object to provide a method of removing well.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するた
め、本発明が提供する硫酸ニッケル中のアンモニウム塩
の除去方法は、アンモニウム塩を含む硫酸ニッケルを温
度550〜800℃に加熱し、キャリアガスを0.1m
/分以上の流速で供給しながら焙焼することを特徴とす
るものである。
In order to achieve the above object, the present invention provides a method for removing an ammonium salt in nickel sulfate provided by heating nickel sulfate containing an ammonium salt to a temperature of 550 to 800 ° C. 0.1m
And roasting while supplying at a flow rate of / min or more.

【0008】また、本発明の硫酸ニッケル中のアンモニ
ウム塩の除去方法においては、焙焼時間を90分以上と
すること、及びキャリアガスとして空気又は窒素ガスを
使用し、その流速を0.3〜1.5m/分とすることが好
ましい。
In the method for removing ammonium salts in nickel sulfate according to the present invention, the roasting time is set to 90 minutes or more, and air or nitrogen gas is used as a carrier gas, and the flow rate is set to 0.3 to 3.0. It is preferably 1.5 m / min.

【0009】[0009]

【発明実施の形態】本発明による方法において、加熱温
度が高くなるほどアンモニウム塩の除去反応が促進され
る。しかし、加熱温度が550℃未満の温度ではアンモ
ニウム塩の除去反応の進行が極端に遅くなり、また逆に
800℃を越える温度で焙焼すると硫酸ニッケルが酸化
ニッケルに変化するため、550〜800℃の温度で焙
焼する必要がある。
BEST MODE FOR CARRYING OUT THE INVENTION In the method according to the present invention, the higher the heating temperature, the faster the reaction for removing ammonium salts. However, when the heating temperature is lower than 550 ° C., the progress of the ammonium salt removal reaction becomes extremely slow, and conversely, when roasting at a temperature higher than 800 ° C., nickel sulfate changes to nickel oxide, so that 550 to 800 ° C. It is necessary to roast at the temperature.

【0010】キャリアガスの流速を0.1m/分以上に
保持することが、アンモニウム塩の除去反応の進行に必
要である。しかし、最終的なアンモニア含有量として
0.05重量%を効率良く達成するためには、キャリア
ガスの流速を0.3m/分以上とすることが好ましい。
尚、流速が1.5m/分を越えてもアンモニウム塩の除
去速度に大きな変化がないうえ、原料の飛散が発生しや
すいので、1.5m/分以下の流速とすることが好まし
い。また、キャリアガスとしては空気または窒素ガスが
好ましいが、入手の容易な空気で十分である。
[0010] Maintaining the flow rate of the carrier gas at 0.1 m / min or more is necessary for the progress of the ammonium salt removal reaction. However, in order to efficiently achieve a final ammonia content of 0.05% by weight, the flow rate of the carrier gas is preferably set to 0.3 m / min or more.
Even if the flow rate exceeds 1.5 m / min, the removal rate of the ammonium salt does not change much and the raw material is liable to be scattered. Therefore, the flow rate is preferably 1.5 m / min or less. Air or nitrogen gas is preferable as the carrier gas, but easily available air is sufficient.

【0011】上記の焙焼条件において、硫酸ニッケル中
のアンモニウム塩を除去することができるが、特にニッ
ケルめっき用原料の硫酸ニッケルとしてアンモニア含有
量を0.05%以下とするためには、加熱温度及びキャ
リアガスの流速にもよるが、通常は焙焼時間を90分以
上とすることが好ましい。
Under the above roasting conditions, ammonium salts in nickel sulfate can be removed. In particular, in order to reduce the ammonia content to 0.05% or less as nickel sulfate as a nickel plating raw material, a heating temperature must be set. In general, the roasting time is preferably 90 minutes or more, depending on the flow rate of the carrier gas.

【0012】上述のごとく、本発明においては、溶解や
中和等の繁雑な工程を経ずに、従って中和剤や多量の水
を使用することなく、簡単な乾式方法によって、硫酸ニ
ッケル中からアンモニウム塩を除去することができる。
また、除去されたアンモニウム塩は、キャリアガスの冷
却により固体として回収することが可能である。
As described above, in the present invention, nickel sulfate can be removed from nickel sulfate by a simple dry method without going through complicated steps such as dissolution and neutralization, and thus without using a neutralizing agent or a large amount of water. Ammonium salts can be removed.
Further, the removed ammonium salt can be recovered as a solid by cooling the carrier gas.

【0013】本発明の硫酸ニッケル中のアンモニウム塩
の除去方法における上記各条件の作用について、以下に
述べる試薬の硫酸ニッケルアンモニウムを用い実験によ
り更に説明する。尚、アンモニウム塩の含有量は、アン
モニアの分析値によって評価した。
The effects of the above conditions in the method for removing ammonium salts in nickel sulfate according to the present invention will be further described by experiments using nickel ammonium sulfate as a reagent described below. In addition, the content of the ammonium salt was evaluated by the analytical value of ammonia.

【0014】実験例1 実験装置として、内部に長さ115mm、幅46mm、
高さ最大20mmの円筒半割形状の石英ボートを挿入し
た内径60mmの磁性管を使用し、この磁性管を外部加
熱し、温度測定は磁性管中央部で行うようにした。ま
た、使用した硫酸ニッケルアンモニウム結晶(6水塩)中
のニッケル品位は14.4重量%、アンモニア品位は8.
18重量%であった。
Experimental Example 1 As an experimental device, a length of 115 mm, a width of 46 mm,
A magnetic tube having an inner diameter of 60 mm, into which a half-quartz cylindrical boat having a maximum height of 20 mm was inserted, was used. The magnetic tube was externally heated, and the temperature was measured at the center of the magnetic tube. The nickel grade in the nickel ammonium sulfate crystals (hexahydrate) used was 14.4% by weight, and the ammonia grade was 8.
18% by weight.

【0015】上記石英ボートに50gの上記硫酸ニッケ
ルアンモニウム試薬を入れ、キャリアガスとして空気を
850ml/分(流速0.3m/分に相当)で吹き込み
ながら、下記表1に示す設定温度にそれぞれ120分間
焙焼した。その後、焙焼物を取り出して冷却し、焙焼物
中のNiとNH3を定量分析した結果を表1に併せて示
した。
Into the above quartz boat, 50 g of the above nickel ammonium sulfate reagent was put, and while blowing air at 850 ml / min (corresponding to a flow rate of 0.3 m / min) as a carrier gas, the temperature was set to the set temperature shown in Table 1 for 120 minutes, respectively. Roasted. Thereafter, the roasted product was taken out and cooled, and the results of quantitative analysis of Ni and NH 3 in the roasted product are shown in Table 1.

【0016】[0016]

【表1】 [Table 1]

【0017】表1の結果から、アンモニウム塩の除去
は、加熱温度が上昇するにしたがって増大することが分
かる。加熱温度350℃においてもアンモニアにして9
重量%のアンモニウム塩が除去されているが、550℃
で同99重量%以上、また650℃では同99.7重量
%以上のアンモニウム塩が除去されている。
From the results in Table 1, it can be seen that the removal of the ammonium salt increases as the heating temperature increases. Even at a heating temperature of 350 ° C.,
Wt% ammonium salts have been removed,
And at 650 ° C., 99.7% by weight or more of ammonium salts were removed.

【0018】実験例2 実験例1と同じ実験装置及び硫酸ニッケルアンモニウム
を用い、加熱温度を650℃(一定)に保持し、キャリ
アガスとして空気を850ml/分(流速0.3m/分
に相当)で吹き込みながら、焙焼時間を下記表2に示す
ように変化させた。得られた焙焼物のNi品位とNH3
品位を表2に示した。
[0018]Experimental example 2  The same experimental apparatus and nickel ammonium sulfate as in Experimental Example 1
And the heating temperature is kept at 650 ° C (constant).
850 ml / min of air as Agus (flow rate 0.3 m / min)
The roasting time is shown in Table 2 below.
Was changed as follows. Ni grade and NH of the obtained roasted productThree
Table 2 shows the quality.

【0019】[0019]

【表2】 [Table 2]

【0020】表2の結果から、加熱温度及びキャリアガ
スの流速が一定の下では、焙焼時間が長いほど、焙焼物
中のアンモニウム塩の除去が進行していることがわか
る。また、この試験では90分の焙焼時間で焙焼物中の
アンモニア品位が0.05重量%となったが、同じアン
モニア品位が得られる焙焼時間は硫酸ニッケルアンモニ
ウムの量、加熱温度、キャリアガスの流速により変化す
る。
From the results shown in Table 2, it can be seen that, when the heating temperature and the flow rate of the carrier gas are constant, the longer the roasting time, the more the removal of ammonium salts in the roasted product. In this test, the ammonia grade in the roasted product was 0.05% by weight in the roasting time of 90 minutes, but the roasting time to obtain the same ammonia grade was the amount of nickel ammonium sulfate, the heating temperature and the carrier gas. It changes according to the flow velocity.

【0021】実験例3 実験例1と同じ実験装置及び硫酸ニッケルアンモニウム
を用い、加熱温度を650℃(一定)に保持し、キャリ
アガスである空気の流速を下記表3に示すように変化さ
せ、120分間焙焼した。得られた焙焼物のNiとNH
3の品位を表3に示した。
Experimental Example 3 Using the same experimental apparatus and nickel ammonium sulfate as in Experimental Example 1, the heating temperature was maintained at 650 ° C. (constant), and the flow rate of air as a carrier gas was changed as shown in Table 3 below. Roast for 120 minutes. Ni and NH of the obtained roasted product
Three of the quality shown in Table 3.

【0022】[0022]

【表3】 [Table 3]

【0023】表3の結果から、キャリアガスとして用い
る空気の流量が増大するほど、アンモニウム塩の除去が
促進され、流量が850ml/分以上(流速として0.
3m/分以上)であればアンモニウム塩が効果的に除去
されていることがわかる。
From the results in Table 3, it can be seen that as the flow rate of the air used as the carrier gas increases, the removal of ammonium salt is promoted, and the flow rate becomes 850 ml / min or more (at a flow rate of 0.1%).
(3 m / min or more), it can be seen that the ammonium salt is effectively removed.

【0024】上記のいずれの実験においても、実験装置
から排出されるガスを捕集して冷却したところ、硫酸ア
ンモニウムが固体として回収された。
In each of the above experiments, when the gas discharged from the experimental apparatus was collected and cooled, ammonium sulfate was recovered as a solid.

【0025】[0025]

【実施例】実施例1 内部に長さ115mm、幅46mm、高さ最大20mm
の円筒半割形状の石英ボートを挿入した内径60mmの
磁性管を使用し、磁性管内の石英ボートに銅製錬の銅電
解精製工程より回収された硫酸ニッケル50gをいれ、
磁性管を外部加熱し、温度測定は磁性管中央部で行っ
た。尚、用いた硫酸ニッケルの品位は、ニッケル:2
1.4重量%、銅:0.006重量%、鉄:0.2重量
%、アンモニア0.21重量%であった。
EXAMPLE 1 Example 1 had a length of 115 mm, a width of 46 mm, and a maximum height of 20 mm.
Using a magnetic tube with an inner diameter of 60 mm into which a quartz boat having a half-cylindrical cylindrical shape is inserted, put 50 g of nickel sulfate recovered from the copper electrolytic refining process of copper smelting into a quartz boat in the magnetic tube,
The magnetic tube was externally heated, and the temperature was measured at the center of the magnetic tube. The quality of the nickel sulfate used was nickel: 2.
The content was 1.4% by weight, 0.006% by weight of copper, 0.2% by weight of iron, and 0.21% by weight of ammonia.

【0026】磁性管内にキャリアガスとして空気を85
0ml/分(流速0.3m/分)で吹き込みながら、5
50℃で120分間焙焼した。その後、磁性管から焙焼
物を取り出して冷却し、焙焼物の定量分析を行った。そ
の結果、得られた焙焼物の品位は、ニッケル:36.3
重量%、銅:0.01重量%、鉄:0.34重量%、アン
モニア:0.005重量%以下であった。
In the magnetic tube, 85 is supplied as air as a carrier gas.
5 ml while blowing at 0 ml / min (flow rate 0.3 m / min).
It was roasted at 50 ° C. for 120 minutes. Thereafter, the roasted product was taken out of the magnetic tube and cooled, and a quantitative analysis of the roasted product was performed. As a result, the grade of the obtained roasted product was nickel: 36.3.
% By weight, 0.01% by weight of copper, 0.34% by weight of iron, and 0.005% by weight or less of ammonia.

【0027】実施例2 上記実施例1と同じ磁性管内の石英ボートに、銅電解精
製工程から回収されたニッケル:20.7重量%、銅:
0.004重量%、鉄:0.09重量%、アンモニア:
0.9重量%を含有する硫酸ニッケル50gを入れ、キ
ャリアガスとして窒素ガスを850ml/分(流速0.
3m/分)で吹き込みながら、550℃で90分間焙焼
した。得られた焙焼物を実施例1と同様に分析した結
果、この焙焼物の品位は、ニッケル:36.2重量%、
銅:0.006重量%、鉄:0.15重量%、アンモニ
ア:0.005重量%以下であった。
Example 2 In a quartz boat in the same magnetic tube as in Example 1 above, nickel recovered from the copper electrorefining step: 20.7% by weight, copper:
0.004% by weight, iron: 0.09% by weight, ammonia:
50 g of nickel sulfate containing 0.9% by weight was charged, and 850 ml / min of nitrogen gas was used as a carrier gas (at a flow rate of 0.9%).
(3 m / min) while roasting at 550 ° C. for 90 minutes. As a result of analyzing the obtained roasted product in the same manner as in Example 1, the quality of the roasted product was 36.2% by weight of nickel,
Copper: 0.006% by weight, iron: 0.15% by weight, ammonia: 0.005% by weight or less.

【0028】[0028]

【発明の効果】本発明によれば、アンモニウム塩を含む
硫酸ニッケルから、簡単な乾式法によってアンモニウム
塩を直接除去することができ、しかも除去したアンモニ
ウム塩を固体として回収することが可能である。
According to the present invention, ammonium salt can be directly removed from nickel sulfate containing ammonium salt by a simple dry method, and the removed ammonium salt can be recovered as a solid.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 アンモニウム塩を含む硫酸ニッケルを温
度550〜800℃に加熱し、キャリアガスを0.1m
/分以上の流速で供給しながら焙焼することを特徴とす
る硫酸ニッケル中のアンモニウム塩の除去方法。
1. Nickel sulfate containing ammonium salt is heated to a temperature of 550 to 800 ° C., and a carrier gas is heated to 0.1 m.
A method for removing ammonium salts in nickel sulfate, characterized by roasting while supplying at a flow rate of not less than / min.
【請求項2】 キャリアガスが空気又は窒素ガスであ
り、その流速を0.3〜1.5m/分とすることを特徴と
する、請求項1に記載の硫酸ニッケル中のアンモニウム
塩の除去方法。
2. The method for removing ammonium salts in nickel sulfate according to claim 1, wherein the carrier gas is air or nitrogen gas, and the flow rate is 0.3 to 1.5 m / min. .
【請求項3】 焙焼時間が90分以上であることを特徴
とする、請求項1に記載の硫酸ニッケル中のアンモニウ
ム塩の除去方法。
3. The method for removing ammonium salts in nickel sulfate according to claim 1, wherein the roasting time is 90 minutes or more.
JP2248097A 1997-02-05 1997-02-05 Removal of ammonium salt in nickel sulfate Pending JPH10218623A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2248097A JPH10218623A (en) 1997-02-05 1997-02-05 Removal of ammonium salt in nickel sulfate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2248097A JPH10218623A (en) 1997-02-05 1997-02-05 Removal of ammonium salt in nickel sulfate

Publications (1)

Publication Number Publication Date
JPH10218623A true JPH10218623A (en) 1998-08-18

Family

ID=12083890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2248097A Pending JPH10218623A (en) 1997-02-05 1997-02-05 Removal of ammonium salt in nickel sulfate

Country Status (1)

Country Link
JP (1) JPH10218623A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013145909A1 (en) * 2012-03-29 2013-10-03 住友金属鉱山株式会社 Method for producing high-purity nickel sulfate
KR101412462B1 (en) * 2013-12-19 2014-06-30 주식회사 에너텍 Highly Purified Nickel Sulfate from Nickel and Cobalt Mixed hydroxide precipitation and the Manufacturing Method of the Same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013145909A1 (en) * 2012-03-29 2013-10-03 住友金属鉱山株式会社 Method for producing high-purity nickel sulfate
JP2013203646A (en) * 2012-03-29 2013-10-07 Sumitomo Metal Mining Co Ltd Method for producing high-purity nickel sulfate
US9702023B2 (en) 2012-03-29 2017-07-11 Sumitomo Metal Mining Co., Ltd. Method for producing high-purity nickel sulfate
KR101412462B1 (en) * 2013-12-19 2014-06-30 주식회사 에너텍 Highly Purified Nickel Sulfate from Nickel and Cobalt Mixed hydroxide precipitation and the Manufacturing Method of the Same

Similar Documents

Publication Publication Date Title
US4261738A (en) Process for recovering precious metals from bimetallic material
EP3950084A1 (en) Method for crystallizing carbonate and method for purifying carbonate
KR101267638B1 (en) Method for producing high purity caustic potash
JPH0597767A (en) Method of recovering adipic acid
JPH10218623A (en) Removal of ammonium salt in nickel sulfate
JPH09118504A (en) Method for recovering alkali metal chloride and alkaline earth metal chloride from waste salt produced in heat treatment of billet in salt bath
JP6929240B2 (en) Manufacturing method of cobalt sulfate for batteries
US4314976A (en) Purification of nickel sulfate
US4599222A (en) Recovery of tungsten and rhenium
JP2019026915A (en) Metal concentration method and metal recovery method
US2124564A (en) Metal purification
US4135997A (en) Electrolytic production of metallic lead
US4124461A (en) Production of metallic lead
US4508688A (en) Method of regenerating acetate in a metal removal process
US4599223A (en) Separation of tungsten from rhenium
US2730429A (en) Method of making substantially pure
JPH0375224A (en) Method for purifying aqueous solution of indium
US1569137A (en) Refining of copper-nickel matte
JPS6035415B2 (en) Separation method for copper and arsenic
US2959465A (en) Method of purifying crude nickel sulfate
JPH0625765A (en) Method for removing and recovering copper in ferroscrap
JPH09235684A (en) Method for regenerating waste liquid etchant
JP3880301B2 (en) Method for producing hexafluoroaluminum ammonium
US5004500A (en) Chlorination process for recovering gold values from gold alloys
US3798307A (en) Separation of nickel from salt mixtures containing nickel and other metal salts