JPH10214705A - Organic positive temperature coefficient thermistor - Google Patents

Organic positive temperature coefficient thermistor

Info

Publication number
JPH10214705A
JPH10214705A JP33510297A JP33510297A JPH10214705A JP H10214705 A JPH10214705 A JP H10214705A JP 33510297 A JP33510297 A JP 33510297A JP 33510297 A JP33510297 A JP 33510297A JP H10214705 A JPH10214705 A JP H10214705A
Authority
JP
Japan
Prior art keywords
resistance
temperature
conductive particles
spike
coefficient thermistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33510297A
Other languages
Japanese (ja)
Other versions
JP3268249B2 (en
Inventor
Norihiko Shigeta
徳彦 繁田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP33510297A priority Critical patent/JP3268249B2/en
Publication of JPH10214705A publication Critical patent/JPH10214705A/en
Application granted granted Critical
Publication of JP3268249B2 publication Critical patent/JP3268249B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an organic positive temperature coefficient thermistor which operates at a temperature having no danger to the human body and which has an acute rise in resistance at the time of starting operation, by kneading polyethylene oxide having a specified range of weight average molecular weight and conductive particles having spike-like protrusions. SOLUTION: An organic positive temperature coefficient thermistor is formed by using polyethylene oxide (PEO) having a weight-average molecular weight Mw not less than 2,000,000 as a crystalline polymer, and kneading conductive particles having spike-like protrusions with the polyethylene oxide. The weight- average molecular weight Mw of PEO is more preferably 3,000,000 to 6,000,000. It is preferred that the melting point of PEO is approximately 60 to 70 deg.C and that the density is approximately 1.15 to 1.22g/cm<3> . The conductive particles having spike-like protrusions are made of primary particles each of which has acute protrusions, and a plurality of (normally 10 to 500) conical spike-like protrusions having a height which is 1/3 to 1/50 of the grain diameter exist on each particle. The material of the particles is preferably nickel.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は有機質正特性サーミ
スタに関するもので、昇温により急激に抵抗値が増大す
る現象、すなわちPTC(positive temperature coeff
icient of resistivity )特性を有する有機質正特性サ
ーミスタに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an organic positive temperature coefficient thermistor.
organic positive temperature coefficient thermistor having a characteristic of resistivity.

【0002】[0002]

【従来の技術】結晶性重合体(ポリマー)にカーボンブ
ラックや金属等の導電性粒子を混練、分散させPTC特
性を示す有機質正特性サーミスタは、この分野では公知
である。例えば、米国特許第3243753号明細書お
よび同3351882号明細書等に開示されている。こ
れは自己制御型ヒーターや温度検出器、過電流保護素子
として利用することができる。これに要求される特性と
して、室温(非動作時)の初期抵抗値が充分低いこと、
初期抵抗値と動作時の抵抗の変化率が大きいこと、繰り
返し動作によっても特性が安定していることが挙げられ
る。
2. Description of the Related Art Organic positive temperature coefficient thermistors exhibiting PTC characteristics by kneading and dispersing conductive particles such as carbon black and metal in a crystalline polymer (polymer) are known in the art. For example, it is disclosed in U.S. Pat. Nos. 3,243,753 and 3,351,882. This can be used as a self-control heater, a temperature detector, and an overcurrent protection element. The characteristics required for this are that the initial resistance value at room temperature (when not operating) is sufficiently low,
The change rate between the initial resistance value and the resistance during operation is large, and the characteristics are stable even after repeated operation.

【0003】一般に従来の有機質正特性サーミスタで
は、動作時に結晶性重合体の融解を伴うので、冷却され
たときに導電性粒子の分散状態が変化し初期抵抗値が上
昇することが知られている。
In general, in a conventional organic positive temperature coefficient thermistor, it is known that the crystalline polymer is melted during operation, so that when cooled, the dispersed state of the conductive particles changes and the initial resistance increases. .

【0004】従来の有機質正特性サーミスタでは導電性
粒子としてカーボンブラックが多く用いられてきたが、
初期抵抗値を下げるためカーボンブラックの充填量を多
くしたときに充分な抵抗変化率が得られないという欠点
があった。また、一般の金属粒子を導電性粒子に用いた
例もあるが、同じように低い初期抵抗と大きな抵抗変化
率を両立させることは困難であった。
In conventional organic positive temperature coefficient thermistors, carbon black has been frequently used as conductive particles.
When the filling amount of carbon black is increased to lower the initial resistance value, there is a drawback that a sufficient resistance change rate cannot be obtained. In addition, there is an example in which general metal particles are used for the conductive particles, but it has been similarly difficult to achieve both a low initial resistance and a large resistance change rate.

【0005】上記の欠点を解決する方法として、スパイ
ク状の突起を有する導電性粒子を用いる方法が特開平5
−47503号公報に開示されている。より具体的に
は、結晶性重合体としてポリフッ化ビニリデンを用い、
スパイク状の突起を有する導電性粒子としてはスパイク
状Niパウダーを用いたものが開示されている。これに
より、低い初期抵抗と大きな抵抗変化の両立を図ること
ができるとされている。しかしながら、このものは繰り
返し動作による特性の安定が不充分である。また、ポリ
フッ化ビニリデンを用いる場合、動作温度は160℃程
度である。しかし、2次電池、電気毛布、便座、車両用
シート用のヒーター等の保護素子としての用途を考えた
場合、100℃以上の動作温度では、人体への危険性が
大きい。人体に対しての安全性を考えた場合、動作温度
は100℃未満、特に60〜70℃程度が必要である。
As a method for solving the above-mentioned drawbacks, a method using conductive particles having spike-like projections is disclosed in Japanese Patent Application Laid-Open No. HEI 5 (1993) -5.
-47503. More specifically, using polyvinylidene fluoride as a crystalline polymer,
As the conductive particles having spike-like projections, those using spike-like Ni powder are disclosed. It is stated that this makes it possible to achieve both low initial resistance and large resistance change. However, this one has insufficient stability of characteristics due to repetitive operations. When using polyvinylidene fluoride, the operating temperature is about 160 ° C. However, considering the use as a protective element such as a secondary battery, an electric blanket, a toilet seat, a heater for a vehicle seat, and the like, at an operating temperature of 100 ° C. or more, there is a great danger to the human body. In consideration of safety for the human body, the operating temperature needs to be lower than 100 ° C., particularly about 60 to 70 ° C.

【0006】また、米国特許第5378407号明細書
にも、スパイク状の突起を有するフィラメント形状のN
iと、ポリオレフィン、オレフィン系コポリマー、ある
いはフルオロポリマーとを用いたものが開示されてい
る。このものは、低い初期抵抗と、大きな抵抗変化と、
繰り返し動作による特性の安定性は十分であるとされて
いる。しかし、実施例で用いられている高密度ポリエチ
レン、ポリフッ化ビニリデンポリマーでは、動作温度は
それぞれ130℃、160℃前後である。なお、この明
細書には、エチレン/エチルアクリレートコポリマー、
エチレン/酢酸ビニルコポリマー、エチレン/アクリル
酸コポリマー等も使用可能とされている。しかし、実施
例は存在しない。これらのポリマーは、動作温度が60
〜70℃であるが、後述の実施例で明らかになるであろ
うが、繰り返し動作により特性が不安定となる。
In US Pat. No. 5,378,407, a filament-shaped N having spike-shaped projections is also disclosed.
The use of i and a polyolefin, an olefin-based copolymer, or a fluoropolymer is disclosed. It has low initial resistance, large resistance change,
It is considered that the stability of the characteristics by the repetition operation is sufficient. However, in the high-density polyethylene and polyvinylidene fluoride polymer used in the examples, the operating temperatures are about 130 ° C. and about 160 ° C., respectively. In this specification, ethylene / ethyl acrylate copolymer,
Ethylene / vinyl acetate copolymers, ethylene / acrylic acid copolymers and the like can be used. However, there is no embodiment. These polymers have an operating temperature of 60
The temperature is 明 ら か に 70 ° C., as will become clear from the examples described later, but the characteristics become unstable due to repeated operation.

【0007】なお、米国特許第4545926号明細書
に開示されたものも、球状、フレーク状、棒状のNi
と、ポリオレフィン、オレフィン系コポリマー、ハロゲ
ン化ビニル、ビニリデンポリマーを用いている。実施例
の中で、エチレン/エチルアクリレートコポリマー、エ
チレン/アクリル酸コポリマーが、動作温度60〜70
℃であり、他のポリマーは100℃超の動作温度であ
る。しかし、エチレン/エチルアクリレートコポリマ
ー、エチレン/アクリル酸コポリマーは、前記の通り、
繰り返し動作により特性が不安定となる。
It is to be noted that the one disclosed in US Pat. No. 4,545,926 also discloses spherical, flake-like and rod-like Ni.
And a polyolefin, an olefin-based copolymer, a vinyl halide, and a vinylidene polymer. In the examples, ethylene / ethyl acrylate copolymer, ethylene / acrylic acid copolymer have an operating temperature of 60-70.
° C and other polymers have operating temperatures above 100 ° C. However, ethylene / ethyl acrylate copolymer and ethylene / acrylic acid copolymer are, as described above,
Characteristics become unstable due to repeated operation.

【0008】一方、特開昭62−65401号公報、同
62−122083公報、同62−156159公報、
特開平2−72580公報、同2−172179公報、
同3−187201公報、同4−14201公報には、
炭素や導電性金属とポリエチレンオキシドとを用いたサ
ーミスタが開示されている。このものでは、60〜70
℃の動作温度とすることができる。しかし、炭素や導電
性金属を用いているため、前記の通り、低い初期抵抗と
大きな抵抗変化とを両立させることはできない。
On the other hand, Japanese Patent Application Laid-Open Nos. 62-65401, 62-122083 and 62-156159,
JP-A-2-72580, JP-A-2-172179,
In the publications 3-187201 and 4-14201,
A thermistor using carbon or a conductive metal and polyethylene oxide is disclosed. In this case, 60-70
° C operating temperature. However, since carbon or a conductive metal is used, it is impossible to achieve both a low initial resistance and a large resistance change as described above.

【0009】また、これらのポリエチレンオキシドは、
いずれも分子量100,000以下である。このため、
前記米国特許第5378407号明細書で用いられてい
るスパイク状の突起を有するフィラメント形状のNiを
併用しても、初期抵抗が高く、特に抵抗の立ち上がりが
緩やかで、立ち上がり度の点で不十分であることが判明
した。
Further, these polyethylene oxides are
Each has a molecular weight of 100,000 or less. For this reason,
Even when Ni in the form of a filament having spike-like projections used in the above-mentioned US Pat. No. 5,378,407 is used in combination, the initial resistance is high, particularly the resistance rises slowly, and the rise degree is insufficient. It turned out to be.

【0010】以上のとおり、人体への危険性の少ない動
作温度100℃未満で良好な特性を示し、特性の安定な
有機正特性サーミスタは、現在のところ得られていな
い。
As described above, an organic positive temperature coefficient thermistor exhibiting good characteristics and having stable characteristics at an operating temperature of less than 100 ° C. with little danger to the human body has not been obtained at present.

【0011】[0011]

【発明が解決しようとする課題】本発明の目的は、人体
に危険性のない60〜70℃で動作し、非動作時(室
温)の初期抵抗が低く、動作時における抵抗の立ち上が
りが急峻であり、非動作時から動作時にかけての抵抗変
化率が大きく、繰り返し動作によってもその特性が安定
している有機質正特性サーミスタを提供することであ
る。
SUMMARY OF THE INVENTION An object of the present invention is to operate at a temperature of 60 to 70.degree. C. which has no danger to the human body, to have a low initial resistance when not operating (room temperature), and to have a sharp rise in resistance during operation. An object of the present invention is to provide an organic positive temperature coefficient thermistor whose resistance change rate is large from non-operation to operation and whose characteristics are stable even after repeated operation.

【0012】[0012]

【課題を解決するための手段】このような目的は、下記
の本発明により達成される。 (1) 重量平均分子量2,000,000以上のポリ
エチレンオキシドと、スパイク状の突起を有する導電性
粒子とを混練した有機質正特性サーミスタ。 (2) 前記スパイク状の突起を有する導電性粒子が鎖
状に連なっている上記(1)の有機質正特性サーミス
タ。 (3) 前記ポリエチレンオキシドの重量平均分子量が
3,000,000〜6,000,000である上記
(1)の有機質正特性サーミスタ。 (4) 前記鎖状に連なったスパイク状の突起を有する
導電性粒子の平均粒径が0.1μm 以上である上記
(2)の有機質正特性サーミスタ。 (5) 前記平均粒径が1.0〜4.0μmである上記
(4)の有機質正特性サーミスタ。
This and other objects are achieved by the present invention described below. (1) An organic positive temperature coefficient thermistor obtained by kneading polyethylene oxide having a weight average molecular weight of 2,000,000 or more and conductive particles having spike-shaped protrusions. (2) The organic positive temperature coefficient thermistor according to (1), wherein the conductive particles having the spike-like projections are connected in a chain. (3) The organic positive temperature coefficient thermistor according to (1), wherein the weight average molecular weight of said polyethylene oxide is 3,000,000 to 6,000,000. (4) The organic positive temperature coefficient thermistor according to the above (2), wherein the conductive particles having the chain-like spike-like projections have an average particle diameter of 0.1 μm or more. (5) The organic positive temperature coefficient thermistor according to (4), wherein said average particle diameter is 1.0 to 4.0 µm.

【0013】[0013]

【作用】本発明では、ポリエチレンオキシドを用いるの
で、動作温度を60〜70℃とすることができ、人体へ
の危険性の軽減された保護素子とすることができる。本
発明では、スパイク状の突起を持つ導電性粒子を用いる
ことで、その形状のためトンネル電流が流れやすくな
り、球状の導電性粒子と比較して低い初期抵抗が得られ
る。また導電性粒子間の間隔が球状のものに比べ大きい
ため、動作時には大きな抵抗値が得られる。
According to the present invention, since polyethylene oxide is used, the operating temperature can be 60 to 70 ° C., and a protective element with reduced danger to the human body can be obtained. In the present invention, by using conductive particles having spike-shaped protrusions, a tunnel current easily flows due to the shape thereof, and a lower initial resistance can be obtained as compared with spherical conductive particles. Further, since the distance between the conductive particles is larger than that of the spherical particles, a large resistance value is obtained during operation.

【0014】また、結晶性重合体としてポリエチレンオ
キシドの重量平均分子量Mwを200万以上に規制する
ことで、繰り返し動作時の特性変化が臨界的に少なくな
ることを見いだした。この理由は現段階では明らかでは
ないが、結晶性重合体の導電性粒子に対する濡れ性が向
上し分散がより均一になり、加熱冷却によっても結晶性
重合体の結晶状態および混合物の分散状態の変化が抑え
られているためと思われる。
Further, it has been found that by limiting the weight average molecular weight Mw of polyethylene oxide as a crystalline polymer to 2,000,000 or more, a change in characteristics during repeated operation is critically reduced. Although the reason for this is not clear at this stage, the wettability of the crystalline polymer to the conductive particles is improved, the dispersion is more uniform, and the change in the crystalline state of the crystalline polymer and the dispersion state of the mixture by heating and cooling. It is thought that is suppressed.

【0015】なお、特開平5−47503号公報には、
「結晶性重合体と、この結晶性重合体に混練したスパイ
ク状の突起を有する導電性粒子からなることを特徴とす
る有機質正特性サーミスタ」が開示されている。しか
し、その実施例で使用されている結晶性重合体は、ポリ
フッ化ビニリデンである。また結晶性重合体としてポリ
エチレンオキシドが例示されているが、ポリエチレンオ
キシドについては、本発明のように、所定範囲の分子量
のものを用いる旨の記載はない。従って、繰り返し動作
による特性の変化を抑制するという本発明の効果につい
ても全く記載されていない。
Incidentally, Japanese Patent Application Laid-Open No. 5-47503 discloses that
"An organic positive temperature coefficient thermistor comprising a crystalline polymer and conductive particles having spike-like projections kneaded with the crystalline polymer" is disclosed. However, the crystalline polymer used in that example is polyvinylidene fluoride. Although polyethylene oxide is exemplified as the crystalline polymer, there is no description that polyethylene oxide having a molecular weight within a predetermined range is used as in the present invention. Therefore, there is no description about the effect of the present invention of suppressing a change in characteristics due to the repetitive operation.

【0016】[0016]

【発明の実施の形態】以下、本発明の実施の形態につい
て詳細に説明する。
Embodiments of the present invention will be described below in detail.

【0017】本発明の有機質正特性サーミスタは、重量
平均分子量Mw2,000,000以上のポリエチレン
オキシド(PEO)を結晶性重合体として用い、これ
に、スパイク状の突起を有する導電子粒子を混練したも
のである。
The organic positive temperature coefficient thermistor of the present invention uses polyethylene oxide (PEO) having a weight average molecular weight Mw of 2,000,000 or more as a crystalline polymer, and kneads conductive particles having spike-like projections. Things.

【0018】これにより、60〜70℃程度の動作温度
が可能となる。
As a result, an operating temperature of about 60 to 70 ° C. becomes possible.

【0019】本発明に用いられるポリエチレンオキシド
は重量平均分子量Mw2,000,000以上のもので
あり、さらには3,000,000〜6,000,00
0であることが好ましい。Mwが2,000,000未
満では、溶融時の粘度が低すぎて導電性粒子の分散性が
悪化してしまい、室温での抵抗を下げることが困難にな
る。
The polyethylene oxide used in the present invention has a weight average molecular weight Mw of 2,000,000 or more, and more preferably 3,000,000 to 6,000,000.
It is preferably 0. When Mw is less than 2,000,000, the viscosity at the time of melting is too low, and the dispersibility of the conductive particles is deteriorated, and it becomes difficult to lower the resistance at room temperature.

【0020】Mw200万以上のポリエチレンオキシド
は融点60〜70℃程度で、密度1.15〜1.22g
/cm3 程度である。
Polyethylene oxide having a Mw of 2,000,000 or more has a melting point of about 60 to 70 ° C. and a density of 1.15 to 1.22 g.
/ Cm3.

【0021】本発明に用いるスパイク状の突起を有する
導電性粒子は、1個、1個が鋭利な突起をもつ一次粒子
から形成されており、粒径の1/3〜1/50の高さの
円錘状のスパイク状の突起が1個の粒子に複数(通常1
0〜500個)存在するものである。その材質はNi等
が好ましい。
The conductive particles having spike-like projections used in the present invention are each formed of primary particles each having a sharp projection, and have a height of 1/3 to 1/50 of the particle size. Conical spike-like projections on one particle (usually 1
0 to 500). The material is preferably Ni or the like.

【0022】このような導電性粒子は、1個、1個が個
別に存在する粉体であってもよいが、一次粒子が10〜
1000個程度連なった鎖状のものであることが好まし
い。鎖状のものには、一部一次粒子が存在してもよい。
前者の例としては、スパイク状の突起をもつ球状のニッ
ケルパウダがあり、商品名INCO Type 123
ニッケルパウダ(インコ社製)として市販されているも
のがあり、その平均粒径は3〜7μm 程度、見かけの密
度は1.8〜2.7g/cm3 程度、比表面積は0.3
4〜0.44m2/g程度である。
Such conductive particles may be a powder in which one particle is present individually, but the primary particles are 10 to 10 particles.
It is preferable that the chain is a chain of about 1,000. Some primary particles may be present in the chain.
As an example of the former, there is a spherical nickel powder having spike-shaped protrusions, and the trade name is INCO Type 123.
There is a commercially available nickel powder (manufactured by Inco Corporation) having an average particle size of about 3 to 7 μm, an apparent density of about 1.8 to 2.7 g / cm3, and a specific surface area of about 0.3 to 0.3 g / cm3.
It is about 4 to 0.44 m2 / g.

【0023】また、好ましく用いられる後者の例として
は、フィラメント状ニッケルパウダがあり、商品名IN
CO Type 255、270、287ニッケルパウ
ダ、INCO Type 210ニッケルパウダ(イン
コ社製)として市販されているものがあり、このうちI
NCO Type 255,277,287が好まし
い。そして、その一次粒子の平均粒径は、好ましくは
0.1μm 以上、より好ましくは0.5以上4.0μm
以下程度である。これらのうち、一次粒子の平均粒径は
1.0以上4.0μm以下が最も好ましく、これに0.
1μm 以上1.0μm未満の平均粒子のものを50重量
%以下混合してもよい。また、見かけの密度は0.3〜
1.0g/cm3 程度、比表面積は0.4〜2.5m2/
g程度である。このような鎖状のフィラメント状ニッケ
ルパウダの走査電子顕微鏡写真を図1に示す。なお、こ
の場合の平均粒径はフィッシュー・サブシーブ法で測定
したものである。
As an example of the latter, which is preferably used, there is a filamentous nickel powder having a trade name of IN.
CO Type 255, 270, 287 nickel powder and INCO Type 210 nickel powder (manufactured by INCO) are commercially available.
NCO Type 255, 277, 287 is preferred. The average particle size of the primary particles is preferably 0.1 μm or more, more preferably 0.5 or more and 4.0 μm.
Below. Among these, the average particle size of the primary particles is most preferably 1.0 or more and 4.0 μm or less.
Particles having an average particle size of 1 μm or more and less than 1.0 μm may be mixed at 50% by weight or less. The apparent density is 0.3 ~
About 1.0g / cm3, specific surface area is 0.4 ~ 2.5m2 /
g. FIG. 1 shows a scanning electron micrograph of such a chain filamentous nickel powder. The average particle size in this case was measured by the fish-sub-sieve method.

【0024】本発明におけるポリエチレンオキシド結晶
性重合体と導電性粒子との比率(重量)は、導電性粒子
/結晶性重合体が3〜5程度であることが好ましい。こ
のような比率とすることで、本発明の効果が向上する。
これに対し、この比率が小さくなると導電性粒子が少な
くなりすぎて非動作時の初期抵抗が充分に低くなりにく
い。またこの比が大きくなって導電性粒子が多くなりす
ぎると動作時の大きな抵抗値が得られにくい。
In the present invention, the ratio (weight) of the crystalline polyethylene oxide polymer to the conductive particles is preferably about 3 to 5 for the conductive particles / crystalline polymer. With such a ratio, the effect of the present invention is improved.
On the other hand, when the ratio is small, the conductive particles are too small, and the initial resistance during non-operation is not easily reduced sufficiently. If this ratio is too large and the number of conductive particles is too large, it is difficult to obtain a large resistance value during operation.

【0025】結晶性重合体と導電性粒子との混練は、結
晶性重合体に導電性粒子を加えて、結晶性重合体の融点
以上の温度(好ましくは融点+10〜40℃の温度)で
行えばよく、本発明のポリエチレンオキシドでは80〜
110℃程度で行う。具体的な混練方法は公知の方法に
よればよく、例えばミルなどにより5〜60分程度混練
する。
The kneading of the crystalline polymer and the conductive particles is carried out at a temperature higher than the melting point of the crystalline polymer (preferably at a temperature of +10 to 40 ° C.) by adding the conductive particles to the crystalline polymer. In the polyethylene oxide of the present invention, 80 to
This is performed at about 110 ° C. A specific kneading method may be a known method, for example, kneading for about 5 to 60 minutes using a mill or the like.

【0026】そして、サーミスタは、このような混練物
を所定厚さのシート等にプレス成形するなどして得られ
る。成形後は必要に応じ、架橋処理を施してもよい。
The thermistor is obtained by press-forming such a kneaded material into a sheet or the like having a predetermined thickness. After the molding, a crosslinking treatment may be performed if necessary.

【0027】その後、Ni、Cu等の電極を形成する。
また、プレス成形と電極形成を同時に行うこともでき
る。
Thereafter, electrodes of Ni, Cu, etc. are formed.
Also, press molding and electrode formation can be performed simultaneously.

【0028】本発明の有機質正特性サーミスタは、非動
作時における初期抵抗が低く、その室温抵抗値は0.0
01〜0.05Ω程度であり、動作時における抵抗の立
ち上がりが急峻であり、非動作時から動作時にかけての
抵抗変化率が9〜10桁程度と大きい。また繰り返し動
作による特性の劣化が抑制される。
The organic positive temperature coefficient thermistor of the present invention has a low initial resistance when not operating, and has a room temperature resistance of 0.0
The resistance rises steeply during operation, and the resistance change rate from non-operation to operation is as large as about 9 to 10 digits. In addition, deterioration of characteristics due to repeated operation is suppressed.

【0029】[0029]

【実施例】以下、本発明の実施例を比較例とともに示
し、本発明を具体的に説明する。
EXAMPLES Examples of the present invention will now be described together with comparative examples to specifically describe the present invention.

【0030】実施例1 結晶性重合体としてMw4,300,000〜4,80
0,000のポリエチレンオキシドI(mp67℃)を
用い、導電性粒子として図1に示されるような鎖状のフ
ィラメント状ニッケルパウダI(インコ社製の商品名I
NCO Type 255ニッケルパウダ)を用いた。
導電性粒子の平均粒径は2.2〜2.8μm 、見かけの
密度は0.5〜0.65g/cm3 、比表面積は0.6
8m2/gである。
Example 1 Mw 4,300,000-4,80 as a crystalline polymer
Polyethylene oxide I (mp 67 ° C.) of 0000 and chain-like filamentary nickel powder I (trade name ICO, manufactured by INCO) as conductive particles as shown in FIG.
NCO Type 255 nickel powder) was used.
The average particle size of the conductive particles is 2.2 to 2.8 μm, the apparent density is 0.5 to 0.65 g / cm 3, and the specific surface area is 0.6.
8 m2 / g.

【0031】ポリエチレンオキシドに対し4倍量(重
量)のフィラメント状鎖状Niパウダを加え、ミル中で
80℃で15分混練した。
4 times (by weight) the amount of filamentary chain Ni powder based on polyethylene oxide was added and kneaded in a mill at 80 ° C. for 15 minutes.

【0032】この混練物の両面をNi箔(30μm 厚)
で挟んで、混練物にNi箔を圧着するとともに、混練物
を成形し、全体で1mm厚のプレス品を得た。これを直径
10mmの円盤状に打ち抜いて、図2に示されるような断
面図のサーミスタサンプルを得た。図2に示されるよう
に、サンプルはNi箔から形成された電極11間に、結
晶性重合体と導電性粒子との混練成形シート12を挟み
込んだものである。
Both sides of this kneaded material are Ni foil (30 μm thick)
, A Ni foil was pressure-bonded to the kneaded material, and the kneaded material was molded to obtain a pressed product having a total thickness of 1 mm. This was punched out into a disk having a diameter of 10 mm to obtain a thermistor sample having a cross-sectional view as shown in FIG. As shown in FIG. 2, the sample has a kneaded molded sheet 12 of a crystalline polymer and conductive particles sandwiched between electrodes 11 formed of Ni foil.

【0033】このサンプルを恒温槽内で加熱、冷却し、
所定の温度で抵抗値を測定して温度−抵抗曲線を得た。
この結果を図3に示す。
This sample was heated and cooled in a thermostat,
The resistance was measured at a predetermined temperature to obtain a temperature-resistance curve.
The result is shown in FIG.

【0034】図3から、室温(25℃)での初期の室温
抵抗値は0.006Ω、転移温度(65℃)以上にサン
プルが加熱されると抵抗の急激な上昇が見られ、最大抵
抗値は6×107 Ωとなり、抵抗変化率は10.0桁
であることがわかる。また、転移温度付近での抵抗の立
ち上がりのシャープさを示す指標(抵抗の立ち上がり
度)を次のようにして求めた。
From FIG. 3, the initial room temperature resistance at room temperature (25 ° C.) is 0.006 Ω, and when the sample is heated to a transition temperature (65 ° C.) or higher, a sharp rise in resistance is observed, and the maximum resistance value is observed. Is 6 × 10 7 Ω, indicating that the resistance change rate is 10.0 digits. In addition, an index indicating the sharpness of the rise of the resistance near the transition temperature (degree of rise of the resistance) was determined as follows.

【0035】(抵抗の立ち上がり度)図4に示すよう
に、まず、温度−抵抗曲線のグラフ上で転移前と転移後
のカーブの接線を引きその交点から転移温度を求める。
なお、転移温度はいずれもこのようにして求めたもので
ある。次に、転移温度での抵抗値を求め、この値と室温
での抵抗値との変化率(桁)Aを求め、前述の全体の抵
抗変化率(桁)Bとの比A/B(%)を求める。A/B
が小さいほど立ち上がりがシャープと判断される。
(Rise rise of resistance) As shown in FIG. 4, first, tangent lines of the curves before and after the transition are drawn on the graph of the temperature-resistance curve, and the transition temperature is determined from the intersection.
Note that the transition temperatures are all determined in this way. Next, the resistance value at the transition temperature is determined, the rate of change (digit) A between this value and the resistance value at room temperature is determined, and the ratio A / B (% ). A / B
The smaller the is, the sharper the rise is.

【0036】次に、2℃/分の割合で室温から120℃
まで昇温加熱し、この後2℃/分の割合で120℃から
室温まで降温冷却するサイクル試験を10回繰り返した
後、前記と同様にして、温度−抵抗曲線を得、室温抵抗
値、最大抵抗値、抵抗変化率、抵抗の立ち上がり度を求
めた。サイクル試験10回の加熱冷却後における温度−
抵抗曲線を図5に示す。サイクル試験前の初期のもの
(図3)とほとんど変化がなかった。
Next, from room temperature to 120 ° C. at a rate of 2 ° C./min.
After a cycle test in which the temperature was raised to 120 ° C. and the temperature was lowered from 120 ° C. to room temperature at a rate of 2 ° C./min, and then repeated 10 times, a temperature-resistance curve was obtained in the same manner as above, The resistance value, the rate of change in resistance, and the degree of rise of the resistance were determined. Temperature after 10 cycles of heating and cooling-
FIG. 5 shows the resistance curve. There was almost no change from the initial one before the cycle test (FIG. 3).

【0037】これらの結果をまとめて表1に示す。な
お、サイクル試験後の抵抗の立ち上がり度にはほとんど
変化がなかった。また、抵抗の立ち上がり度を求めるに
あたっての特性値を表2にまとめた。
The results are summarized in Table 1. In addition, there was almost no change in the degree of rise of the resistance after the cycle test. Table 2 summarizes characteristic values for determining the degree of rise of the resistance.

【0038】実施例2 実施例1において、導電性粒子を鎖状のフィラメント状
ニッケルパウダーII(インコ社製の商品名INCO T
ype 287ニッケルパウダ、平均粒径2.6〜3.
3μm、見かけの密度は0.75〜0.95g/cm3、比
表面積0.58m2/g)にかえた他は実施例1と同様に
してサンプルを得、温度−抵抗曲線を得た。この結果を
図6に示す。
Example 2 In Example 1, the conductive particles were replaced with chain-like filamentous nickel powder II (trade name INCOT, manufactured by Inco Corporation).
ype 287 nickel powder, average particle size 2.6-3.
A sample was obtained in the same manner as in Example 1 except for changing the apparent density to 0.75 to 0.95 g / cm3 and the specific surface area to 0.58 m2 / g), and a temperature-resistance curve was obtained. The result is shown in FIG.

【0039】図6から、転移温度(65℃)以上で抵抗
の急激な上昇が見られることがわかった。また転移温度
も含め、実施例1と同様の特性値を求めた。実地例1と
同様の条件でサイクル試験10回の加熱冷却後における
特性値を求めた。なお、加熱冷却後における温度−抵抗
曲線はサイクル試験前の初期のもの(図6)とほどんど
変化がなかった。
FIG. 6 shows that a sharp increase in resistance was observed at a transition temperature (65 ° C.) or higher. Further, the same characteristic values as in Example 1 including the transition temperature were obtained. Under the same conditions as in Practical Example 1, characteristic values were obtained after 10 heating and cooling cycles. The temperature-resistance curve after heating and cooling was almost unchanged from the initial one before the cycle test (FIG. 6).

【0040】これらの結果をまとめて表1に示す。The results are summarized in Table 1.

【0041】実施例3 実施例1において、結晶性重合体をMw3,300,0
00〜3,800,000のポリエチレンオキシドII
(mp67℃)を用い、混練温度を80℃とした他は実
施例1と同様にしてサンプルを得、温度−抵抗曲線を得
た。この結果を図7に示す。
Example 3 In Example 1, the crystalline polymer was changed to Mw 3,300,0
00 to 3,800,000 polyethylene oxide II
(Mp 67 ° C.), and a sample was obtained in the same manner as in Example 1 except that the kneading temperature was 80 ° C., and a temperature-resistance curve was obtained. The result is shown in FIG.

【0042】比較例1 実施例1において、結晶性重合体としてポリフッ化ビニ
リデン(mp175℃、Mw300,000)を用い、
混練温度を195℃とした他は実施例1と同様にしてサ
ンプルを得、温度−抵抗曲線を得た。この結果を図8に
示す。
Comparative Example 1 In Example 1, polyvinylidene fluoride (mp 175 ° C., Mw 300,000) was used as the crystalline polymer.
A sample was obtained in the same manner as in Example 1 except that the kneading temperature was 195 ° C., and a temperature-resistance curve was obtained. The result is shown in FIG.

【0043】図8からわかるように、転移温度(159
℃)以上で抵抗の急激な上昇が見られた。また、実施例
1と同様にして特性値を求めた。さらに、200℃まで
の昇温加熱とする他は実施例1と同様としたサイクル試
験10回の加熱冷却後における特性値を求めた。なお、
加熱冷却後における温度−抵抗曲線は、実施例1、2の
サンプルに比べ、サイクル試験前の初期のもの(図8)
からの変化が大きかった。
As can be seen from FIG. 8, the transition temperature (159)
℃), a sharp increase in resistance was observed. Further, characteristic values were obtained in the same manner as in Example 1. Further, characteristic values after heating and cooling in 10 cycle tests were determined in the same manner as in Example 1 except that heating was performed up to 200 ° C. In addition,
The temperature-resistance curve after the heating and cooling was earlier than that of the samples of Examples 1 and 2 before the cycle test (FIG. 8).
The change from was big.

【0044】これらの結果をまとめて表1、2に示す。The results are summarized in Tables 1 and 2.

【0045】比較例2 実施例1において、導電性粒子としてカーボンブラック
(平均粒径40nm、比表面積58m2/g)を用い、ポ
リエチレンオキシドとカーボンブラックとを等量(重
量)とするほかは同様にしてサンプルを得、温度−抵抗
曲線を得た。この結果を図9に示す。また、実施例1と
同様にして初期(サイクル試験前)および加熱冷却後の
特性値を求めた。ただし、加熱冷却のサイクル試験は3
回とした。結果を表1、2に示す。
Comparative Example 2 The procedure of Example 1 was repeated except that carbon black (average particle size: 40 nm, specific surface area: 58 m 2 / g) was used as the conductive particles, and polyethylene oxide and carbon black were used in the same amount (weight). To obtain a sample, and a temperature-resistance curve was obtained. The result is shown in FIG. In the same manner as in Example 1, the initial (before the cycle test) and the characteristic values after heating and cooling were determined. However, the cycle test of heating and cooling is 3
Times. The results are shown in Tables 1 and 2.

【0046】比較例3 実施例1において、導電性粒子として球状ニッケルパウ
ダ(インコ社製の商品名INCO Type 110 ニッケルパウ
ダ;平均粒径0.8〜1.5μm 、見かけの密度0.9
〜1.5g/cm3 、比表面積0.9〜2m2/g)を用
いるほかは同様にしてサンプルを得、温度−抵抗曲線を
得た。この結果を図10に示す。また、実施例1と同様
にして初期(サイクル試験前)および加熱冷却後の特性
値を求めた。結果を表1、2に示す。
Comparative Example 3 In Example 1, spherical nickel powder (INCO Type 110 nickel powder, trade name, manufactured by Inco; average particle diameter: 0.8 to 1.5 μm, apparent density: 0.9) was used as the conductive particles.
To 1.5 g / cm3 and a specific surface area of 0.9 to 2 m2 / g), and a temperature-resistance curve was obtained in the same manner. The result is shown in FIG. In the same manner as in Example 1, the initial (before the cycle test) and the characteristic values after heating and cooling were determined. The results are shown in Tables 1 and 2.

【0047】比較例4 実施例1において、結晶性重合体Mw600,000〜
1,100,000のポリエチレンオキシドを用いるほ
かは同様にしてサンプルを得、温度−抵抗曲線を得た。
この結果を図11に示す。また、実施例1と同様にして
初期(サイクル試験前)および加熱冷却後の特性値を求
めた。結果を表1、2に示す。
Comparative Example 4 In Example 1, the crystalline polymer Mw was 600,000
A sample was obtained in the same manner except that 1,100,000 polyethylene oxide was used, and a temperature-resistance curve was obtained.
The result is shown in FIG. In the same manner as in Example 1, the initial (before the cycle test) and the characteristic values after heating and cooling were determined. The results are shown in Tables 1 and 2.

【0048】比較例5 実施例1において、結晶性重合体のエチレン/酢酸ビニ
ルコポリマー(酢酸ビニル含有量8wt%、日本ポリケ
ム製ノバテックEVALV241)を用いるほかは同様
にしてサンプルを得、実施例1と同様にして特性値を求
めた。このサンプルは、転移温度61℃、室温抵抗値
0.29Ωで、抵抗立ち上がり度A/Bは上記実施例1
〜3よりも大きかった。また、実施例1と同様のサイク
ル試験を行ったところ、2回の加熱冷却で室温抵抗値1
250Ωとなり、顕著な室温抵抗の増加が認められた。
Comparative Example 5 A sample was obtained in the same manner as in Example 1 except that an ethylene / vinyl acetate copolymer of a crystalline polymer (vinyl acetate content: 8 wt%, Novatec EVALV241 manufactured by Nippon Polychem) was used. The characteristic values were obtained in the same manner. This sample had a transition temperature of 61 ° C., a room temperature resistance of 0.29Ω, and a resistance rise A / B of Example 1 described above.
It was larger than ~ 3. Further, the same cycle test as in Example 1 was performed.
250Ω, and a remarkable increase in room temperature resistance was observed.

【0049】比較例6 実施例1において、結晶性重合体のエチレン/メタクリ
ル酸コポリマー(メタクリル酸含有量15wt%、三井
・デュポンポリケミカル製ニュクレルN1525)を用
いるほかは同様にしてサンプルを得、実施例1と同様に
して特性値を求めた。このサンプルは、転移温度65
℃、室温抵抗値0.008Ωで、抵抗立ち上がり度A/
Bは上記実施例1〜3よりも大きかった。また、実施例
1と同様のサイクル試験を行ったところ、2回の加熱冷
却で室温抵抗値0.04Ωとなり、顕著な室温抵抗の増
加が認められた。
Comparative Example 6 A sample was obtained in the same manner as in Example 1 except that an ethylene / methacrylic acid copolymer of a crystalline polymer (methacrylic acid content: 15 wt%, Nucrel N1525 manufactured by DuPont-Mitsui Polychemicals) was used. The characteristic values were determined in the same manner as in Example 1. This sample has a transition temperature of 65
° C, room temperature resistance value 0.008Ω, resistance rise degree A /
B was larger than Examples 1 to 3 above. When a cycle test similar to that of Example 1 was performed, the room temperature resistance value was 0.04Ω after two heating and cooling operations, and a remarkable increase in room temperature resistance was recognized.

【0050】比較例7 実施例1において、結晶性重合体のエチレン/エチルア
クリレートコポリマー(エチルアクリレート含有量6.
6wt%、ユニオンカーバイド製)を用いるほかは同様
にしてサンプルを得、実施例1と同様にして特性値を求
めた。また、実施例1と同様のサイクル試験10回の加
熱冷却後における特性値を求めた。比較例7も、比較例
5,6同様、加熱冷却後において顕著な室温抵抗の増加
が認められた。
Comparative Example 7 In Example 1, an ethylene / ethyl acrylate copolymer of a crystalline polymer (ethyl acrylate content 6.
6% by weight, manufactured by Union Carbide), and a sample was obtained in the same manner as in Example 1 to determine characteristic values. Further, characteristic values after heating and cooling in the same cycle test as in Example 1 after 10 times were obtained. In Comparative Example 7, as in Comparative Examples 5 and 6, a remarkable increase in room temperature resistance was observed after heating and cooling.

【0051】[0051]

【表1】 [Table 1]

【0052】[0052]

【表2】 [Table 2]

【0053】表1、2および図3、5〜11の結果か
ら、本発明の実施例1〜3のサンプルは、動作温度が6
0〜70℃で、室温抵抗が充分低く、転移温度以上の加
熱により抵抗の急激な上昇が見られ、最大抵抗値が大き
く、抵抗変化率も大きく、加熱冷却後における特性の劣
化がほとんどないことがわかる。特に、転移温度が低
く、また室温抵抗も充分低いために、2次電池の加熱防
止用素子として特に有効である。
From the results of Tables 1 and 2 and FIGS. 3 and 5 to 11, the samples of Examples 1 to 3 of the present invention have an operating temperature of 6 ° C.
At 0 to 70 ° C, the room temperature resistance is sufficiently low, a sharp rise in resistance is observed by heating above the transition temperature, the maximum resistance value is large, the resistance change rate is large, and there is almost no deterioration in characteristics after heating and cooling. I understand. In particular, since the transition temperature is low and the room temperature resistance is sufficiently low, it is particularly effective as an element for preventing heating of a secondary battery.

【0054】これに対し、結晶性重合体としてフッ化ビ
ニリデンを用いた比較例1のサンプルは、特に、加熱冷
却後の室温抵抗の増加が顕著であり、抵抗の立ち上がり
度も劣っている。またカーボンブラックを用いた比較例
2のサンプルは、初期の室温抵抗が大きく、かつ抵抗変
化率が小さく、また加熱冷却後の室温抵抗の増加が顕著
であり、抵抗の立ち上がり度も劣っている。また球状N
iを用いた比較例3のサンプルは抵抗変化率が小さく、
抵抗の立ち上がり度も劣っている。またMw200万未
満のポリエチレンオキシドを用いた比較例4のサンプル
は、溶融時の粘度が低すぎて導電性粒子の分散性が悪化
し、これに起因して室温抵抗が高い。
On the other hand, in the sample of Comparative Example 1 using vinylidene fluoride as the crystalline polymer, the resistance at room temperature after heating and cooling was particularly increased, and the degree of rise of resistance was also poor. In the sample of Comparative Example 2 using carbon black, the initial room temperature resistance was large, the resistance change rate was small, the room temperature resistance after heating and cooling was remarkably increased, and the resistance rise was also poor. Also spherical N
The sample of Comparative Example 3 using i had a small resistance change rate,
The resistance rise is also poor. In the sample of Comparative Example 4 using polyethylene oxide having a Mw of less than 2,000,000, the viscosity at the time of melting was too low, so that the dispersibility of the conductive particles was deteriorated. As a result, the room temperature resistance was high.

【0055】また、エチレン/酢酸ビニルコポリマーを
用いた比較例5のサンプル、エチレン/メタクリル酸コ
ポリマーを用いた比較例6のサンプル、エチレン/エチ
ルアクリレートコポリマーを用いた比較例7のサンプル
は、加熱冷却後における特性の劣化が大きい。
The sample of Comparative Example 5 using an ethylene / vinyl acetate copolymer, the sample of Comparative Example 6 using an ethylene / methacrylic acid copolymer, and the sample of Comparative Example 7 using an ethylene / ethyl acrylate copolymer were heated and cooled. The characteristics deteriorate later.

【0056】実施例4 実施例1のサンプルに直流10A、2Vを印加しジュー
ル熱によってこれを動作させ10秒保持し、30秒印加
を中止した後再度電流を流すということを繰り返す、負
荷試験を行った。所定の負荷回数ごとに温度−抵抗曲線
を測定した。
Example 4 A load test was repeated in which a direct current of 10 A and 2 V was applied to the sample of Example 1, which was operated by Joule heat, held for 10 seconds, and after applying the current for 30 seconds, the current was passed again. went. A temperature-resistance curve was measured every predetermined number of loads.

【0057】その結果、負荷試験前の初期の室温抵抗値
は0.006Ω、最大抵抗値は6×107 Ω、抵抗変
化率は10.0桁であり、負荷試験1000回後も室温
抵抗値は0.008Ω、最大抵抗値は2.5×107
Ω、抵抗変化率は9.5桁であり、負荷試験後における
特性の変化はわずかであった。また、負荷試験前の初期
の抵抗の立ち上がり度は実施例1と同様に5.2%であ
り、負荷試験後においてもシャープな立ち上がりを示し
た。
As a result, the initial room temperature resistance before the load test was 0.006 Ω, the maximum resistance was 6 × 10 7 Ω, and the resistance change rate was 10.0 digits. 0.008Ω, maximum resistance value is 2.5 × 107
The change in Ω and resistance was 9.5 digits, and the change in characteristics after the load test was slight. The initial rise of the resistance before the load test was 5.2% as in the case of Example 1, and a sharp rise was shown even after the load test.

【0058】比較例8 比較例1のポリフッ化ビニリデンを用いたサンプルに対
し、実施例4と同じ方法で負荷試験を行った。
Comparative Example 8 A sample using the polyvinylidene fluoride of Comparative Example 1 was subjected to a load test in the same manner as in Example 4.

【0059】その結果、負荷試験前の初期の室温抵抗値
は0.05Ω、最大抵抗値は5×106 Ω、抵抗変化
率は8.0桁であり、負荷試験1000回後、室温抵抗
値は8Ω、最大抵抗値は2.5×108 Ω、抵抗変化
率は7.5桁であり、負荷試験後における顕著な室温抵
抗の増加が認められた。また、負荷試験前の初期の抵抗
の立ち上がり度は比較例1と同様に40.1%であり、
負荷試験後においてさほどの変化はみられなかったが、
立ち上がりのシャープさにおいて劣るものであった。
As a result, the initial room temperature resistance before the load test was 0.05 Ω, the maximum resistance was 5 × 10 6 Ω, and the resistance change rate was 8.0 digits. The resistance was 8 Ω, the maximum resistance was 2.5 × 10 8 Ω, and the resistance change rate was 7.5 digits. A remarkable increase in room temperature resistance after the load test was observed. The initial rise of the resistance before the load test was 40.1% as in Comparative Example 1.
There was no significant change after the load test,
The sharpness of the rise was poor.

【0060】[0060]

【発明の効果】本発明によれば、人体への危険の少ない
60〜70℃で動作し、初期の室温抵抗が低く、かつ抵
抗変化率が大きく、しかも転移温度以上の温度における
抵抗の立ち上がりが急峻であり、繰り返し動作によって
も安定した特性が得られる。
According to the present invention, the device operates at a temperature of 60 to 70.degree. C., which poses little danger to the human body, has a low initial room temperature resistance, has a large resistance change rate, and has a resistance rise at a temperature higher than the transition temperature. It is steep and stable characteristics can be obtained even by repeated operations.

【図面の簡単な説明】[Brief description of the drawings]

【図1】粒子構造を示す図面代用写真であり、フィラメ
ント状ニッケルパウダの走査電子顕微鏡写真である。
FIG. 1 is a drawing substitute photograph showing a particle structure, and is a scanning electron microscope photograph of a filamentary nickel powder.

【図2】有機質正特性サーミスタのサンプルの断面図で
ある。
FIG. 2 is a cross-sectional view of a sample of an organic positive temperature coefficient thermistor.

【図3】実施例1のサンプルの温度−抵抗曲線である。FIG. 3 is a temperature-resistance curve of the sample of Example 1.

【図4】温度−抵抗曲線から抵抗の立ち上がり度を求め
るにあたっての転移温度および転移温度での抵抗値の求
め方を示す説明図である。
FIG. 4 is an explanatory diagram showing a transition temperature and a method of calculating a resistance value at the transition temperature in obtaining a degree of rise of resistance from a temperature-resistance curve.

【図5】実施例1のサンプルのサイクル試験10回の加
熱冷却後における温度−抵抗曲線である。
FIG. 5 is a temperature-resistance curve of the sample of Example 1 after heating and cooling 10 times in a cycle test.

【図6】実施例2のサンプルの温度−抵抗曲線である。FIG. 6 is a temperature-resistance curve of a sample of Example 2.

【図7】実施例3のサンプルの温度−抵抗曲線である。FIG. 7 is a temperature-resistance curve of a sample of Example 3.

【図8】比較例1のサンプルの温度−抵抗曲線である。FIG. 8 is a temperature-resistance curve of a sample of Comparative Example 1.

【図9】比較例2のサンプルの温度−抵抗曲線である。FIG. 9 is a temperature-resistance curve of a sample of Comparative Example 2.

【図10】比較例3のサンプルの温度−抵抗曲線であ
る。
FIG. 10 is a temperature-resistance curve of a sample of Comparative Example 3.

【図11】比較例4のサンプルの温度−抵抗曲線であ
る。
FIG. 11 is a temperature-resistance curve of a sample of Comparative Example 4.

【符号の説明】[Explanation of symbols]

11 電極 12 結晶性重合体と導電性粒子との混練成形シート 11 Electrode 12 Kneaded molded sheet of crystalline polymer and conductive particles

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 重量平均分子量2,000,000以上
のポリエチレンオキシドと、スパイク状の突起を有する
導電性粒子とを混練した有機質正特性サーミスタ。
1. An organic positive temperature coefficient thermistor obtained by kneading polyethylene oxide having a weight average molecular weight of 2,000,000 or more and conductive particles having spike-shaped projections.
【請求項2】 前記スパイク状の突起を有する導電性粒
子が鎖状に連なっている請求項1の有機質正特性サーミ
スタ。
2. The organic positive temperature coefficient thermistor according to claim 1, wherein said conductive particles having spike-like projections are continuous in a chain.
【請求項3】 前記ポリエチレンオキシドの重量平均分
子量が3,000,000〜6,000,000である
請求項1の有機質正特性サーミスタ。
3. The organic positive temperature coefficient thermistor according to claim 1, wherein said polyethylene oxide has a weight average molecular weight of 3,000,000 to 6,000,000.
【請求項4】 前記鎖状に連なったスパイク状の突起を
有する導電性粒子の平均粒径が0.1μm 以上である請
求項2の有機質正特性サーミスタ。
4. The organic positive temperature coefficient thermistor according to claim 2, wherein said conductive particles having chain-like spike-shaped projections have an average particle size of 0.1 μm or more.
【請求項5】 前記平均粒径が1.0〜4.0μmであ
る請求項4の有機質正特性サーミスタ。
5. The organic positive temperature coefficient thermistor according to claim 4, wherein said average particle diameter is 1.0 to 4.0 μm.
JP33510297A 1996-11-28 1997-11-19 Organic positive temperature coefficient thermistor Expired - Fee Related JP3268249B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33510297A JP3268249B2 (en) 1996-11-28 1997-11-19 Organic positive temperature coefficient thermistor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP8-332979 1996-11-28
JP33297996 1996-11-28
JP33510297A JP3268249B2 (en) 1996-11-28 1997-11-19 Organic positive temperature coefficient thermistor

Publications (2)

Publication Number Publication Date
JPH10214705A true JPH10214705A (en) 1998-08-11
JP3268249B2 JP3268249B2 (en) 2002-03-25

Family

ID=26574361

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33510297A Expired - Fee Related JP3268249B2 (en) 1996-11-28 1997-11-19 Organic positive temperature coefficient thermistor

Country Status (1)

Country Link
JP (1) JP3268249B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2784494A1 (en) * 1998-10-12 2000-04-14 Cit Alcatel ADAPTIVE MATERIAL WITH TERNARY COMPOSITION FOR USE IN ELECTRICAL CABLES
US6090314A (en) * 1998-06-18 2000-07-18 Tdk Corporation Organic positive temperature coefficient thermistor
US6778062B2 (en) 2001-11-15 2004-08-17 Tdk Corporation Organic PTC thermistor and making method
US7368069B2 (en) 2002-02-08 2008-05-06 Tdk Corporation PTC thermistor
US8728354B2 (en) 2006-11-20 2014-05-20 Sabic Innovative Plastics Ip B.V. Electrically conducting compositions
CN114149630A (en) * 2021-12-16 2022-03-08 四川大学 Curie temperature adjustable polymer-based PTC composite material and preparation thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6090314A (en) * 1998-06-18 2000-07-18 Tdk Corporation Organic positive temperature coefficient thermistor
FR2784494A1 (en) * 1998-10-12 2000-04-14 Cit Alcatel ADAPTIVE MATERIAL WITH TERNARY COMPOSITION FOR USE IN ELECTRICAL CABLES
EP0994492A1 (en) * 1998-10-12 2000-04-19 Alcatel Adaptive material having a ternary composition for electric cables
US6778062B2 (en) 2001-11-15 2004-08-17 Tdk Corporation Organic PTC thermistor and making method
US7368069B2 (en) 2002-02-08 2008-05-06 Tdk Corporation PTC thermistor
US8728354B2 (en) 2006-11-20 2014-05-20 Sabic Innovative Plastics Ip B.V. Electrically conducting compositions
CN114149630A (en) * 2021-12-16 2022-03-08 四川大学 Curie temperature adjustable polymer-based PTC composite material and preparation thereof
CN114149630B (en) * 2021-12-16 2022-12-20 四川大学 Curie temperature adjustable polymer-based PTC composite material and preparation thereof

Also Published As

Publication number Publication date
JP3268249B2 (en) 2002-03-25

Similar Documents

Publication Publication Date Title
KR100388797B1 (en) Ptc composition and ptc device comprising the same
JP3749504B2 (en) PTC composition, thermistor element, and production method thereof
JP3701113B2 (en) Organic positive temperature coefficient thermistor
JPS643322B2 (en)
JP2003506862A (en) Conductive polymer composition
US6828362B1 (en) PTC composition and PTC device comprising it
JP2000188206A (en) Polymer ptc composition and ptc device
TW201606812A (en) Over-current protection device
JP2000200704A (en) Organic positive temperature coefficient thermistor
JP3268249B2 (en) Organic positive temperature coefficient thermistor
JP3506628B2 (en) Manufacturing method of organic positive temperature coefficient thermistor
JP3022644B2 (en) Organic positive temperature coefficient thermistor
GB1597007A (en) Conductive polymer compositions and devices
JP3911345B2 (en) Organic positive temperature coefficient thermistor
US5982271A (en) Organic positive temperature coefficient thermistor
JP3914899B2 (en) PTC thermistor body, PTC thermistor, method for manufacturing PTC thermistor body, and method for manufacturing PTC thermistor
JPS6057192B2 (en) Means comprising an electrode and conductive polymer and method for producing the same
JP3587163B2 (en) Organic positive temperature coefficient thermistor composition and organic positive temperature coefficient thermistor element
JP3028979B2 (en) Organic positive temperature coefficient thermistor
JPH11195506A (en) Organic positive characteristic thermistor
JP3438461B2 (en) Conductive polymer and overcurrent protection device using the same
JP2001057302A (en) Organic ptc thermistor and manufacture thereof
JP2000133502A (en) Organic positive temperature coefficient thermistor
JP2001052901A (en) Chip organic positive temperature coefficient thermistor and manufacturing method therefor
JPH08241801A (en) Conductive polymer device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20011225

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090111

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100111

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees