JPH10213468A - Supersonic flowmeter - Google Patents

Supersonic flowmeter

Info

Publication number
JPH10213468A
JPH10213468A JP9031303A JP3130397A JPH10213468A JP H10213468 A JPH10213468 A JP H10213468A JP 9031303 A JP9031303 A JP 9031303A JP 3130397 A JP3130397 A JP 3130397A JP H10213468 A JPH10213468 A JP H10213468A
Authority
JP
Japan
Prior art keywords
flow rate
transmission
ultrasonic
fluid
flow velocity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9031303A
Other languages
Japanese (ja)
Inventor
Kazuyoshi Shimizu
和義 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaijo Corp
Original Assignee
Kaijo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaijo Corp filed Critical Kaijo Corp
Priority to JP9031303A priority Critical patent/JPH10213468A/en
Publication of JPH10213468A publication Critical patent/JPH10213468A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the efficiency of power supply consumption in a battery drive system supersonic flowmeter. SOLUTION: Flow speed i.e., flow rate of supersonic wave is calculated in a calculating part 2a on the basis of a supersonic wave propagating time 101 measured by a flow speed measuring part 1a. The flow speed/flow rate data 201 outputted from the calculating part are supplied also to a control part 4a in addition to a display part 3a. A control signal 401 for transmission number of times performing the optimum setting of the measuring number of times for supersonic wave propagating time by a transmitting/receiving circuit 11a and a wave transmitter/receiver 12a, 12b on the basis of the flow speed/flow rate data 201 supplied in a control part 4a is supplied to a circuit 13 for controlling the transmitting number of times so that the optimum consumption of a power supply part 5 is ensured.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は超音波流量計に関
し、特に密閉された管体内を圧送されて流通するガス、
水等の気体及び液体の流体の流速を超音波の送受信に基
づいて計測し、計測した流速と管体内部の断面積並びに
流通時間に基づいて流体の流量を求めるバッテリー駆動
方式の超音波流量計に属する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrasonic flowmeter, and more particularly, to a gas flowed by being pumped through a sealed pipe.
Battery-driven ultrasonic flowmeter that measures the flow velocity of gas and liquid fluids such as water based on the transmission and reception of ultrasonic waves, and obtains the flow rate of the fluid based on the measured flow velocity, the cross-sectional area inside the tube, and the flow time. Belongs to.

【0002】[0002]

【従来の技術】管体内を流通する流体の流量を、超音波
の送受信に基づいて計測する超音波流量計は、種々の応
用分野で近時多用されつつある。図3は従来の超音波流
量計の構成を示すブロック図であり、流体に対する超音
波伝搬時間を測定する流速測定部1、流速測定部1で測
定した超音波伝搬時間から流速を求め、この流速と管体
内部の断面積並びに流通時間に基づいて流量を演算する
演算部2、演算部2で演算した演算結果である流速と流
量データを所定の表示形式で表示する表示部3、所定の
制御プログラムを内蔵し全体の動作を制御する制御部4
と、各部の電源を提供するバッテリー利用の電源部5と
を備える。
2. Description of the Related Art An ultrasonic flowmeter for measuring the flow rate of a fluid flowing through a pipe based on transmission and reception of ultrasonic waves has recently been frequently used in various application fields. FIG. 3 is a block diagram showing a configuration of a conventional ultrasonic flowmeter. The flow velocity measuring unit 1 for measuring the ultrasonic propagation time for a fluid, the flow velocity is obtained from the ultrasonic propagation time measured by the flow velocity measuring unit 1, and the flow velocity is calculated. , A calculation unit 2 for calculating the flow rate based on the sectional area inside the pipe and the flow time, a display unit 3 for displaying the flow velocity and flow rate data, which are the calculation results calculated by the calculation unit 2, in a predetermined display format, a predetermined control A control unit 4 that contains a program and controls the entire operation
And a power supply unit 5 using a battery for supplying power to each unit.

【0003】次に、図3の超音波流量計の動作について
説明する。流体での超音波伝搬時間を計測する流速測定
部1は、流体に対して対向配置する1対の送受波器12
a,12bと、制御部4の制御の下に送受波器12a,
12bに対して交互に超音波パルスを送出し、一方の送
受波器に送出した送信パルスを他方の送受波器で受信す
ることを繰り返し実施して流体に対する超音波の伝搬時
間を出力する送受信回路11とを備え、次のようにして
超音波伝搬時間101 を求めて演算部2に供給する。
Next, the operation of the ultrasonic flowmeter shown in FIG. 3 will be described. The flow velocity measuring unit 1 that measures the ultrasonic propagation time in the fluid includes a pair of transducers 12 that are opposed to the fluid.
a, 12b and the transducers 12a,
A transmission / reception circuit that alternately sends ultrasonic pulses to 12b and repeatedly receives a transmission pulse sent to one of the transducers and receives the transmission pulse to the other transducer, and outputs a propagation time of the ultrasound to the fluid. The ultrasonic wave propagation time 101 is obtained and supplied to the calculation unit 2 as follows.

【0004】図4は、図3の流速測定部1の動作の説明
図である。流体が圧送されて流通する密閉された直径D
の管体1001の管壁に、中心線Cが管軸Aを過るように1
対の超音波送受波器12a、12bを間隔Lで対向配設
する。いま、Vを流体の管軸A方向の流速、θを中心線
Cと管軸Aとのなす角とすると、D=L sinθであり、
また流速Vの中心線方向の分速VL =V cosθである。
静止流体中での超音波の伝搬速度をV0 とすると、送受
波器12bから送受波器12aに伝搬する超音波の速度
はV0 +V cosθで、送受波器12aから送受波器12
bに伝搬する超音波の速度はV0 −V cosθとなる。従
って、送受波器12bから12aに向けて送出した超音
波の伝搬時間をt1とし、送受波器12aから12bに
向けて送出した超音波の伝搬時間をt2 とすると、次の
数式1,数式2が成立する。また、数式1,2から次の
数式3,数式4が求まる。
FIG. 4 is an explanatory diagram of the operation of the flow velocity measuring section 1 of FIG. A sealed diameter D through which the fluid is pumped and circulated
On the pipe wall of the pipe 1001 so that the center line C passes through the pipe axis A.
A pair of ultrasonic transducers 12a and 12b are disposed to face each other at an interval L. Now, if V is the flow velocity of the fluid in the direction of the tube axis A, and θ is the angle between the center line C and the tube axis A, D = L sin θ, and
Also, the velocity V L in the center line direction of the flow velocity V = V cos θ.
Assuming that the propagation speed of the ultrasonic wave in the stationary fluid is V 0 , the speed of the ultrasonic wave propagating from the transducer 12 b to the transducer 12 a is V 0 + V cos θ, and the velocity of the ultrasound from the transducer 12 a to the transducer 12
The speed of the ultrasonic wave propagating in b is V 0 −V cos θ. Therefore, when the ultrasonic wave propagation time which is sent towards the 12a from transducer 12b and t 1, the ultrasonic wave propagation time which is sent towards the 12b from transducer 12a and t 2, the following Equation 1, Equation 2 holds. Further, the following Expressions 3 and 4 are obtained from Expressions 1 and 2.

【0005】[0005]

【数1】 (Equation 1)

【0006】[0006]

【数2】 (Equation 2)

【0007】[0007]

【数3】 (Equation 3)

【0008】[0008]

【数4】 (Equation 4)

【0009】求める流速Vは、1/t1 −1/t2
(2V cosθ)/Lに着目し、次の数式5の如くに得ら
れる。かくして求められる流速Vを、送受波器12a,
12bの配設間隔L上の所定の複数の計測点について求
めたものの平均値を求め、これを線平均流速と呼ぶ。
The flow velocity V to be obtained is 1 / t 1 -1 / t 2 =
Focusing on (2V cos θ) / L, it can be obtained as in the following Expression 5. The flow velocity V obtained in this manner is transmitted to the transducers 12a,
An average value obtained for a plurality of predetermined measurement points on the arrangement interval L of 12b is obtained, and this is referred to as a linear average flow velocity.

【0010】[0010]

【数5】 (Equation 5)

【0011】演算部2は、流速測定部1から提供された
超音波伝搬時間に関するデータに基づいて前述した数式
1ないし数式5に基づく演算で、複数の計測点に関する
流速Vを送受信器12a,12bによる超音波パルスの
交互送信・受信ごとに求める。こうして求めた流速(m
/s)は、断面が図4のLで示される中心線を含む断面
における断面平均流速に変換されたのち、当該断面の断
面積と乗算されて流量(m3 /h,hは計測単位時間)
が求められる。流速/流量データ201 は表示部3におい
て所定の表示形式で表示される。
The calculation unit 2 calculates the flow velocities V at a plurality of measurement points based on the data on the ultrasonic wave propagation time provided from the flow velocities measurement unit 1 based on the above-mentioned equations 1 to 5 to the transmitters / receivers 12a and 12b. Is obtained for each alternate transmission / reception of the ultrasonic pulse. The flow velocity (m
/ S) is converted to a cross-sectional average flow velocity in a cross section including the center line indicated by L in FIG. 4 and then multiplied by the cross-sectional area of the cross section to obtain a flow rate (m 3 / h, h is a unit time of measurement). )
Is required. The flow velocity / flow rate data 201 is displayed on the display unit 3 in a predetermined display format.

【0012】制御部4は、内蔵プログラムにより全体の
動作シーケンスを制御し、送受波器12a,12bによ
る超音波パルスの交互送受信ごとに流速と流量とを計測
せしめる。電源部5は、各部の動作に必要な電源を提供
する。尚、流速測定部1における超音波伝搬時間t1,t
2 の計測に対しては、通常、管体内の流体に対する圧力
データ、温度データによる衆知の音速補正が加えられ、
また、計測精度向上を図って、対向する送受波器を互い
に対称配置した2対とする場合もある。
The control unit 4 controls the entire operation sequence by a built-in program, and measures the flow velocity and the flow rate every time the ultrasonic transducers 12a and 12b alternately transmit and receive ultrasonic pulses. The power supply unit 5 provides a power supply necessary for the operation of each unit. The ultrasonic wave propagation times t 1 and t 1 in the flow velocity measuring unit 1
For the measurement of 2 , usually known sound speed correction by pressure data and temperature data for the fluid in the pipe is added,
Further, in order to improve measurement accuracy, there may be a case where two pairs of opposing transducers are symmetrically arranged.

【0013】[0013]

【発明が解決しようとする課題】上述した従来のバッテ
リー駆動方式の超音波流量計には、次に示すような問題
点がある。即ち、従来のこの種の超音波流量計では、計
測すべき流量(流速)の状態とは無関係に設定した一定
の計測サンプリング間隔で計測を行っており、このため
電源とするバッテリーの利用効率が極めて低く抑えられ
てしまうという問題点がある。例えば、図6に示す如
く、流速に関係なく毎秒5回の一定な計測サンプリング
間隔で計測を行い、かつ1回の計測で 500μA(マイク
ロ・アンペア)の電源電流を消費するものとすると、毎
秒当りの消費電流は2500μA、従って毎時当りでは9A
が無条件に必要となり、電源の運用効率が流速(流量)
に関係なく低い値に抑えられてしまう。
The above-mentioned conventional battery-driven ultrasonic flowmeter has the following problems. That is, in this type of conventional ultrasonic flow meter, measurement is performed at a constant measurement sampling interval set irrespective of the state of flow rate (flow velocity) to be measured. There is a problem that it is extremely low. For example, as shown in FIG. 6, if the measurement is performed at a constant measurement sampling interval of 5 times per second regardless of the flow velocity, and a single measurement consumes a power supply current of 500 μA (microampere), Consumes 2500 μA and therefore 9 A per hour
Is required unconditionally, and the operating efficiency of the power supply is
Irrespective of, it is suppressed to a low value.

【0014】本発明の目的は、上述した問題点を解決
し、バッテリー電源の運用効率を著しく改善しうる超音
波流量計を提供することにある。
An object of the present invention is to provide an ultrasonic flowmeter which can solve the above-mentioned problems and can significantly improve the operation efficiency of a battery power supply.

【0015】[0015]

【課題を解決するための手段】本発明は、上述した目的
を達成するために次の手段構成を有する。即ち、本発明
の超音波流量計は、密閉された管体の内部を圧送されて
流通する流体を伝搬媒体とし、中心線を共有して前記管
体に対向配置した送受波器の相互間で交互に超音波パル
スの送受信を行って前記流体の流量を計測するバッテリ
ー駆動方式の超音波流量計において、前記超音波パルス
の送信回数を前記流体の流量に対応して可変設定可能と
し、前記超音波パルスの送受信に基づいて行う前記流体
の流量の計測回数を前記流体の流量に対応して制御可能
とする手段を備えた構成を有する。また、本発明の超音
波流量計は、前記流体が、気体並びに液体のいずれかを
対象とするものとした構成を有する。
The present invention has the following means in order to achieve the above object. That is, the ultrasonic flowmeter of the present invention uses a fluid that is pressure-fed inside the sealed pipe as a propagation medium, and shares a center line between the transducers disposed opposite to the pipe. In a battery-driven ultrasonic flowmeter that alternately transmits and receives ultrasonic pulses and measures the flow rate of the fluid, the number of transmissions of the ultrasonic pulse can be variably set in accordance with the flow rate of the fluid, There is provided a configuration including means for controlling the number of times of measurement of the flow rate of the fluid based on transmission and reception of the sound wave pulse in accordance with the flow rate of the fluid. Further, the ultrasonic flowmeter of the present invention has a configuration in which the fluid targets any one of a gas and a liquid.

【0016】[0016]

【発明の実施の形態】バッテリー駆動方式の従来の超音
波流量計にあっては、流量計測のための計測サンプリン
グ間隔が流量に無関係に一定の時間に設定されていた。
このため、従来の超音波流量計の駆動バッテリーの運用
効率は、一定の計測サンプリング間隔で決定される低い
状態に抑えられてしまっていた。本発明にあっては、図
1に示す如く、流量従って流速を求める場合の基準とす
る超音波伝搬時間を計測する流速測定部1aに、計測サ
ンプリング間隔を流量(流速)に対応して可変とするよ
うに超音波送信パルスの繰り返し数を可変とする送信回
数制御回路13を配設し、演算部2aで求めた流速/流
量データに基づいて、制御部4aの制御の下に計測サン
プリング間隔を流量(流速)に適応制御せしめることを
発明の実施の形態としている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In a conventional ultrasonic flow meter of a battery drive type, a measurement sampling interval for measuring a flow rate is set to a fixed time irrespective of a flow rate.
For this reason, the operation efficiency of the drive battery of the conventional ultrasonic flowmeter has been suppressed to a low state determined at a constant measurement sampling interval. In the present invention, as shown in FIG. 1, the flow rate measuring unit 1a that measures the ultrasonic propagation time as a reference when obtaining the flow rate and thus the flow rate, the measurement sampling interval is variable according to the flow rate (flow rate). A transmission number control circuit 13 that makes the number of repetitions of the ultrasonic transmission pulse variable is provided so that the measurement sampling interval is controlled under the control of the control unit 4a based on the flow rate / flow rate data obtained by the calculation unit 2a. An embodiment of the invention is to adaptively control the flow rate (flow velocity).

【0017】[0017]

【実施例】次に、本発明の実施例について図面を参照し
て説明する。図1は本発明の一実施例の構成を示すブロ
ック図である。図1に示す実施例の構成は、流速従って
流量計測に必要な超音波伝搬時間を求める流速測定部1
aと、流速測定部1aから提供される超音波伝搬時間に
基づいて流速並びに流量を計測する演算部2aと、演算
部2aで求めた流速並びに流量を所定の表示形式で表示
する表示部3aと、制御プログラムを内蔵し、演算部2
aから提供される流速並びに流量データに基づいて流速
測定部1aにおける超音波パルスの送信回数従って計測
サンプリング間隔を制御しつつ全体の動作シーケンを制
御する制御部4aと、各部動作に必要な電源を供給する
電源部5とを備える。
Next, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a block diagram showing the configuration of one embodiment of the present invention. The configuration of the embodiment shown in FIG. 1 is based on a flow velocity measuring unit 1 for obtaining an ultrasonic wave propagation time required for flow velocity measurement.
a, an arithmetic unit 2a for measuring the flow velocity and the flow rate based on the ultrasonic wave propagation time provided from the flow velocity measuring unit 1a, and a display unit 3a for displaying the flow velocity and the flow rate obtained by the arithmetic unit 2a in a predetermined display format. , A control program, and an arithmetic unit 2
a control unit 4a for controlling the entire operation sequence while controlling the number of transmissions of the ultrasonic pulse in the flow velocity measuring unit 1a and the measurement sampling interval based on the flow velocity and the flow rate data provided from a. And a power supply unit 5 for supplying.

【0018】次に、本実施例の動作について説明する。
前述した構成で同一符号もしく添字aを付与して示す同
一符号のものは、計測サンプリング間隔を可変とする機
能を含む点以外の内容に関してはすべて、図3に示す従
来の構成と同一であるので、これら同一の内容に関する
個々の動作の詳細な説明は省略する。流速測定部1a
は、送信回数制御回路13を新たに配設し、これにより
繰り返し間隔の可変可能な送信トリガ130 を発生して送
受信回路11aによる超音波パルスの発生間隔即ち計測
サンプリング間隔を電源消費と流量計測の最適性を確保
するように可変とする。
Next, the operation of this embodiment will be described.
In the above-described configuration, components having the same reference numerals or the same reference numerals with the suffix a added thereto are all the same as the conventional configuration shown in FIG. 3 except for the content including the function of making the measurement sampling interval variable. Therefore, a detailed description of each operation regarding these same contents will be omitted. Flow velocity measuring unit 1a
The transmission frequency control circuit 13 is newly provided, thereby generating a transmission trigger 130 with a variable repetition interval, and determining the generation interval of the ultrasonic pulse by the transmission / reception circuit 11a, that is, the measurement sampling interval, between the power consumption and the flow rate measurement. Variable to ensure optimality.

【0019】送信回数制御回路13は、制御部4aから
提供される送信回数制御信号401 の制御を受けつつ、流
体の流速/流量に対応してあらかじめ設定する送信繰り
返し数を設定可能とする送信トリガ130 を生成し、送受
信回路11aに送出する。制御部4aは、演算部2aが
流速測定部1aから提供される超音波伝搬時間101 に基
づいて算出する流速/流量データ201 に基づき所望の送
信回数を指定する送信回数制御信号401 を流速測定部1
aに送出する。
The transmission number control circuit 13 is controlled by a transmission number control signal 401 provided from the control section 4a, and is capable of setting a transmission repetition number preset in accordance with the flow rate / flow rate of the fluid. 130 is transmitted to the transmission / reception circuit 11a. The control unit 4a transmits a transmission number control signal 401 for designating a desired number of transmissions based on the flow velocity / flow rate data 201 calculated by the arithmetic unit 2a based on the ultrasonic wave propagation time 101 provided from the flow velocity measuring unit 1a. 1
a.

【0020】図5は、本実施例における計測回数の設定
例を示す図であり、流速(m/s)従って流量(m3
h)に対応してa,b,cおよびdの4段階に計数回数
(回/s)を設定し、流速が3m/s以上の場合のみ計
測回数を一定の5(回/s)としていることを示す。図
5は、図6と同様に流速(m/s)を横軸にとっている
が、これら流速に対応する流量(m3 /h)の具体的な
実数は、流速とともに表示部3a並びに制御部4aにそ
れぞれ供給される。流速/流量データ201 を受けた制御
部4aは、提供された流速もしくは流量データ、本実施
例では流速データに対応した計測サンプリング間隔を指
定する送信回数制御信号401 を内蔵プログラムの制御の
下に生成し、送信回数制御回路13に送出する。
FIG. 5 is a diagram showing an example of setting the number of times of measurement in the present embodiment. The flow rate (m / s) and the flow rate (m 3 /
Corresponding to h), the number of counts (times / s) is set in four stages of a, b, c and d, and the number of times of measurement is set to 5 (times / s) only when the flow velocity is 3 m / s or more. Indicates that In FIG. 5, the flow rate (m / s) is plotted on the horizontal axis as in FIG. 6, but the specific real number of the flow rate (m 3 / h) corresponding to these flow rates together with the flow rate is indicated by the display unit 3a and the control unit 4a. Respectively. The control unit 4a having received the flow rate / flow rate data 201 generates a transmission count control signal 401 for designating a measurement sampling interval corresponding to the provided flow rate or flow rate data, in this embodiment, the flow rate data under the control of a built-in program. Then, the data is transmitted to the transmission number control circuit 13.

【0021】図2は、送信回数制御回路13の構成を示す
ブロック図である。図2に示す送信回数制御回路13は、
流速もしくは流量、本実施例では所定の刻みの流速対応
で図5に示す如き計測回数(回/s)を指定すべき送信
回数(パルス/s)を格納する送信回数テーブル131
と、送信回数テーブル131 から読み出される送信回数デ
ータ1301に基づいて送信パルス数の送出制御を行わしめ
る送信パルス数制御信号1321を送出する送信パルス制御
回路132 と、基準クロック発生回路133 と、基準クロッ
ク発生回路133 の送出する基準クロック1331を分周し、
送信パルス数制御信号1321により所望の繰り返し回数の
送信トリガ130 を出力する送信トリガ設定回路134 とを
備える。
FIG. 2 is a block diagram showing the configuration of the transmission number control circuit 13. The transmission number control circuit 13 shown in FIG.
In this embodiment, the transmission count table 131 stores the transmission count (pulse / s) for which the measurement count (count / s) is to be designated as shown in FIG. 5 corresponding to the flow rate in predetermined steps in this embodiment.
A transmission pulse control circuit 132 for transmitting a transmission pulse number control signal 1321 for performing transmission pulse number control based on the transmission number data 1301 read from the transmission number table 131; a reference clock generation circuit 133; The frequency of the reference clock 1331 sent from the generator 133 is divided,
A transmission trigger setting circuit 134 for outputting a transmission trigger 130 having a desired number of repetitions in accordance with the transmission pulse number control signal 1321.

【0022】次に、図2の送信回数制御回路13の動作に
ついて説明する。制御部4aから提供される送信回数制
御信号401 によって、流速または流量、本実施例にあっ
ては流量に対応してあらかじめ設定される送信回数デー
タ1301が送信回数テーブル131 から読み出される。送信
トリガ設定回路134 は、基準クロック発生回路133 から
提供される基準クロックを分周し、分周されたクロック
をさらに時間ゲートでサンプリングして所望の繰り返し
数の複数のパルス列を発生し、このパルス列に基づいて
送信トリガ130 を生成出力する。この場合の所望の繰り
返し数が、送信パルス数制御信号1321によって指定され
ることとなる。
Next, the operation of the transmission number control circuit 13 of FIG. 2 will be described. In accordance with the transmission number control signal 401 provided from the control unit 4a, transmission number data 1301 preset in accordance with the flow rate or the flow rate, in this embodiment, the flow rate is read from the transmission number table 131. The transmission trigger setting circuit 134 frequency-divides the reference clock provided from the reference clock generation circuit 133, further samples the frequency-divided clock with a time gate to generate a plurality of pulse trains of a desired repetition number, and A transmission trigger 130 is generated and output based on the The desired number of repetitions in this case is specified by the transmission pulse number control signal 1321.

【0023】こうして、流速に対応した最適の繰り返し
数を設定された送信トリガ130 を得て、この送信トリガ
130 が送受信回路11aに提供され、例えば図5に示す
ような流速対応の計測サンプリング間隔での計測を確保
することができ、著しく効率的なバッテリー運用が可能
となる。例えば、1回の計測に 500μA要するものと
し、図5に示す如く、流速が3(m/s)を超える場合
に計測回数が5(回/s)であるとする。この場合の消
費電流は2500μA/sで毎時では9Aとなる。また、流
速が2〜3(m/s)では、時変性を考慮した計測精度
の保持の点からも計測回数が5(回/s)の場合よりも
少なくて済み、計測回数が3(回/s)で十分であると
すると、この場合の消費電流は1500μA/sで毎時5.
4Aで済む。
In this way, the transmission trigger 130 in which the optimum number of repetitions corresponding to the flow velocity is set is obtained.
130 is provided to the transmission / reception circuit 11a, for example, measurement at the measurement sampling interval corresponding to the flow velocity as shown in FIG. 5 can be ensured, and extremely efficient battery operation becomes possible. For example, it is assumed that 500 μA is required for one measurement, and the number of measurements is 5 (times / s) when the flow velocity exceeds 3 (m / s) as shown in FIG. The current consumption in this case is 2500 μA / s, which is 9 A per hour. Further, when the flow velocity is 2 to 3 (m / s), the number of times of measurement is smaller than that in the case of 5 (times / s) from the viewpoint of maintaining the measurement accuracy in consideration of the time variation, and the number of times of measurement is 3 (times). / S) is sufficient, the current consumption in this case is 1500 μA / s and 5.
4A is enough.

【0024】また、流速が1〜2(m/s)の時は、計
測回数が2(回/s)で計測精度が十分であるとする
と、この場合の消費電流は1000μA/sで毎時3.6A
である。また、流速が0〜1(m/s)の時は、計測回
数が0.5(回/s)であるとすると、この場合の消費
電流は 250μA/sで毎時では0.9Aとなる。従っ
て、例えば図5に示すように計測サンプリング間隔を設
定し、1時間当りの配分がb,c及びdが各30%、a
が10%とすると、消費電流は(9A×0.3)+
(5.4A×0.3)+(3.6A×0.3)+(0.
9A×0.1)=5.49Aとなり、流速にかかわらず
一定の計測回数で処理する図6の場合に比べて著しく消
費電流の削減が可能となる。
When the flow rate is 1 to 2 (m / s) and the number of measurements is 2 (times / s) and the measurement accuracy is sufficient, the current consumption in this case is 1000 μA / s and 3 hours / hour. .6A
It is. When the flow rate is 0 to 1 (m / s) and the number of measurements is 0.5 (times / s), the current consumption in this case is 250 μA / s, which is 0.9 A per hour. Therefore, for example, the measurement sampling interval is set as shown in FIG.
Is 10%, the current consumption is (9A × 0.3) +
(5.4A × 0.3) + (3.6A × 0.3) + (0.
9A × 0.1) = 5.49 A, and the current consumption can be significantly reduced as compared with the case of FIG. 6 in which processing is performed with a fixed number of measurements regardless of the flow velocity.

【0025】[0025]

【発明の効果】以上説明したように本発明は、バッテリ
ー駆動方式の超音波流量計において、流速(流量)に対
応して計測サンプリング間隔を設定して運用することに
より、著しく電源消費効率を向上させることができる効
果を有する。
As described above, according to the present invention, in a battery-driven ultrasonic flowmeter, the power consumption efficiency is significantly improved by setting and operating a measurement sampling interval corresponding to a flow rate (flow rate). Has the effect of being able to.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例の超音波流量計の構成を示す
ブロック図である。
FIG. 1 is a block diagram showing a configuration of an ultrasonic flowmeter according to one embodiment of the present invention.

【図2】図1の送信回数制御回路の構成を詳細に示すブ
ロック図である。
FIG. 2 is a block diagram showing a configuration of a transmission number control circuit of FIG. 1 in detail.

【図3】従来の超音波流量計の構成を示すブロック図で
ある。
FIG. 3 is a block diagram showing a configuration of a conventional ultrasonic flowmeter.

【図4】図1の流速測定部1aの動作の説明図である。FIG. 4 is an explanatory diagram of an operation of the flow velocity measuring unit 1a of FIG.

【図5】本発明の一実施例の超音波流量計の測定回数の
設定例を示す図である。
FIG. 5 is a diagram showing a setting example of the number of measurements of the ultrasonic flowmeter according to one embodiment of the present invention.

【図6】従来の超音波流量計の測定回数の設定例を示す
図である。
FIG. 6 is a diagram showing a setting example of the number of measurements of a conventional ultrasonic flowmeter.

【符号の説明】[Explanation of symbols]

1,1a 流速測定部 2,2a 演算部 3,3a 表示部 4,4a 制御部 5 電源部 11,11a 送受信回路 12a,12b 送受波器 13 送信回数制御回路 131 送信回数テーブル 132 送信パルス制御回路 133 基準クロック発生回路 134 送信トリガ設定回路 1, 1a Flow velocity measuring unit 2, 2a arithmetic unit 3, 3a display unit 4, 4a control unit 5 power supply unit 11, 11a transmission / reception circuit 12a, 12b transmitter / receiver 13 transmission number control circuit 131 transmission number table 132 transmission pulse control circuit 133 Reference clock generation circuit 134 Transmission trigger setting circuit

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 密閉された管体の内部を圧送されて流通
する流体を伝搬媒体とし、中心線を共有して前記管体に
対向配置した送受波器の相互間で交互に超音波パルスの
送受信を行って前記流体の流量を計測するバッテリー駆
動方式の超音波流量計において、前記超音波パルスの送
信回数を前記流体の流量に対応して可変設定可能とし、
前記超音波パルスの送受信に基づいて行う前記流体の流
量の計測回数を前記流体の流量に対応して制御可能とす
る手段を備えたことを特徴とする超音波流量計。
An ultrasonic pulse is alternately transmitted between a plurality of transducers disposed opposite to the tube while sharing a center line by using a fluid flowing through the inside of the sealed tube under pressure as a propagation medium. In a battery-driven ultrasonic flowmeter that performs transmission and reception to measure the flow rate of the fluid, the number of transmissions of the ultrasonic pulse can be variably set in accordance with the flow rate of the fluid,
An ultrasonic flowmeter comprising means for controlling the number of times of measurement of the flow rate of the fluid based on the transmission and reception of the ultrasonic pulse in accordance with the flow rate of the fluid.
【請求項2】 前記流体が、気体並びに液体のいずれか
を対象とするものであることを特徴とする請求項1記載
の超音波流量計。
2. The ultrasonic flowmeter according to claim 1, wherein the fluid is one of a gas and a liquid.
JP9031303A 1997-01-30 1997-01-30 Supersonic flowmeter Pending JPH10213468A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9031303A JPH10213468A (en) 1997-01-30 1997-01-30 Supersonic flowmeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9031303A JPH10213468A (en) 1997-01-30 1997-01-30 Supersonic flowmeter

Publications (1)

Publication Number Publication Date
JPH10213468A true JPH10213468A (en) 1998-08-11

Family

ID=12327534

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9031303A Pending JPH10213468A (en) 1997-01-30 1997-01-30 Supersonic flowmeter

Country Status (1)

Country Link
JP (1) JPH10213468A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006276035A (en) * 2006-07-12 2006-10-12 Matsushita Electric Ind Co Ltd Apparatus for measuring quantity of flow

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006276035A (en) * 2006-07-12 2006-10-12 Matsushita Electric Ind Co Ltd Apparatus for measuring quantity of flow

Similar Documents

Publication Publication Date Title
US8700344B2 (en) Ultrasonic flow meter
EP0441531A2 (en) Method and system for digital measurement of acoustic burst travel time in a fluid medium
WO1996012933A1 (en) Flow rate measurement method and ultrasonic flow meter
WO2013111527A1 (en) Flow measurement device
EP1726920B1 (en) Method for ultrasonic Doppler fluid flow measurement
JP2866332B2 (en) Ultrasonic flow meter
JPH10213468A (en) Supersonic flowmeter
US4078427A (en) Ultrasonic flow or current meter
JPH09126854A (en) Flowmeter driving power unit
JP2017187310A (en) Ultrasonic flowmeter
JPH10206203A (en) Ultrasonic flowmeter
JP2000337934A (en) Method and instrument for measuring flow rate and electronic gas meter
RU2284015C2 (en) Method and device for measuring flux discharge
JP2005300244A (en) Ultrasonic flow meter
JPH1090029A (en) Ultrasonic wave flowmeter
JPS6040916A (en) Correcting method of temperature-change error of ultrasonic wave flow speed and flow rate meter
JP2000338123A (en) Ultrasonic floe speed measuring method
JP2001165764A (en) Method of measuring ultrasonic wave propagation time
JP3399938B2 (en) Flow measurement method and ultrasonic flow meter
JPH067132B2 (en) Ultrasonic velocity measuring device, ultrasonic sonic velocity measuring device and ultrasonic velocity / flow direction / sonic velocity measuring device
JP3399936B2 (en) Ultrasonic flow meter
JPS63173920A (en) Ultrasonic gas current meter
JP2003315115A (en) Flow measuring device
RU22537U1 (en) PULSE TWO BEAM ULTRASONIC FLOW METER
SU964543A1 (en) Ultrasonic meter of gaseous media flow rate

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20031216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040206

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040331

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050524

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051004