JPH10213178A - Passive vibration damping device and vibration damping method - Google Patents

Passive vibration damping device and vibration damping method

Info

Publication number
JPH10213178A
JPH10213178A JP29709097A JP29709097A JPH10213178A JP H10213178 A JPH10213178 A JP H10213178A JP 29709097 A JP29709097 A JP 29709097A JP 29709097 A JP29709097 A JP 29709097A JP H10213178 A JPH10213178 A JP H10213178A
Authority
JP
Japan
Prior art keywords
vibration
vibration damping
fluid
elastic
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29709097A
Other languages
Japanese (ja)
Inventor
Shigenao Maruyama
重直 圓山
Masato Koyama
正人 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UCHU KANKYO RIYOU SUISHIN CENTER
Original Assignee
UCHU KANKYO RIYOU SUISHIN CENTER
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UCHU KANKYO RIYOU SUISHIN CENTER filed Critical UCHU KANKYO RIYOU SUISHIN CENTER
Priority to JP29709097A priority Critical patent/JPH10213178A/en
Publication of JPH10213178A publication Critical patent/JPH10213178A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To support a supported body flexibly to vibrational disturbance, effectively insulate transmission of vibrational input and support the supported body relatively with high rigidity against vibrational input or exciting force of excessive amplitude or action of steady acceleration. SOLUTION: A vibration damping device 1 is provided with upper and lower vibration damping units 2, 3 provided with housings 12 that can store a fluid, and a center shaft 5 for connecting the vibration damping units 2, 3 spaced by the specified distance, to eath other. Elastic films 4 of the upper and lower vibration damping units 2, 3 close fluid filled areas 8 in the housings 12. Fittings 6 disposed at both end parts of the center shaft 5 are connected so as to be integrally displaceable to the center areas of the elastic films 4, and the elastic films 4 generate responsive vibration in an out-of-plane direction to vibrational disturbance transmitted through the center shaft 5.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、受動型制振装置及
び振動減衰方法に関するものであり、より詳細には、比
較的広範囲に重力変動する宇宙船、飛行体又は高速昇降
装置等の機内環境の如く、微小重力環境又は無重力環境
等の低重力環境と、定常加速度又は高重力加速度が作用
する高重力環境とに重力変化する特殊環境下において、
被支持体及び支持体を含む振動系全体の振動入力又は励
振力を有効に絶縁し得る受動型制振装置及び振動減衰方
法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a passive vibration damping device and a vibration damping method, and more particularly, to an in-flight environment of a spacecraft, a flying object, a high-speed elevating device, or the like that fluctuates gravity over a relatively wide range. As in a low gravity environment such as a microgravity environment or a zero gravity environment, and under a special environment where gravity changes to a high gravity environment where a steady acceleration or a high gravity acceleration acts,
The present invention relates to a passive vibration damping device and a vibration damping method that can effectively insulate vibration input or excitation force of a whole vibration system including a supported body and a support body.

【0002】[0002]

【従来の技術】基礎又は基台等の支持体と、支持体上に
配置される精密機器等の被支持体との間の応力伝達経路
に介装され、支持体及び被支持体を含む振動系の振動絶
縁を図る防振装置又は免震装置等の制振装置が、広く実
用に供されている。制振装置は、加振源又は振動発生源
の振動が入力される支持体上に精密機器等の被支持体を
振動絶縁可能に支持し、或いは、振動発生源となる振動
機器類を支持体上に振動絶縁可能に支持する。例えば、
振動発生源を構成する車両用エンジンと、該エンジンを
支持する車体シャシーとの間に介装されるエンジンマウ
ント装置において、エンジンの広範な振動周波数特性に
適応すべく、ゴム等の弾性体内に液体を封入した構成を
有する液体封入式エンジンマウント装置等が知られてい
る(実開平3−52442号公報等参照)。
2. Description of the Related Art Vibrations including a support and a supported member are interposed in a stress transmission path between a support such as a base or a base and a supported member such as a precision instrument disposed on the support. 2. Description of the Related Art Vibration damping devices such as vibration isolation devices or seismic isolation devices for achieving vibration isolation of a system are widely used in practice. The vibration damping device supports a supported device such as a precision device on a support to which vibration of the vibration source or the vibration generation source is input so as to be able to isolate the vibration, or supports a vibration device to be a vibration generation source. It is supported so as to be able to isolate vibration. For example,
In an engine mount device interposed between a vehicle engine that constitutes a vibration source and a vehicle body chassis that supports the engine, a liquid is injected into an elastic body such as rubber in order to adapt to a wide range of vibration frequency characteristics of the engine. A liquid-filled engine mount device or the like having a configuration in which the liquid crystal is sealed is known (see Japanese Utility Model Laid-Open No. 3-52442).

【0003】この種の制振装置の制振方式として、所謂
パッシブコントロール法(受動的制振法)、アクティブ
コントロール法(能動的制振法)およびセミアクティブ
コントロール法(準能動的制振法)が一般に知られてい
る。パッシブコントロール法(受動的制振法)は、振動
外乱の一般特性を考慮した上で、嫌振機器等の被支持体
の共振現象を回避するように予めバネ等の弾性体の構造
特性及び振動減衰特性等を調整した制振装置を振動発生
源と静止体又は構造体との間に介装する制振手法として
知られている。他方、アクティブコントロール法(能動
的制振法)は一般に、振動外乱の変化又は加振源の振動
等を振動センサー等の振動検出手段にて検出し、該振動
検出手段の制御信号に基づいて外部制御力を被支持体、
静止体又は加振源に可変入力し、これにより、励振力を
積極的に打消し、被支持体又は静止体の振動応答性を低
減せしめる制振手法である。また、セミアクティブコン
トロール法(準能動的制振法)は一般に、振動検出手段
により検出された振動の状況又は状態に相応して、被支
持体又は静止体の剛性、振動減衰特性、或いは、質量等
を迅速に変化させながら振動伝達を抑制する制振手法で
ある。上記パッシブコントロール法(受動的制振法)を
適用した制振装置は、微小重力環境又は無重力環境(以
下、単に「微小重力環境」という)における各種の基礎
研究又は基礎実験において、周辺機器、動物、人体等を
起振源とする規則的又は不規則な振動外乱を低減させる
振動隔絶手段として使用されている。この種の制振装置
は、計測装置又は画像処理装置等の各種実験機器と、実
験機器取付台又は支持台との間に介装された振動絶縁体
を備えており、該振動絶縁体は、実験機器を柔軟に支持
する比較的低剛性の材料又は部品から構成され、実験機
器取付台等を介して実験機器に入力される振動外乱を絶
縁するように機能する。
As a vibration control method of this type of vibration control device, a so-called passive control method (passive vibration control method), an active control method (active vibration control method) and a semi-active control method (quasi-active vibration control method) are used. Is generally known. The passive control method (passive vibration suppression method) considers the general characteristics of vibration disturbance, and preliminarily sets the structural characteristics and vibration of an elastic body such as a spring so as to avoid the resonance phenomenon of a supported body such as anti-vibration equipment. 2. Description of the Related Art It is known as a vibration control method in which a vibration control device whose damping characteristics and the like are adjusted is interposed between a vibration source and a stationary body or a structure. On the other hand, the active control method (active vibration suppression method) generally detects a change in vibration disturbance or vibration of a vibration source by vibration detecting means such as a vibration sensor, and externally detects the change based on a control signal of the vibration detecting means. The control force is applied to the
This is a vibration damping method in which a variable input is made to a stationary body or a vibration source, thereby actively canceling the excitation force and reducing the vibration response of the supported body or the stationary body. In addition, the semi-active control method (semi-active vibration suppression method) generally has a rigidity, a vibration damping characteristic, or a mass of a supported or stationary body corresponding to a situation or state of vibration detected by the vibration detecting means. This is a vibration suppression technique that suppresses the transmission of vibration while quickly changing the conditions. Vibration suppression devices to which the passive control method (passive vibration suppression method) is applied include peripheral devices and animals in various basic researches or experiments in a microgravity environment or a zero gravity environment (hereinafter, simply referred to as “microgravity environment”). It is used as vibration isolation means for reducing regular or irregular vibration disturbances caused by a human body or the like as a vibration source. This type of vibration damping device includes various experimental devices such as a measuring device or an image processing device, and a vibration insulator interposed between the experimental device mounting table or the support table. It is composed of a relatively low-rigidity material or component that flexibly supports the experimental equipment, and functions to insulate the vibration disturbance input to the experimental equipment via the experimental equipment mounting base or the like.

【0004】[0004]

【発明が解決しようとする課題】このような従来の制振
装置は、周波数及び振幅等の諸要素が比較的安定した振
動外乱に対して、予め振動特性に適応した振動絶縁体の
剛性等を所望の如く設定することにより、或る程度有効
に機能し得る。しかしながら、上記微小重力環境下の各
種研究・実験等における実際の振動外乱は、周波数及び
振幅の双方共に不安定化し易く、例えば、微小重力環境
下において不安的な振動外乱により過渡的に過大な振幅
が生起し得るなど、予め振動特性を予測し難い事情があ
る。従って、最適な振動絶縁性能を有する振動絶縁体を
設計することは、事実上、極めて困難である。また、上
記微小重力環境下の各種研究・実験は、落下実験施設、
航空機、小型ロケット又はスペースシャトル等の実験施
設において実施される。この種の実験施設内の重力環境
は、無重力又は0.01G程度の微小重力値から2G程
度の比較的過大な重力値に亘る広範囲の重力変動を示す
可変重力環境である。このため、広範な重力変動に適応
し得る振動絶縁性能を発揮する振動絶縁体を設計しなけ
ればならない。殊に、実験機器及び実験機器取付台を含
む振動系に対して過大な振幅の振動又は励振力が作用し
たとき、或いは、定常加速度を含む比較的過大な重力が
振動系全体に作用したとき、微小重力環境に適応すべく
一般に低剛性に設計される柔軟な振動絶縁体の変位量又
は変形量が過渡的に増幅してしまう結果、実験機器と実
験機器取付台又は周辺機器等とが、相互に当接又は衝合
する状況が生じ得る。従って、このような可変重力環境
下において所望の如く被支持体を振動絶縁可能に支持し
得る新規な構成の制振装置の開発が要望される。
In such a conventional vibration damping device, the rigidity and the like of a vibration insulator adapted in advance to the vibration characteristics are controlled against a vibration disturbance in which various factors such as frequency and amplitude are relatively stable. By setting as desired, it can function to some extent effectively. However, the actual vibration disturbance in the various researches and experiments under the microgravity environment tends to be unstable in both frequency and amplitude. For example, in the microgravity environment, the amplitude is transiently excessive due to unstable vibration disturbance. For example, vibration characteristics may be difficult to predict in advance, for example, may occur. Therefore, it is practically extremely difficult to design a vibration insulator having an optimum vibration insulation performance. In addition, various research and experiments under the above microgravity environment are performed at the drop test facility,
It is carried out in an experimental facility such as an aircraft, a small rocket or a space shuttle. The gravitational environment in this type of experimental facility is a variable gravitational environment showing a wide range of gravitational fluctuations from zero gravity or a microgravity value of about 0.01 G to a relatively large gravitational value of about 2 G. For this reason, it is necessary to design a vibration insulator that exhibits vibration insulation performance that can adapt to a wide range of gravity fluctuations. In particular, when an excessive amplitude of vibration or exciting force acts on the vibration system including the experimental equipment and the experimental equipment mounting base, or when relatively excessive gravity including a steady acceleration acts on the entire vibration system, As a result, the displacement or deformation of the flexible vibration insulator, which is generally designed to have low rigidity to adapt to the microgravity environment, is transiently amplified. A situation can arise where abutment or abutment occurs. Therefore, there is a demand for the development of a vibration damping device having a novel configuration capable of supporting a supported member in such a manner that vibrations can be insulated as desired under such a variable gravity environment.

【0005】本発明は、かかる課題に鑑みてなされたも
のであり、その目的とするところは、安定した振動外乱
に対して柔軟な可撓性支持を維持し、振動入力の伝達を
有効に絶縁し得るととともに、振動系に対して過大な振
幅の振動入力又は励振力が作用し、或いは、定常加速度
が振動系全体に作用したとき、比較的高剛性に被支持体
を支持することができる受動型制振装置及び振動減衰方
法を提供することにある。本発明は又、微小重力環境の
特殊性を利用した各種実験において、実験装置又は実験
機器を含む振動系に入力される振動外乱を有効に絶縁
し、振動外乱の影響を受け難い良好な実験環境を実現す
ることができる受動型制振装置及び振動減衰方法を提供
することを目的とする。本発明は更に、急激且つ広範な
周囲環境又は周囲雰囲気の変動に起因して、予測不能な
振動特性の振動入力又は励振力が作用し得る振動系にお
いて、所望の如く使用することができ、しかも、制振装
置を含む振動系の急速な振動増幅又は共振現象等の発生
を確実に回避するとともに、広範な振動系の振幅変動に
対して有効な振動減衰性能を発揮し得る受動型制振装置
及び振動減衰方法を提供することを目的とする。
The present invention has been made in view of the above problems, and has as its object to maintain a flexible and flexible support for stable vibration disturbance and effectively insulate transmission of vibration input. When the vibration input or the excitation force having an excessive amplitude acts on the vibration system, or when the steady acceleration acts on the entire vibration system, the supported body can be supported with relatively high rigidity. An object of the present invention is to provide a passive vibration damping device and a vibration damping method. The present invention also provides a good experimental environment that effectively isolates vibration disturbance input to a vibration system including an experimental device or an experimental device in various experiments utilizing the specialty of the microgravity environment, and is hardly affected by the vibration disturbance. It is an object of the present invention to provide a passive vibration damping device and a vibration damping method that can realize the above. The present invention can also be used as desired in vibration systems in which vibration inputs or excitation forces of unpredictable vibration characteristics can act due to sudden and wide variations in the surrounding environment or atmosphere, and , Passive vibration damping device that can effectively avoid the occurrence of rapid vibration amplification or resonance phenomenon of a vibration system including a vibration damping device and can exhibit effective vibration damping performance against amplitude fluctuation of a wide range of vibration systems And a vibration damping method.

【0006】[0006]

【課題を解決するための手段及び作用】上記目的を達成
するために、本発明は、振動系に作用する振動外乱によ
る該振動系の振動伝達を規制すべく、前記振動系を構成
する支持体と被支持体との間に介装され且つ振動減衰機
能を有する可撓性の振動応答部材を備えた受動型制振装
置において、ハウジングを備えた第1制振ユニット及び
第2制振ユニットと、所定間隔を隔てた前記第1及び第
2制振ユニットを相互連結する軸部材とを備え、前記第
1及び第2制振ユニットは夫々、可撓性材料からなる弾
性膜を有し、前記軸部材の両端部分は、前記弾性膜と一
体的に変位可能に前記第1及び第2制振ユニットの各弾
性膜に連結され、該弾性膜は、前記軸部材を介して伝達
される振動外乱に対して面外方向の応答振動を生起し、
前記弾性膜の弾性変位による振動応答作用により前記振
動外乱を減衰させ、前記弾性膜は、過渡的に前記軸部材
を介して前記弾性膜に入力される過大な振幅の振動入力
に対して、前記弾性膜の面外変形に従って増大する該弾
性膜の弾性復元力により、前記弾性膜に作用する内部応
力の増大に抗するとともに、該弾性膜の面外剛性により
前記軸部材の振動の増幅を阻止することを特徴とする受
動型制振装置を提供する。本発明の上記構成によれば、
軸部材の両端部分は、所定間隔を隔てた第1及び第2制
振ユニットの弾性膜に接続され、弾性膜を介して、支持
体及び被支持体を応力伝達可能に相互連結する。微小重
力環境等の低重力環境において、制振装置は、弾性膜の
面外剛性により被支持体を支持体上に支持し、被支持体
と支持体との間に伝達し得る振動を弾性膜の振動応答特
性により減衰させる。
SUMMARY OF THE INVENTION In order to achieve the above object, the present invention relates to a support for forming a vibration system in order to regulate the transmission of vibration of the vibration system due to vibration disturbance acting on the vibration system. A passive vibration damping device including a flexible vibration responsive member interposed between a member and a supported member and having a vibration damping function, wherein the first vibration damping unit and the second vibration damping unit each including a housing; A shaft member interconnecting the first and second vibration damping units at a predetermined interval, wherein each of the first and second vibration damping units has an elastic film made of a flexible material, Both end portions of the shaft member are connected to the respective elastic films of the first and second vibration damping units so as to be integrally displaceable with the elastic film, and the elastic film is connected to the vibration disturbance transmitted through the shaft member. Causes out-of-plane response vibration to
The vibration disturbance is attenuated by a vibration response effect due to the elastic displacement of the elastic film, and the elastic film transiently receives an excessive amplitude vibration input to the elastic film via the shaft member. The elastic restoring force of the elastic film, which increases in accordance with the out-of-plane deformation of the elastic film, resists an increase in internal stress acting on the elastic film, and prevents the amplification of vibration of the shaft member by the out-of-plane rigidity of the elastic film. A passive vibration damping device is provided. According to the configuration of the present invention,
Both end portions of the shaft member are connected to the elastic films of the first and second vibration damping units at predetermined intervals, and interconnect the support and the supported member via the elastic films so as to transmit stress. In a low-gravity environment such as a microgravity environment, the vibration damping device supports the supported member on the support by the out-of-plane rigidity of the elastic film, and transmits vibration that can be transmitted between the supported member and the support to the elastic film. Damped by the vibration response characteristics of

【0007】本発明は又、上記構成の受動型制振装置に
おいて、前記ハウジングが、流体を収容可能な流体収容
領域を形成する内部構造を有し、前記弾性膜が、前記流
体収容領域を閉塞し、該弾性膜が、前記流体収容領域内
に封入された流体の粘性による振動応答作用および前記
弾性膜の弾性変位による振動応答作用により、前記振動
外乱を減衰させることを特徴とする受動型制振装置を提
供する。かかる構成によれば、軸部材は、弾性膜及び封
入流体を介して、支持体及び被支持体を応力伝達可能に
相互連結し、制振装置は、低重力環境において、被支持
体と支持体との間に伝達し得る振動を弾性膜及び封入流
体の振動応答特性により減衰させる。
According to the present invention, in the passive vibration damping device having the above-mentioned structure, the housing has an internal structure forming a fluid accommodating region capable of accommodating a fluid, and the elastic film closes the fluid accommodating region. And a vibration response function based on the viscosity of a fluid sealed in the fluid storage area and a vibration response function due to an elastic displacement of the elastic film, wherein the elastic disturbance attenuates the vibration disturbance. A vibration device is provided. According to such a configuration, the shaft member interconnects the support and the supported body via the elastic film and the sealed fluid so that stress can be transmitted, and the vibration damping device operates in a low gravity environment with the supported body and the support body. Is attenuated by the vibration response characteristics of the elastic film and the sealed fluid.

【0008】他の観点より、本発明は更に、上記構成の
受動型制振装置において、前記ハウジングは、外界雰囲
気又は外部ガス域と相互連通する内部中空領域を有し、
前記弾性膜の構成面は、該中空領域に面することを特徴
とする受動型制振装置を提供する。
According to another aspect of the present invention, there is further provided a passive vibration damping device having the above-mentioned structure, wherein the housing has an internal hollow region which is in communication with an external atmosphere or an external gas region.
A passive vibration damping device is provided, wherein the constituent surface of the elastic film faces the hollow region.

【0009】本発明は又、上記構成の受動型制振装置に
おいて、前記軸部材は、前記弾性膜を貫通して前記ハウ
ジングの内部領域に延入し、該軸部材の延入部分は、前
記軸部材及び前記弾性膜と一体的に変位可能な着座部分
を備え、前記ハウジング内領域は、前記着座部分が弾力
的に着座し得る支受面を備え、該支受面は、前記ハウジ
ング内領域の底壁に配設された弾性材料により形成され
ることを特徴とする受動型制振装置を提供する。本発明
の上記構成によれば、上位及び下位制振ユニットは、地
上等の高重力環境において、弾性膜の変形により、相互
接近し、上記軸部材の着座部分は、ハウジング内領域の
支受面に着座し、この結果、軸部材の軸線方向の応力
は、上記弾性材料を介して、被支持体及び支持体に直接
的に伝達される。従って、被支持体は、実質的に軸部材
の支持力により支持体上に支持される。他方、上位及び
下位制振ユニットは、宇宙空間等の低重力環境におい
て、弾性膜の変形により、相互離間し、上記軸部材の着
座部分は、ハウジング内領域の支受面から離座し、この
結果、軸部材の軸線方向の応力は、弾性膜の面外剛性を
介して、被支持体及び支持体に伝達される。従って、制
振装置は、低重力環境において、弾性膜の面外剛性によ
り被支持体を支持体上に支持し、被支持体と支持体との
間に伝達される振動を弾性膜の振動応答特性により減衰
させる。
According to the present invention, in the passive vibration damping device having the above-mentioned structure, the shaft member extends through the elastic film into an internal region of the housing, and the extending portion of the shaft member is A seat portion displaceable integrally with the shaft member and the elastic film; the housing inner region includes a bearing surface on which the seat portion can be elastically seated; and the bearing surface includes the housing inner region. The present invention provides a passive vibration damping device characterized by being formed of an elastic material disposed on a bottom wall of the passive vibration damping device. According to the above configuration of the present invention, the upper and lower vibration damping units approach each other due to deformation of the elastic film in a high gravity environment such as on the ground, and the seating portion of the shaft member is supported on the bearing surface in the area inside the housing. As a result, the stress in the axial direction of the shaft member is directly transmitted to the supported member and the support member via the elastic material. Therefore, the supported body is supported on the support substantially by the supporting force of the shaft member. On the other hand, the upper and lower vibration damping units are separated from each other due to deformation of the elastic film in a low gravity environment such as outer space, and the seating portion of the shaft member is separated from the bearing surface in the area inside the housing. As a result, the axial stress of the shaft member is transmitted to the supported member and the support member through the out-of-plane rigidity of the elastic film. Therefore, the vibration damping device supports the supported member on the support by the out-of-plane rigidity of the elastic film in a low gravity environment, and transmits the vibration transmitted between the supported member and the support to the vibration response of the elastic film. Attenuated by characteristics.

【0010】本発明は更に、振動外乱が作用する振動系
を構成する被支持体及び支持体の間に可撓性部材を介装
し、前記振動外乱による前記振動系の振動を減衰させる
振動減衰方法において、前記振動系は、重力変動を伴う
環境下に配置され、所定間隔を隔てた複数の可撓性膜部
材と、該膜部材の構成面と交差する方向に配向され且つ
該膜部材を応力伝達可能に相互連結する軸部材とを介し
て、前記被支持体を前記支持体上に載置し、低重力環境
下にて前記膜部材の面外剛性により前記被支持体を前記
支持体上に支持し、前記被支持体と前記支持体との間に
伝達される振動を前記膜部材の振動応答特性により減衰
させることを特徴とする振動減衰方法を提供する。本発
明の上記構成によれば、例えば、微小重力環境の特殊性
を利用した各種実験において、実験装置又は実験機器等
の被支持体を含む振動系に入力される振動外乱を膜部材
の振動応答特性により減衰させ、被支持体及び支持体の
間の振動伝達経路を有効に絶縁し、振動外乱の影響を受
け難い良好な実験環境を低重力環境下に実現することが
できる。
[0010] The present invention further provides a vibration damping device in which a flexible member is interposed between a supported member and a supporting member constituting a vibration system on which a vibration disturbance acts to attenuate the vibration of the vibration system due to the vibration disturbance. In the method, the vibration system is disposed in an environment with gravity fluctuation, a plurality of flexible membrane members spaced at a predetermined interval, and is oriented in a direction intersecting a constituent surface of the membrane member, and The supported member is placed on the support member through a shaft member interconnected so as to transmit a stress, and the supported member is supported by the out-of-plane rigidity of the membrane member under a low gravity environment. A vibration damping method is provided, wherein the vibration transmitted between the supported member and the support member is attenuated by a vibration response characteristic of the membrane member. According to the above configuration of the present invention, for example, in various experiments utilizing the specialty of the microgravity environment, the vibration disturbance input to the vibration system including the supported member such as an experimental apparatus or an experimental device causes the vibration response of the membrane member. The vibration is attenuated by the characteristics, the vibration transmission path between the supported member and the support member is effectively insulated, and a favorable experimental environment that is not easily affected by vibration disturbance can be realized in a low gravity environment.

【0011】本発明に係る上記構成の振動減衰方法は更
に、高重力環境下において、前記膜部材の変形により、
前記軸部材の軸線方向の応力を前記被支持体及び/又は
支持体に直接的に伝達する直結位置に前記軸部材を変位
させ、実質的に前記軸部材の支持力により前記被支持体
を前記支持体上に支持し、低重力環境下において、前記
膜部材の弾性復元力により、前記軸部材の軸線方向の応
力を前記膜部材に伝達する離間位置に前記軸部材を変位
させ、前記軸部材と前記被支持体及び/又は支持体との
間の直接的な応力伝達経路を解放し、前記膜部材を介し
て前記被支持体及び支持体を応力伝達可能に相互連結す
るとともに、前記被支持体を実質的に前記膜部材により
前記支持体上に支持することを特徴とする振動減衰方法
を提供する。上記構成によれば、軸部材は、地上等の高
重力環境下に直結位置に変位し、軸部材の軸線方向の応
力を軟質部材等を介して被支持体及び支持体に直接的に
伝達し、実質的に軸部材の支持力により被支持体を支持
体上に支持し、他方、宇宙空間等の低重力環境におい
て、軸部材は、膜部材の弾性復元力により、離間位置に
変位し、膜部材を介して被支持体及び支持体を応力伝達
可能に相互連結するとともに、被支持体を実質的に膜部
材により支持体上に支持する。従って、制振装置は、急
激且つ広範な周囲環境又は周囲雰囲気の変動に起因し
て、予測不能な振動特性の振動入力又は励振力が作用し
得る振動系において、制振装置を含む振動系の急速な振
動増幅又は共振現象等の発生を確実に回避するととも
に、広範な振動系の振幅変動に対して有効な振動減衰性
能を発揮し得る。
[0011] The vibration damping method according to the present invention according to the above structure further comprises the step of deforming the membrane member under a high gravity environment.
The shaft member is displaced to a directly connected position where the axial stress of the shaft member is directly transmitted to the supported member and / or the support member, and the supported member is substantially moved by the support force of the shaft member. Supported on a support, and in a low-gravity environment, the shaft member is displaced to a separated position for transmitting an axial stress of the shaft member to the film member by an elastic restoring force of the film member; Releasing a direct stress transmission path between the substrate and the supported member and / or the support member, interconnecting the supported member and the support member through the membrane member so as to transmit the stress, and A vibration damping method is provided, wherein a body is substantially supported on the support by the membrane member. According to the above configuration, the shaft member is displaced to the directly connected position under a high gravity environment such as on the ground, and directly transmits the axial stress of the shaft member to the supported member and the support member via the soft member or the like. The supporting member is supported on the supporting member substantially by the supporting force of the shaft member.On the other hand, in a low gravity environment such as outer space, the shaft member is displaced to the separated position by the elastic restoring force of the membrane member, The supported member and the support member are interconnected via the membrane member so that stress can be transmitted, and the supported member is substantially supported on the support member by the membrane member. Therefore, in a vibration system in which a vibration input or an excitation force having unpredictable vibration characteristics can act due to sudden and wide fluctuations in the surrounding environment or surrounding atmosphere, the vibration control device includes a vibration system including the vibration control device. It is possible to reliably avoid the occurrence of rapid vibration amplification or resonance phenomenon, and to exhibit effective vibration damping performance against amplitude fluctuations of a wide range of vibration systems.

【0012】本発明は更に、上記構成の振動減衰方法に
おいて、前記可撓性膜部材及び前記軸部材と、該膜部材
の構成面に全体的に接する封入流体とを介して、前記被
支持体を前記支持体上に載置することを特徴とする振動
減衰方法を提供する。かかる構成によれば、軸部材は、
膜部材及び封入流体を介して、支持体及び被支持体を応
力伝達可能に相互連結する。従って、制振装置は、低重
力環境において、被支持体と支持体との間に伝達し得る
振動を膜部材及び封入流体の振動応答特性により減衰さ
せ、被支持体と支持体との振動伝達を抑制する。
[0012] The present invention further provides the vibration damping method having the above-mentioned structure, wherein the supported member is interposed through the flexible membrane member and the shaft member, and a sealed fluid entirely in contact with the constituent surface of the membrane member. Is mounted on the support. According to such a configuration, the shaft member
The support and the supported body are interconnected so as to transmit stress through the membrane member and the sealing fluid. Therefore, the vibration damping device attenuates the vibration that can be transmitted between the supported member and the support member in a low gravity environment by the vibration response characteristics of the membrane member and the sealed fluid, and transmits the vibration between the supported member and the support member. Suppress.

【0013】[0013]

【発明の実施の形態】本発明の好ましい実施形態によれ
ば、上記第1及び第2制振ユニットを構成する各ハウジ
ングの相互間隔は、上記着座部分の着座面と上記支受面
との相互間隔の2倍を超える距離に設定される。従っ
て、第1及び第2制振ユニットの各ハウジングは、軸部
材の直結位置において、所定の離間距離を確保する。更
に好ましくは、上記軸部材の軸線は、上記弾性膜の構成
面に対して実質的に直交するように配向され、弾性膜の
振幅は、弾性膜構成面の垂直面外方向に生起する。好適
には、上記第1及び第2制振ユニットの構造ないし形態
は、制振装置の中心平面に対して平面対称に形成され
る。本発明の或る好適な実施形態において、上記流体
は、所定の粘性を有する液体からなり、上記ハウジング
内に形成され且つ上記弾性膜にて閉塞した上記流体収容
領域内に封入され、該流体収容領域に面する上記弾性膜
の構成面全体に接触する。更に好適には、上記弾性膜
は、全体的に円形輪郭を有し、該弾性膜の中心は、上記
軸部材の中心軸線と実質的に一致する。好ましくは、軸
部材の端部に形成された縮径部を挿通可能な開口部が、
弾性膜の中心に形成される。本発明の他の好適な実施形
態によれば、上記中空領域は、オリフィス手段を介して
外界雰囲気又は外部ガス域と相互連通し、上記流体収容
領域は、オリフィス手段を介して外界雰囲気又は外部ガ
ス域と相互連通する。好適には、封入流体は、オリフィ
ス手段を流通可能な気体からなり、流体収容領域の容積
変動に相応してオリフィス手段を流通し、かくして、オ
リフィス手段を通過する上記封入流体は、オリフィス手
段の気体摩擦作用を受ける。
According to a preferred embodiment of the present invention, the distance between the housings constituting the first and second vibration damping units is different from the distance between the seating surface of the seating portion and the bearing surface. The distance is set to more than twice the distance. Therefore, each housing of the first and second vibration suppression units secures a predetermined separation distance at a position directly connected to the shaft member. More preferably, the axis of the shaft member is oriented so as to be substantially perpendicular to the plane of construction of the elastic membrane, and the amplitude of the elastic membrane occurs in a direction out of the plane perpendicular to the plane of construction of the elastic membrane. Preferably, the structure or form of the first and second vibration damping units is formed symmetrically with respect to the center plane of the vibration damping device. In a preferred embodiment of the present invention, the fluid is a liquid having a predetermined viscosity, and is formed in the housing and sealed in the fluid storage area closed by the elastic film, and is provided in the fluid storage area. The entire surface of the elastic membrane facing the region is in contact. More preferably, the elastic membrane has a generally circular contour, the center of the elastic membrane substantially coincides with the central axis of the shaft member. Preferably, the opening through which the reduced diameter portion formed at the end of the shaft member can be inserted,
It is formed at the center of the elastic membrane. According to another preferred embodiment of the present invention, the hollow region is interconnected with an external atmosphere or an external gas region through orifice means, and the fluid containing region is connected with the external atmosphere or an external gas region through the orifice means. Intercommunicate with the area. Preferably, the sealed fluid is made of a gas that can flow through the orifice means, flows through the orifice means in accordance with the volume fluctuation of the fluid storage area, and thus the sealed fluid passing through the orifice means is a gas of the orifice means. Subject to friction.

【0014】本発明の好適な実施形態によれば、上記支
受面は、上記着座部分を少なくとも部分的に受入可能な
凹所を上記ハウジング内領域の底部帯域に画成する。更
に好ましくは、着座部分は、上記軸部材の各端部に固定
された拡大部材を含み、該拡大部材の外形輪郭は、支受
面の凹所形態と実質的に相補する形態に形成され、着座
部分の着座面は、拡大部材の底面及び/又は側面にて形
成され、支受面は、上記凹所の底壁面及び/又は側壁面
にて形成される。好適には、上記拡大部材は、弾性膜と
拡大部材との間の第1中間領域又は流体領域と、支受面
と着座面との間の第2中間領域又は流体領域とを相互連
通させる流体連通路を備える。本発明の更に好適な実施
形態によれば、上記軸部材と上記被支持体又は支持体と
の間に弾性変形可能な軟質部材が介装される。軟質部材
は、上記軸部材の直結位置にて、軸部材の端部を応力伝
達可能に弾力的に支受するとともに、上記膜部材同士の
離間状態を確保し、他方、軸部材の離間位置にて、該軸
部材と上記被支持体及び/又は支持体との間の直接的な
応力伝達経路を解放するように、軸部材の端部から離間
する。
According to a preferred embodiment of the present invention, the bearing surface defines a recess in the bottom region of the interior region of the housing in which the seating portion can be at least partially received. More preferably, the seating portion includes an enlarged member fixed to each end of the shaft member, and an outer contour of the enlarged member is formed in a form substantially complementary to the concave form of the bearing surface, The seating surface of the seating portion is formed on the bottom surface and / or the side surface of the expanding member, and the bearing surface is formed on the bottom wall surface and / or the side wall surface of the recess. Preferably, the expanding member is a fluid that interconnects a first intermediate region or a fluid region between the elastic membrane and the expanding member and a second intermediate region or the fluid region between the bearing surface and the seating surface. A communication path is provided. According to a further preferred embodiment of the present invention, an elastically deformable soft member is interposed between the shaft member and the supported member or the support member. The soft member elastically supports the end portion of the shaft member so that stress can be transmitted at the directly connected position of the shaft member, and secures the separated state of the membrane members, and at the separated position of the shaft member. The shaft member is separated from an end of the shaft member so as to release a direct stress transmission path between the shaft member and the supported member and / or the support member.

【0015】好適には、膜部材の弾性復元力は、非線型
性の弾性体特性を有し、膜部材の変位量の増大に伴って
比較的急激に増大する。更に好適には、上記封入流体の
圧力変動は、上記膜部材の弾性変形により補償される。
本発明の或る好適な実施形態によれば、上記封入流体と
して、シリコンオイルが採用され、上記軟質部材とし
て、シリコンゲルが採用される。本発明の他の好適な実
施形態によれば、上記気体として、外界雰囲気の空気又
は不活性ガスが採用される。本発明の好ましい実施形態
において、上記ハウジングは、流体を収容可能な流体収
容領域を画成し、上記弾性膜又は膜部材は、流体収容領
域を閉塞し、更に、上記制振装置は、流体収容領域とハ
ウジング外界又は外部流体域とを流体連通可能に相互連
結するオリフィス手段を備える。流体収容領域は、オリ
フィス手段を介して外界又は外部流体域と相互連通し、
流体は、流体収容領域の容積変動に相応してオリフィス
手段を流通する。オリフィス手段を通過する際に生じる
流体の摩擦力は、振動系の振動減衰力として弾性膜に作
用する。かくして、弾性膜は、流体収容領域に封入され
た流体の粘性による振動応答作用および弾性膜の弾性変
位による振動応答作用により、振動外乱を減衰させる。
[0015] Preferably, the elastic restoring force of the membrane member has a non-linear elastic body characteristic, and increases relatively sharply with an increase in the amount of displacement of the membrane member. More preferably, the pressure fluctuation of the sealed fluid is compensated by the elastic deformation of the membrane member.
According to a preferred embodiment of the present invention, silicone oil is used as the sealed fluid, and silicon gel is used as the soft member. According to another preferred embodiment of the present invention, as the gas, air in an external atmosphere or an inert gas is employed. In a preferred embodiment of the present invention, the housing defines a fluid accommodating region capable of accommodating a fluid, the elastic membrane or the membrane member closes the fluid accommodating region, and the vibration suppression device further includes a fluid accommodating device. Orifice means are provided for interconnecting the region and the housing exterior or external fluid region in fluid communication. The fluid containing area is interconnected with the outside world or an outside fluid area via orifice means;
Fluid flows through the orifice means in response to volume fluctuations in the fluid storage area. The frictional force of the fluid generated when passing through the orifice means acts on the elastic film as a vibration damping force of the vibration system. Thus, the elastic membrane attenuates vibration disturbance by vibrating response action due to the viscosity of the fluid sealed in the fluid storage area and vibrating response action due to the elastic displacement of the elastic membrane.

【0016】[0016]

【実施例】以下、添付図面を参照して、本発明の第1実
施例に係る制振装置について、詳細に説明する。図1
は、本発明の第1実施例に係る制振装置の全体構成を示
す斜視図であり、図2は、図1に示す制振装置を中央水
平平面にて分割した状態で示す制振装置の分解斜視図で
ある。なお、図を簡略化し、制振装置の全体構成に関す
る理解を容易にするために、図3に示す流体充填手段
(流体充填具及び排出具)ついては、図1及び図2にお
いて図示を省略してある。制振装置1は、相対変位可能
な上位制振ユニット2及び下位制振ユニット3と、上位
及び下位制振ユニット2、3を相互連結する円柱状中心
軸5とから構成される。上位及び下位制振ユニット2、
3は、制振装置1の中心軸線を中心に上下に整列配置さ
れるとともに、制振装置1の中央水平平面に対して面対
称(平面対称)の形態及び構造を備え、相互に対向す
る。上位及び下位制振ユニット2、3は夫々、実質的に
正方形平面形状を有する水平基盤又はベースプレート1
0を備える。円筒状ハウジング12が、基盤10から他
方の制振ユニットに向かって中心軸線方向に延び、円形
平面形状の水平弾性膜4が、ハウジング12の自由端部
分に配置される。円形貫通孔11が、水平基盤10の各
角部領域に形成され、各貫通孔11は、係止ボルト又は
固定ボルト等の係止具又は固定具(図示せず)を挿通し
得る内径を有する。係止具又は固定具は、制振装置1を
支持する実験機器支持台S(図7)、或いは、制振装置
1にて支持すべき実験機器E(図7)に対して締結され
る。また、弾性膜4をハウジング12に保持する円環状
の膜部材保持部分13が、ハウジング12の下端部(制
振ユニット2)又は上端部(制振ユニット3)に形成さ
れる。各制振ユニット2、3を構成する基盤10、ハウ
ジング12及び保持部分13は、制振装置1の中心軸線
を中心に整列する。中心軸5は、上位及び下位制振ユニ
ット2、3の中心軸線に沿って上下方向に延在し、中心
軸5の上端部及び下端部は、弾性膜4を貫通し、各制振
ユニット2、3のハウジング12内に延入する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a vibration damping device according to a first embodiment of the present invention will be described in detail with reference to the accompanying drawings. FIG.
FIG. 2 is a perspective view showing an overall configuration of the vibration damping device according to the first embodiment of the present invention, and FIG. 2 is a perspective view of the vibration damping device shown in FIG. It is an exploded perspective view. In addition, in order to simplify the drawing and facilitate understanding of the entire configuration of the vibration damping device, the fluid filling means (fluid filling tool and discharging tool) shown in FIG. 3 is not shown in FIGS. 1 and 2. is there. The vibration damping device 1 includes an upper vibration damping unit 2 and a lower vibration damping unit 3 that can be relatively displaced, and a cylindrical central shaft 5 that interconnects the upper vibration damping units 2 and the lower vibration damping units 3. Upper and lower vibration suppression units 2,
Numerals 3 are arranged vertically above and below the center axis of the vibration damping device 1 and have a form and structure that is plane-symmetric (plane-symmetric) with respect to the central horizontal plane of the vibration damping apparatus 1 and face each other. The upper and lower vibration damping units 2 and 3 each have a horizontal base or base plate 1 having a substantially square planar shape.
0 is provided. A cylindrical housing 12 extends in the center axis direction from the base 10 toward the other vibration damping unit, and a horizontal elastic membrane 4 having a circular flat shape is disposed at a free end portion of the housing 12. Circular through holes 11 are formed in each corner region of the horizontal base 10, and each through hole 11 has an inner diameter through which a locking tool such as a locking bolt or a fixing bolt or a fixing tool (not shown) can be inserted. . The locking device or the fixing device is fastened to an experimental device support base S (FIG. 7) that supports the vibration damping device 1 or an experimental device E (FIG. 7) to be supported by the vibration damping device 1. Further, an annular film member holding portion 13 for holding the elastic film 4 in the housing 12 is formed at the lower end (the vibration damping unit 2) or the upper end (the vibration damping unit 3) of the housing 12. The base 10, the housing 12, and the holding portion 13 that constitute each of the vibration damping units 2 and 3 are aligned around the central axis of the vibration damping device 1. The central axis 5 extends vertically along the central axis of the upper and lower vibration damping units 2, 3, and the upper end and the lower end of the central axis 5 penetrate the elastic film 4. , 3 extend into the housing 12.

【0017】図3は、図1及び図2に示す制振装置の全
体構造を示す縦断面図であり、弾性膜支持構造部
(“A”部分)の部分拡大図を含む。また、図4は、図
3のVI−VI線における制振装置1の断面図であり、図5
は、図3のV−V線における制振装置1の断面図であ
り、図6は、図3のIV−IV線における制振装置1の断面
図である。図3に示す如く、各制振ユニット2、3のハ
ウジング12は、フィッティング6及フィッティングブ
ッシュ7を収容可能な中空領域8を円筒状壁体15の内
部に形成する。中空領域8は、基盤10により形成され
る底壁14と、円筒状壁体15の内周壁面と、保持部分
13により外周領域を固定してなる張設膜構造の弾性膜
4とにより画成され、所定圧力に調圧された流体を封入
可能な流体密封領域を構成する。全体的に円形の外形輪
郭を備えた弾性膜4の外周縁は、図3の部分的拡大図
(図3:“A”部拡大図)に示す如く、膜部材保持部分
13と円筒状壁体15との間に介挿される。リング保持
溝18が、円筒状壁体15の先端部および膜部材保持部
分13の基端面に夫々刻設され、Oリング42が、各リ
ング保持溝18内に挿入される。Oリング42に当接す
る円環状の外割スペーサ41が、弾性膜4の外周縁に対
をなして配置され、外割スペーサ41は、弾性膜4の外
周縁部分を挟持する。膜部材保持部分13の内周壁に形
成された螺子部16が、円筒状壁体15の先端部外周面
に形成された螺子部17に螺合する。弾性膜4の外周縁
部分は、螺子部16、17の締結により、Oリング42
及び外割スペーサ41を介して、膜部材保持部分13及
び円筒状壁体15の間に挟持される。かくして、弾性膜
4の外周領域は、ハウジング12の端部外周領域に一体
的に拘束されるとともに、中空領域8を気密且つ液密状
態に密封する。
FIG. 3 is a longitudinal sectional view showing the entire structure of the vibration damping device shown in FIGS. 1 and 2, and includes a partially enlarged view of the elastic membrane supporting structure ("A" portion). FIG. 4 is a sectional view of the vibration damping device 1 taken along the line VI-VI in FIG.
6 is a cross-sectional view of the vibration damping device 1 along the line VV in FIG. 3, and FIG. 6 is a cross-sectional view of the vibration damping device 1 along the line IV-IV in FIG. As shown in FIG. 3, the housing 12 of each of the vibration damping units 2 and 3 forms a hollow area 8 in which the fitting 6 and the fitting bush 7 can be housed inside the cylindrical wall body 15. The hollow region 8 is defined by a bottom wall 14 formed by the base 10, an inner peripheral wall surface of the cylindrical wall 15, and the elastic film 4 having a stretched film structure in which the outer peripheral region is fixed by the holding portion 13. Thus, a fluid-tight region capable of enclosing a fluid adjusted to a predetermined pressure is formed. As shown in a partially enlarged view of FIG. 3 (FIG. 3: an enlarged view of “A” portion), the outer peripheral edge of the elastic membrane 4 having a generally circular outer contour is formed by a membrane member holding portion 13 and a cylindrical wall body. 15 is inserted. Ring holding grooves 18 are formed in the distal end portion of the cylindrical wall body 15 and the base end surface of the membrane member holding portion 13, respectively, and the O-ring 42 is inserted into each ring holding groove 18. An annular outer spacer 41 abutting on the O-ring 42 is arranged in a pair with the outer peripheral edge of the elastic film 4, and the outer spacer 41 sandwiches the outer peripheral portion of the elastic film 4. A screw portion 16 formed on the inner peripheral wall of the membrane member holding portion 13 is screwed with a screw portion 17 formed on the outer peripheral surface of the distal end portion of the cylindrical wall body 15. The outer peripheral edge portion of the elastic film 4 is fixed to the O-ring 42 by fastening the screw portions 16 and 17.
And, it is sandwiched between the membrane member holding portion 13 and the cylindrical wall body 15 via the outer spacer 41. Thus, the outer peripheral region of the elastic membrane 4 is integrally restrained by the outer peripheral region of the end of the housing 12 and hermetically seals the hollow region 8 in a gas-tight and liquid-tight state.

【0018】弾性膜4は、合成ゴム、天然ゴム、エラス
トマー、合成ゴム及び天然ゴムの混合材料、軟質塩化ビ
ニル樹脂等の合成樹脂、或いは、ゴム系材料及び樹脂系
材料の混合材料等の弾性軟質材料をメンブレン材として
成形してなる円形の薄板状成形品からなる。所望によ
り、短繊維等の補強材又は混合材を弾性軟質材料内に含
有しても良い。弾性膜4は、ハウジング12の端部領域
に張設されたゴム系シート又は軟質樹脂系シートのメン
ブレン面外幾何剛性により、殊に微小重力環境下に制振
ユニット2、3及び中心軸5の振動振幅に従って振動応
答し、振動外乱を吸収する動的挙動を呈する。好ましく
は、弾性膜4の厚さは、製造可能範囲内且つ許容強度範
囲内において可及的に薄く設定される。好適には、弾性
膜4の厚さ又は肉厚は、0.1mm〜数mmの厚さに設
計され、更に好適には、0.1mm〜2乃至3mm程度
の厚さに設計される。中心軸5は、本体部分を構成する
円柱形の軸部50と、軸部50の両端部に夫々突設され
た比較的小径の縮径部51とを備え、他方、フィッティ
ング6は、縮径部51の雄螺子と螺合可能な雌螺子部6
0を備える。軸部50の両端に形成さた拡径部52が、
弾性膜4の表面に当接し、拡径部52から突出する縮径
部51が、弾性膜4の中心円形孔40を貫通し、フィッ
ティング6の雌螺子部60に螺入する。雌螺子部60
は、縮径部51を受入れ、縮径部51の雄螺子と螺合す
る。弾性膜4の裏面と対向するフィッティング6の小径
挟持面61は、雌螺子部60に対する縮径部51の螺子
締結により、弾性膜4の裏面に対して気密且つ水密状態
に密着する。各フィッティング6は、所定形状に成形さ
れた実質的に中実の金属製一体成形部材からなり、小径
挟持面61から中空領域8の内方に向かって全体的に拡
径する截頭円錐形の拡大傾斜面65と、拡大傾斜面65
の周縁から底壁14に向かって全体的に縮径する略截頭
円錐形の縮小傾斜面66と、縮小傾斜面66の小径周縁
から径方向内方に延在する実質的に水平な着座面63と
を備える。着座面63は、底壁14上に配設されたフィ
ッティングブッシュ7と対向する。
The elastic film 4 is made of synthetic rubber, natural rubber, elastomer, a mixed material of synthetic rubber and natural rubber, a synthetic resin such as a soft vinyl chloride resin, or an elastic soft material such as a mixed material of a rubber material and a resin material. It is formed of a circular thin plate-like molded product obtained by molding a material as a membrane material. If desired, a reinforcing material such as short fibers or a mixed material may be contained in the elastic soft material. Due to the out-of-plane geometrical rigidity of the rubber-based sheet or the soft resin-based sheet stretched in the end region of the housing 12, the elastic film 4 is used for the vibration damping units 2, 3 and the center shaft 5, especially in a microgravity environment. Responds according to the vibration amplitude and exhibits a dynamic behavior that absorbs vibration disturbance. Preferably, the thickness of the elastic film 4 is set as thin as possible within a manufacturable range and an allowable strength range. Preferably, the thickness or thickness of the elastic film 4 is designed to be 0.1 mm to several mm, and more preferably, 0.1 mm to about 2 to 3 mm. The central shaft 5 has a cylindrical shaft portion 50 constituting a main body portion and relatively small diameter reduced portions 51 protruding from both ends of the shaft portion 50, while the fitting 6 has a reduced diameter. Female screw part 6 that can be screwed with the male screw of part 51
0 is provided. The enlarged diameter portions 52 formed at both ends of the shaft portion 50 are
The reduced diameter portion 51 that comes into contact with the surface of the elastic film 4 and protrudes from the enlarged diameter portion 52 penetrates the center circular hole 40 of the elastic film 4 and is screwed into the female screw portion 60 of the fitting 6. Female screw part 60
Receives the reduced diameter portion 51 and is screwed with a male screw of the reduced diameter portion 51. The small-diameter holding surface 61 of the fitting 6 facing the back surface of the elastic film 4 is tightly and airtightly attached to the back surface of the elastic film 4 by screwing the reduced diameter portion 51 to the female screw portion 60. Each fitting 6 is formed of a substantially solid metal integrally molded member formed into a predetermined shape, and has a frusto-conical shape that is entirely enlarged from the small-diameter holding surface 61 toward the inside of the hollow region 8. The enlarged inclined surface 65 and the enlarged inclined surface 65
And a substantially frusto-conical reduced inclined surface 66 that generally decreases in diameter from the periphery of the bottom surface 14 to the bottom wall 14, and a substantially horizontal seating surface that extends radially inward from the small diameter periphery of the reduced inclined surface 66. 63. The seating surface 63 faces the fitting bush 7 provided on the bottom wall 14.

【0019】一端が拡大傾斜面65上の第1開口部62
aにて開口し且つ他端が着座面63上の第2開口部62
bにて開口する貫通孔62が、フィッティング6に穿設
される。着座面63上の第2開口部62bは、制振ユニ
ット2、3の中心軸線上に位置し、拡大傾斜面65上の
第1開口部62aは、該中心軸線から径方向に所定間隔
を隔てた位置に位置決めされる。従って、貫通孔62
は、中心軸線に対して全体的に傾斜し、第2開口部62
aは、弾性膜4の裏面から間隔を隔てて配置される。中
心軸5及びフィッティング6は、アルミニウム、チタン
合金又はステンレス合金等の金属又は合金の一体成形品
又は加工品からなり、重力下に実験機器Eを支持台S上
に支持し得る所要の剛性及び耐力を備える。他方、フィ
ッティングブッシュ7は、所定形状に成形されたシリコ
ンゲル等のゲル状物質、軟質ゴム、或いは、エラストマ
ー等の有形軟質材料からなり、1G乃至2Gの高重力下
にフィッティングブッシュ7に衝合又は当接するフィッ
ティング6を弾力的に支持し得る弾性を有する。
The first opening 62 has one end on the enlarged inclined surface 65.
a and the other end of the second opening 62 on the seating surface 63
A through hole 62 opening at b is formed in the fitting 6. The second opening 62b on the seating surface 63 is located on the center axis of the vibration damping units 2 and 3, and the first opening 62a on the enlarged inclined surface 65 is spaced apart from the center axis by a predetermined distance in the radial direction. Position. Therefore, the through hole 62
Are entirely inclined with respect to the center axis, and the second opening 62
“a” is disposed at an interval from the back surface of the elastic film 4. The central shaft 5 and the fitting 6 are made of an integrally molded product or processed product of a metal or alloy such as aluminum, a titanium alloy or a stainless steel alloy, and have a required rigidity and proof strength capable of supporting the experimental equipment E on the support S under gravity. Is provided. On the other hand, the fitting bush 7 is made of a tangible soft material such as a gel-like substance such as silicone gel or a soft rubber or an elastomer molded into a predetermined shape, and abuts or fits the fitting bush 7 under a high gravity of 1 G to 2 G. It has elasticity that can elastically support the fitting 6 that comes into contact.

【0020】底壁14の全面に亘って配置されたフィッ
ティングブッシュ7は、円筒状壁体15の内周壁面に沿
って隆起し、該内周壁面に隣接する実質的に水平な円環
状隆起面70にて終端する。略截頭円錐形の側部支承面
71が、隆起面70の内周縁から底壁14に向かって延
び、円形平面形状の底部支承面72が、支承面71の底
端縁から径方向内方に延在する。支承面71、72は、
全体的にフィッティング6の外形輪郭と相補する形態を
有し、フィッティング6を受入れ可能な凹形支受手段を
形成する。制振ユニット2、3の中心軸線を中心とする
円弧状隆起部73が、底部支承面72の径方向中心領域
に形成される。隆起部73の頂部は、フィッティング6
の着座面63から所定の間隔hを隔てた位置に配置され
る。かくして、中空領域8は、円筒状壁体15、フィッ
ティング6及びフィッティングブッシュ7により実質的
に画成された流体充填帯域をハウジング12内に画成す
る。シリコンオイル等の所望の粘度を有する液体を中空
領域8内に充填する流体充填具9が、円筒状壁体15に
配設される。
The fitting bush 7, which is arranged over the entire surface of the bottom wall 14, protrudes along the inner peripheral wall surface of the cylindrical wall body 15, and has a substantially horizontal annular raised surface adjacent to the inner peripheral wall surface. Terminate at 70. A substantially frustoconical side bearing surface 71 extends from the inner periphery of the raised surface 70 toward the bottom wall 14, and a circular flat bottom bearing surface 72 extends radially inward from the bottom edge of the bearing surface 71. Extend to. The bearing surfaces 71, 72
It has a form which is generally complementary to the outer contour of the fitting 6 and forms a concave receiving means capable of receiving the fitting 6. An arc-shaped ridge 73 centered on the center axis of the vibration damping units 2 and 3 is formed in a radially central region of the bottom bearing surface 72. The top of the raised portion 73 is the fitting 6
Is arranged at a position separated by a predetermined distance h from the seating surface 63 of the second member. The hollow region 8 thus defines in the housing 12 a fluid filling zone substantially defined by the cylindrical wall 15, the fitting 6 and the fitting bush 7. A fluid filling tool 9 for filling a liquid having a desired viscosity such as silicone oil into the hollow region 8 is provided on the cylindrical wall 15.

【0021】図5に示す如く、流体充填具9の流体注入
管91は、円筒状壁体15を貫通し、中空領域8に開口
する注入口を先端部に備える。流体注入管91の外周面
に刻設された外螺子が、円筒状壁体15の注入管挿通孔
に形成された雌螺子に螺合する。流体注入管91の基端
部は、コック弁等の開閉弁装置93の第1端面に連結さ
れ、開閉弁装置93は、弁装置内の弁体を開閉操作する
回転レバー等の操作具94を備える。流体充填管92
が、開閉弁装置93の第2端面に連結され、流体充填管
92は、制振ユニット1の側方に開口する流入口を備え
る。流体充填管92は、流体充填時に、可撓性管等を介
して流体供給源に連結され、操作具94は、開閉弁装置
93の弁体を開放するように作動される。流体供給源の
流体は、流体充填管92、開閉弁装置93及び流体注入
管93の注入流路を介して、中空領域8内に注入され
る。中空領域8内の流体圧力が所望の圧力、例えば、1
気圧相当の液圧に昇圧したとき、開閉弁装置93の弁体
は、注入流路を閉塞する。
As shown in FIG. 5, the fluid injection pipe 91 of the fluid filling tool 9 has an injection port which penetrates the cylindrical wall body 15 and opens to the hollow region 8 at the distal end. An external thread engraved on the outer peripheral surface of the fluid injection pipe 91 is screwed with a female screw formed in the injection pipe insertion hole of the cylindrical wall 15. The base end of the fluid injection pipe 91 is connected to a first end face of an on-off valve device 93 such as a cock valve. The on-off valve device 93 includes an operating tool 94 such as a rotary lever for opening and closing a valve in the valve device. Prepare. Fluid filling tube 92
Is connected to the second end face of the on-off valve device 93, and the fluid filling pipe 92 has an inflow opening that opens to the side of the vibration damping unit 1. The fluid filling tube 92 is connected to a fluid supply source via a flexible tube or the like at the time of fluid filling, and the operating tool 94 is operated so as to open the valve body of the on-off valve device 93. The fluid of the fluid supply source is injected into the hollow region 8 via the fluid filling pipe 92, the on-off valve device 93, and the injection flow path of the fluid injection pipe 93. The fluid pressure in the hollow region 8 is a desired pressure, for example, 1
When the pressure is increased to the pressure equivalent to the atmospheric pressure, the valve element of the on-off valve device 93 closes the injection flow path.

【0022】中空領域8内に充填された流体を制振ユニ
ット2、3から排出する流体排出具90が、流体充填具
9と対向する位置において円筒状壁体15に配設され
る。ニップル形態の流体排出具90は、円筒状壁体15
に螺入し且つ円筒状壁体15を貫通する流出管95と、
ナット構造を備えた拡大部97と、拡大部97から制振
装置1の側方に延びる排出管96とから略構成される。
排出管96の排出口を閉塞するキャップ98が、排出管
96の外螺子部に螺着する。中空領域8内の流体の排出
時に、キャップ98は、排出管96から取外され、中空
領域8の流体は、流出管95、拡大部97及び排出管9
6の流路を介して、制振装置1外に排液される。中空領
域8に注入される流体として、例えば、シリコンオイ
ル、水、純水、超純水、フッ素系不活性液体、或いは、
粘度を適当に調整した粘性オイル等を例示し得る。中空
領域8内に充填された流体は、振動入力に対する液体粘
性の振動応答作用により、振動外乱の伝達を抑制すると
ともに、弾性膜4の動的挙動を制御する。
A fluid discharging device 90 for discharging the fluid filled in the hollow region 8 from the vibration damping units 2 and 3 is disposed on the cylindrical wall 15 at a position facing the fluid filling device 9. The nipple-shaped fluid discharger 90 is provided on the cylindrical wall 15.
An outlet pipe 95 which is screwed into the cylinder wall and penetrates the cylindrical wall body 15;
It is substantially composed of an enlarged portion 97 having a nut structure, and a discharge pipe 96 extending from the enlarged portion 97 to the side of the vibration damping device 1.
A cap 98 for closing the discharge port of the discharge pipe 96 is screwed to an external thread portion of the discharge pipe 96. Upon discharge of the fluid in the hollow area 8, the cap 98 is removed from the discharge pipe 96, and the fluid in the hollow area 8 is discharged from the discharge pipe 95, the enlarged portion 97 and the discharge pipe 9.
The liquid is drained out of the vibration damping device 1 through the flow path 6. As the fluid to be injected into the hollow region 8, for example, silicon oil, water, pure water, ultrapure water, a fluorine-based inert liquid, or
Viscous oils whose viscosity has been appropriately adjusted can be exemplified. The fluid filled in the hollow region 8 suppresses the transmission of vibration disturbance and controls the dynamic behavior of the elastic film 4 by vibrating response of the liquid viscosity to the vibration input.

【0023】このように構成された各制振ユニット2、
3は、中心軸5を介して相互連結され、両制振ユニット
2、3は、微小重力環境において、図3に示す如く、保
持部分13の端面にて所定間隔Hの相互間隔を隔てて静
止し、フィッティング6の着座面63は、隆起部73の
頂部から所定距離hの相互間隔を隔てて位置する。距離
Hは、少なくとも距離hの2倍を超える距離に設定され
る。図3に示す如く、制振装置1は、支持台Sの上面の
所定位置に位置決めされ、支持台Sに締結可能な固定ボ
ルト等の固定具F1が、下位基盤10の円形貫通孔11に
挿通される。支持台Sに対する固定具F1の締結により、
制振ユニット3は、支持台Sの上面に固定される。他
方、実験機器Eの底面に締結可能な固定ボルト等の固定
具F2が、上位基盤10の円形貫通孔11に挿通され、実
験機器Eに対して締結され、この結果、実験機器Eは、
制振装置1を介して、実質的に水平に支持台S上に支持
される。かくして、制振装置1は、支持台Sの上面と、
実験機器E等の下面との間に介装される。
Each of the vibration damping units 2 configured as described above,
The vibration damping units 3 and 3 are interconnected via a center shaft 5, and the two vibration damping units 2 and 3 stand still at a predetermined interval H at an end face of the holding portion 13 in a microgravity environment as shown in FIG. The seating surface 63 of the fitting 6 is located at a predetermined distance h from the top of the raised portion 73. The distance H is set to a distance that is at least twice the distance h. As shown in FIG. 3, the vibration damping device 1 is positioned at a predetermined position on the upper surface of the support base S, and a fixing tool F1 such as a fixing bolt that can be fastened to the support base S is inserted into the circular through hole 11 of the lower base 10. Is done. By fastening the fixture F1 to the support S,
The vibration damping unit 3 is fixed to the upper surface of the support S. On the other hand, a fixture F2 such as a fixing bolt that can be fastened to the bottom surface of the experimental device E is inserted into the circular through hole 11 of the upper base 10, and is fastened to the experimental device E. As a result, the experimental device E
It is supported on the support base S substantially horizontally via the vibration damping device 1. Thus, the vibration damping device 1 includes the upper surface of the support S,
It is interposed between the lower surface of the experimental equipment E and the like.

【0024】図7は、上記制振装置1の使用形態を例示
する斜視図である。図7に示す使用形態において、複数
(4個)の制振装置1が、実験機器Eと実験機器支持台
Sとの間に介装される。制振装置1は、実験機器Eの四
角領域に相応する支持台Sの上面の所定位置に位置決め
され、円形貫通孔11に対する固定具F1の挿通および支
持台Sに対する固定具F1の締結により、支持台Sの上面
に固定される。全体的に方形形状にて図示する実験機器
Eの底面四角領域は、制振装置1上に載置され、円形貫
通孔11に対する固定具F2の挿通および実験機器Eに対
する固定具F2の締結により、上位制振ユニット2に固定
される。この結果、実験機器Eは、制振装置1を介し
て、実質的に水平に支持台S上に支持される。
FIG. 7 is a perspective view illustrating a use form of the vibration damping device 1. 7, a plurality (four) of vibration damping devices 1 are interposed between the experimental equipment E and the experimental equipment support S. The vibration damping device 1 is positioned at a predetermined position on the upper surface of the support base S corresponding to the square region of the experimental equipment E, and is supported by inserting the fixture F1 into the circular through hole 11 and fastening the fixture F1 to the support base S. It is fixed to the upper surface of the table S. The square area on the bottom surface of the experimental equipment E illustrated in a generally square shape is placed on the vibration damping device 1, and the fixture F2 is inserted into the circular through hole 11 and the fastener F2 is fastened to the experimental equipment E. It is fixed to the upper vibration suppression unit 2. As a result, the experimental equipment E is supported on the support S substantially horizontally via the vibration damping device 1.

【0025】図8は、上記弾性膜4における変位量及び
復元力の関係を示す線図であり、図9は、上記制振装置
1の自由振動波形を示す応答線図である。また、図10
は、上記制振装置1の作動状態を示す縦断面図である。
図3および図8乃至図10を参照して、上記制振装置1
の作動について説明する。図3に示す如く、微小重力環
境下において所定距離Hを隔てた上位及び下位制振ユニ
ット2、3は、実験機器Eを支持台S上に実質的に水平
に支持する。中心軸5は、図3に示す離間位置に位置
し、上位及び下位制振ユニット2、3の各フィッティン
グ6は、フィッティングブッシュ7の隆起部73から所
定距離hを隔てて離間する。実験機器Eの荷重は、上位
制振ユニット2、3内の封入流体、弾性膜4及び中心軸
5を含む可撓性支持系を介して、支持台Sに支持され、
中心軸5の軸方向応力は、弾性膜4の面外方向応力とし
て伝達される。支持台Sに伝達された自由振動、強制振
動又は不規則振動等の振動外乱、或いは、実験機器Eを
含む振動系の自励振動は、制振ユニット2、3の弾性膜
4の振動を生起する。極めて低い弾性復元力を有する弾
性膜4は、微小振幅の振動に対して迅速に弾性変位し、
中心軸5の振動又はハウジング12の振動に応答した振
幅及び周波数の膜振動を生起し、中心軸5又はハウジン
グ12の振動を動的挙動により吸収する。従って、支持
台S及び実験機器Eの間の振動伝達経路は、各弾性膜4
の振動絶縁特性により隔絶され、支持台S及び実験機器
Eの間の振動外乱の相互伝達は、防止される。また、比
較的大きな振幅の振動外乱又は自励振動が振動系に作用
したとき、弾性膜4の弾性復元力は、指数関数的に増大
し、実験機器Eの変位量を適切な範囲内に抑制するよう
に機能する。
FIG. 8 is a diagram showing the relationship between the amount of displacement and the restoring force in the elastic film 4, and FIG. 9 is a response diagram showing the free vibration waveform of the vibration damping device 1. FIG.
FIG. 2 is a longitudinal sectional view showing an operation state of the vibration damping device 1.
3 and 8 to 10, the vibration damping device 1
The operation of will be described. As shown in FIG. 3, the upper and lower vibration damping units 2 and 3 separated by a predetermined distance H in a microgravity environment support the experimental apparatus E on a support S substantially horizontally. The center axis 5 is located at the separated position shown in FIG. 3, and the respective fittings 6 of the upper and lower vibration damping units 2 and 3 are separated from the raised portion 73 of the fitting bush 7 by a predetermined distance h. The load of the experimental equipment E is supported by the support base S via a flexible support system including the sealed fluid in the upper vibration damping units 2 and 3, the elastic film 4 and the central shaft 5,
The axial stress of the central shaft 5 is transmitted as an out-of-plane stress of the elastic film 4. Vibration disturbance such as free vibration, forced vibration, or irregular vibration transmitted to the support base S, or self-excited vibration of a vibration system including the experimental equipment E causes vibration of the elastic films 4 of the vibration damping units 2 and 3. I do. The elastic film 4 having an extremely low elastic restoring force is quickly elastically displaced with respect to vibration of a small amplitude,
A membrane vibration having an amplitude and a frequency in response to the vibration of the center shaft 5 or the housing 12 is generated, and the vibration of the center shaft 5 or the housing 12 is absorbed by dynamic behavior. Therefore, the vibration transmission path between the support base S and the experimental equipment E depends on each elastic membrane 4.
And the mutual transmission of vibration disturbances between the support S and the experimental equipment E is prevented. Further, when a vibration disturbance or a self-excited vibration having a relatively large amplitude acts on the vibration system, the elastic restoring force of the elastic film 4 increases exponentially, and the displacement of the experimental equipment E is suppressed to an appropriate range. To work.

【0026】弾性膜4の面外方向変位量及び弾性復元力
の性状は、図8に示す如く、非線型性に設定され、弾性
膜4は、面外方向の変位量が比較的微小な領域において
相対的に小さい復元力を生起する軟性バネとして機能
し、他方、変位量が比較的増大した領域において相対的
に大きな復元力を生起する硬性バネとして機能する。図
8には、弾性膜4が1kg/mm2 、3kg/mm2 及び5kg/
mm2 の等価弾性係数E(Eeq)を有する事例に関し、
変位量及び復元力の関数が例示されている。なお、制振
ユニット2、3内の液室(中空領域8)に充填された液
体の容積変化に伴って、制振ユニット2、3の内圧変動
が生じることから、図8に示す等価弾性係数Eは、かか
る内圧変動に起因する復元力の影響又は効果を反映した
結果として設定し得る弾性膜4の面内伸縮方向の等価な
弾性係数であり、これは、殊に封入流体に接触した弾性
膜4の弾性係数を指示する指標として採用したものであ
る。かかる弾性膜4の等価弾性係数は、実験装置E等の
被支持体の質量及び制振装置1の好適な応答周波数特性
等に従って適当に設定し得る。本例の弾性膜4として、
好適には、1乃至15kg/mm2 程度の等価弾性係数、更
に好適には、3乃至10kg/mm2 程度の等価弾性係数を
有するものを選定することができる。微小重力環境下の
弾性膜4は、実験機器Eを極めて小さい復元力にて支持
する可撓性支持系を構成し、支持台Sを介して実験機器
Eに伝達し得る入力(外乱振動)を絶縁し、実験機器E
を実質的且つ安定的に静止状態に保持する。また、弾性
膜4の面外変形は、流体収容領域8内の流体圧力の変動
を生じさせるとともに、弾性膜4の局所的膨張及び局所
的収縮により弾性膜4の引張応力を増大させる。かかる
引張応力は、弾性膜4の面外方向の復元力として作用
し、この結果、弾性膜4の弾性復元力は、図8に示す如
く、比較的急激に増大する。従って、微小重力環境下に
おいて、比較的大きな振幅の振動外乱が支持台Sに伝達
したとき、弾性膜4は、図8に示す如く、膜部材構成面
の面外変形に伴って比較的急激に復元力を増大せしめ、
振動外乱の振幅に相応した比較的大きな弾性復元力によ
り、実験機器Eの変位量を適正な範囲内の値に規制する
とともに、振動外乱を制振する。
The properties of the amount of displacement of the elastic film 4 in the out-of-plane direction and the elastic restoring force are set to be non-linear as shown in FIG. 8, and the elastic film 4 has a relatively small amount of displacement in the out-of-plane direction. At the same time, it functions as a soft spring that generates a relatively small restoring force, and on the other hand, functions as a hard spring that generates a relatively large restoring force in a region where the displacement amount is relatively increased. FIG. 8 shows that the elastic film 4 is 1 kg / mm 2 , 3 kg / mm 2 and 5 kg / mm 2.
For a case with an equivalent elastic modulus E (Eeq) of mm 2 ,
The functions of the displacement and the restoring force are illustrated. Since the internal pressure of the vibration damping units 2 and 3 fluctuates with the change in the volume of the liquid filled in the liquid chambers (hollow regions 8) in the vibration damping units 2 and 3, the equivalent elastic modulus shown in FIG. E is an equivalent elastic coefficient in the in-plane expansion and contraction direction of the elastic film 4 that can be set as a result of reflecting the effect or effect of the restoring force due to the internal pressure fluctuation. This is adopted as an index for indicating the elastic coefficient of the film 4. The equivalent elastic modulus of the elastic film 4 can be appropriately set in accordance with the mass of the supported body such as the experimental device E and the suitable response frequency characteristics of the vibration damping device 1. As the elastic film 4 of the present example,
Preferably, a material having an equivalent elastic modulus of about 1 to 15 kg / mm 2 , more preferably about 3 to 10 kg / mm 2 can be selected. The elastic film 4 under the microgravity environment forms a flexible support system that supports the experimental equipment E with an extremely small restoring force, and inputs (disturbance vibration) that can be transmitted to the experimental equipment E via the support base S. Insulated and laboratory equipment E
Is held substantially and stably at rest. Further, the out-of-plane deformation of the elastic film 4 causes a change in the fluid pressure in the fluid accommodating region 8 and increases the tensile stress of the elastic film 4 due to local expansion and local contraction of the elastic film 4. The tensile stress acts as an out-of-plane restoring force of the elastic film 4, and as a result, the elastic restoring force of the elastic film 4 increases relatively sharply as shown in FIG. Accordingly, when a vibration disturbance having a relatively large amplitude is transmitted to the support base S in a microgravity environment, the elastic film 4 relatively sharply accompanies the out-of-plane deformation of the film member constituting surface as shown in FIG. Increase resilience,
A relatively large elastic restoring force corresponding to the amplitude of the vibration disturbance regulates the displacement of the experimental equipment E to a value within an appropriate range and suppresses the vibration disturbance.

【0027】他方、重力環境下において、実験機器Eの
荷重により上位制振ユニット2および中心軸5は、全体
的に下方に変位し、上位及び下位制振ユニット2、3の
各フィッティング6は、図10に示す如く、フィッティ
ングブッシュ7の凹形支受部(支承面71、72及び隆
起部73)に着座する。隆起部73は、弾力的にフィッ
ティング6の着座面63に衝合ないし当接し、実験機器
Eの荷重により偏平化し、側部支承面71は、フィッテ
ィング6の縮小傾斜面66に衝合ないし当接する。この
結果、上位及び下位制振ユニット2、3は、距離Hsを
隔てた位置にて静止する。かかるフィッティング6及び
フィッティングブッシュ7の相対変位に伴って、フィッ
ティング6とブッシュ7との間に介在する流体は、フィ
ッティング6の周囲間隙及び貫通孔62を介して、フィ
ッティング6と弾性膜4との間の領域に流出する。弾性
膜4は、流体収容領域8の容積変化を補償すべく、図1
0に示す如く、大きく弾性変形する。かくしてフィッテ
ィング6がブッシュ7に着座した直結位置の制振装置1
は、フィッティング6及びブッシュ7を介して中心軸5
の鉛直方向の応力を直接的に支持台Sに伝達し、実質的
に弾性膜4を介することなく、実験機器Eの荷重を比較
的高強度に支持する。また、適当なフィッティングブッ
シュ7の柔軟性により、実験機器Eの振動系に対する振
動外乱は、適切に制振される。
On the other hand, under the gravitational environment, the upper vibration damping unit 2 and the central shaft 5 are displaced downward as a whole by the load of the experimental equipment E, and the respective fittings 6 of the upper vibration damping unit 2 and the lower vibration damping unit 3 are As shown in FIG. 10, the fitting bush 7 is seated on the concave support portions (the support surfaces 71, 72 and the raised portion 73). The raised portion 73 elastically abuts or abuts on the seating surface 63 of the fitting 6 and is flattened by the load of the experimental equipment E, and the side bearing surface 71 abuts or abuts on the reduced inclined surface 66 of the fitting 6. . As a result, the upper and lower vibration damping units 2 and 3 stop at a position separated by the distance Hs. With the relative displacement of the fitting 6 and the fitting bush 7, the fluid interposed between the fitting 6 and the bush 7 causes the fluid between the fitting 6 and the elastic membrane 4 to pass through the gap around the fitting 6 and the through hole 62. Out into the area. The elastic membrane 4 is used to compensate for a change in volume of the fluid containing area 8 as shown in FIG.
As shown in FIG. Thus, the vibration damping device 1 in the directly connected position where the fitting 6 is seated on the bush 7.
Is connected to the central shaft 5 via the fitting 6 and the bush 7.
The stress in the vertical direction is transmitted directly to the support table S, and the load of the experimental equipment E is supported with relatively high strength substantially without the intervention of the elastic film 4. Further, due to the flexibility of the appropriate fitting bush 7, vibration disturbance to the vibration system of the experimental equipment E is appropriately damped.

【0028】図9には、離間位置(図3)における弾性
膜4の位置を変位量の原点(Omm)とした制振装置1の
自由振動波形が、例示されている。上下の制振ユニット
2、3を約1cmだけ強制的に相互接近させ、制振ユニッ
ト2、3を解放した結果、制振装置1の自由振動は、約
2秒間程度の時間内に実質的に減衰した。従って、地上
等の高重力環境から低重力環境に環境変化するとき、制
振装置1は、直結位置(図10)から離間位置(図3)
に変位するが、かかる変位により制振装置1に作用する
振動は、流体収容領域8内の流体の粘性に起因する粘性
減衰により、早期に収束する。
FIG. 9 exemplifies a free vibration waveform of the vibration damping device 1 in which the position of the elastic film 4 at the separated position (FIG. 3) is the origin (Omm) of the displacement amount. As a result of forcibly bringing the upper and lower vibration damping units 2 and 3 close to each other by about 1 cm and releasing the vibration damping units 2 and 3, the free vibration of the vibration damping device 1 is substantially reduced within about 2 seconds. Attenuated. Therefore, when the environment changes from a high-gravity environment such as the ground to a low-gravity environment, the vibration damping device 1 moves from the direct connection position (FIG. 10) to the separation position (FIG. 3).
However, the vibration acting on the vibration damping device 1 due to the displacement quickly converges due to the viscous damping caused by the viscosity of the fluid in the fluid storage area 8.

【0029】以上説明した如く、上記受動型形式の制振
装置1は、液体を収容可能なハウジング12を備えた上
位制振ユニット2及び下位制振ユニット3と、所定間隔
を隔てた上位及び下位制振ユニット2、3を相互連結す
る中心軸5とから構成される。上位及び下位制振ユニッ
ト2、3は夫々、可撓性材料からなる弾性膜4を有し、
弾性膜4は、ハウジング12内に形成された液体密封領
域8を閉塞する。中心軸5の両端部分は、フィッティン
グ6に対する縮径部51の締結により、弾性膜4の中央
領域と一体的に変位可能に弾性膜4に連結され、弾性膜
4は、中心軸5の軸部50を介して伝達される振動外乱
に対して、面外方向の応答振動を生起する。かかる制振
装置1の構成によれば、振動系に作用する振動外乱は、
流体収容領域8内に封入された流体の粘性による振動応
答作用および弾性膜4の弾性変位による振動応答作用に
より、減衰する。また、弾性膜4は、過渡的に軸部材5
を介して弾性膜4に入力される過大な振幅の振動入力に
対して、弾性膜4の面外変形に従って比較的急激に増大
する弾性膜4の弾性復元力により、弾性膜4に作用する
内部応力の増大に抗するとともに、弾性膜4の面外剛性
により軸部材5の振動の増幅を阻止する。更に、軸部材
4の縮径部51は、弾性膜4を貫通して流体収容領域8
内に延入する。縮系部51に締結されるフィッティング
6は、軸部材5及び弾性膜4と一体的に変位可能な着座
面63及び縮小傾斜面66を備える。流体収容領域8に
は、フィッティングブッシュ7が配設され、フィッティ
ングブッシュ7は、流体収容領域8の底壁14に配設さ
れた弾性材料により形成される。フィッティング6の着
座面63及び縮小傾斜面66は、フィッティングブッシ
ュ7の側部支承面71及び円弧状隆起部73に対して弾
力的に着座し得る。
As described above, the passive type vibration damping device 1 includes the upper vibration damping unit 2 and the lower vibration damping unit 3 having the housing 12 capable of storing the liquid, and the upper vibration damping unit and the lower vibration damping unit 3 separated by a predetermined distance. And a center shaft 5 interconnecting the vibration damping units 2 and 3. The upper and lower vibration damping units 2 and 3 each have an elastic film 4 made of a flexible material,
The elastic membrane 4 closes the liquid sealing area 8 formed in the housing 12. Both ends of the central shaft 5 are connected to the elastic film 4 so as to be integrally displaceable with the central region of the elastic film 4 by fastening the reduced diameter portion 51 to the fitting 6. An out-of-plane response vibration is generated in response to a vibration disturbance transmitted through the actuator 50. According to the configuration of the vibration damping device 1, the vibration disturbance acting on the vibration system is:
The vibration is attenuated by the vibration response effect of the viscosity of the fluid sealed in the fluid storage area 8 and the vibration response effect of the elastic displacement of the elastic film 4. In addition, the elastic film 4 transiently moves the shaft member 5.
The internal force acting on the elastic film 4 due to the elastic restoring force of the elastic film 4 which increases relatively rapidly according to the out-of-plane deformation of the elastic film 4 in response to an excessive vibration input inputted to the elastic film 4 via While resisting an increase in stress, the out-of-plane rigidity of the elastic film 4 prevents amplification of the vibration of the shaft member 5. Further, the reduced diameter portion 51 of the shaft member 4 penetrates the elastic membrane 4 and
Reach inside. The fitting 6 fastened to the compression system portion 51 includes a seating surface 63 and a reduced inclined surface 66 that can be displaced integrally with the shaft member 5 and the elastic film 4. A fitting bush 7 is provided in the fluid containing area 8, and the fitting bush 7 is formed of an elastic material provided on the bottom wall 14 of the fluid containing area 8. The seating surface 63 and the reduced inclined surface 66 of the fitting 6 can elastically seat on the side bearing surface 71 and the arc-shaped ridge 73 of the fitting bush 7.

【0030】実験機器支持台S、実験機器E及び制振装
置1を含む振動系は、大幅な重力変動を伴う環境下に配
置される。所定間隔を隔てた各制振ユニット2、3の弾
性膜4は、軸部材5の中心軸線に対して直交する構成面
を有し、軸部材5は、上下の弾性膜4を応力伝達可能に
相互連結する。実験機器Eは、膜部材4及び軸部材5
と、膜部材の構成面に全体的に接する流体収容領域8内
の封入流体とを介して、実験機器支持台S上に載置され
る。弾性膜4は、地上等の高重力環境において、封入流
体の圧力下に弾性変形し、フィッティング6は、フィッ
ティングブッシュ7上に着座し、軸部材5は、フィッテ
ィング6及びフィッティングブッシュ7を介して、軸部
50、実験機器E及び支持台Sを直接的に応力伝達可能
に相互連結し、かかる直結位置において、実験機器Eを
実質的に軸部50の支持力ないし耐力により支持台S上
に支持する。
The vibration system including the experimental equipment support S, the experimental equipment E, and the vibration damping device 1 is arranged in an environment accompanied by a large change in gravity. The elastic films 4 of the respective vibration damping units 2 and 3 separated by a predetermined distance have a component surface orthogonal to the center axis of the shaft member 5, and the shaft member 5 enables the upper and lower elastic films 4 to transmit stress. Interconnect. The experimental equipment E includes a membrane member 4 and a shaft member 5
And the sealed fluid in the fluid storage area 8 that is entirely in contact with the constituent surface of the membrane member. The elastic film 4 elastically deforms under the pressure of the sealed fluid in a high gravity environment such as on the ground, the fitting 6 is seated on the fitting bush 7, and the shaft member 5 is connected via the fitting 6 and the fitting bush 7. The shaft unit 50, the experimental equipment E, and the support S are interconnected so as to directly transmit stress, and in such a directly connected position, the experimental equipment E is supported on the support S by substantially the supporting force or strength of the shaft 50. I do.

【0031】周囲環境が微小重力環境に変化するとき、
フィッティング6は、弾性膜4の弾性復元力により、フ
ィッティングブッシュ7から離間し、軸部材5は、軸部
50、実験機器E及び支持台Sの直接的な応力伝達経路
を解放する。フィッティング6がブッシュ7から離座す
る際に、フィッティング6と弾性膜4との間の領域の流
体は、貫通孔62を介して、着座面63と円弧状隆起部
73との間に流出し、フィッティング6は、迅速に離座
し、弾性膜4は、平坦位置に円滑に復元する。このよう
な離間位置において、制振装置1は、弾性膜4及び封入
流体を介して、実験機器E及び支持台Sを応力伝達可能
に相互連結するとともに、実験機器Eを実質的に弾性膜
4及び封入流体により、支持台S上に支持する。宇宙環
境等の微小重力環境において、実験機器Eは、弾性膜4
の面外剛性により実験機器支持台S上に支持され、実験
機器Eと支持台Sとの間に伝達される振動は、弾性膜4
及び封入流体の振動応答特性により減衰する。
When the surrounding environment changes to a microgravity environment,
The fitting 6 is separated from the fitting bush 7 by the elastic restoring force of the elastic film 4, and the shaft member 5 releases a direct stress transmission path of the shaft portion 50, the experimental equipment E, and the support S. When the fitting 6 separates from the bush 7, the fluid in the region between the fitting 6 and the elastic membrane 4 flows between the seating surface 63 and the arc-shaped ridge 73 through the through hole 62, The fitting 6 quickly detaches, and the elastic membrane 4 smoothly returns to the flat position. In such a separated position, the vibration damping device 1 interconnects the experimental equipment E and the support base S via the elastic membrane 4 and the sealed fluid so that stress can be transmitted, and substantially connects the experimental equipment E to the elastic membrane 4. And it is supported on the support base S by the enclosed fluid. In a microgravity environment such as a space environment, the experimental equipment E is provided with an elastic film 4
The vibration transmitted between the experimental equipment E and the support S is supported on the experimental equipment support S by the out-of-plane rigidity of the elastic film 4.
And damping due to the vibration response characteristics of the enclosed fluid.

【0032】図11(A)は、本発明の第2実施例に係
る制振装置の全体構造および該制振装置のオリフィス構
造を示す縦断面図である。なお、図11に示す制振装置
において、上記第1実施例の制振装置の構成要素又は構
成部材と実質的に同一の構成要素又は構成部材について
は、同一の参照符号が付されている。図11(A)に示
す如く、本例の制振装置1は、上記第1実施例の制振装
置と実質的に同一の構造を備えた上下の制振ユニット
2、3を備える。しかしながら、ハウジング12の中空
領域8は、流体連通装置100を介して制振装置1の外
界雰囲気と相互連通する。流体連通装置100は、円筒
状壁体15を貫通する第1流体連通管101を備える。
連通管101は、中空領域8に開口する通気口を先端部
に備える。連通管101の外周面の外螺子が、円筒状壁
体15の貫通孔に形成された雌螺子と螺合し、連通管1
01は、円筒状壁体15に気密係合する。
FIG. 11A is a longitudinal sectional view showing the entire structure of a vibration damping device according to a second embodiment of the present invention and the orifice structure of the vibration damping device. In the vibration damping device shown in FIG. 11, components or components substantially the same as those of the vibration damping device of the first embodiment are denoted by the same reference numerals. As shown in FIG. 11A, the vibration damping device 1 of this example includes upper and lower vibration damping units 2 and 3 having substantially the same structure as the vibration damping device of the first embodiment. However, the hollow region 8 of the housing 12 communicates with the outside atmosphere of the vibration damping device 1 via the fluid communication device 100. The fluid communication device 100 includes a first fluid communication pipe 101 penetrating the cylindrical wall body 15.
The communication pipe 101 has a vent at the distal end that opens into the hollow region 8. An outer screw on the outer peripheral surface of the communication pipe 101 is screwed with a female screw formed in a through-hole of the cylindrical wall body 15, and the communication pipe 1 is formed.
01 airtightly engages the cylindrical wall 15.

【0033】連通管101は、開口率を可変制御可能な
絞り弁装置103を介して外界開放管102に連結され
る。連通管101及び開放管102の各管路は、弁体1
06及び弁座にて画成される絞り弁装置103の弁開口
部を介して相互連通し、弁体106は、弁開閉操作機構
104の回転位置に相応して、弁開口部の開口面積ない
し流路面積を可変設定する。かくして、絞り弁装置10
3にて流体連通を任意に可変制御し得る連通流路105
が、中空領域8と外界雰囲気との間に形成される。図7
に示す如く実験機器支持台S及び実験機器Eの間に介装
された制振装置1は、支持台S及び機器Eに作用する各
種の振動外乱又は自励振動に応答して、制振ユニット
2、3の各弾性膜4を振動させる。微小重力環境下に作
用する微小振幅の振動に対し、弾性膜4は、迅速に弾性
変位し、中心軸5の振動又はハウジング12の振動に応
答した振幅及び周波数の膜振動が生起する。弾性膜4の
弾性変位に伴って生じる中空領域8の容積変動に相応し
て、中空領域8内の気体又はガスは、連通流路105か
ら外界に流出し、外界雰囲気は、連通流路105を介し
て中空領域8内に流入する。
The communication pipe 101 is connected to an open-air pipe 102 via a throttle valve device 103 whose opening ratio can be variably controlled. Each of the communication pipe 101 and the open pipe 102 is connected to the valve element 1.
06 and the valve seat of the throttle valve device 103 defined by the valve seat, the valve body 106 is connected to the valve opening / closing operation mechanism 104 in accordance with the rotational position of the valve opening / closing operation. The flow area is variably set. Thus, the throttle valve device 10
3. Communication channel 105 that can variably control fluid communication at 3
Are formed between the hollow region 8 and the outside atmosphere. FIG.
The vibration damping device 1 interposed between the experimental equipment support base S and the experimental equipment E as shown in FIG. 1 responds to various vibration disturbances or self-excited vibrations acting on the support base S and the equipment E. A few elastic films 4 are vibrated. The elastic film 4 is quickly elastically displaced in response to a vibration of a small amplitude acting in a microgravity environment, and a film vibration of an amplitude and a frequency in response to the vibration of the center shaft 5 or the vibration of the housing 12 is generated. In response to the volume change of the hollow region 8 caused by the elastic displacement of the elastic film 4, the gas or gas in the hollow region 8 flows out from the communication channel 105 to the outside, and the external atmosphere passes through the communication channel 105. Flows into the hollow region 8 via

【0034】流体連通装置100を構成する絞り弁装置
103の開度は、予め実施される各種の実験又は試験デ
ータに基づき、適切な振動減衰効果を発揮し得る適当な
開度に任意に設定される。弁体106によって流路面積
を制限された絞り弁装置103の弁開口部は、中空領域
8及び装置外領域(外界雰囲気)の間を流通する流体流
を規制し、局所的な流通抵抗を流体流に付与するオリフ
ィスとして機能する。かかるオリフィスを通過する気体
流又はガス流には、気体摩擦に伴う摩擦抵抗が働き、該
摩擦抵抗は、中空領域8の気体振動の減衰力として作用
する。かくして、絞り弁装置103を介して吸・排気さ
れる中空領域8内の流体は、弁開口部に形成されるオリ
フィスを流通する際に、気体摩擦によるエネルギー減衰
作用を受け、この結果、連通流路105を介して制振装
置1に流入・流出する流体の振動エネルギー又は脈動エ
ネルギーは、オリフィスの振動減衰効果により減衰す
る。かかるエネルギー減衰作用は、振動減衰力として弾
性膜4に作用し、弾性膜4の振動を制振し、従って、支
持台S及び実験機器Eの間に伝達し得る振動は、振動膜
4の応答振動の低減及び振幅の収束に伴って減衰する。
The opening of the throttle valve device 103 constituting the fluid communication device 100 is arbitrarily set to an appropriate opening capable of exhibiting an appropriate vibration damping effect based on various experiments or test data conducted in advance. You. The valve opening of the throttle device 103 whose flow path area is restricted by the valve body 106 regulates the fluid flow flowing between the hollow region 8 and the external region (outside atmosphere), and reduces the local flow resistance. It functions as an orifice for the flow. The gas flow or gas flow passing through the orifice is subjected to frictional resistance due to gas friction, and the frictional resistance acts as a damping force for gas vibration in the hollow region 8. Thus, when the fluid in the hollow region 8 sucked and exhausted through the throttle valve device 103 flows through the orifice formed in the valve opening, the fluid undergoes an energy damping effect due to gas friction, and as a result, the communication flow The vibration energy or pulsation energy of the fluid flowing into and out of the vibration damping device 1 through the passage 105 is attenuated by the vibration damping effect of the orifice. Such an energy damping action acts on the elastic membrane 4 as a vibration damping force, damping the vibration of the elastic membrane 4, and therefore, the vibration that can be transmitted between the support S and the experimental equipment E is a response of the vibration membrane 4. Attenuates as the vibration decreases and the amplitude converges.

【0035】なお、本実施例において、弾性膜4の材
質、物性及び機能、弾性膜4自体の振動減衰作用、或い
は、制振装置1を構成する他の構成要素又は構成部材の
構造及び機能、更には、地上等の高重力環境下において
直結位置に変位した制振装置1の作動形態等は、上記第
1実施例において説明したものと実質的に同一であるの
で、更なる詳細な説明は省略する。
In this embodiment, the material, physical properties and function of the elastic film 4, the vibration damping action of the elastic film 4 itself, or the structure and function of other components or components constituting the vibration damping device 1, Further, the operation mode and the like of the vibration damping device 1 displaced to the direct connection position under a high gravity environment such as on the ground are substantially the same as those described in the first embodiment, and thus a further detailed description will be made. Omitted.

【0036】図11(B)、(C)及び(D)は、上記
オリフィスの各種形態を例示するオリフィス構造の概略
断面図である。制振装置1のオリフィスは、上記絞り弁
装置103の如く開口率又は開度を可変設定可能な可変
オリフィスとして構成し得るばかりでなく、予め所定の
開口率に設定された固定オリフィスとしても形成するこ
とができる。連通流路105に配設可能なオリフィス1
07の各種構造が、図11(B)、(C)及び(D)に
例示されている。オリフィス107の構造及び形態とし
て、連通流路105の内方に突出する各種断面性状、例
えば、方形突出部(図11(B))、三角形状の突起
(図11(C))又は半円形隆起部(図11(D))等
の各種の構造及び形態のものを採用し得る。
FIGS. 11B, 11C and 11D are schematic sectional views of an orifice structure illustrating various forms of the orifice. The orifice of the vibration damping device 1 can be formed not only as a variable orifice whose opening ratio or opening can be variably set as in the throttle valve device 103, but also as a fixed orifice set to a predetermined opening ratio in advance. be able to. Orifice 1 that can be arranged in communication channel 105
07 are illustrated in FIGS. 11B, 11C, and 11D. As the structure and form of the orifice 107, various cross-sectional characteristics protruding inward of the communication flow path 105, for example, a rectangular protrusion (FIG. 11B), a triangular protrusion (FIG. 11C), or a semicircular protrusion Various structures and forms such as a part (FIG. 11D) can be adopted.

【0037】図12は、流体連通装置の変形例を示す制
振装置1の斜視図及び部分拡大断面図である。図12
(A)に示す制振装置1は、所定内径の流路112を備
えたボルト形態又は螺子形態の流体連通装置110を備
える。図12(B)に示す如く、流体連通装置110
は、比較的大径のヘッド部111と、比較的小径のシャ
ンク部113とを備える。外螺子を備えたシャンク部1
13は、ハウジング12の円筒状壁体15を貫通し、壁
体15に気密に螺子係合する。流体連通装置110の中
心軸線位置に配置された流路112は、ヘッド部111
及びシャンク部113を貫通し、中空領域8と外界雰囲
気とを相互連通する。
FIG. 12 is a perspective view and a partially enlarged sectional view of a vibration damping device 1 showing a modification of the fluid communication device. FIG.
The vibration damping device 1 shown in (A) includes a bolt-shaped or screw-shaped fluid communication device 110 having a flow path 112 having a predetermined inner diameter. As shown in FIG. 12B, the fluid communication device 110
Includes a head portion 111 having a relatively large diameter and a shank portion 113 having a relatively small diameter. Shank part 1 with external thread
The reference numeral 13 penetrates the cylindrical wall 15 of the housing 12 and hermetically screw-engages the wall 15. The flow channel 112 arranged at the center axis position of the fluid communication device 110
The hollow region 8 and the outside atmosphere are communicated with each other through the shank portion 113.

【0038】使用において、異なる直径の流路112を
備えた複数の流体連通装置110が予め用意される。例
えば、図12(C)に示す第1流体連通装置110は、
比較的大きな直径を有する流路112を備え、図12
(D)に示す第2流体連通装置110は、比較的小さい
直径の流路112を備える。第1及び第2流体連通装置
110は、中空領域8が保有する気体又はガスの種類及
び条件、更には、外界雰囲気の環境条件等に相応して適
当に選択され、円筒状壁15の挿通孔(螺子孔)に交換
可能に螺入される。全長に亘って実質的に同一の内径を
有する流路112は、全体としてオリフィスを構成す
る。流路112の全長及び径の適当な設定により、流体
連通装置110を通過する気体又はガスが受ける流体摩
擦の作用は規制され、これにより、制振装置1の振動減
衰作用は、適切に制御される。流体連通装置110の交
換により、制振装置1の振動減衰効果は、可変設定さ
れ、使用目的に適した適当な振動減衰効果を発揮する。
In use, a plurality of fluid communication devices 110 having channels 112 of different diameters are prepared in advance. For example, the first fluid communication device 110 shown in FIG.
With a channel 112 having a relatively large diameter, FIG.
The second fluid communication device 110 shown in (D) includes a channel 112 having a relatively small diameter. The first and second fluid communication devices 110 are appropriately selected according to the type and conditions of the gas or gas held in the hollow region 8 and the environmental conditions of the external atmosphere. (Screw hole) so as to be exchangeable. Channels 112 having substantially the same inner diameter over their entire length constitute an orifice as a whole. By appropriately setting the total length and the diameter of the flow path 112, the action of the gas passing through the fluid communication device 110 or the fluid friction acting on the gas is regulated, whereby the vibration damping action of the vibration damping device 1 is appropriately controlled. You. By exchanging the fluid communication device 110, the vibration damping effect of the vibration damping device 1 is variably set, and exhibits an appropriate vibration damping effect suitable for the intended use.

【0039】図13及び図14は、上記制振装置1の更
なる変形例を示す制振装置1の斜視図である。制振装置
1の中空領域8内に保有すべき気体又はガスとして、大
気又は清浄空気を一般に例示することができる。しかし
ながら、中空領域8内に装填すべき流体として、使用目
的に応じた各種の特殊ガスを適宜採用し得る。例えば、
ガスの不燃性を重視し、窒素ガス、炭酸ガス又はアルゴ
ンガス等の不活性ガスを中空領域8内に装填することが
できる。図13及び図14に示す制振装置1は、この種
の特定ガスを制振装置1に充填し且つ保有すべく、流体
管路121を備える。流体管路121の上流端部分は、
適当なガス源(図示せず)に接続され(図13)、或い
は、ガスを充填したアキュムレータ又は調圧タンク12
2に接続される(図14)。
FIGS. 13 and 14 are perspective views of the vibration damping device 1 showing a further modified example of the vibration damping device 1. FIG. As the gas or gas to be held in the hollow region 8 of the vibration damping device 1, air or clean air can be generally exemplified. However, as the fluid to be charged into the hollow region 8, various special gases depending on the purpose of use can be appropriately used. For example,
An inert gas such as a nitrogen gas, a carbon dioxide gas, or an argon gas can be loaded into the hollow region 8 with an emphasis on the noncombustibility of the gas. The vibration damping device 1 shown in FIG. 13 and FIG. 14 is provided with a fluid conduit 121 for filling and holding such a specific gas in the vibration damping device 1. The upstream end portion of the fluid conduit 121 is
Connected to a suitable gas source (not shown) (FIG. 13), or a gas filled accumulator or pressure regulating tank 12
2 (FIG. 14).

【0040】流体管路121の下流端は、管路連結部1
20を介してハウジング12の円筒状壁15に接続され
る。適当な内径を有する管路連結部120は、円筒状壁
15を貫通し、中空領域8と流体管路121とを相互連
通せしめる。比較的小径の管路連結部120及び流体管
路121を介して中空領域8から流出し又は中空領域8
内に流入する不活性ガス等は、管路120、121の管
内流路抵抗による減衰力を受け、中空領域8の気体振動
および弾性膜4の膜振動を制振する。なお、管路連結部
120は、所望により、図11(B)(C)(D)に示
す如く流路内方に突出した適当な縮径手段を備える。
The downstream end of the fluid line 121 is connected to the line connecting portion 1.
It is connected to the cylindrical wall 15 of the housing 12 via 20. A conduit connection 120 having a suitable inner diameter penetrates the cylindrical wall 15 and interconnects the hollow region 8 and the fluid conduit 121. It flows out of the hollow region 8 through the relatively small-diameter conduit connection portion 120 and the fluid conduit 121 or
The inert gas or the like flowing into the inside receives the damping force due to the resistance of the flow paths in the pipes 120 and 121, and suppresses the gas vibration of the hollow region 8 and the film vibration of the elastic film 4. In addition, the pipe connection part 120 is provided with a suitable diameter reducing means which protrudes inward as shown in FIGS. 11 (B), (C) and (D), if desired.

【0041】以上説明した如く、上記第2実施例に係る
制振装置1においては、制振装置1は、気体又はガスを
中空領域8に保有し、中空領域8は、オリフィスとして
機能する弁装置、縮径部分又は小径管路等を介して外界
雰囲気又はガス源等と相互連通する。制振装置1は、中
心軸5の軸部50を介して伝達される振動外乱に対し
て、面外方向の弾性膜4の応答振動を生起し、弾性膜4
の弾性変位による振動応答作用により、振動を減衰させ
るばかりでなく、オリフィスを介して吸排制御される中
空領域8の気体又はガスの気体摩擦により、振動減衰力
を受け、かかる振動減衰力は、弾性膜4の振動を減衰さ
せる。制振装置1は又、過大な振幅の振動入力に対し
て、弾性膜4の面外変形に従って比較的急激に増大する
弾性膜4の弾性復元力および上記オリフィスの流体流通
抵抗により、弾性膜4に作用する内部応力の増大に抗す
るとともに、弾性膜4の面外剛性及びオリフィス通過流
体のダンピング作用により中心軸5の振動の増幅を阻止
する。
As described above, in the vibration damping device 1 according to the second embodiment, the vibration damping device 1 holds gas or gas in the hollow region 8, and the hollow region 8 is a valve device that functions as an orifice. , And communicate with the outside atmosphere or a gas source through a reduced diameter portion or a small diameter pipeline. The vibration damping device 1 generates a response vibration of the elastic film 4 in an out-of-plane direction with respect to a vibration disturbance transmitted through the shaft portion 50 of the center shaft 5, and
Not only attenuates the vibration by the vibration response action due to the elastic displacement of the gas, but also receives the vibration damping force by the gas or the gas friction of the gas in the hollow area 8 controlled to be sucked and discharged through the orifice. The vibration of the membrane 4 is damped. The vibration damping device 1 also has an elastic restoring force of the elastic film 4 which increases relatively rapidly according to the out-of-plane deformation of the elastic film 4 and a fluid flow resistance of the orifice with respect to a vibration input having an excessive amplitude. In addition to preventing the internal stress acting on the central shaft 5 from increasing, the vibration of the central shaft 5 is prevented from being amplified by the out-of-plane rigidity of the elastic film 4 and the damping action of the fluid passing through the orifice.

【0042】なお、本発明は上記実施例に限定されるも
のではなく、特許請求の範囲に記載された本発明の範囲
内で種々の変形又は変更が可能であり、該変形例又は変
更例も又、本発明の範囲内に含まれるものであること
は、いうまでもない。例えば、上記弾性膜4は、円形又
は円盤形の形態に限定されるものではなく、楕円形、方
形、三角形、四角形又は多角形等の各種形態に弾性膜4
を形成することも可能である。また、上記中心軸5及び
ハウジング12の形状又は外形輪郭は、円柱形又は円筒
形に限定されるものではなく、中心軸5及びハウジング
12の形態として、例えば、角柱形又は角筒形等の各種
形態を採用し得る。更に、上記中心軸5を中空形状又は
二重管構造に形成しても良い。
It should be noted that the present invention is not limited to the above embodiment, and various modifications or changes can be made within the scope of the present invention described in the appended claims. Needless to say, they are included in the scope of the present invention. For example, the elastic film 4 is not limited to a circular or disk shape, but may be formed into various shapes such as an ellipse, a square, a triangle, a quadrangle, or a polygon.
It is also possible to form Further, the shapes or outer contours of the central shaft 5 and the housing 12 are not limited to a columnar shape or a cylindrical shape. A form may be employed. Further, the center shaft 5 may be formed in a hollow shape or a double tube structure.

【0043】更に、上位及び下位制振ユニット2、3の
各中空領域8を相互連通させるバイパス管路を流体圧力
調整手段として上記制振装置1に配設し、或いは、中空
領域8内の流体圧力を調整可能なアキュムレータ又は付
加的膜部材を上記制振装置1に更に配設することも可能
である。また、中空領域8と外界雰囲気とを相互連通さ
せる複数の上記流体連通装置100、110をハウジン
グ12に配設しても良い。更に、流体連通装置100、
110を構成する絞り弁の構造形式として、例えば、バ
タフライ弁構造、仕切弁構造又は調整弁構造等の各種弁
構造を適当に採用することができる。
Further, a bypass pipe for interconnecting the hollow regions 8 of the upper and lower vibration damping units 2 and 3 is provided in the vibration damping device 1 as a fluid pressure adjusting means, or a fluid in the hollow region 8 is provided. It is also possible to provide an accumulator or an additional membrane member with adjustable pressure on the vibration damping device 1. Further, a plurality of the fluid communication devices 100 and 110 that allow the hollow region 8 to communicate with the outside atmosphere may be provided in the housing 12. Further, the fluid communication device 100,
Various types of valve structures, such as a butterfly valve structure, a gate valve structure, or a regulating valve structure, can be appropriately adopted as the structure type of the throttle valve constituting 110.

【0044】[0044]

【発明の効果】本発明の上記構成によれば、安定した振
動外乱に対して柔軟な可撓性支持を維持し、振動入力の
伝達を有効に絶縁し得るととともに、振動系に対して過
大な振幅の振動入力又は励振力が作用し、或いは、定常
加速度が振動系全体に作用したとき、比較的高剛性に被
支持体を支持することができる受動型制振装置及び振動
減衰方法を提供することが可能となる。また、本発明の
上記構成によれば、微小重力環境の特殊性を利用した各
種実験において、実験装置又は実験機器を含む振動系に
入力される振動外乱を有効に絶縁し、振動外乱の影響を
受け難い良好な実験環境を実現することができる受動型
制振装置及び振動減衰方法を提供することが可能とな
る。更に、本発明の上記構成によれば、急激且つ広範な
周囲環境又は周囲雰囲気の変動に起因して、予測不能な
振動特性の振動入力又は励振力が作用し得る振動系にお
いて、所望の如く使用することができ、しかも、制振装
置を含む振動系の急速な振動増幅又は共振現象等の発生
を確実に回避するとともに、広範な振動系の振幅変動に
対して有効な振動減衰性能を発揮し得る受動型制振装置
及び振動減衰方法を提供することが可能となる。
According to the above configuration of the present invention, the flexible and flexible support can be maintained against the stable vibration disturbance, the transmission of the vibration input can be effectively insulated, and the vibration system can be oversized. Provided is a passive vibration damping device and a vibration damping method capable of supporting a supported member with relatively high rigidity when a vibration input or excitation force having a large amplitude acts or a steady acceleration acts on the entire vibration system. It is possible to do. Further, according to the above configuration of the present invention, in various experiments utilizing the specialty of the microgravity environment, the vibration disturbance input to the vibration system including the experimental apparatus or the experimental equipment is effectively insulated, and the influence of the vibration disturbance is reduced. It is possible to provide a passive vibration damping device and a vibration damping method that can realize a favorable experimental environment that is difficult to receive. Further, according to the above configuration of the present invention, it is possible to use as desired in a vibration system in which a vibration input or an excitation force having an unpredictable vibration characteristic can be applied due to a sudden and wide fluctuation of the surrounding environment or surrounding atmosphere. In addition to avoiding rapid vibration amplification or resonance phenomenon of the vibration system including the vibration damping device, it can also exhibit effective vibration damping performance against amplitude fluctuations of a wide range of vibration systems. It is possible to provide a passive damping device and a vibration damping method that can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施例に係る制振装置の全体構成
を示す斜視図である。
FIG. 1 is a perspective view showing an overall configuration of a vibration damping device according to a first embodiment of the present invention.

【図2】図1に示す制振装置を中央水平平面において分
割した状態で示す制振装置の分解斜視図である。
FIG. 2 is an exploded perspective view of the vibration damping device shown in FIG. 1 in a state where the vibration damping device is divided on a central horizontal plane.

【図3】図1及び図2に示す制振装置の全体構造を示す
縦断面図であり、弾性膜支持構造部(“A”部分)の部
分拡大図を含む。
FIG. 3 is a longitudinal sectional view showing the entire structure of the vibration damping device shown in FIGS. 1 and 2, including a partially enlarged view of an elastic membrane supporting structure (“A” portion).

【図4】図3のVI−VI線における制振装置の断面図であ
る。
FIG. 4 is a sectional view of the vibration damping device taken along the line VI-VI in FIG. 3;

【図5】図3のV−V線における制振装置の断面図であ
る。
FIG. 5 is a cross-sectional view of the vibration damping device taken along line VV in FIG. 3;

【図6】図3のIV−IV線における制振装置の断面図であ
る。
6 is a cross-sectional view of the vibration damper taken along line IV-IV in FIG.

【図7】図1乃至図7に示す制振装置の使用形態を例示
する斜視図である。
FIG. 7 is a perspective view illustrating a usage form of the vibration damping device shown in FIGS. 1 to 7;

【図8】図1乃至図7に示す制振装置に配設された弾性
膜の変位量及び弾性復元力の相関関係を示す線図であ
る。
FIG. 8 is a diagram showing a correlation between an amount of displacement and an elastic restoring force of an elastic film provided in the vibration damping device shown in FIGS. 1 to 7;

【図9】図1乃至図7に示す制振装置に配設された弾性
膜の自由振動波形を示す自由振動応答線図である。
9 is a free vibration response diagram showing a free vibration waveform of an elastic film provided in the vibration damping device shown in FIGS. 1 to 7. FIG.

【図10】図1乃至図7に示す制振装置の作動形態を軸
部材の直結位置にて示す縦断面図である。
FIG. 10 is a longitudinal sectional view showing an operation mode of the vibration damping device shown in FIGS. 1 to 7 at a position directly connected to a shaft member.

【図11】本発明の第2実施例に係る制振装置の全体構
造および該制振装置におけるオリフィス構造を示す縦断
面図である。
FIG. 11 is a longitudinal sectional view showing an entire structure of a vibration damping device according to a second embodiment of the present invention and an orifice structure in the vibration damping device.

【図12】図11に示す制振装置の変形例を示す制振装
置の斜視図及び部分拡大断面図である。
12 is a perspective view and a partially enlarged sectional view of a vibration damping device showing a modification of the vibration damping device shown in FIG.

【図13】図11に示す制振装置の更なる変形例を示す
制振装置の斜視図である。
FIG. 13 is a perspective view of a vibration damping device showing a further modified example of the vibration damping device shown in FIG.

【図14】図11に示す制振装置の更に他の変形例を示
す制振装置の斜視図である。
FIG. 14 is a perspective view of a vibration damping device showing still another modified example of the vibration damping device shown in FIG.

【符号の説明】[Explanation of symbols]

1 制振装置 2 上位制振ユニット 3 下位制振ユニット 4 弾性膜 5 中心軸 6 フィッティング 7 フィッティングブッシュ 8 中空領域(流体収容領域) 10 基盤 11 円形貫通孔 12 ハウジング 13 膜部材保持部分 14 底壁 15 円筒状壁体 50 軸部 51 縮径部 52 拡径部 60 雌螺子部 61 小径挟持面 62 貫通孔 63 着座面 65 拡大傾斜面 66 縮小傾斜面 70 隆起面 71 側部支承面 72 底部支承面 73 円弧状隆起部 100、110 流体連通装置 105 連通流路 107 オリフィス 120 管路連結部 121 流体管路 H、h、Hs 間隔(距離) FI、F2 固定具 S 実験機器支持台 E 実験機器 REFERENCE SIGNS LIST 1 damping device 2 upper damping unit 3 lower damping unit 4 elastic film 5 center axis 6 fitting 7 fitting bush 8 hollow area (fluid accommodation area) 10 base 11 circular through hole 12 housing 13 membrane member holding portion 14 bottom wall 15 Cylindrical wall 50 Shaft part 51 Reduced diameter part 52 Enlarged diameter part 60 Female screw part 61 Small diameter clamping surface 62 Through hole 63 Seating surface 65 Enlarged inclined surface 66 Reduced inclined surface 70 Raised surface 71 Side bearing surface 72 Bottom bearing surface 73 Arc-shaped ridge 100, 110 Fluid communication device 105 Communication flow path 107 Orifice 120 Pipe connection section 121 Fluid pipe H, h, Hs Interval (distance) FI, F2 Fixture S Experimental equipment support E Experimental equipment

Claims (25)

【特許請求の範囲】[Claims] 【請求項1】 振動系に作用する振動外乱による該振動
系の振動伝達を規制すべく、前記振動系を構成する支持
体と被支持体との間に介装され且つ振動減衰機能を有す
る可撓性の振動応答部材を備えた受動型制振装置におい
て、 ハウジングを備えた第1制振ユニット及び第2制振ユニ
ットと、所定間隔を隔てた前記第1及び第2制振ユニッ
トを相互連結する軸部材とを備え、 前記第1及び第2制振ユニットは夫々、可撓性材料から
なる弾性膜を有し、 前記軸部材の両端部分は、前記弾性膜と一体的に変位可
能に前記第1及び第2制振ユニットの各弾性膜に連結さ
れ、該弾性膜は、前記軸部材を介して伝達される振動外
乱に対して面外方向の応答振動を生起し、前記弾性膜の
弾性変位による振動応答作用により前記振動外乱を減衰
させ、 前記弾性膜は、過渡的に前記軸部材を介して前記弾性膜
に入力される過大な振幅の振動入力に対して、前記弾性
膜の面外変形に従って増大する該弾性膜の弾性復元力に
より、前記弾性膜に作用する内部応力の増大に抗すると
ともに、該弾性膜の面外剛性により前記軸部材の振動の
増幅を阻止することを特徴とする受動型制振装置。
1. A vibration damping function which is interposed between a supporting member and a supported member constituting the vibration system so as to restrict the transmission of vibration of the vibration system due to vibration disturbance acting on the vibration system. A passive vibration damping device having a flexible vibration response member, wherein a first vibration damping unit and a second vibration damping unit each having a housing are interconnected with the first and second vibration damping units separated by a predetermined distance. The first and second vibration damping units each have an elastic film made of a flexible material, and both end portions of the shaft member are displaceable integrally with the elastic film. The elastic film is connected to each elastic film of the first and second vibration damping units, and the elastic film generates an out-of-plane response vibration to a vibration disturbance transmitted through the shaft member, and the elastic film has an elasticity. The vibration disturbance is attenuated by a vibration response action by displacement, In response to an excessively large vibration input that is transiently input to the elastic film through the shaft member, the elastic film has an elastic restoring force of the elastic film that increases according to out-of-plane deformation of the elastic film. A passive vibration damping device that resists an increase in internal stress acting on an elastic film and prevents amplification of vibration of the shaft member by out-of-plane rigidity of the elastic film.
【請求項2】 前記ハウジングは、流体を収容可能な流
体収容領域を形成する内部構造を有し、前記弾性膜は、
前記流体収容領域を閉塞し、該弾性膜は、前記流体収容
領域内に封入された流体の粘性による振動応答作用およ
び前記弾性膜の弾性変位による振動応答作用により、前
記振動外乱を減衰させることを特徴とする請求項1に記
載の受動型制振装置。
2. The housing has an internal structure forming a fluid storage area capable of storing a fluid, and the elastic film includes:
The fluid accommodating region is closed, and the elastic film attenuates the vibration disturbance by a vibration response effect due to viscosity of a fluid sealed in the fluid accommodation region and a vibration response effect due to elastic displacement of the elastic film. The passive vibration damping device according to claim 1, wherein:
【請求項3】 前記ハウジングは、外界雰囲気又は外部
ガス域と相互連通する内部中空領域を有し、前記弾性膜
の構成面は、該中空領域に面することを特徴とする請求
項1に記載の受動型制振装置。
3. The housing according to claim 1, wherein the housing has an internal hollow area that is in communication with an external atmosphere or an external gas area, and a constituent surface of the elastic membrane faces the hollow area. Passive damping device.
【請求項4】 前記軸部材は、前記弾性膜を貫通して前
記ハウジングの内部領域に延入し、該軸部材の延入部分
は、前記軸部材及び前記弾性膜と一体的に変位可能な着
座部分を備え、 前記ハウジング内領域は、前記着座部分が弾力的に着座
し得る支受面を備え、該支受面は、前記ハウジング内領
域の底壁に配設された弾性材料により形成されることを
特徴とする請求項1乃至3のいずれか1項に記載の受動
型制振装置。
4. The shaft member penetrates the elastic film and extends into an internal region of the housing, and the extending portion of the shaft member is displaceable integrally with the shaft member and the elastic film. A seating portion, wherein the inner region of the housing includes a bearing surface on which the seating portion can resiliently seat, and the bearing surface is formed of an elastic material disposed on a bottom wall of the inner region of the housing. The passive vibration damping device according to any one of claims 1 to 3, wherein:
【請求項5】 前記第1及び第2制振ユニットを構成す
る各ハウジングの相対間隔は、前記着座部分の着座面と
前記支受面との相対間隔の2倍を超える距離に設定され
ることを特徴とする請求項4に記載の受動型制振装置。
5. A relative distance between the respective housings constituting the first and second vibration damping units is set to a distance exceeding twice a relative distance between a seating surface of the seating portion and the bearing surface. The passive vibration damping device according to claim 4, wherein:
【請求項6】 前記軸部材の軸線は、前記弾性膜の構成
面に対して実質的に直交するように配向されることを特
徴とする請求項1乃至5のいずれか1項に記載の受動型
制振装置。
6. The passive member according to claim 1, wherein an axis of the shaft member is oriented so as to be substantially orthogonal to a constituent surface of the elastic film. Mold damping device.
【請求項7】 前記第1及び第2制振ユニットの構造
は、制振装置の中心平面に対して面対称に形成されるこ
とを特徴とする請求項1乃至6のいずれか1項に記載の
受動型制振装置。
7. The vibration damping unit according to claim 1, wherein the first and second vibration damping units are formed so as to be symmetric with respect to a center plane of the vibration damping device. Passive damping device.
【請求項8】 前記流体は、所定の粘性を有する液体か
らなり、前記ハウジング内に形成され且つ前記弾性膜に
て閉塞した前記流体収容領域内に封入され、該流体収容
領域に面する前記弾性膜の構成面全体に接触することを
特徴とする請求項2に記載の受動型制振装置。
8. The fluid, comprising a liquid having a predetermined viscosity, sealed in the fluid storage area formed in the housing and closed by the elastic film, and the elastic face facing the fluid storage area. 3. The passive vibration damping device according to claim 2, wherein the passive vibration damping device is in contact with the entire constituent surface of the membrane.
【請求項9】 前記中空領域は、オリフィス手段を介し
て外界雰囲気又は外部ガス域と相互連通し、前記流体
は、前記オリフィス手段を流通可能な気体からなること
を特徴とする請求項3に記載の受動型制振装置。
9. The method according to claim 3, wherein the hollow region is interconnected with an outside atmosphere or an external gas region via an orifice means, and the fluid is made of a gas which can flow through the orifice means. Passive damping device.
【請求項10】 前記弾性膜は、全体的に円形輪郭を有
し、該弾性膜の中心は、前記軸部材の中心軸線と実質的
に一致することを特徴とする請求項1乃至9のいずれか
1項に記載の受動型制振装置。
10. The elastic membrane according to claim 1, wherein the elastic membrane has a generally circular contour, and a center of the elastic membrane substantially coincides with a center axis of the shaft member. 2. The passive vibration damping device according to claim 1.
【請求項11】 前記支受面は、前記着座部分を少なく
とも部分的に受入可能な凹所を前記ハウジング内領域の
底部域に画成することを特徴とする請求項4又は5に記
載の受動型制振装置。
11. The passive surface according to claim 4, wherein the bearing surface defines a recess in the bottom area of the inner region of the housing, the recess being capable of at least partially receiving the seating portion. Mold damping device.
【請求項12】 前記着座部分は、前記軸部材の各端部
に固定された拡大部材を含み、該拡大部材の外形輪郭
は、前記支受面の凹所形態と実質的に相補する形態に形
成され、 前記着座部分の着座面は、前記拡大部材の底面及び/又
は側面にて形成され、前記支受面は、前記凹所の底壁面
及び/又は側壁面にて形成され、 前記拡大部材は、前記弾性膜と前記拡大部材との間の第
1中間領域と、前記支受面と前記着座面との間の第2中
間領域とを相互連通する流体連通路を備えることを特徴
とする請求項11に記載の受動型制振装置。
12. The seating portion includes an enlarged member fixed to each end of the shaft member, and an outer contour of the enlarged member has a shape substantially complementary to a concave shape of the bearing surface. The seating surface of the seating portion is formed by a bottom surface and / or a side surface of the enlarging member, and the bearing surface is formed by a bottom wall surface and / or a side wall surface of the recess. Comprises a fluid communication path that interconnects a first intermediate region between the elastic membrane and the expanding member and a second intermediate region between the bearing surface and the seating surface. The passive vibration damping device according to claim 11.
【請求項13】 振動外乱が作用する振動系を構成する
被支持体及び支持体の間に可撓性部材を介装し、前記振
動外乱による前記振動系の振動を減衰させる振動減衰方
法において、 前記振動系は、重力変動を伴う環境下に配置され、 所定間隔を隔てた複数の可撓性膜部材と、該膜部材の構
成面と交差する方向に配向され且つ該膜部材を応力伝達
可能に相互連結する軸部材とを介して、前記被支持体を
前記支持体上に載置し、 低重力環境下にて前記膜部材の面外剛性により前記被支
持体を前記支持体上に支持し、前記被支持体と前記支持
体との間に伝達される振動を前記膜部材の振動応答特性
により減衰させることを特徴とする振動減衰方法。
13. A vibration damping method for interposing a flexible member between a supported member and a support member constituting a vibration system on which a vibration disturbance acts to attenuate vibration of the vibration system due to the vibration disturbance. The vibrating system is disposed under an environment with gravitational fluctuation, a plurality of flexible membrane members spaced at a predetermined interval, and is oriented in a direction intersecting the constituent surface of the membrane member and capable of transmitting stress to the membrane member. The supported member is placed on the support member through a shaft member interconnected with the supporting member, and the supported member is supported on the support member by the out-of-plane rigidity of the membrane member in a low gravity environment. A vibration damping method, wherein the vibration transmitted between the supported member and the support member is attenuated by a vibration response characteristic of the membrane member.
【請求項14】 高重力環境下において、前記膜部材の
変形により、前記軸部材の軸線方向の応力を前記被支持
体及び/又は支持体に直接的に伝達する直結位置に前記
軸部材を変位させ、実質的に前記軸部材の支持力により
前記被支持体を前記支持体上に支持し、 低重力環境下において、前記膜部材の弾性復元力によ
り、前記軸部材の軸線方向の応力を前記膜部材に伝達す
る離間位置に前記軸部材を変位させ、前記軸部材と前記
被支持体及び/又は支持体との間の直接的な応力伝達経
路を解放し、前記膜部材を介して前記被支持体及び支持
体を応力伝達可能に相互連結するとともに、前記被支持
体を実質的に前記膜部材により前記支持体上に支持する
ことを特徴とする請求項13に記載の振動減衰方法。
14. In a high gravity environment, the shaft member is displaced by a deformation of the film member to a directly connected position where an axial stress of the shaft member is directly transmitted to the supported member and / or the support member. And supporting the supported member on the support substantially by the support force of the shaft member. Under a low gravity environment, the elastic restoring force of the film member reduces the axial stress of the shaft member. Displacing the shaft member to a separated position for transmitting to the membrane member, releasing a direct stress transmission path between the shaft member and the supported member and / or the support member, and allowing the shaft member to move through the membrane member; 14. The method of claim 13, wherein the support and the support are interconnected so as to transmit stress, and the supported body is substantially supported on the support by the membrane member.
【請求項15】 前記可撓性膜部材及び前記軸部材
と、該膜部材の構成面に全体的に接する封入流体とを介
して、前記被支持体を前記支持体上に載置することを特
徴とする請求項13又は14に記載の振動減衰方法。
15. The method according to claim 15, wherein the supporting member is placed on the supporting member via the flexible film member and the shaft member, and a sealed fluid that is entirely in contact with a constituent surface of the film member. The vibration damping method according to claim 13 or 14, wherein
【請求項16】 低重力環境下において、前記膜部材
及び前記封入流体を介して前記被支持体及び支持体を応
力伝達可能に相互連結するとともに、前記被支持体を実
質的に前記膜部材及び前記封入流体により前記支持体上
に支持することを特徴とする請求項15に記載の振動減
衰方法。
16. In a low gravity environment, the supported member and the support member are interconnected so that stress can be transmitted through the film member and the sealed fluid, and the supported member is substantially connected to the film member and the sealing member. The vibration damping method according to claim 15, wherein the support is supported on the support by the sealed fluid.
【請求項17】 前記軸部材と前記被支持体及び/又は
支持体との間に弾性変形可能な軟質部材を介装し、 該軟質部材は、前記軸部材の直結位置にて、前記軸部材
の端部を応力伝達可能に弾力的に支受するとともに、前
記膜部材同士の離間状態を確保し、 前記軟質部材は、前記軸部材の離間位置にて、該軸部材
と前記被支持体及び/又は支持体との間の直接的な応力
伝達経路を解放するように、前記軸部材の端部から離間
することを特徴とする請求項14乃至16のいずれか1
項に記載の振動減衰方法。
17. An elastically deformable soft member is interposed between the shaft member and the supported member and / or the support member, and the soft member is connected to the shaft member at a position directly connected to the shaft member. While elastically supporting the end of the shaft member so that stress can be transmitted, and ensuring a separated state between the membrane members, wherein the soft member is configured such that the shaft member, the supported body, and 17. A shaft as claimed in any one of claims 14 to 16, characterized in that it is spaced from an end of the shaft member so as to release a direct stress transmission path between the shaft member and the support.
The vibration damping method according to the item.
【請求項18】 前記封入流体の圧力変動を前記膜部材
の弾性変形により補償することを特徴とする請求項15
又は16に記載の振動減衰方法。
18. The method according to claim 15, wherein the pressure fluctuation of the sealed fluid is compensated by elastic deformation of the membrane member.
Or the vibration damping method according to 16.
【請求項19】 前記封入流体の収容領域は、オリフィ
ス手段を介して外界雰囲気又は外部ガス域と相互連通
し、前記封入流体は、該オリフィス手段を流通可能な気
体からなり、前記収容領域の容積変動に相応して前記オ
リフィス手段を流通し、 前記オリフィス手段を通過する前記封入流体は、該オリ
フィス手段の気体摩擦作用を受けることを特徴とする請
求項15又は16に記載の振動減衰方法。
19. The storage area for the sealed fluid is interconnected with an outside atmosphere or an external gas area via an orifice means, and the sealed fluid is made of a gas which can flow through the orifice means, and the capacity of the storage area is 17. The vibration damping method according to claim 15 or 16, wherein the sealed fluid flowing through the orifice means in response to the fluctuation is subjected to a gas friction action of the orifice means.
【請求項20】 前記膜部材の弾性復元力は、非線型性
の弾性体特性を有し、該膜部材の変位量の増大に伴って
比較的急激に増大することを特徴とする請求項13乃至
19のいずれか1項に記載の振動減衰方法。
20. The elastic member according to claim 13, wherein the elastic restoring force of the film member has a non-linear elastic body characteristic and increases relatively sharply with an increase in the amount of displacement of the film member. 20. The vibration damping method according to any one of claims 19 to 19.
【請求項21】 前記流体は、シリコンオイルであるこ
とを特徴とする請求項15、16又は18のいずれか1
項に記載の振動減衰方法。
21. The fluid according to claim 15, wherein the fluid is silicone oil.
The vibration damping method according to the item.
【請求項22】 前記軟質部材は、シリコンゲルである
ことを特徴とする請求項17に記載の振動減衰方法。
22. The vibration damping method according to claim 17, wherein the soft member is a silicon gel.
【請求項23】 前記気体は、不活性ガスであることを
特徴とする請求項19に記載の振動減衰方法。
23. The method according to claim 19, wherein the gas is an inert gas.
【請求項24】 前記ハウジングは、流体を収容可能な
流体収容領域を画成するとともに、前記流体収容領域を
前記ハウジングの外界又は外部流体域と流体連通可能に
相互連結するオリフィス手段を備え、 前記弾性膜は、前記流体収容領域を閉塞し、該弾性膜
は、前記流体収容領域に封入された流体の粘性による振
動応答作用および前記弾性膜の弾性変位による振動応答
作用により、前記振動外乱を減衰させ、 前記オリフィス手段は、該オリフィス手段を流通する流
体の摩擦作用により前記弾性膜の振動減衰力を生起する
ことを特徴とする請求項1に記載の受動型制振装置。
24. The housing includes an orifice means defining a fluid storage area capable of storing a fluid, and interconnecting the fluid storage area in fluid communication with an external environment or an external fluid area of the housing. An elastic membrane closes the fluid storage area, and the elastic membrane attenuates the vibration disturbance due to a vibration response action due to the viscosity of the fluid sealed in the fluid storage area and a vibration response action due to the elastic displacement of the elastic membrane. The passive vibration damping device according to claim 1, wherein the orifice means generates a vibration damping force of the elastic film by a frictional action of a fluid flowing through the orifice means.
【請求項25】 前記膜部材の構成面は、流体を収容可
能な流体収容領域を画成し、該膜部材は、前記流体収容
領域に収容された流体の粘性による振動応答作用および
前記膜部材の弾性変位による振動応答作用により、前記
振動外乱を減衰させ、 前記流体収容領域は、オリフィス手段を介して外界又は
外部流体域と相互連通し、前記流体は、前記流体収容領
域の容積変動に相応して前記オリフィス手段を流通し、
該オリフィス手段を通過する際に生じる流体の摩擦力
は、前記振動系の振動減衰力として前記膜部材に作用す
ることを特徴とする請求項13に記載の振動減衰方法。
25. A constituent surface of the membrane member defines a fluid accommodating region capable of accommodating a fluid, the membrane member having a vibration response effect due to the viscosity of a fluid accommodated in the fluid accommodating region and the membrane member. The vibration disturbance is attenuated by a vibration response effect of the elastic displacement of the fluid storage region, and the fluid storage region communicates with the outside or an external fluid region through an orifice means, and the fluid corresponds to a volume change of the fluid storage region. Flowing through the orifice means,
14. The vibration damping method according to claim 13, wherein a frictional force of the fluid generated when passing through the orifice means acts on the membrane member as a vibration damping force of the vibration system.
JP29709097A 1996-11-28 1997-10-29 Passive vibration damping device and vibration damping method Pending JPH10213178A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29709097A JPH10213178A (en) 1996-11-28 1997-10-29 Passive vibration damping device and vibration damping method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP8-317305 1996-11-28
JP31730596 1996-11-28
JP29709097A JPH10213178A (en) 1996-11-28 1997-10-29 Passive vibration damping device and vibration damping method

Publications (1)

Publication Number Publication Date
JPH10213178A true JPH10213178A (en) 1998-08-11

Family

ID=26560991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29709097A Pending JPH10213178A (en) 1996-11-28 1997-10-29 Passive vibration damping device and vibration damping method

Country Status (1)

Country Link
JP (1) JPH10213178A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009062126A (en) * 2007-09-05 2009-03-26 Hitachi Plant Technologies Ltd Crane mast support system
CN107702792A (en) * 2017-11-24 2018-02-16 苏州岸肯电子科技有限公司 A kind of miniature shock absorber
CN110206846A (en) * 2019-04-15 2019-09-06 北京卓立汉光仪器有限公司 Double frequency damping isolation platform

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009062126A (en) * 2007-09-05 2009-03-26 Hitachi Plant Technologies Ltd Crane mast support system
CN107702792A (en) * 2017-11-24 2018-02-16 苏州岸肯电子科技有限公司 A kind of miniature shock absorber
CN110206846A (en) * 2019-04-15 2019-09-06 北京卓立汉光仪器有限公司 Double frequency damping isolation platform

Similar Documents

Publication Publication Date Title
JP3367695B2 (en) Multi-axis viscous damper
US7182188B2 (en) Isolator using externally pressurized sealing bellows
US4199128A (en) Vibration absorbing elastomeric mount with hydraulic damping
US20040084818A1 (en) Fluid-elastomeric damper assembly including internal pumping mechanism
JP6807257B2 (en) Anti-vibration device
JPH0727168A (en) Fluid damper article for prepackaged elastic rubber supporting body and method for formation and mounting thereof
US6533258B2 (en) Barrel elastomer mount
EP2518366A2 (en) Three parameter, multi-axis isolators, isolation systems employing the same, and methods for producing the same
JPS62124334A (en) Vibration proof equipment
EP0232892A2 (en) Mount for controlling or isolating virbration
US5918862A (en) High damping pneumatic isolator
JPH0369013B2 (en)
MX2007014455A (en) Preloaded one-way valve accumulator.
JPH10213178A (en) Passive vibration damping device and vibration damping method
EP1073835B1 (en) Damper dry ice charge
US5312093A (en) Vibration isolator with two pairs of fluid chambers with diagonal fluid communication
US20040119215A1 (en) Fluid-filled vibration damping device
US20080041676A1 (en) Air spring with magneto-rheological fluid gasket for suppressing vibrations
US4875664A (en) Vibration attenuation
US20080079204A1 (en) Self-aligning air-spring for suppressing vibrations
JPH04131537A (en) High viscous fluid sealing type mount device
JP2004169750A (en) Fluid sealing type vibration control device
US5855259A (en) Viscous fluid mount
JPH0344517A (en) Accumulator for high-pressure liquid
EP0623764B1 (en) An adjustable viscous damper and isolator

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20040906

Free format text: JAPANESE INTERMEDIATE CODE: A621

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060305

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071023

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080401