JPH10211506A - Manufacture of composite sulfur free-cutting steel - Google Patents

Manufacture of composite sulfur free-cutting steel

Info

Publication number
JPH10211506A
JPH10211506A JP1215597A JP1215597A JPH10211506A JP H10211506 A JPH10211506 A JP H10211506A JP 1215597 A JP1215597 A JP 1215597A JP 1215597 A JP1215597 A JP 1215597A JP H10211506 A JPH10211506 A JP H10211506A
Authority
JP
Japan
Prior art keywords
slab
steel
rolling
square
cutting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1215597A
Other languages
Japanese (ja)
Other versions
JP3389439B2 (en
Inventor
Takeshi Sugawara
健 菅原
Yasuo Kinomoto
靖雄 木ノ本
Takashi Yoshioka
隆史 吉岡
Koichi Isobe
浩一 磯部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP01215597A priority Critical patent/JP3389439B2/en
Publication of JPH10211506A publication Critical patent/JPH10211506A/en
Application granted granted Critical
Publication of JP3389439B2 publication Critical patent/JP3389439B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Metal Rolling (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method about a method for preventing surface defect and improvement of machinability as to the method for manufacturing composite sulfur free-cutting steel from a middle cross-sectional bloom. SOLUTION: This method is for manufacturing the composite sulfur free- cutting steel and, after taking the shape of the cast bloom as a square or a rectangle, continuously casting and cutting, blooming rolling is executed to the bloom for bar steel by 2-4 passes so that an elongation ratio becomes 1.6-2.8 and, after that, rolled into steel bars and wire rods. In the relation with the thickness of the cast bloom, after adjusting T.O in molten steel so as to satisfy the equation: 0.22D+68<=T.O<=0.22D+118 (In the equation, the thickness of the cast bloom is expressed by Dmm and the concentration of total oxygen in the molten steel by T.O ppm.), and executing continuous casting, the bloom is cut, the blooming rolling is executed and, after that, the bloom is rolled into the steel bars and wire rods.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、中断面ブルーム連
鋳による硫黄複合快削鋼の製造方法に関し、棒鋼や線材
成品における表面疵防止方法と被削性向上の方策を提供
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a sulfur composite free-cutting steel by continuous casting of a medium-section bloom, and provides a method of preventing surface flaws in a bar or a wire rod and improving the machinability.

【0002】[0002]

【従来の技術】SUM22、AISI1213等の低炭
S快削鋼やAISI12L14等の低炭S−Pb快削鋼
は、被削性が優れているため自動車用ナット、ネジ、精
密機械部品等の各種切削部品に多量に使用されている。
2. Description of the Related Art Low-carbon S free-cutting steels such as SUM22 and AISI1213 and low-carbon S-Pb free-cutting steels such as AISI12L14 have excellent machinability. It is used in large quantities in cutting parts.

【0003】これらの硫黄複合快削鋼の連続鋳造法につ
いては、従来幾つか報告されている。被削性の向上に関
する報告例としては、特開昭62−207547及び特
開昭62−207548号には、連続鋳造における比水
量を制限したり、連鋳機内で鋳片の冷却速度を低下する
ことにより、晶出するMnSを大型化して被削性を改善
する方法が述べられている。
[0003] Several continuous casting methods for these sulfur composite free-cutting steels have been reported. As examples of reports on improvement of machinability, JP-A-62-207547 and JP-A-62-207548 disclose limiting the specific water volume in continuous casting and reducing the cooling rate of a slab in a continuous casting machine. Thus, a method of increasing the size of MnS to be crystallized and improving machinability is described.

【0004】特開平2−155548号には、タンディ
ッシュ内溶鋼過熱度を10℃以上とし、鋳片の冷却速度
を所定値以下に制御して被削性を改善する方法が述べら
れている。また、特開平7−173574号には、C、
Si、その他の化学成分を規制すると共に、53μm以
上の酸化物系介在物の量を規定する方法が述べられてい
る。
Japanese Patent Application Laid-Open No. 2-155548 discloses a method of improving the machinability by controlling the superheat of molten steel in a tundish to 10 ° C. or more and controlling the cooling rate of a slab to a predetermined value or less. Further, JP-A-7-173574 describes C,
A method is described in which Si and other chemical components are regulated and the amount of oxide-based inclusions of 53 μm or more is regulated.

【0005】表面疵の防止方法に関する報告としては、
例えば特公昭59−19182号には[%S]/[%
C]/[%O]比を規定してブローホールの発生を抑
え、Mn濃度を制限して熱間加工性を確保し圧延割れを
防止する方法が述べられている。
As a report on a method for preventing surface flaws,
For example, Japanese Patent Publication No. 59-19182 discloses [% S] / [%
A method is described in which the ratio of [C] / [% O] is regulated to suppress the occurrence of blowholes, limit the Mn concentration, secure hot workability, and prevent rolling cracks.

【0006】[0006]

【発明が解決しようとする課題】棒鋼や線材などの圧延
に供される条鋼用鋼片としては、一般に115mm角〜
180mm角のサイズが用いられるが、これらの素材と
しては最近では連続鋳造法により製造されるブルーム・
ビレット鋳片が多く使用されており、条鋼用鋼片の約4
〜15倍の横断面積を有する大断面ブルーム、または鋼
片と同一サイズの小断面ビレットに大別される。
[0003] Generally, as a billet for a strip steel to be subjected to rolling of a bar or a wire rod, a steel strip of 115 mm square is used.
A 180 mm square size is used, but these materials have recently been used as blooms manufactured by continuous casting.
Billet slabs are widely used, and about 4
It is roughly divided into a large-section bloom having a cross-sectional area of up to 15 times or a small-section billet of the same size as a billet.

【0007】大断面ブルームから分塊圧延により鋼片を
製造する方法では、鋳片サイズが大きいために加熱時間
が約2〜3時間と長く、また圧延パス回数も約10〜2
0回と多いために、加熱圧延に要するエネルギー消費が
増えると共に圧延歩留が低下し製造コストが大幅に増加
する問題がある。
[0007] In the method of producing a billet by slab rolling from a large-section bloom, the heating time is as long as about 2 to 3 hours due to the large slab size, and the number of rolling passes is about 10 to 2 hours.
Since the number of times is as large as 0 times, there is a problem that the energy consumption required for hot rolling increases, the rolling yield decreases, and the manufacturing cost increases significantly.

【0008】他方、小断面ビレットの場合には分塊圧延
が省略されるためコスト的には有利であるが、鋳造組織
のままのビレットを棒鋼や線材に圧延するために、凝固
過程で粒界に晶出した硫化物や酸化物等が脆化要因とな
って圧延時に深い表面疵が発生すること、或いは高速鋳
造となるために酸化物系介在物の浮上性が阻害されて被
削性が低下する等の問題がある。これらの理由から、硫
黄複合快削鋼については従来より製造コストの高い大断
面ブルームから製造しているのが実状である。
[0008] On the other hand, in the case of a billet having a small cross section, lumping and rolling are omitted, which is advantageous in terms of cost. However, since the billet with the cast structure is rolled into a steel bar or a wire rod, the grain boundary during solidification is reduced. The sulfides and oxides crystallized on the surface cause embrittlement to cause deep surface flaws during rolling, or high-speed casting impairs the levitation of oxide-based inclusions and reduces machinability. There are problems such as lowering. For these reasons, the fact is that sulfur composite free-cutting steels are actually manufactured from large cross-section blooms, which are more expensive to manufacture than before.

【0009】以上のように、大断面ブルーム連鋳及び小
断面ビレット連鋳のいずれにおいても課題があり、もし
延伸比が1〜4の範囲にある中断面ブルームからの製造
が可能となれば、上記問題点は抜本的に改善される。
As described above, there is a problem in both large section bloom continuous casting and small section billet continuous casting, and if it is possible to produce from a medium section bloom having a draw ratio in the range of 1-4, The above problems are drastically improved.

【0010】硫黄複合快削鋼の中断面ブルームによる製
造における第一の課題は、低延伸比で分塊圧延された鋼
片から棒鋼や線材に圧延する際の表面疵防止方法の確立
である。第二の課題は、高速鋳造時の酸化物系介在物の
浮上性低下に対する改善、並びに中断面化による鋳片冷
却速度の増大によるMnSの小型化による被削性の低下
に対する改善である。
[0010] The first problem in the production of medium-section blooms of sulfur composite free-cutting steel is to establish a method for preventing surface flaws when rolling slabs slab-rolled at a low elongation ratio into bars or wires. The second problem is to improve buoyancy of oxide-based inclusions during high-speed casting and to reduce machinability due to downsizing of MnS due to increase in slab cooling rate due to medium sectioning.

【0011】[0011]

【課題を解決するための手段】本発明の請求項1は、表
面疵の防止方法を提供するものである。即ち、質量でC
≦0.15%、Si≦0.05%、Al≦0.003
%、Mn:0.50〜1.50%、P:0.020〜
0.100%、N:20〜150ppm、S:0.10
0〜0.350%、Pb:0〜0.300%、全酸素
T.O:100〜250ppmを基本成分とする硫黄複
合快削鋼の製造方法であって、鋳片形状を正方形または
矩形として連続鋳造し所定の長さに切断した後、該鋳片
を加熱し延伸比が1.6〜2.8となるように条鋼用鋼
片に2〜4パスで分塊圧延し、しかる後該鋼片から棒鋼
や線材に圧延するものである。
The first object of the present invention is to provide a method for preventing surface flaws. That is, C
≦ 0.15%, Si ≦ 0.05%, Al ≦ 0.003
%, Mn: 0.50 to 1.50%, P: 0.020 to
0.100%, N: 20 to 150 ppm, S: 0.10
0 to 0.350%, Pb: 0 to 0.300%, total oxygen T.O. O: A method for producing a sulfur composite free-cutting steel containing 100 to 250 ppm as a basic component, wherein the cast slab is continuously cast into a square or rectangular shape, cut into a predetermined length, and then heated to draw ratio. Is slab-rolled in two to four passes on a steel slab for bar steel so that the value becomes 1.6 to 2.8, and then the steel slab is rolled into a bar or a wire rod.

【0012】次に、本発明の請求項2は被削性の向上対
策に関わるものである。即ち、質量でC≦0.15%、
Si≦0.05%、Al≦0.003%、Mn:0.5
0〜1.50%、P:0.020〜0.100%、N:
20〜150ppm、S:0.100〜0.350%、
Pb:0〜0.300%、全酸素T.O:100〜25
0ppmを基本成分とする硫黄複合快削鋼の製造方法で
あって、溶鋼中のT.O濃度を鋳片サイズとの関係にお
いて(1)式を満足するように調整して連続鋳造し切断し
た後、該鋳片を分塊圧延して鋼片とし、しかる後該鋼片
から棒鋼や線材に圧延するものである。
Next, claim 2 of the present invention relates to measures for improving machinability. That is, C ≦ 0.15% by mass,
Si ≦ 0.05%, Al ≦ 0.003%, Mn: 0.5
0 to 1.50%, P: 0.020 to 0.100%, N:
20-150 ppm, S: 0.100-0.350%,
Pb: 0 to 0.300%, total oxygen T.P. O: 100-25
A method for producing a sulfur composite free-cutting steel containing 0 ppm as a basic component, comprising: After adjusting the O concentration so as to satisfy the formula (1) in relation to the slab size and continuously casting and cutting the slab, the slab is subjected to slab rolling to obtain a steel slab. It is to be rolled into wire.

【0013】 0.22D+68 ≦ T.O ≦ 0.22D+118・・・・・(1) 但し、Dは正方形または矩形鋳片の厚み(mm)、T.
Oは溶鋼の全酸素濃度(ppm)である。
0.22D + 68 ≦ T. O ≦ 0.22D + 118 (1) where D is the thickness (mm) of a square or rectangular slab.
O is the total oxygen concentration (ppm) of the molten steel.

【0014】[0014]

【発明の実施の形態】本発明で対象となる硫黄複合快削
鋼においては、被削性向上元素としてSが0.100〜
0.350%、Pbが0〜0.300%添加されるが、
Sは凝固時に粒状のMnSを晶出し圧延により延伸して
紡錘状となり、Pbは鋼中に直径数μmのPb粒子とし
て均一に分散する。
BEST MODE FOR CARRYING OUT THE INVENTION In a sulfur composite free-cutting steel targeted by the present invention, S as a machinability improving element has a content of 0.100 to 0.100.
0.350%, Pb is added in an amount of 0 to 0.300%,
S solidifies to form spindles by crystallizing and rolling MnS at the time of solidification, and Pb is uniformly dispersed as Pb particles having a diameter of several μm in steel.

【0015】MnSもPbも微細な軟質介在物であり、
切削加工時に内部応力集中源となって切削性を向上させ
ると共に、工具と切り屑間の潤滑作用を高め切削抵抗を
小さくし切り屑処理性を向上させる等の効果がある。
Both MnS and Pb are fine soft inclusions,
This has the effect of improving the cutting performance by acting as a source of internal stress concentration during the cutting process, increasing the lubricating action between the tool and the chip, reducing the cutting resistance, and improving the chip processing performance.

【0016】更に、硫黄複合快削鋼においては、SやP
b以外の成分も被削性に影響を及ぼすので含有量が以下
のように規定されている。即ち、Cは工具寿命の延長か
ら0.15%以下とし、SiやAlは硬質酸化物を形成
して工具摩耗を速めるため各々0.05%以下及び0.
003%以下に規制し、MnはMnSにおけるSとの化
学量論比よりも多くなるように0.50〜1.50%添
加し、PとNは鋼に固溶させて仕上げ面粗さを向上させ
るためそれぞれ0.020〜0.100%及び20〜1
50ppm添加される。
[0016] Further, in the sulfur composite free-cutting steel, S or P
Components other than b also affect the machinability, so the content is defined as follows. That is, C is set to 0.15% or less in order to extend tool life, and Si and Al form 0.05% or less and 0.
003% or less, Mn is added in an amount of 0.50 to 1.50% so as to be greater than the stoichiometric ratio with S in MnS, and P and N are dissolved in steel to reduce the finished surface roughness. 0.020 to 0.100% and 20 to 1 respectively to improve
50 ppm is added.

【0017】溶鋼中のOは、基本的にはCやMn等と平
衡する濃度に近く、溶鋼と耐火物やスラグとの反応によ
りMnO−SiO2系やその他の酸化物として存在し、
その含有量は全酸素T.Oとして100〜250ppm
である。
O in molten steel is basically close to the concentration equilibrium with C, Mn, etc., and exists as MnO—SiO 2 system or other oxides due to the reaction between molten steel and refractory or slag.
Its content is T. total oxygen. 100 to 250 ppm as O
It is.

【0018】先ず、本発明で延伸比(鋳片横断面積/鋼
片横断面積)を1.6〜2.8に規定する理由を以下に
説明する。硫黄複合快削鋼の条鋼用鋼片を棒鋼や線材に
圧延する際に、表面割れの発生を防止するためには粒界
に晶出した硫化物、酸化物並びにPb介在物による脆化
要因を除去する必要がある。
First, the reason why the draw ratio (slab slab cross-sectional area / steel slab cross-sectional area) is specified to be 1.6 to 2.8 in the present invention will be described below. In order to prevent the occurrence of surface cracks when rolling steel strip for sulfur composite free-cutting steel into bar or wire rods, the embrittlement factors due to sulfides, oxides and Pb inclusions crystallized at grain boundaries are considered. Need to be removed.

【0019】しかるに、中断面ブルームは鋳片から鋼片
までの延伸比が当然大断面ブルームに比べて小さいの
で、分塊圧延により鋼片の結晶粒を微細化し脆化要因を
除去するためには、1パス当たりの圧下量を大きくして
鋳片の表面から中心部まで圧下力を十分に浸透せしめ、
鋳造組織を破壊する必要がある。
However, since the middle section bloom has a smaller draw ratio from the slab to the slab than the large section bloom, it is necessary to refine the crystal grains of the slab by slab rolling to remove the cause of embrittlement. , Increase the rolling reduction per pass to allow the rolling force to fully penetrate from the surface of the slab to the center,
It is necessary to destroy the casting structure.

【0020】発明者らの調査によれば、分塊圧延におけ
る延伸比及びパス回数と得られる鋼片のオーステナイト
結晶粒度には密接な関係があり、図1に示した如く延伸
比を1.6以上とし且つ2〜4パス圧延を行った場合に
安定して5以上の微細組織が得られることが判明した。
According to the investigation by the inventors, there is a close relationship between the drawing ratio and the number of passes in the bulk rolling and the austenite grain size of the obtained steel slab, and the drawing ratio is set to 1.6 as shown in FIG. It has been found that a fine structure of 5 or more can be obtained stably when 2-4 pass rolling is performed.

【0021】図から明らかなように、延伸比が1.6未
満で2〜4パス圧延した場合、或いは延伸比が1.6以
上でも1パス当たりの圧下量が小さく5パス以上の多パ
ス圧延を行った場合には安定して5以上が得られない。
As is apparent from the figure, when the stretching ratio is less than 1.6 and rolling is performed in two to four passes, or when the stretching ratio is 1.6 or more, the rolling reduction per pass is small and multi-pass rolling is performed in five or more passes. When 5 is performed, 5 or more cannot be obtained stably.

【0022】オーステナイト結晶粒度番号5以上では、
鋳造組織が破壊されて微細化し硫化物、酸化物及びPb
介在物が微細に均一分散するため、もはや粒界脆化は起
こり得ず、大断面ブルームから分塊圧延した鋼片と同等
の熱間加工性の確保が可能となる。以上の理由から、本
発明では鋳片から鋼片への延伸比を1.6以上と規定し
2〜4パス圧延するものである。
For austenite grain size number 5 or more,
Cast structure is destroyed and refined to reduce sulfide, oxide and Pb
Since the inclusions are finely and uniformly dispersed, grain boundary embrittlement can no longer occur, and hot workability equivalent to that of a slab rolled from a large-section bloom can be ensured. For the above reasons, in the present invention, the draw ratio from the slab to the steel slab is specified to be 1.6 or more, and rolling is performed in 2 to 4 passes.

【0023】次に、条鋼用鋼片のサイズは前述の如く1
15mm角〜180mm角が一般的であるが、これらの
鋼片を2〜4パスで圧延可能な鋳片サイズの代表例を求
めると表1が得られる。
Next, the size of the billet for the bar is 1 as described above.
15 mm square to 180 mm square is generally used. Table 1 is obtained by obtaining a typical example of a slab size that can roll these steel slabs in 2 to 4 passes.

【0024】ここで、前提条件として1パス当たりの最
大減面比を30%以内、軸比(各パスの長辺/短辺の寸
法比)を1.8以下、分塊圧延のロール径を1100m
mφ以下とすると共に、圧下による幅拡がりを圧下量の
1/3に近似して算出した。減面比や軸比がこれらの値
よりも大きい場合には、噛込角度が過大となってスリッ
プが発生したり、鋼片の捻れや倒れが発生し易くなり圧
延作業性が低下するため上限値とした。
Here, the prerequisites are as follows: the maximum area reduction ratio per pass is within 30%, the axial ratio (the dimensional ratio of the long side / short side of each pass) is 1.8 or less, and the roll diameter of the bulk rolling is 1100m
In addition to the value of mφ or less, the width expansion due to the reduction was calculated by approximating to 1/3 of the reduction amount. If the area reduction ratio or the axial ratio is larger than these values, the biting angle becomes excessively large, causing slipping or twisting or falling of the steel slab, which lowers the rolling workability. Value.

【0025】表1より、115mm角の鋼片は、延伸比
1.6の145mm角の鋳片から2パスで、延伸比2.
4の180mm角鋳片から4パスでそれぞれ圧延可能で
ある。また、180mm角の鋼片は延伸比1.8の24
0mm角鋳片から2パスで、延伸比2.8の300mm
角鋳片から4パスでそれぞれ圧延可能である。そして、
鋳片サイズが300mm角を超えると、即ち延伸比が
2.8を超えると減面率が30%を超え、また軸比が
1.8を超えて4パスでは成形不可能となる。
According to Table 1, a 115 mm square slab is drawn from a 145 mm square slab having a draw ratio of 1.6 in two passes with a draw ratio of 2.0.
The four 180 mm square slabs can be rolled in four passes. A 180 mm square steel slab has a draw ratio of 1.8 and 24
300mm with draw ratio 2.8 in 2 passes from 0mm square slab
Each can be rolled from a square slab in four passes. And
If the slab size exceeds 300 mm square, that is, if the stretching ratio exceeds 2.8, the reduction in area exceeds 30%, and the axial ratio exceeds 1.8, making molding impossible in four passes.

【0026】以上述べた理由から、本発明では鋳片から
鋼片への延伸比を1.6〜2.8と規定し2〜4パスで
分塊圧延を行うものである。尚、鋳片形状は正方形また
は矩形とする方が、円形などよりも少ないパス回数で鋼
片を製造するのに有利である。
For the reasons described above, in the present invention, the draw ratio from the slab to the steel slab is specified to be 1.6 to 2.8, and the slab rolling is performed in 2 to 4 passes. It is to be noted that a square or rectangular cast slab is more advantageous for manufacturing a steel slab with fewer passes than a circular or the like.

【0027】[0027]

【表1】 [Table 1]

【0028】本発明において、溶鋼中のT.Oを鋳片サ
イズとの関係において(1)式を満足するように調整する
理由について説明する。連続鋳造においては、鋳造速度
(Vc)は鋳片サイズに応じて変化し、鋳片サイズが小
さい程高速で引き抜かれるのが一般的である。
In the present invention, T.P. The reason why O is adjusted so as to satisfy the expression (1) in relation to the slab size will be described. In continuous casting, the casting speed (Vc) changes according to the size of the slab, and the smaller the slab size, the higher the speed of drawing.

【0029】例えば、連鋳機や操業条件にもよるが14
5mm角の鋳片はVc=2.0〜3.0m/min、2
00mm角の鋳片はVc=1.5〜2.0m/min、
300mm角の鋳片はVc=0.6〜1.2m/min
で鋳造される。
For example, depending on the continuous casting machine and operating conditions, 14
For 5 mm square cast slabs, Vc = 2.0-3.0 m / min, 2
For a slab of 00 mm square, Vc = 1.5 to 2.0 m / min,
Vc = 0.6-1.2m / min for 300mm square cast slab
Cast in.

【0030】硫黄複合快削鋼には、脱酸生成物としての
MnO−SiO2系介在物の他にも耐火物やスラグから
不可避的に混入する若干量のSiO2やAl23、その
他の硬質酸化物が含まれ被削性に対して有害である。
In the sulfur composite free-cutting steel, in addition to MnO—SiO 2 -based inclusions as deoxidation products, a small amount of SiO 2 and Al 2 O 3 unavoidably mixed from refractories and slag, and others Is harmful to machinability.

【0031】特に、鋳片サイズが小さくなるに従い前述
の如く鋳造速度が速くなるため、介在物の浮上性が阻害
され被削性は低下する。この観点から、発明者らは種々
の鋳片サイズについて溶鋼中T.Oと鋳片内の大型介在
物個数との関係についてスライム抽出法により調査し
た。
In particular, as the slab size becomes smaller, the casting speed becomes higher as described above, so that the levitation of inclusions is hindered and the machinability decreases. From this point of view, the inventors have found that T.V. The relationship between O and the number of large inclusions in the slab was investigated by the slime extraction method.

【0032】その結果によると、溶鋼中T.Oが同一の
場合には鋳片内介在物個数は鋳片サイズの小さい方が明
らかに多い。従って、介在物個数を低減するためには、
溶鋼中T.Oを鋳片サイズに応じて、規格内の適正範囲
に調整する必要がある。発明者らが測定した鋳片サイ
ズ、溶鋼中T.O及び被削性の関係について図2に示
す。
According to the results, T.M. When O is the same, the number of inclusions in the slab is clearly larger when the slab size is smaller. Therefore, in order to reduce the number of inclusions,
T. in molten steel O needs to be adjusted to an appropriate range within the standard according to the slab size. The slab size and T.M. in molten steel measured by the inventors. FIG. 2 shows the relationship between O and machinability.

【0033】被削性は、80mmφ棒鋼のプランジカッ
トでの仕上げ面粗さ(Rz)で評価した。仕上げ面粗さ
は、20μm未満が良好域であるとして測定結果からこ
の範囲を求めると、(1)式が得られる。 0.22D+68 ≦ T.O ≦ 0.22D+118・・・・・(1) ここで、Dは正方形または矩形鋳片の厚み(mm)、
T.Oは溶鋼の全酸素濃度(ppm)である。
The machinability was evaluated by the finished surface roughness (Rz) of plunge cut of 80 mmφ steel bar. Assuming that the finished surface roughness is less than 20 μm as a good region, and obtaining this range from the measurement results, the formula (1) is obtained. 0.22D + 68 ≦ T. O ≦ 0.22D + 118 (1) where D is the thickness (mm) of a square or rectangular cast piece,
T. O is the total oxygen concentration (ppm) of the molten steel.

【0034】被削性は、T.O濃度が(1)式の右辺より
も高い領域では酸化物系介在物が多過ぎることによりR
zが20μm以上となり不良となる。一方、T.O濃度
が(1)式の左辺より低い場合にもRzが20μm以上と
なり被削性は不良となっている。
The machinability is determined by T.S. In the region where the O concentration is higher than the right side of the equation (1), the oxide inclusions are too large,
z becomes 20 μm or more, which is defective. On the other hand, T. Even when the O concentration is lower than the left side of the equation (1), Rz is 20 μm or more and the machinability is poor.

【0035】この理由を調査した結果、溶鋼中T.Oが
低い場合にはMnSが圧延により延び易くなり被削性が
低下することが判った。そして、(1)式で規定される範
囲内では、MnSも適正な紡錘状を呈し且つ酸化物系介
在物の悪影響もなく被削性は良好であり、いずれの鋳片
サイズや鋳造速度について成り立つことを確認してい
る。
As a result of investigating the reason, T.P. When O was low, it turned out that MnS becomes easy to expand by rolling and machinability falls. Then, within the range defined by the expression (1), MnS also exhibits an appropriate spindle shape, has good machinability without adverse effects of oxide-based inclusions, and holds for any slab size and casting speed. Make sure that.

【0036】本発明の実施形態の一例を図3に示す。1
は取鍋、2はタンディッシュ、3は鋳型、4は二次冷却
帯、5はガイドロール、6は切断機、7は鋳片、8は鋳
片加熱炉、9は分塊圧延機、10は鋼片、11は鋼片加
熱炉、12は線材圧延機、13は線材コイルである。
FIG. 3 shows an example of the embodiment of the present invention. 1
Is a ladle, 2 is a tundish, 3 is a mold, 4 is a secondary cooling zone, 5 is a guide roll, 6 is a cutting machine, 7 is a slab, 8 is a slab heating furnace, 9 is a slab rolling mill, 10 Denotes a billet, 11 denotes a billet heating furnace, 12 denotes a wire rolling mill, and 13 denotes a wire coil.

【0037】本発明の請求項1記載の実施形態の一例に
つき以下に説明する。鋳型3を用いて、横断面形状が例
えば145mm角〜300mm角の硫黄複合快削鋼用ブ
ルーム鋳片を鋳造し、切断後の鋳片7を加熱した後、分
塊圧延機9を用いて2〜4パスで115mm角〜180
mm角の鋼片10に成形し、該鋼片から7mmφの線材
コイル13を製造する。この場合の鋳片から鋼片までの
延伸比は1.6〜2.8とする。得られる線材について
は、硫黄複合快削鋼として良好な表面品質レベルが確保
される。
An example of the first embodiment of the present invention will be described below. Using the mold 3, a bloom slab for sulfur composite free-cutting steel having a cross-sectional shape of, for example, 145 mm square to 300 mm square is cast, and the cut slab 7 is heated. 115mm square ~ 180 in ~ 4 passes
It is formed into a steel slab 10 of mm square, and a wire rod 13 of 7 mmφ is manufactured from the steel slab. In this case, the draw ratio from the cast slab to the steel slab is 1.6 to 2.8. With respect to the obtained wire, a favorable surface quality level is secured as a sulfur composite free-cutting steel.

【0038】次に、本発明の請求項2記載の実施形態で
は、取鍋1及びタンディッシュ2内の溶鋼中T.Oを鋳
片厚みに応じて(1)式を満足するように調整して鋳片7
を鋳造した後、該鋳片を分塊圧延して鋼片10とし、し
かる後該鋼片から線材コイル13に圧延する。得られる
線材は、硫黄複合快削鋼としての良好な被削性及び材質
が確保される。
Next, in the second embodiment of the present invention, the T.P. in the molten steel in the ladle 1 and the tundish 2 is set. O is adjusted according to the slab thickness so as to satisfy the expression (1), and the slab 7 is adjusted.
After casting, the slab is slab-rolled into a steel slab 10 and then rolled from the slab into a wire coil 13. The obtained wire material secures good machinability and material as a sulfur composite free-cutting steel.

【0039】[0039]

【実施例】本発明の実施例について、以下に詳細に説明
する。270トン転炉にて化学成分が0.08%C−
0.01%Si−1.05%Mn−0.075%P−
0.285%S−80ppmN−280ppmT.Oの
溶鋼を溶製した後、取鍋精錬にてスラグ中の(%Ca
O)、(%SiO2)、(%FeO)、(%MnO)等を調整
し、次いでインジェクション法により取鍋内溶鋼中にP
b粉体を吹き込み0.250%Pbに調整した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described in detail below. 0.08% C- in 270 ton converter
0.01% Si-1.05% Mn-0.075% P-
0.285% S-80 ppm N-280 ppm After smelting molten steel of O, (% Ca
O), (% SiO 2 ), (% FeO), (% MnO), etc., and then P in molten steel in the ladle by the injection method.
b powder was blown and adjusted to 0.250% Pb.

【0040】次に、図3に示したブルーム連鋳機で、1
45mm角〜300mm角の中断面ブルームをタンディ
ッシュ内溶鋼過熱度(TD−SH)を20〜40℃、二
次冷却比水量を0.41/kgとし、それぞれの鋳片サ
イズに応じた鋳造速度で鋳造した後、該鋳片を所定の長
さに切断し鋳片加熱炉で断面平均温度が1100〜11
50℃となるように約1時間加熱後、ロール径700m
mφ〜900mmφのHV式分塊圧延機で2〜4パス圧
延により115mm角〜180mm角の鋼片に成形し
た。
Next, the bloom continuous caster shown in FIG.
The medium section bloom of 45 mm square to 300 mm square has a superheat degree (TD-SH) of molten steel in a tundish of 20 to 40 ° C, a secondary cooling specific water amount of 0.41 / kg, and a casting speed corresponding to each slab size. After casting, the slab is cut to a predetermined length and the cross-sectional average temperature is 1100 to 11 in a slab heating furnace.
After heating to 50 ° C for about 1 hour, roll diameter 700m
It was formed into a 115 mm square to 180 mm square steel slab by 2 to 4 pass rolling using an HV type bulking mill of mφ to 900 mmφ.

【0041】本発明の請求項1記載の実施例として、表
2に鋳片サイズ、分塊圧延条件及び線材の表面疵成績を
比較例と共に示す。尚、表面疵成績は7.0mmφ線材
において深さと長さに応じた評点付けを行い評価した。
As an example according to the first aspect of the present invention, Table 2 shows the slab size, the slab rolling conditions, and the surface flaw results of the wire rod along with comparative examples. In addition, the surface flaw results were evaluated by scoring according to the depth and length of the 7.0 mmφ wire.

【0042】先ず、145mm角の鋳片を1パス当たり
の圧下量45mm、最大減面率24%、軸比1.6及び
延伸比1.6で2パス圧延により115mm角の鋼片に
成形した。また、300mm角の鋳片からは1パス当た
りの圧下量90mm、最大減面率30%、軸比1.8及
び延伸比2.8で4パス圧延により180mm角の鋼片
に成形した。
First, a 145 mm square slab was formed into a 115 mm square steel slab by two-pass rolling at a rolling reduction of 45 mm per pass, a maximum area reduction rate of 24%, an axial ratio of 1.6 and a draw ratio of 1.6. . A 300 mm square slab was formed into a 180 mm square slab by 4-pass rolling at a rolling reduction of 90 mm per pass, a maximum area reduction of 30%, an axial ratio of 1.8 and a draw ratio of 2.8.

【0043】同様に、145mm角〜300mm角の間
にある正方形または矩形の鋳片から、115mm角、1
50mm角または180mm角の鋼片を最大減面率30
%以下、軸比1.8以下及び延伸比1.6〜2.8の範
囲で最小パス回数となるように2パス、3パスまたは4
パス圧延にて成形した。
Similarly, from a square or rectangular slab between 145 mm square and 300 mm square, a 115 mm square, 1 mm square
50 mm square or 180 mm square steel slabs with a maximum area reduction of 30
%, The axis ratio is 1.8 or less, and the stretching ratio is 1.6 to 2.8.
It was formed by pass rolling.

【0044】ここで、棒線材用ブルーム鋳片の形状とし
ては、正方形または偏平比(長辺対短辺の寸法比)が
1.7以下の矩形が一般的であり、本発明の実施例にお
いては矩形鋳片の偏平比は約1.5〜1.6としてい
る。
Here, the shape of the bloom slab for a rod or wire is generally a square or a rectangle having an aspect ratio (dimension ratio of long side to short side) of 1.7 or less. Indicates that the rectangular cast slab has an aspect ratio of about 1.5 to 1.6.

【0045】ここで、115mm角の鋼片を145mm
角未満の鋳片から2パスで圧延することも可能である
が、この場合には延伸比が1.6未満となって鋳造組織
の微細化(オーステナイト結晶粒度番号5以上の確保)
が出来ないため、145mm角を鋳片サイズの下限とし
た。
Here, a 115 mm square steel piece is 145 mm long.
It is also possible to roll in two passes from a slab of less than an angle, but in this case, the draw ratio is less than 1.6 and the casting structure is refined (securing an austenite grain size number of 5 or more).
145 mm square was set as the lower limit of the slab size.

【0046】また、180mm角の鋼片を300mm角
超の鋳片から圧延する場合には、4パス圧延での最大減
面率が30%を超え且つ軸比が1.8を超えるため、3
00mm角を鋳片サイズの上限とした。表2から明らか
なように、本発明になる実施例では線材の表面疵評点は
0〜1と良好であり、硫黄複合快削鋼としての品質レベ
ルは十分に満足されている。
Further, when a 180 mm square slab is rolled from a slab exceeding 300 mm square, the maximum reduction in area in four-pass rolling exceeds 30% and the axial ratio exceeds 1.8, so that
The 00 mm square was set as the upper limit of the slab size. As is clear from Table 2, in the examples according to the present invention, the surface flaw rating of the wire is as good as 0 to 1, and the quality level as a sulfur composite free-cutting steel is sufficiently satisfied.

【0047】一方、比較例において130mm角の鋳片
から2パス圧延により115mm角の鋼片に成形した場
合、210mm角の鋳片から4パス圧延により180m
m角の鋼片に成形して場合、更に150mm角の鋳片か
ら分塊圧延を省略して直接線材圧延を行った場合には、
いずれも延伸比が1.6未満のため線材において表面疵
が発生した。
On the other hand, in the comparative example, when a slab of 130 mm square was formed into a slab of 115 mm square by two-pass rolling, a slab of 210 mm square was rolled to 180 m by four-pass rolling.
In the case of forming into a m-square steel slab, and further performing direct wire rolling without slab rolling from a 150 mm slab,
In each case, since the stretching ratio was less than 1.6, surface flaws occurred in the wire.

【0048】また、400mm×600mmの大断面ブ
ルームから通常分塊法により165mm角の鋼片に成形
した場合には線材での表面疵評点は1と良好であった
が、延伸比が8.8もあるため鋳片加熱に約3時間且つ
分塊圧延に25パスを要し、分塊圧延に関わる製造コス
トが大幅に増加した。
When a 165 mm square steel slab was formed from a large cross-section bloom of 400 mm × 600 mm by a usual sizing method, the surface flaw rating of the wire was as good as 1, but the stretching ratio was 8.8. Because of this, it took about 3 hours to heat the slab and 25 passes for slab rolling, and the production cost related to slab rolling increased significantly.

【0049】[0049]

【表2】 [Table 2]

【0050】本発明の請求項2記載の実施例として、鋳
片サイズ、溶鋼中T.O、鋳造条件及び得られた鋳片に
おける53μm以上のスライム抽出介在物個数及び被削
性の調査結果を比較例と共に表3に示す。
As an embodiment according to the second aspect of the present invention, the slab size, the T.M. Table 3 shows the O, casting conditions, the number of slime extraction inclusions having a size of 53 μm or more in the obtained slabs, and the results of machinability investigations, together with comparative examples.

【0051】溶鋼中T.Oは、鍋上スラグ中の塩基度
(%SiO2)/(%CaO)や酸化度(%FeO+%Mn
O)と密接に関係することが一般に知られていることか
ら、本実施例においては鍋上スラグ量や(%CaO)、
(%SiO2)を測定し、必要に応じて生石灰等を鍋上に
添加して塩基度や酸化度を制御することにより、(1)式
で規定した鋳片厚みに応じたそれぞれのT.O値に調整
した。
T. in molten steel O is basicity in slag on pot
(% SiO 2 ) / (% CaO) and oxidation degree (% FeO +% Mn)
O), which is generally known to be closely related to O), in this embodiment, the amount of slag on the pot, (% CaO),
(% SiO 2 ) was measured, and if necessary, quicklime or the like was added to the pot to control the basicity and the degree of oxidation, thereby obtaining each T.V. in accordance with the slab thickness specified by the equation (1). Adjusted to O value.

【0052】尚、被削性は得られた鋼片から圧延した8
0mmφ棒鋼についてプランジカットを行い、仕上げ面
粗さRz(JIS)により評価した。プランジカット条件
を下記に示す。 供試材:80mmφ棒鋼、工具:SKH57、切削
速度:80m/min 送り速度:0.05mm/rev、2sec切削/5sec非
切削
The machinability was determined by rolling 8 from the obtained slab.
Plunge cutting was performed on the 0 mmφ steel bar, and the finished surface roughness Rz (JIS) was evaluated. The plunge cutting conditions are shown below. Test material: 80mmφ steel bar, Tool: SKH57, Cutting speed: 80m / min Feeding speed: 0.05mm / rev, 2sec cutting / 5sec non-cut

【0053】[0053]

【表3】 [Table 3]

【0054】さて、表3から明らかなように本発明にな
る方法では、いずれの鋳片サイズや鋳造速度の場合にも
スライム抽出された53μm以上の介在物個数は50個
/kg未満と少なく、仕上げ面粗さ(Rz)も20μm未満
が達成され被削性は良好である。
As apparent from Table 3, in the method according to the present invention, the number of slime-extracted inclusions having a size of 53 μm or more is as small as less than 50 / kg at any slab size and casting speed. The finished surface roughness (Rz) is also less than 20 μm, and the machinability is good.

【0055】一方、比較例として145mm角または3
00mm角のブルームを、溶鋼中T.O180ppmと
して鋳造した場合には、鋳片介在物個数が50個/kgを
超えたため仕上げ面粗さが20μmを超え被削性は不良
であった。
On the other hand, a 145 mm square or 3
00 mm square bloom in molten steel In the case of casting at 180 ppm O, the number of slab inclusions exceeded 50 pieces / kg, so that the finished surface roughness exceeded 20 μm and the machinability was poor.

【0056】また、145mm角及び300mm角のブ
ルームを、溶鋼中T.O70ppm及び100ppmに
それぞれ調整して鋳造した比較例においては、鋳片介在
物個数は大幅に減少したものの、前述のようにT.Oが
低過ぎることからMnSが圧延により延伸し、同様に仕
上げ面粗さが20μmを超え被削性が低下した。
In addition, 145 mm square and 300 mm square blooms were used in T.M. In the comparative example in which the castings were adjusted to 70 ppm and 100 ppm, respectively, the number of slab inclusions was significantly reduced, but as described above, T.O. Since O was too low, MnS was stretched by rolling, and similarly, the finished surface roughness exceeded 20 μm and the machinability was reduced.

【0057】[0057]

【発明の効果】本発明は、中断面ブルームから2〜4パ
ス圧延により鋼片を成形し、これにより分塊コストの大
幅な削減を図ると共に、棒鋼や線材での表面疵の発生を
未然に防止することができる。また、溶鋼中T.Oを鋳
片厚みに応じて適正に調整することにより被削性に優れ
た硫黄複合快削鋼の製造を可能とするものであり、これ
らの工業的な適用効果は極めて大きい。
According to the present invention, a steel slab is formed by rolling two to four passes from a medium-section bloom, thereby significantly reducing the cost of lumping and preventing the occurrence of surface flaws in a bar or wire rod. Can be prevented. In addition, T.M. By appropriately adjusting O in accordance with the thickness of the slab, it is possible to produce a sulfur composite free-cutting steel having excellent machinability, and these industrial application effects are extremely large.

【図面の簡単な説明】[Brief description of the drawings]

【図1】延伸比、パス回数と鋼片のオーステナイト結晶
粒度の関係を示す図
FIG. 1 is a diagram showing the relationship between the draw ratio, the number of passes, and the austenite grain size of a slab.

【図2】鋳片厚み、溶鋼中T.Oと被削性の関係を示す
Fig. 2 Slab thickness, T. in molten steel. Diagram showing the relationship between O and machinability

【図3】実施形態の一例を示す図FIG. 3 is a diagram showing an example of the embodiment;

【符号の説明】[Explanation of symbols]

1・・・取鍋、2・・・タンディッシュ、3・・・鋳
型、4・・・二次冷却帯、5・・・ガイドロール、6・
・・切断機、7・・・鋳片、8・・・鋳片加熱炉、9・
・・分塊圧延機、10・・・鋼片、11・・・鋼片加熱
炉、12・・・線材圧延機、13・・・線材コイル
DESCRIPTION OF SYMBOLS 1 ... Ladle, 2 ... Tundish, 3 ... Mold, 4 ... Secondary cooling zone, 5 ... Guide roll, 6 ...
..Cutting machines, 7 cast slabs, 8 cast slab heating furnaces, 9.
..Bloom rolling mill, 10 ... Slab, 11 ... Slab heating furnace, 12 ... Wire rod rolling machine, 13 ... Wire coil

───────────────────────────────────────────────────── フロントページの続き (72)発明者 磯部 浩一 北海道室蘭市仲町12番地 新日本製鐵株式 会社室蘭製鐵所内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Koichi Isobe 12 Murakami-cho, Muroran-shi, Hokkaido Nippon Steel Corporation Muroran Works

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 質量でC≦0.15%、Si≦0.05
%、Al≦0.003%、Mn:0.50〜1.50
%、P:0.020〜0.100%、N:20〜150
ppm、S:0.100〜0.350%、Pb:0〜
0.300%、全酸素T.O:100〜250ppmを
基本成分とする硫黄複合快削鋼の製造方法であって、鋳
片形状を正方形または矩形として連続鋳造し所定の長さ
に切断した後、該鋳片を加熱し延伸比が1.6〜2.8
となるように条鋼用鋼片に2〜4パスで分塊圧延し、し
かる後該鋼片から棒鋼や線材に圧延することを特徴とす
る硫黄複合快削鋼の製造方法。
1. C ≦ 0.15% by mass, Si ≦ 0.05
%, Al ≦ 0.003%, Mn: 0.50 to 1.50
%, P: 0.020 to 0.100%, N: 20 to 150
ppm, S: 0.100 to 0.350%, Pb: 0
0.300%, total oxygen T.O. O: A method for producing a sulfur composite free-cutting steel containing 100 to 250 ppm as a basic component, wherein the cast slab is continuously cast into a square or rectangular shape, cut into a predetermined length, and then heated to draw ratio. Is 1.6 to 2.8
2. A method for producing a sulfur composite free-cutting steel, comprising: performing slab rolling on a steel slab for two or more passes in two to four passes, and then rolling the steel slab into a bar or a wire.
【請求項2】 質量でC≦0.15%、Si≦0.05
%、Al≦0.003%、Mn:0.50〜1.50
%、P:0.020〜0.100%、N:20〜150
ppm、S:0.100〜0.350%、Pb:0〜
0.300%、全酸素T.O:100〜250ppmを
基本成分とする硫黄複合快削鋼の製造方法であって、溶
鋼中のT.O濃度を鋳片サイズとの関係において(1)式
を満足するように調整して連続鋳造し切断した後、該鋳
片を分塊圧延して条鋼用鋼片とし、しかる後該鋼片から
棒鋼や線材に圧延することを特徴とする硫黄複合快削鋼
の製造方法。 0.22D+68 ≦ T.O ≦ 0.22D+118・・・・・(1) 但し、Dは正方形または矩形鋳片の厚み(mm)、T.
Oは溶鋼の全酸素濃度(ppm)である。
2. C ≦ 0.15% by mass, Si ≦ 0.05 by mass
%, Al ≦ 0.003%, Mn: 0.50 to 1.50
%, P: 0.020 to 0.100%, N: 20 to 150
ppm, S: 0.100 to 0.350%, Pb: 0
0.300%, total oxygen T.O. O: A method for producing a sulfur composite free-cutting steel containing 100 to 250 ppm as a basic component, wherein T.O. After adjusting the O concentration so as to satisfy the formula (1) in relation to the slab size and continuously casting and cutting the slab, the slab is subjected to slab-rolling to obtain a steel bar for a bar steel, and thereafter, from the steel slab. A method for producing a sulfur composite free-cutting steel, characterized by rolling to a bar or a wire rod. 0.22D + 68 ≦ T. O ≦ 0.22D + 118 (1) where D is the thickness (mm) of a square or rectangular slab.
O is the total oxygen concentration (ppm) of the molten steel.
JP01215597A 1997-01-27 1997-01-27 Manufacturing method of sulfur composite free-cutting steel Expired - Fee Related JP3389439B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01215597A JP3389439B2 (en) 1997-01-27 1997-01-27 Manufacturing method of sulfur composite free-cutting steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01215597A JP3389439B2 (en) 1997-01-27 1997-01-27 Manufacturing method of sulfur composite free-cutting steel

Publications (2)

Publication Number Publication Date
JPH10211506A true JPH10211506A (en) 1998-08-11
JP3389439B2 JP3389439B2 (en) 2003-03-24

Family

ID=11797582

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01215597A Expired - Fee Related JP3389439B2 (en) 1997-01-27 1997-01-27 Manufacturing method of sulfur composite free-cutting steel

Country Status (1)

Country Link
JP (1) JP3389439B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005054532A1 (en) * 2003-12-01 2005-06-16 Kabushiki Kaisha Kobe Seiko Sho Low carbon composite free-cutting steel product excellent in roughness of finished surface and method for production thereof
CN100447273C (en) * 2003-12-01 2008-12-31 株式会社神户制钢所 Low carbon composite free-cutting steel product excellent in roughness of finished surface and method for production thereof
CN110624951A (en) * 2019-08-27 2019-12-31 江苏省沙钢钢铁研究院有限公司 Production method of high-strength cord steel square billet

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005054532A1 (en) * 2003-12-01 2005-06-16 Kabushiki Kaisha Kobe Seiko Sho Low carbon composite free-cutting steel product excellent in roughness of finished surface and method for production thereof
KR100823806B1 (en) * 2003-12-01 2008-04-21 가부시키가이샤 고베 세이코쇼 Low carbon composite free-cutting steel product excellent in roughness of finished surface and method for production thereof
CN100447273C (en) * 2003-12-01 2008-12-31 株式会社神户制钢所 Low carbon composite free-cutting steel product excellent in roughness of finished surface and method for production thereof
US7666350B2 (en) 2003-12-01 2010-02-23 Kabushiki Kaisha Kobe Seiko Sho Low carbon composite free-cutting steel product excellent in roughness of finished surface and method for production thereof
CN110624951A (en) * 2019-08-27 2019-12-31 江苏省沙钢钢铁研究院有限公司 Production method of high-strength cord steel square billet

Also Published As

Publication number Publication date
JP3389439B2 (en) 2003-03-24

Similar Documents

Publication Publication Date Title
KR20010023138A (en) Steel Wire Rod and Process for Producing Steel for Steel Wire Rod
EP1589124B1 (en) High strength high toughness high carbon steel wire rod and process for producing the same
JP2007319872A (en) Method for producing high-s free cutting steel wire rod
KR100547536B1 (en) Cast member and steel plate of ferritic stainless steel and manufacturing method thereof
US20120121454A1 (en) Low-carbon resulfurized free-machining steel excellent in machinability
JPH10211506A (en) Manufacture of composite sulfur free-cutting steel
JP3399780B2 (en) Manufacturing method of steel bars for hot forging
JP4223442B2 (en) Steel for plastic molds with excellent texture and machinability
JPH04293721A (en) Production of soft steel wire rod excellent in mechanical descaling property
US4238230A (en) Process for producing free-machining steel
US5658402A (en) High-carbon steel wire rod and wire excellent in drawability and methods of producing the same
JPH11293391A (en) Low carbon free cutting steel excellent in chip treatability, and its production
JP3091795B2 (en) Manufacturing method of steel bars with excellent drawability
JP3091794B2 (en) Method of manufacturing automotive shaft parts excellent in extrudability and forgeability
JPH0333777B2 (en)
JP2003041351A (en) High chromium steel and manufacturing method therefor
JP3660811B2 (en) Steel wire rod and manufacturing method thereof
JP2003049244A (en) High carbon steel wire rod
JPH05192736A (en) Manufacture of hexagon socket head cap screw
JP2547139B2 (en) Method for controlling composition of non-metallic inclusions in steel
JP2006200032A (en) Low-carbon sulfur free-cutting steel
KR100406386B1 (en) Method for manufacturing bismuth-sulfur based free cutting steel having superior hot rolling property
JPH029088B2 (en)
JP3091792B2 (en) Method of manufacturing a stepped shaft
JPH11241142A (en) Wire rod for steel wire and its production

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20021210

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090117

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100117

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110117

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120117

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130117

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130117

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130117

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130117

Year of fee payment: 10

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130117

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140117

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees