JPH10209555A - Surface emission type semiconductor laser - Google Patents

Surface emission type semiconductor laser

Info

Publication number
JPH10209555A
JPH10209555A JP683397A JP683397A JPH10209555A JP H10209555 A JPH10209555 A JP H10209555A JP 683397 A JP683397 A JP 683397A JP 683397 A JP683397 A JP 683397A JP H10209555 A JPH10209555 A JP H10209555A
Authority
JP
Japan
Prior art keywords
laser
diffraction grating
grating
substrate surface
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP683397A
Other languages
Japanese (ja)
Inventor
Toshisada Sekiguchi
利貞 関口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP683397A priority Critical patent/JPH10209555A/en
Publication of JPH10209555A publication Critical patent/JPH10209555A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a surface emission type semiconductor laser which makes it possible to fetch a circular focused beam and to efficiently couple it to fiber, and utilizes a diffractive grating which makes it possible to judge a defective or non-defective judgement without cleaving. SOLUTION: A DFB type semiconductor laser is provided by forming an n-type lower clad layer 2, a waveguide laser, containing an i-type active layer 3, and a p-type upper clad layer 4 successively on an n-type semiconductor substrate 1, and a diffracive grating 5 is formed along the waveguide layer for distributed feedback of light. The diffractive grating 5 constitutes a laser resonator in 360 deg. direction on the plane in parallel with substrate surface, as the secondary diffractive grating describing a concentric circular pattern, centering on the center of the concentric circular pattern. The obtained laser beam is fetched in the direction vertical to substrate surface by diffractive effect, and the circular output light beam, which is fetched by forming a grating lens 10 of a concentric circular pattern on the substrate surface of the region where the diffractive grating is formed, is used as a focussed light beam 11.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、回折格子を利用
した面発光型半導体レーザに関する。
The present invention relates to a surface-emitting type semiconductor laser using a diffraction grating.

【0002】[0002]

【従来の技術】従来より、単一縦モードの半導体レーザ
として、DFB(Distributed Feed-Back)レーザやD
BR(Distributed Bragg Reflector)レーザが知られ
ている。DFBレーザは、電流注入がなされる活性領域
で光の分布帰還を行うのに対し、DBRレーザは活性領
域とは離れた活性領域の両側(または片側)に分布反射
器を構成する点で異なるが、基本的に回折格子による光
の分布帰還を利用する点で共通する。従って以下、DF
BレーザをDBRレーザを含む回折格子型の半導体レー
ザの総称として用いる。DFBレーザは他の多くの半導
体レーザと同様に基板表面と平行方向に出力光を射出す
る端面放射型である。この端面放射型では、出力光の垂
直方向の拡がり角と水平方向の拡がり角とを同じにする
ことは難しく、従って出力光のファイバ等への結合効率
がよくない。また、アセンブリも難しく、特に3次元的
に光結合を行うような大容量ファイバ通信その他の高機
能光集積回路システムを構築するには、不向きである。
2. Description of the Related Art Conventionally, DFB (Distributed Feed-Back) lasers and D
A BR (Distributed Bragg Reflector) laser is known. DFB lasers provide distributed feedback of light in the active region where current is injected, whereas DBR lasers are different in that distributed reflectors are formed on both sides (or one side) of the active region remote from the active region. Basically, they are common in utilizing the distributed feedback of light by the diffraction grating. Therefore, hereinafter, DF
The B laser is used as a general term for a diffraction grating type semiconductor laser including a DBR laser. The DFB laser is an edge-emitting type that emits output light in a direction parallel to the substrate surface, like many other semiconductor lasers. In this edge emission type, it is difficult to make the vertical divergence angle and the horizontal divergence angle of the output light the same, and thus the coupling efficiency of the output light to a fiber or the like is not good. Also, the assembly is difficult, and it is particularly unsuitable for constructing a high-capacity fiber communication or other high-performance optical integrated circuit system for performing three-dimensional optical coupling.

【0003】これに対して近年、基板表面に垂直方向に
レーザ出力光を取り出す面発光型半導体レーザが種々提
案されている。面発光型半導体レーザは、大きく垂直型
と水平型の2方式に分けられる。垂直型は、基板表面に
垂直な方向にファブリ・ペロー型共振器を構成するもの
で、室温連続発振も報告されている。水平型は、通常の
レーザと同様に基板表面に水平に共振器を構成して、回
折格子等を用いて垂直方向に光を取り出すものであり、
代表的には2次の回折格子を用いたDFBレーザがあ
る。
On the other hand, in recent years, various surface emitting semiconductor lasers for extracting laser output light in a direction perpendicular to the substrate surface have been proposed. Surface emitting semiconductor lasers are broadly classified into two types, a vertical type and a horizontal type. The vertical type constitutes a Fabry-Perot resonator in a direction perpendicular to the substrate surface, and continuous oscillation at room temperature has also been reported. In the horizontal type, a resonator is formed horizontally on the substrate surface in the same way as a normal laser, and light is extracted in the vertical direction using a diffraction grating, etc.
Typically, there is a DFB laser using a secondary diffraction grating.

【0004】[0004]

【発明が解決しようとする課題】垂直型の面発光半導体
レーザは、製造工程が複雑であり、また水平型と異なり
反射ミラーは劈開面ではないから高反射率のミラーを得
ることが難しいといった問題がある。これに対して、回
折格子型の面発光半導体レーザは、従来のDFBレーザ
の製造技術をほぼそのまま利用できる点で有利である。
しかし、通常のDFBレーザの構造では発光面が数10
0μm という細長いものとなり、従ってファイバに対し
て効率的に結合することも難しいという問題がある。ま
た通常のDFBレーザでは、例えば二つの劈開面の一方
を100%反射ミラーとし、他方を反射防止膜をコーテ
ィングした出射端として利用することが行われるため、
最終的に劈開しないと、良否が判定できないという問題
もある。
The vertical type surface emitting semiconductor laser has a problem that the manufacturing process is complicated, and unlike the horizontal type, the reflecting mirror is not a cleavage plane, so that it is difficult to obtain a mirror having a high reflectivity. There is. On the other hand, a diffraction grating type surface emitting semiconductor laser is advantageous in that a conventional DFB laser manufacturing technique can be used almost as it is.
However, in the structure of a normal DFB laser, the light emitting surface is several tens.
There is a problem that the length is as small as 0 μm, so that it is difficult to efficiently couple the fiber with the fiber. In a normal DFB laser, for example, one of the two cleavage planes is used as a 100% reflection mirror, and the other is used as an emission end coated with an antireflection film.
There is also a problem that the quality cannot be determined unless the cleavage is performed finally.

【0005】この発明は、上記事情を考慮してなされた
もので、円形の集束光ビームを取り出して効率的にファ
イバに結合することを可能にすると共に、劈開を行うこ
となく良否判定を行い得るようにした回折格子を利用し
た面発光型半導体レーザを提供することを目的としてい
る。
The present invention has been made in view of the above circumstances, and makes it possible to extract a circular focused light beam and efficiently couple it to a fiber, and to judge pass / fail without performing cleavage. It is an object of the present invention to provide a surface-emitting type semiconductor laser using such a diffraction grating.

【0006】[0006]

【課題を解決するための手段】この発明は、半導体基板
に下部クラッド層、活性層を含む導波路層及び上部クラ
ッド層が順次形成され、前記導波路層に沿って光の分布
帰還のための回折格子が形成された半導体レーザであっ
て、前記回折格子は同心円パターンを描く2次の回折格
子として、その同心円パターンの中心を中心として基板
表面に平行な面内で360°方向にレーザ共振器を構成
し、得られるレーザ光を回折効果により基板表面に垂直
の方向に取り出すようにすると共に、前記回折格子が形
成された領域の基板表面に取り出される円形の出力光ビ
ームを集束光ビームとするための同心円パターンのグレ
ーティングレンズを形成してなることを特徴としてい
る。
According to the present invention, a lower cladding layer, a waveguide layer including an active layer, and an upper cladding layer are sequentially formed on a semiconductor substrate, and a distributed feedback of light is performed along the waveguide layer. A semiconductor laser on which a diffraction grating is formed, wherein the diffraction grating is a secondary diffraction grating that draws a concentric pattern, and has a laser resonator in a direction parallel to the substrate surface in a direction parallel to the substrate surface in a direction parallel to the substrate surface. The obtained laser light is taken out in the direction perpendicular to the substrate surface by the diffraction effect, and the circular output light beam taken out on the substrate surface in the region where the diffraction grating is formed is a focused light beam. For forming a grating lens having a concentric pattern.

【0007】この発明によると、同心円パターンを描く
2次の回折格子を用いて、360°方向にレーザ共振器
を構成している。ある任意の断面に着目すれば、従来提
案されている面発光型のDFBレーザと同様であり、活
性層で励起された光が回折格子で分布帰還されてレーザ
発振すると同時に、一部は回折して基板面に垂直方向に
取り出される。また垂直方向に回折された光の一部は更
に基板表面でフレネル反射して回折格子により再度導波
路層に結合する。以上の動作が回折格子の中心を中心と
する360°の全方向について行われて、劈開面による
反射を利用することなく、回折格子パターンの中心に光
強度のピークを持つ円形の出力光ビームが得られ、これ
が基板表面に形成されたグレーティングレンズによりレ
ンズ焦点位置に集光する円形の集束光ビームとなる。出
力は、DFBにより単一縦モードとなる。
According to the present invention, a laser resonator is formed in a 360 ° direction using a secondary diffraction grating that draws a concentric pattern. Focusing on an arbitrary cross section, it is similar to the conventionally proposed surface emitting DFB laser, in which the light excited by the active layer is distributed and fed back by the diffraction grating and oscillates, and at the same time, partly diffracts. And taken out in the direction perpendicular to the substrate surface. Further, a part of the light diffracted in the vertical direction is further Fresnel-reflected on the substrate surface, and is coupled to the waveguide layer again by the diffraction grating. The above operation is performed in all directions of 360 ° centering on the center of the diffraction grating, and a circular output light beam having a light intensity peak at the center of the diffraction grating pattern without using the reflection by the cleavage plane. This is a circular focused light beam that is focused at the lens focal position by the grating lens formed on the substrate surface. The output is in single longitudinal mode by the DFB.

【0008】従ってこの発明によると、円形の出力光ビ
ームが得られかつこれがグレーティングレンズにより絞
られて集光されるから、ファイバ等への結合に際して高
い結合効率が得られる。また、レーザ共振に劈開面の反
射を利用しないから、劈開によらずチップの良否判定を
行うことができる。また、平面レーザアレイの作製が容
易であり、これにより3次元光集積回路の構築が容易に
なる。
Therefore, according to the present invention, a circular output light beam is obtained, which is converged by being condensed by a grating lens, so that a high coupling efficiency is obtained when coupling to a fiber or the like. Further, since the reflection of the cleavage plane is not used for laser resonance, the quality of the chip can be determined regardless of the cleavage. Further, it is easy to manufacture a planar laser array, which facilitates construction of a three-dimensional optical integrated circuit.

【0009】[0009]

【発明の実施の形態】以下、図面を参照して、この発明
の実施例を説明する。図1(a)(b)はこの発明の一
実施例に係る面発光型DFBレーザの断面図と平面図で
ある。n型の半導体基板1(好ましくは、バッファ層が
形成されている)の上に、n型の下部クラッド層2、i
型の活性層3及びp型の上部クラッド層4が順次形成さ
れている。活性層3はこの実施例の場合、下部クラッド
層2及び上部クラッド層4より屈折率の大きい材料から
なるMQW構造を有し、これがほぼそのまま導波路層と
なる。
Embodiments of the present invention will be described below with reference to the drawings. 1A and 1B are a sectional view and a plan view of a surface emitting DFB laser according to an embodiment of the present invention. On an n-type semiconductor substrate 1 (preferably on which a buffer layer is formed), an n-type lower cladding layer 2, i
A type active layer 3 and a p-type upper cladding layer 4 are sequentially formed. In the case of this embodiment, the active layer 3 has an MQW structure made of a material having a higher refractive index than the lower clad layer 2 and the upper clad layer 4, and this becomes the waveguide layer almost as it is.

【0010】活性層3はこの実施例の場合、基板全域に
形成されており、その上部クラッド層4との界面近く
に、同心円パターンをなして2次の回折格子5が形成さ
れている。即ち同心円パターンを描く回折格子5全体の
下部に活性層3がある。この同心円パターンの回折格子
5は、例えば次のようにして作る。活性層3が形成され
たウェハに薄い導波路層8を形成し、この導波路層8上
にレジストを塗布して、電子ビーム露光を行う。電子ビ
ーム露光は、電子ビームをその露光量分布を調整しなが
ら走査する。そしてレジストを現像して、ある断面で膜
厚が三角波状の繰り返しとなるレジストパターンを形成
して、これを用いて導波路層8をエッチングする。
In this embodiment, the active layer 3 is formed over the entire area of the substrate, and a second-order diffraction grating 5 is formed near the interface with the upper cladding layer 4 in a concentric pattern. That is, the active layer 3 is located below the entire diffraction grating 5 that draws a concentric pattern. The concentric diffraction grating 5 is produced, for example, as follows. A thin waveguide layer 8 is formed on the wafer on which the active layer 3 is formed, a resist is applied on the waveguide layer 8, and electron beam exposure is performed. In electron beam exposure, an electron beam is scanned while adjusting the exposure amount distribution. Then, the resist is developed to form a resist pattern having a repetitive triangular waveform in a certain cross section, and the waveguide layer 8 is etched using the resist pattern.

【0011】この様に回折格子5が形成された上に上部
クラッド層4が積層され、更にオーミックコンタクト層
6が形成されて、この上に回折格子5の領域に重なるよ
うに同心円パターンのグレーティングレンズ10が形成
される。このグレーティングレンズ10は、例えばガラ
ス層により、基本的に回折格子5と同様の手法で形成さ
れる。このとき、電子ビームの露光走査時間をコントロ
ールすることにより、外側に行く程ピッチが小さくなる
いわゆるチャープトグレーティングとなる。そしてグレ
ーティングレンズ10の外側にアノード電極7が形成さ
れ、基板1の裏面には全面にカソード電極9が形成され
る。
The upper clad layer 4 is laminated on the diffraction grating 5 thus formed, and the ohmic contact layer 6 is further formed thereon. A grating lens having a concentric pattern is formed thereon so as to overlap the region of the diffraction grating 5. 10 are formed. The grating lens 10 is formed of, for example, a glass layer in a manner basically similar to that of the diffraction grating 5. At this time, by controlling the exposure scanning time of the electron beam, a so-called chirped grating in which the pitch becomes smaller toward the outside is obtained. Then, an anode electrode 7 is formed outside the grating lens 10, and a cathode electrode 9 is formed on the entire back surface of the substrate 1.

【0012】具体的にInP系のDFBレーザの場合で
あれば、基板1,下部クラッド層2及び上部クラッド層
4には、InPを用い、活性層3は、少しずつ組成比
x,yを異ならせたInxGa1-xAsy1-y層を交互に
複数層積層してMQW構造を作る。導波路層8はInG
aAsP層とする。
Specifically, in the case of an InP-based DFB laser, InP is used for the substrate 1, the lower cladding layer 2 and the upper cladding layer 4, and the active layer 3 has a slightly different composition ratio x, y. making MQW structure in x Ga 1-x As y P 1-y layer which has a plurality layers alternately stacked. The waveguide layer 8 is made of InG
aAsP layer.

【0013】この実施例によるDFBレーザは、回折格
子5の中心を通るどの断面も図1(a)に示す断面構造
となり、回折格子5の中心を中心とする360°方向に
DFB共振器が構成されたことになる。そして、レーザ
共振により得られた光の一部は2次の回折格子5により
基板表面に垂直方向に取り出される。回折格子5により
上方に回折された光の一部は、基板表面でフレネル反射
を起こして活性層3に戻され、これにより同心円パター
ンの回折格子5の中心で励起光がピークとなる定在波が
立つ。そして同心円パターンのグレーティングレンズ1
0により、図1(a)に示すように、円形の集束光ビー
ム11が得られる。
In the DFB laser according to this embodiment, any cross section passing through the center of the diffraction grating 5 has a cross-sectional structure shown in FIG. 1A, and a DFB resonator is formed in a 360 ° direction centered on the center of the diffraction grating 5. It was done. Then, a part of the light obtained by the laser resonance is extracted by the secondary diffraction grating 5 in a direction perpendicular to the substrate surface. Part of the light diffracted upward by the diffraction grating 5 causes Fresnel reflection on the substrate surface and is returned to the active layer 3, whereby a standing wave at which the excitation light has a peak at the center of the concentric pattern diffraction grating 5. Stands. And grating lens 1 with concentric pattern
With 0, a circular focused light beam 11 is obtained as shown in FIG.

【0014】この実施例によると、DFB共振器により
単一縦モードのレーザ発振が得られることは勿論、同心
円パターンの回折格子5とグレーティングレンズ10に
より円形の集束光ビーム11とされて、ファイバに効率
的に結合することが可能になる。またレーザ共振に劈開
面の反射を利用していないから、劈開を行うことなく、
ウェハ段階でチップの良否判定を行うことができる。更
に、平面レーザアレイの作製も容易であり、三次元的な
高機能光集積回路を構築することが可能になる。
According to this embodiment, the laser oscillation of a single longitudinal mode can be obtained by the DFB resonator, and the convergent pattern diffraction grating 5 and the grating lens 10 form a circular convergent light beam 11, which is applied to the fiber. It becomes possible to combine efficiently. Also, since the reflection of the cleavage plane is not used for laser resonance, without cleavage,
The quality of the chip can be determined at the wafer stage. Further, it is easy to manufacture a planar laser array, and a three-dimensional high-performance optical integrated circuit can be constructed.

【0015】図2は、図1の実施例を僅かに変形した実
施例である。図1の実施例では、回折格子5を電流の集
中するアノード電極7の直下の領域を避ける形でほぼ基
板全面に形成したのに対し、図2は電流が集中するアノ
ード電極7の領域にオーバーラップする形で、基板端面
まで達する大きさの回折格子5を形成している。この実
施例によっても、先の実施例と同様の効果が得られる。
FIG. 2 shows an embodiment in which the embodiment of FIG. 1 is slightly modified. In the embodiment shown in FIG. 1, the diffraction grating 5 is formed on almost the entire surface of the substrate so as to avoid the region immediately below the anode electrode 7 where the current is concentrated. On the other hand, FIG. The diffraction grating 5 having a size reaching the end face of the substrate is formed in a wrapped manner. According to this embodiment, the same effect as that of the previous embodiment can be obtained.

【0016】図3(a)(b)は、更に別の実施例であ
り、電流注入される活性領域と回折格子5の領域を分離
したいわゆる分布反射器構造(DBR構造)の場合の断
面図と平面図である。この実施例の場合、先の実施例と
同様にして上部クラッド層4まで形成されたウェハの上
部クラッド層4の一部を選択エッチングして導波路層8
を露出させ、ここに先の実施例と同様に同心円パターン
の回折格子5を形成する。その後更にp型上部クラッド
層4を形成し、この上部クラッド層4の回折格子5の領
域に重なる位置に同心円パターンのグレーティングレン
ズ10を形成する。グレーティングレンズ10に隣接す
る領域にはオーミック電極6を介してアノード電極7を
形成する。
FIGS. 3 (a) and 3 (b) show still another embodiment, and are sectional views of a so-called distributed reflector structure (DBR structure) in which an active region into which current is injected and a region of the diffraction grating 5 are separated. And a plan view. In the case of this embodiment, a portion of the upper cladding layer 4 of the wafer formed up to the upper cladding layer 4 is selectively etched in the same manner as in the previous embodiment to form the waveguide layer 8.
Is exposed, and a diffraction grating 5 having a concentric pattern is formed here as in the previous embodiment. Thereafter, a p-type upper cladding layer 4 is further formed, and a grating lens 10 having a concentric pattern is formed at a position overlapping the region of the diffraction grating 5 of the upper cladding layer 4. An anode electrode 7 is formed in a region adjacent to the grating lens 10 via an ohmic electrode 6.

【0017】この実施例においても、アノード電極7直
下の活性領域で励起されて回折格子5の領域に導波され
た光は、この回折格子5により360°方向に分布帰還
され、レーザ発振による出力光が回折格子5の上方に取
り出される。また回折格子5の領域で増幅された光の一
部は通常のDBRレーザと同様に分布反射されてアノー
ド電極7の直下の活性領域に帰還される。これにより、
先の実施例と同様の円形集束光ビーム11を得ることが
できる。
Also in this embodiment, the light excited in the active region immediately below the anode electrode 7 and guided to the region of the diffraction grating 5 is distributed and fed back by the diffraction grating 5 in the 360 ° direction, and the output by laser oscillation is obtained. Light is extracted above the diffraction grating 5. A part of the light amplified in the region of the diffraction grating 5 is distributed and reflected similarly to a normal DBR laser, and is returned to the active region immediately below the anode electrode 7. This allows
A circular focused light beam 11 similar to that of the previous embodiment can be obtained.

【0018】[0018]

【発明の効果】以上述べたようにこの発明によれば、同
心円パターンの2次の回折格子を用いて円形出力光ビー
ムを基板面に垂直方向に取り出すようにし、更にこれを
グレーティングレンズにより集束光ビームとして、ファ
イバへの結合を容易にした面発光型半導体レーザを得る
ことができる。
As described above, according to the present invention, a circular output light beam is taken out in the direction perpendicular to the substrate surface by using a secondary diffraction grating having a concentric pattern, and this light is focused by a grating lens. As a beam, a surface-emitting type semiconductor laser that can be easily coupled to a fiber can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 この発明の一実施例に係るDFBレーザの構
成を示す。
FIG. 1 shows a configuration of a DFB laser according to one embodiment of the present invention.

【図2】 他の実施例のDFBレーザの構成を示す。FIG. 2 shows a configuration of a DFB laser according to another embodiment.

【図3】 他の実施例のDFBレーザの構成を示す。FIG. 3 shows a configuration of a DFB laser according to another embodiment.

【符号の説明】[Explanation of symbols]

1…半導体基板、2…下部クラッド層、3…活性層、4
…上部クラッド層、5…回折格子、6…オーミックコン
タクト層、7…アノード電極、8…導波路層、9…カソ
ード電極、10…グレーティングレンズ、11…円形集
束光ビーム。
DESCRIPTION OF SYMBOLS 1 ... Semiconductor substrate, 2 ... Lower cladding layer, 3 ... Active layer, 4
... upper clad layer, 5 ... diffraction grating, 6 ... ohmic contact layer, 7 ... anode electrode, 8 ... waveguide layer, 9 ... cathode electrode, 10 ... grating lens, 11 ... circular focused light beam.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板に下部クラッド層、活性層を
含む導波路層及び上部クラッド層が順次形成され、前記
導波路層に沿って光の分布帰還のための回折格子が形成
された半導体レーザであって、 前記回折格子は同心円パターンを描く2次の回折格子と
して、その同心円パターンの中心を中心として基板表面
に平行な面内で360°方向にレーザ共振器を構成し、
得られるレーザ光を回折効果により基板表面に垂直の方
向に取り出すようにすると共に、 前記回折格子が形成された領域の基板表面に取り出され
る円形の出力光ビームを集束光ビームとするための同心
円パターンのグレーティングレンズを形成してなること
を特徴とする面発光型半導体レーザ。
A semiconductor laser in which a lower cladding layer, a waveguide layer including an active layer and an upper cladding layer are sequentially formed on a semiconductor substrate, and a diffraction grating for distributed feedback of light is formed along the waveguide layer. Wherein the diffraction grating is a secondary diffraction grating that draws a concentric pattern, and forms a laser resonator in a 360 ° direction in a plane parallel to the substrate surface with the center of the concentric pattern as a center.
The obtained laser light is extracted in a direction perpendicular to the substrate surface by the diffraction effect, and a concentric pattern for forming a circular output light beam extracted from the substrate surface in a region where the diffraction grating is formed as a focused light beam. A surface-emitting type semiconductor laser characterized by forming a grating lens as described above.
JP683397A 1997-01-17 1997-01-17 Surface emission type semiconductor laser Pending JPH10209555A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP683397A JPH10209555A (en) 1997-01-17 1997-01-17 Surface emission type semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP683397A JPH10209555A (en) 1997-01-17 1997-01-17 Surface emission type semiconductor laser

Publications (1)

Publication Number Publication Date
JPH10209555A true JPH10209555A (en) 1998-08-07

Family

ID=11649242

Family Applications (1)

Application Number Title Priority Date Filing Date
JP683397A Pending JPH10209555A (en) 1997-01-17 1997-01-17 Surface emission type semiconductor laser

Country Status (1)

Country Link
JP (1) JPH10209555A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100572745B1 (en) * 2002-02-12 2006-04-25 미쓰비시덴키 가부시키가이샤 Distributed feedback laser device
US7301175B2 (en) 2001-10-12 2007-11-27 Nichia Corporation Light emitting apparatus and method of manufacturing the same
US7378334B2 (en) 2002-07-08 2008-05-27 Nichia Corporation Nitride semiconductor device comprising bonded substrate and fabrication method of the same
WO2021172393A1 (en) * 2020-02-26 2021-09-02 国立大学法人九州大学 Laser element

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7301175B2 (en) 2001-10-12 2007-11-27 Nichia Corporation Light emitting apparatus and method of manufacturing the same
US7390684B2 (en) 2001-10-12 2008-06-24 Nichia Corporation Light emitting apparatus and method of manufacturing the same
KR100572745B1 (en) * 2002-02-12 2006-04-25 미쓰비시덴키 가부시키가이샤 Distributed feedback laser device
US7378334B2 (en) 2002-07-08 2008-05-27 Nichia Corporation Nitride semiconductor device comprising bonded substrate and fabrication method of the same
WO2021172393A1 (en) * 2020-02-26 2021-09-02 国立大学法人九州大学 Laser element

Similar Documents

Publication Publication Date Title
US5164956A (en) Multiperiod-grating surface-emitting lasers
US20050180482A1 (en) Very low cost surface emitting laser diode arrays
JP2001189519A (en) Semiconductor laser device
JP4634081B2 (en) Semiconductor laser device and semiconductor laser device array
JPH10209555A (en) Surface emission type semiconductor laser
JP2007300015A (en) Optical unit
JPH10209554A (en) Surface emission type semiconductor laser
US6763052B2 (en) Laser having equilateral triangular optical resonators of orienting output
WO2021124967A1 (en) Vertical cavity surface-emitting laser element, vertical cavity surface-emitting laser element array, vertical cavity surface-emitting laser module, and method for manufacturing vertical cavity surface-emitting laser element
US5563901A (en) Semiconductor laser array
JP2002323629A (en) Optical waveguide element and semiconductor laser beam device
Suhara et al. Broad-area and MOPA lasers with integrated grating components for beam shaping and novel functions
JP2671317B2 (en) Semiconductor laser
JP3595677B2 (en) Optical isolator, distributed feedback laser and optical integrated device
Uemukai et al. Monolithically integrated master oscillator power amplifier with grating coupler for collimated output beam
JPS63150981A (en) Semiconductor laser
US5442650A (en) Distributed talbot filter surface-emitting distributed feedback laser
US6711199B2 (en) Laser diode with an internal mirror
JPS62172780A (en) Semiconductor laser device
JP2001352129A (en) Semiconductor laser device and its manufacturing method
JP2705130B2 (en) Manufacturing method of semiconductor laser
JPS63164376A (en) Semiconductor laser element
JP2001168448A (en) Semiconductor laser
JPS61263185A (en) Semiconductor laser array device
JPS63147388A (en) Semiconductor laser