WO2021172393A1 - Laser element - Google Patents

Laser element Download PDF

Info

Publication number
WO2021172393A1
WO2021172393A1 PCT/JP2021/006969 JP2021006969W WO2021172393A1 WO 2021172393 A1 WO2021172393 A1 WO 2021172393A1 JP 2021006969 W JP2021006969 W JP 2021006969W WO 2021172393 A1 WO2021172393 A1 WO 2021172393A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
diffraction grating
grating structure
laser element
laser
Prior art date
Application number
PCT/JP2021/006969
Other languages
French (fr)
Japanese (ja)
Inventor
サンガランゲ ドン アトゥラ サンダナヤカ
アディカリ ムディヤンセラゲ チャトゥランガニー セネヴィラッネ
コポナ パハラ ワラワェ ブディカ サンジーワ バンダラ カルナティラカ
敏則 松島
安達 千波矢
Original Assignee
国立大学法人九州大学
株式会社KOALA Tech
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人九州大学, 株式会社KOALA Tech filed Critical 国立大学法人九州大学
Publication of WO2021172393A1 publication Critical patent/WO2021172393A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/36Structure or shape of the active region; Materials used for the active region comprising organic materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details

Definitions

  • the present invention relates to a laser device having a low laser oscillation threshold.
  • An organic laser device that uses an organic compound as an active layer can obtain a high photoluminescence (PL) quantum yield and a wide emission spectrum over the visible region, and its characteristics can be controlled by the molecular design of the organic compound, and the device is flexible. Since it has the advantage of being able to grant, research is being actively conducted. As a result of vigorous research toward the development of a current-excited type, a current-excited laser element using an organic compound has been realized for the first time (see Patent Document 1).
  • PL photoluminescence
  • This current excitation type laser element has a structure in which a DFB (distributed feedback) diffraction grating structure as an optical resonator is formed on the surface of an ITO electrode, and an organic gain layer is provided on the DFB (distributed feedback) diffraction grating structure.
  • the DFB diffraction grating structure here, the first region in which the band-shaped convex portions are arranged in one direction at a fixed period and the band-shaped convex parts are arranged in the same arrangement direction as the first region in a lattice period different from that of the first region. It has a second region arranged, and each of these regions has a mixed periodic arrangement arranged alternately.
  • FWHM narrow full width at half maximum
  • FIG. 1 It is a schematic plan view which shows an example of the DFB diffraction grating structure provided in the laser element of this invention. It is a schematic cross-sectional view which shows the layer structure example of the laser element of this invention. It is a schematic perspective view which shows the manufacturing process of the laser element performed in Example 1.
  • FIG. It is an SEM photograph of the DFB diffraction grating structure of the laser element manufactured in Example 1 and the laser element manufactured in Comparative Examples 2-7. It is a graph which shows the current density-voltage characteristic at the time of DC drive of the laser element which has a concentric square DFB diffraction grating structure manufactured in Example 1, and the laser element which does not have a DFB diffraction grating structure manufactured in Comparative Example 1. ..
  • the description of the constituent elements described below may be based on typical embodiments and specific examples of the present invention, but the present invention is not limited to such embodiments and specific examples.
  • the numerical range represented by using "-" in the present specification means a range including the numerical values before and after "-" as the lower limit value and the upper limit value.
  • the term "main component” in the present specification means the component having the highest content among the constituent components.
  • the isotope species of the hydrogen atom existing in the molecule of the compound used in the present invention is not particularly limited, and for example, all the hydrogen atoms in the molecule may be 1 H, or part or all of them may be 2 H. (Duterium D) may be used.
  • the laser element of the present invention is characterized by having a two-dimensional DFB (distributed feedback) diffraction grating structure (distributed feedback type diffraction grating structure) having at least two types of linear convex arrangements having different arrangement directions.
  • DFB distributed feedback diffraction grating structure
  • a configuration example of the laser element will be described.
  • the DFB diffraction grating structure used in the present invention includes at least two types of linear convex arrangements having different arrangement directions.
  • the "linear convex portion” is a line segment of the convex portion, and two or more linear convex portions are arranged at intervals from each other in a direction orthogonal to the extending direction of the linear convex portion. Therefore, the "arrangement direction" corresponds to the direction orthogonal to the extending direction of the linear convex portion.
  • the DFB diffraction grating structure used in the present invention it is preferable that 2 to 6 groups of linear convex portions having different arrangement directions are present, and more preferably 2 to 4 groups are present.
  • two groups of linear convex portions having different arrangement directions may form a concentric rectangular DFB diffraction grating structure, or three groups of linear convex portions having different arrangement directions may be concentric.
  • a hexagonal DFB diffraction grating structure may be formed, or four linear convex portions having different arrangement directions may be formed to form a concentric octagonal DFB diffraction grating structure.
  • the linear protrusions constituting each group preferably include regions that are periodically arranged.
  • peripheral means that the linear convex portions are arranged at substantially constant intervals, and in the present specification, the outer peripheral edges of adjacent linear convex portions or adjacent rectangular rings are arranged with each other.
  • the interval ⁇ of is called the "lattice period”.
  • the DFB diffraction grating structure used in the present invention is preferably formed concentrically.
  • the "concentric shape” in the present invention means a first lattice convex portion forming an annular shape (a shape obtained by cutting out a substantially similar figure one size smaller than the ring from the ring) in a plan view, and the first lattice convex portion and the plan view.
  • the second lattice convex portion to the nth lattice convex portion which have substantially similar figures, are arranged so that their centers overlap.
  • the second lattice convex portion to the nth lattice convex portion (n is an integer of 3 or more) are also substantially similar to each other, and the ring of the first lattice convex portion is the smallest, and the larger the number of n, the more the ring. Will be larger.
  • n may be selected from, for example, a range of 3 or more, a range of 10 or more, a range of 50 or more, a range of 100 or more, a range of 200 or more, a range of 500 or more, and a range of 1000 or more. Further, n may be selected from a range of less than 2000, a range of less than 800, a range of less than 400, and a range of less than 150.
  • the ring referred to here does not have to be a perfect ring, for example, a part may be missing, or the rings may be connected to each other by adjacent lattice convex portions. Also, the width of the ring may be narrower or thicker than the region that occupies most of the area.
  • the center of the ring overlapping between the convex portion of the first lattice and the convex portion of the nth lattice means the center of gravity of the ring.
  • the annular convex portion may be provided in the region inside the first lattice convex portion and including the center of the ring. It is preferable that the annular convex portion has a shape substantially similar to the ring of the first lattice convex portion in a plan view.
  • the rings formed concentrically are preferably polygonal rings.
  • a curved portion may be included in a part of the ring of the polygon.
  • the portion (corner) where the sides forming the polygon intersect may be formed in a curved shape.
  • the polygonal ring does not have to include a curved portion.
  • the polygonal ring may also be partially missing, for example, the corners may be missing, or the middle of the side may be missing.
  • Polygonal rings may have all the same internal angles, but they may be different.
  • the ring of the polygon may be a regular polygon. Examples of polygons include rectangles, hexagons, and octagons.
  • the DFB diffraction grating structure is formed in a concentric rectangular shape.
  • a concentric rectangular “rectangle” means a quadrangle. That is, the shape may be any shape surrounded by four straight lines. Specific examples of the "rectangle” include a square, a rectangle, a rhombus, a parallelogram, and the like, preferably a square and a rectangle, and more preferably a square. For example, in the concentric square shape as shown in FIG. 1, the arrangement directions of the adjacent sides (adjacent linear convex portions) of the rectangular ring shape are formed in different directions in the X direction and the Y direction.
  • the height h of each linear convex portion is preferably less than 75 nm, more preferably 20 to 70 nm.
  • the lattice period ⁇ of the arrangement of the linear convex portions may be the same or different from each other in each arrangement, but it is preferable that they are substantially the same.
  • each linear convex portion may be the same or different from each other in each arrangement, but are preferably substantially the same. Further, the width w and the height h of each linear convex portion may be the same or different from each other in each arrangement, but it is preferable that they are substantially the same.
  • each lattice convex portion and annular convex portion examples include a material that can be used as a DFB diffraction grating and a material that has been used. It is preferable to use SiO 2.
  • the laser device of the present invention may be a photoexcited laser device that oscillates by laser irradiation when the active layer is irradiated with excitation light, or holes and electrons are injected into the active layer and they are recombined to be generated. It may be a current excitation type laser element (semiconductor laser element) that oscillates a laser by the energy generated.
  • the photoexcited laser element has a structure in which at least a DFB diffraction grating structure and an active layer are formed on a substrate.
  • the current excitation type laser element has at least an anode and a cathode (a pair of electrodes) and a structure in which a DFB diffraction grating structure and an active layer are formed between the anode and the cathode, and a voltage is applied between the pair of electrodes.
  • the laser oscillates by energizing the active layer.
  • the DFB diffraction grating structure is concentric.
  • the active layer is a layer that receives energy to generate excitons, forms a population inversion, and then causes stimulated emission due to the incident of light.
  • the excitons generated in the active layer by the current excitation do not substantially disappear (disappearance due to collision between excitons).
  • the loss due to exciton annihilation is preferably less than 10%, more preferably less than 5%, even more preferably less than 1%, even more preferably less than 0.1%, particularly preferably less than 0.01%. , Most preferably 0%.
  • the current excitation type laser element does not show a substantial polaron absorption loss at the laser oscillation wavelength, that is, there is no substantial overlap between the polaron absorption spectrum and the emission spectrum.
  • the loss due to polaron absorption is preferably less than 10%, more preferably less than 5%, even more preferably less than 1%, even more preferably less than 0.1%, particularly preferably less than 0.01%. Most preferably 0%.
  • the oscillation wavelength of the laser element does not substantially overlap the absorption wavelength region in the excited state and the absorption wavelength region of the radical cation or the radical anion.
  • the loss due to absorption in the excited state is preferably less than 10%, more preferably less than 5%, even more preferably less than 1%, even more preferably less than 0.1%, particularly preferably less than 0.01%, most preferably less than 0.01%. It is 0%. Further, the laser device of the present invention preferably does not contain a triplet quencher.
  • the active layer is preferably an organic layer containing an organic compound, and more preferably an organic layer composed of an organic compound. Further, the active layer may form a light emitting portion together with other layers.
  • the light emitting portion has a laminated structure composed of an active layer and another layer laminated on the active layer. For example, in a current excitation type laser element, the entire light emitting portion is arranged between the anode and the cathode. ..
  • the other layer constituting the light emitting portion is preferably an organic layer containing an organic compound, but may contain an inorganic layer in addition to the organic layer.
  • the organic layer may be composed of only an organic compound, or may be a layer containing an organic compound and an inorganic substance.
  • each organic layer constituting the light emitting portion may be referred to as an "organic layer", and when the organic layers are continuously laminated (laminated without sandwiching the inorganic layer in between).
  • the entire laminated structure of the organic layer may be referred to as an "organic layer”.
  • the entire laminated structure of the organic layer (active layer) when only the active layer is provided as the organic layer and the active layer and another organic layer are continuously laminated is “integrated”. It is sometimes called "organic layer as”.
  • an organic layer is directly formed on the DFB diffraction grating structure. This makes it possible to directly introduce the Bragg-reflected light in the DFB diffraction grating structure into the organic layer and contribute to stimulated emission in the active layer.
  • the refractive index of the organic layer directly formed on the DFB diffraction grating structure is preferably different from the refractive index of the DFB diffraction grating structure.
  • the organic layer directly formed on the DFB diffraction grating structure may be an active layer, or may be an organic layer arranged between the DFB diffraction grating structure and the active layer.
  • the organic layer between the DFB diffraction grating structure and the active layer may have a single-layer structure or a multi-layer structure.
  • the organic layer (integral organic layer) formed directly on the DFB diffraction lattice structure preferably contains an organic compound having at least one stilbene unit, preferably 4,4'-bis [(N-carbazole) styryl]. More preferably, it contains biphenyl (BSBCz), 4,4'-bis [(N-carbazole) stilbene] biphenyl (BSBCz) and 4,4'-bis (N-carbazolyl) -1,1'-biphenyl (CBP). ) Is more preferably included.
  • the organic layer (organic layer as a unit) directly formed on the DFB diffraction grating structure preferably contains an organic compound having at least one fluorene unit.
  • An organic compound having at least one stilbene unit and an organic compound having at least one fluorene unit can easily form a population inversion and can efficiently cause stimulated emission. Therefore, it is preferable that these compounds are contained in the active layer.
  • a laser device containing BSBCz and CBP in the organic layer is characterized in that it exhibits a PL quantum yield of almost 100%, a short PL lifetime of about 1 ns, a large radiation decay constant (Kr), and a low ASE threshold.
  • the thickness of the organic layer directly formed on the DFB diffraction grating structure is preferably 80 to 350 nm, more preferably 100 to 300 nm, and further preferably 150 to 250 nm.
  • the thickness of the entire laminated structure of the organic layer that is, the organic layer as an integral body. It is assumed that the thickness is in the above thickness range.
  • the thickness obtained by subtracting the thickness of the inorganic layer from the thickness of the light emitting portion is the above. It shall be in the thickness range of.
  • the DFB diffraction grating structure is provided between the electrode and the organic layer.
  • the DFB diffraction grating structure may be provided between the cathode and the organic layer, may be provided between the anode and the organic layer, or may be provided in both of them.
  • the electrode that sandwiches the DFB diffraction grating structure with the organic layer is preferably a transparent electrode.
  • the DFB diffraction grating structure is preferably formed directly on the electrodes.
  • Examples of other layers constituting the light emitting portion include a hole transport layer, a hole injection layer, an electron blocking layer, a hole blocking layer, an electron injection layer, an electron transport layer, and an exciton blocking layer.
  • the hole transport layer may be a hole injection transport layer having a hole injection function
  • the electron transport layer may be an electron injection transport layer having an electron injection function.
  • FIG. 2 A specific structural example of the current-excited laser device is shown in FIG. In FIG. 2, 1 is a substrate, 2 is a cathode, 3 is a DFB diffraction grating structure, 4 is an electron injection layer, 5 is an active layer, 6 is a hole injection layer, and 7 is an anode.
  • the hole injection layer 6 is a metal oxide layer such as molybdenum oxide and the electron injection layer 4 and the active layer 5 are organic layers
  • an organic layer made of HAT-CN or the like may be inserted between the metal oxide layer and the anode 7.
  • the organic layer between the metal oxide layer and the DFB diffraction grating structure 3 may have a single-layer structure or a multi-layer structure of three or more layers in addition to the two-layer structure shown in FIG. ..
  • the laser light generated in the active layer may pass through the anode and be taken out to the outside, or may pass through the cathode and be taken out to the outside, and pass through the anode and the cathode. And may be taken out to the outside. Further, the laser beam generated in the active layer may be taken out from the end face of the light emitting portion.
  • each member and each layer of the current excitation type laser element will be described.
  • the description of the substrate and the active layer also applies to the photoexcited laser device and the active layer.
  • the description in the section [DFB diffraction grating structure] can be referred to.
  • the current-excited laser device of the present invention is preferably supported by a substrate.
  • a substrate having translucency to the laser light is used as the substrate, and a transparent substrate made of glass, transparent plastic, quartz, or the like is used. Is preferably used.
  • the substrate is not particularly limited, and a substrate made of silicon, paper, or cloth may be used in addition to the above transparent substrate. can.
  • anode As the anode in the current excitation type laser element, a metal having a large work function (4 eV or more), an alloy, an electrically conductive compound, or a mixture thereof as an electrode material is preferably used.
  • electrode materials include metals such as Al and Au, and conductive transparent materials such as CuI, indium zinc oxide (ITO), SnO 2, ZnO, and TiN.
  • a material capable of producing an amorphous transparent conductive film such as IDIXO (In 2 O 3-ZnO) may be used.
  • the anode can be formed by forming a film of these electrode materials by a method such as vapor deposition or sputtering.
  • a pattern having a desired shape may be formed on the formed thin film by a photolithography method to serve as an anode, or when pattern accuracy is not required so much (about 100 ⁇ m or more), it is desired at the time of vapor deposition or sputtering of the electrode material.
  • the pattern may be formed through a mask having the shape of.
  • a coatable material such as an organic conductive compound
  • a wet film forming method such as a printing method or a coating method can also be used.
  • the current excitation type laser element is configured to transmit the laser light through the anode, the anode needs to have translucency with respect to the laser light, and the transmittance of the laser light is 1.
  • the sheet resistance as an anode is preferably several hundred ⁇ / ⁇ or less.
  • the film thickness depends on the material, but is usually selected in the range of 10 to 1000 nm, preferably 10 to 200 nm.
  • cathode a metal having a smaller work function than the material used for the anode (referred to as an electron-injectable metal), an alloy, an electrically conductive compound, or a mixture thereof is used as an electrode material.
  • electrode materials include sodium, sodium-potassium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O). 3 ) Examples thereof include a mixture, an indium, a lithium / aluminum mixture, and a rare earth metal.
  • a mixture of an electron injectable metal and a second metal which is a stable metal having a larger work function value than this for example, a magnesium / silver mixture.
  • a magnesium / silver mixture Magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O 3 ) mixture, lithium / aluminum mixture, aluminum and the like are suitable.
  • the cathode can be formed by forming a film of these electrode materials by a method such as vapor deposition or sputtering.
  • the cathode when the current excitation type laser element is configured to transmit the laser light through the cathode, the cathode needs to have translucency with respect to the laser light, and the transmittance of the laser light is 1. It is preferably configured to be greater than%, and more preferably configured to be greater than 10%. Specifically, it is preferable to use a thin film formed by forming the above electrode material with a thickness of 10 to 100 nm for the cathode, or to use a conductive transparent material such as ITO exemplified in the above (anode) section for the cathode. ..
  • the sheet resistance as a cathode is preferably several hundred ⁇ / ⁇ or less, and the film thickness is usually selected in the range of 10 nm to 5 ⁇ m, preferably 50 to 200 nm.
  • the active layer is a layer in which excitons are generated by recombination of holes and electrons injected from the anode and cathode, respectively, an inverted distribution is formed, and then stimulated emission is induced by light incident.
  • the active layer preferably contains an organic compound, and is preferably composed of an organic compound. Further, the active layer preferably contains an organic compound as a light emitting material for a laser.
  • the light emitting material for a laser any known material can be used, but an organic compound having at least one stilbene unit and an organic compound having at least one fluorene unit are preferable.
  • BSBCz can be mentioned as a specific example of an organic compound having at least one stilbene unit.
  • the active layer preferably contains a host material as well as a light emitting material.
  • a host material an organic compound having a lowest excited singlet energy level higher than that of the light emitting material can be used.
  • the excited singlet energy generated in the host material can be easily transferred to the light emitting material, and the singlet exciter generated in the light emitting material can be confined in the molecule of this light emitting material, and the light emitting efficiency can be improved. It will be possible to fully withdraw.
  • any host material capable of achieving high luminous efficiency is used in the present invention without particular limitation. be able to.
  • the host material can be appropriately selected depending on the light emitting material.
  • CBP can be preferably used as the host material.
  • the amount of the light emitting material for laser contained in the active layer is preferably 0.1% by weight or more, more preferably 1% by weight or more, and 50% by weight or less. It is preferably 20% by weight or less, and further preferably 10% by weight or less.
  • the host material in the active layer is preferably an organic compound having a hole transporting ability and an electron transporting ability, preventing a long wavelength of light emission, and having a high glass transition temperature.
  • the thickness of the active layer is preferably 5 to 500 nm, more preferably 50 to 300 nm.
  • the injection layer is a layer provided between the electrode and the active layer for lowering the driving voltage and improving the emission brightness.
  • the injection layer can be provided as needed.
  • As the hole injection material and the electron injection material a known organic hole injection material or a known organic electron injection material can be used, but a metal oxide such as molybdenum oxide can also be used as the hole injection material.
  • An organic material to which an alkali metal such as Cs is added can also be used as an electron injection material.
  • the blocking layer is a layer capable of blocking the diffusion of charges (electrons or holes) and / or excitons existing in the active layer to the outside of the active layer.
  • the electron blocking layer can be placed between the active layer and the hole transporting layer to prevent electrons from passing through the active layer towards the hole transporting layer.
  • the hole blocking layer can be placed between the active layer and the electron transporting layer, blocking holes from passing through the active layer towards the electron transporting layer.
  • the blocking layer can also be used to prevent excitons from diffusing outside the active layer. That is, the electron blocking layer and the hole blocking layer can also function as exciton blocking layers, respectively.
  • the electron blocking layer or exciton blocking layer referred to in the present specification is used in the sense that one layer includes a layer having the functions of an electron blocking layer and an exciton blocking layer.
  • the hole blocking layer has a function of an electron transporting layer in a broad sense.
  • the hole blocking layer has a role of blocking the holes from reaching the electron transporting layer while transporting electrons, which can improve the recombination probability of electrons and holes in the active layer.
  • As the material of the hole blocking layer a material of the electron transport layer described later can be used as needed.
  • the electron blocking layer has a function of transporting holes in a broad sense.
  • the electron blocking layer has a role of blocking electrons from reaching the hole transporting layer while transporting holes, which can improve the probability of recombination of electrons and holes in the active layer. ..
  • the exciton blocking layer is a layer for preventing excitons generated by recombination of holes and electrons in the active layer from diffusing into the charge transport layer, and the excitons are inserted by inserting this layer. It is possible to efficiently confine it in the active layer, and it is possible to improve the light emission efficiency of the element.
  • the exciton blocking layer can be inserted into either the anode side or the cathode side adjacent to the active layer, and both can be inserted at the same time.
  • the layer when the exciton blocking layer is provided on the anode side, the layer can be inserted between the hole transport layer and the active layer adjacent to the active layer, and when inserted on the cathode side, the active layer and the cathode can be inserted.
  • the layer can be inserted adjacent to the active layer between and.
  • a hole injection layer, an electron blocking layer, or the like can be provided between the anode and the exciton blocking layer adjacent to the anode side of the active layer, and the cathode and the excitation adjacent to the cathode side of the active layer can be provided.
  • An electron injection layer, an electron transport layer, a hole blocking layer, and the like can be provided between the child blocking layer and the electron blocking layer.
  • the hole transport layer is made of a hole transport material having a function of transporting holes, and the hole transport layer may be provided with a single layer or a plurality of layers.
  • the hole transporting material has either injection or transport of holes or an electron barrier property, and may be either an organic substance or an inorganic substance.
  • Known hole transporting materials that can be used include, for example, triazole derivatives, oxadiazole derivatives, imidazole derivatives, carbazole derivatives, indolocarbazole derivatives, polyarylalkane derivatives, pyrazoline derivatives and pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, etc.
  • the electron transport layer is made of a material having a function of transporting electrons, and the electron transport layer may be provided with a single layer or a plurality of layers.
  • the electron transporting material (which may also serve as a hole blocking material) may have a function of transferring electrons injected from the cathode to the active layer.
  • Examples of the electron transporting layer that can be used include nitro-substituted fluorene derivatives, diphenylquinone derivatives, thiopyrandioxide derivatives, carbodiimides, freolenidenemethane derivatives, anthracinodimethane and anthrone derivatives, and oxadiazole derivatives.
  • a thiadiazole derivative in which the oxygen atom of the oxadiazole ring is replaced with a sulfur atom, and a quinoxalin derivative having a quinoxalin ring known as an electron-withdrawing group can also be used as an electron transport material.
  • a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used.
  • each layer constituting these laser elements is not particularly limited, and may be produced by either a dry process or a wet process.
  • the DFB diffraction grating structure since the DFB diffraction grating structure has at least two types of linear convex arrangements having different arrangement directions, light feedback occurs in each arrangement direction to efficiently form a population inversion. At the same time, the intensification of light by Bragg reflection and the return of light to the active layer occur efficiently. As a result, the laser oscillation threshold value can be significantly reduced, and good laser oscillation characteristics can be obtained.
  • the features of the present invention will be described in more detail with reference to examples below.
  • the materials, treatment contents, treatment procedures, etc. shown below can be appropriately changed as long as they do not deviate from the gist of the present invention. Therefore, the scope of the present invention should not be construed as limited by the specific examples shown below.
  • the emission spectrum during pulse drive is measured using a multi-channel spectrometer (Hamamatsu Photonics: PMA-50), and the element characteristics during pulse drive are measured with an amplifier (NF: HSA4101) and photomultiplier tubes. This was performed using a tube (manufactured by Hamamatsu Photonics Co., Ltd .: C9525-02).
  • Example 1 Manufacture of a laser element having a concentric square DFB diffraction grating structure
  • the manufacturing process of the laser element performed in this example is shown in FIG.
  • the concentric square DFB diffraction grating structure shown in FIG. 1 was formed as the diffraction grating structure.
  • the lattice period ⁇ of each linear convex portion constituting the concentric square shape was 280 nm
  • the width w was 140 nm
  • the height h was 60 nm.
  • FIG. 3A a glass substrate on which a cathode made of indium tin oxide (ITO) having a film thickness of 30 nm was formed was prepared. Then, as shown in FIG.
  • ITO indium tin oxide
  • SiO 2 silicon oxide
  • FIG. 3B silicon oxide (SiO 2 ) was formed into a film having a thickness of 60 nm in the central region (10 ⁇ 10 mm) of the ITO by a sputtering method to form a SiO 2 film. ..
  • FIG. 3C four concentric square patterns were formed on the SiO 2 film by using an electron beam lithography method and a dry etching method to form a DFB diffraction grating structure.
  • the patterning of this SiO 2 film was performed as follows. First, HMDS treatment was performed by spin-coating the surface of the SiO 2 film with hexamethyldisilazane (HMDS) and annealing at 120 ° C. for 120 seconds.
  • HMDS hexamethyldisilazane
  • a resist solution manufactured by Zeon Co., Ltd .: ZEP520A-7
  • ZED-N50 a developing solution
  • plasma etching with CHF 3 was performed on the resist mask, and SiO 2 in the region where the mask was not formed was etched until the ITO surface was exposed.
  • each thin film and anode constituting the light emitting portion were laminated on the DFB diffraction grating structure at a vacuum degree of 1.5 ⁇ 10 -4 Pa by a vacuum deposition method.
  • cesium (Cs) and CBP were co-deposited from different vapor deposition sources on the DFB diffraction grating structure to form a layer having a thickness of 50 nm. At this time, the concentration of cesium was set to 20% by weight.
  • BSBCz and CBP were co-deposited from different vapor deposition sources to form a layer having a thickness of 160 nm, which was used as an active layer. At this time, the concentration of BSBCz was set to 6% by weight.
  • MoO 3 molybdenum trioxide
  • Al aluminum
  • Example 1 Manufacture of a laser element having no DFB diffraction grating structure Same as Example 1 except that a light emitting portion is formed directly on ITO without forming a DFB diffraction grating structure and an Al anode is formed on the light emitting portion. A laser element was manufactured in the same manner.
  • FIG. 4 (g) is an SEM photograph of the DFB diffraction grating structure formed in Example 1.
  • FIG. 5 shows the current density-voltage characteristics when a DC voltage is applied to each of the laser elements of Example 1 and Comparative Example 1.
  • the laser element of Example 1 showed higher external quantum efficiency than the laser element of Comparative Example 1.
  • the emission spectrum when pulse voltage is applied to the laser element of Example 1 at various current densities is shown in FIG. 6, and the result of plotting the emission peak intensity with respect to the current density is shown in FIG.
  • the pulse voltage used here has a pulse width of 400 ns and a pulse frequency of 1 kHz.
  • FIG. 6 by applying a pulse voltage, a sharp peak derived from laser oscillation was observed from the laser element of Example 1.
  • FIG. 8 shows the results of measuring the angle dependence of the emission intensity by driving the laser element of Example 1 at 110 Acm- 2 exceeding the threshold value.
  • the horizontal axis in the graph of FIG. 8 indicates the measurement angle of the emission intensity, which is 90 ° when measured from the normal direction with respect to the substrate surface and 0 ° or 180 ° when measured from the horizontal direction with respect to the substrate surface. ..
  • the emission intensity was the highest in the normal direction with respect to the substrate surface, and directivity was recognized in the emission.
  • each laser element of Comparative Example 2-7 also determines the lasing threshold J th in the same manner as in Example 1, was measured emission wavelength lambda DFB and the half-value width FWHM of its threshold J th. The results of these measurements are shown in Table 1.
  • the laser oscillation threshold J th of the laser device of Example 1 was much lower value than the laser oscillation threshold J th of Comparative Examples 2-7. Therefore, by forming the DFB diffraction grating structure with at least two types of linear convex arrangements having different arrangement directions, the laser oscillation threshold can be effectively reduced and the laser is oscillated at a relatively low current density. It was found that a current-excited organic laser element can be realized.
  • a layer made of HAT-CN may be inserted between the Al anode and the MoO 3 layer.
  • the laser element of the present invention has an extremely low laser oscillation threshold value, and even when configured as a current-pumped organic laser element, laser oscillation can be performed with a relatively low current density. Therefore, according to the present invention, it is possible to realize a highly practical current-excited organic laser element. Therefore, the present invention has high industrial applicability.
  • Substrate 2 Cathode 3 DFB diffraction grating structure 4 Electron injection layer 5 Active layer 6 Hole injection layer 7 Anode

Abstract

This laser element, which has a two-dimensional DFB diffraction grating structure provided with at least two types of linear protruding section arrays that have different array directions, has a low laser oscillation threshold value. The DFB diffraction grating structure is preferably a two-dimensional DFB diffraction grating structure that has a concentric rectangular shape such as a concentric square shape, and an organic layer is preferably formed directly on the DFB diffraction grating structure.

Description

レーザ素子Laser element
 本発明は、レーザ発振の閾値が低いレーザ素子に関する。 The present invention relates to a laser device having a low laser oscillation threshold.
 有機化合物を活性層に用いる有機レーザ素子は、高いフォトルミネセンス(PL)量子収率と可視領域にわたる広い放出スペクトルが得られるとともに、有機化合物の分子設計により特性を制御できることや、素子にフレキシブル性を付与できるといった利点を有することから、活発に研究が行われている。そして、特に電流励起型への開発に向けて精力的に研究が進められた結果、有機化合物を用いる電流励起型レーザ素子が初めて実現されるに至った(特許文献1参照)。
 この電流励起型レーザ素子は、ITO電極表面に、光共振器としてのDFB(distributed feedback)回折格子構造が形成され、その上に、有機利得層を設けた構造を有する。ここでのDFB回折格子構造は、帯状凸部が一定の周期で一方向に配列した第1領域と、帯状凸部が、第1領域とは異なる格子周期で該第1領域と同じ配列方向に配列した第2領域とを有し、これら各領域が交互に配置した混合周期配列を有する。同文献には、こうしたDFB回折格子構造を有する有機レーザ素子において、半値幅(FWHM)が狭いレーザ発振が実現したことが記載されている。
An organic laser device that uses an organic compound as an active layer can obtain a high photoluminescence (PL) quantum yield and a wide emission spectrum over the visible region, and its characteristics can be controlled by the molecular design of the organic compound, and the device is flexible. Since it has the advantage of being able to grant, research is being actively conducted. As a result of vigorous research toward the development of a current-excited type, a current-excited laser element using an organic compound has been realized for the first time (see Patent Document 1).
This current excitation type laser element has a structure in which a DFB (distributed feedback) diffraction grating structure as an optical resonator is formed on the surface of an ITO electrode, and an organic gain layer is provided on the DFB (distributed feedback) diffraction grating structure. In the DFB diffraction grating structure here, the first region in which the band-shaped convex portions are arranged in one direction at a fixed period and the band-shaped convex parts are arranged in the same arrangement direction as the first region in a lattice period different from that of the first region. It has a second region arranged, and each of these regions has a mixed periodic arrangement arranged alternately. The document describes that laser oscillation with a narrow full width at half maximum (FWHM) has been realized in an organic laser device having such a DFB diffraction grating structure.
国際公開第2018/043763号パンフレットInternational Publication No. 2018/043763 Pamphlet
 有機レーザ素子を実用化するためには、エネルギー効率が良い有機レーザ素子を提供することが必要とされる。具体的には、レーザ発振の閾値が低くて、低エネルギーでレーザ発振する素子を提供することが望まれる。しかしながら、これまでの研究ではどのような条件を満たせばエネルギー効率がよい有機レーザ素子を提供できるのかが明らかにされていなかった。 In order to put an organic laser element into practical use, it is necessary to provide an energy-efficient organic laser element. Specifically, it is desired to provide an element that has a low laser oscillation threshold and oscillates with low energy. However, previous studies have not clarified under what conditions the energy-efficient organic laser device can be provided.
 このような状況下において本発明者らは、レーザ発振閾値が低いレーザ素子を提供することを目的として鋭意検討を進めた。 Under such circumstances, the present inventors have made diligent studies for the purpose of providing a laser element having a low laser oscillation threshold.
 上記の課題を解決するため、本発明者らが鋭意検討を行った結果、配列方向が異なる少なくとも2種類の線状凸部配列を備えた二次元DFB回折格子構造を光共振器として設けることにより、レーザ発振閾値が極めて低いレーザ素子が実現することを見出した。本発明は、こうした知見に基づいて提案されたものであり、具体的に以下の構成を有する。 As a result of diligent studies by the present inventors in order to solve the above problems, a two-dimensional DFB diffraction grating structure having at least two types of linear convex arrangements having different arrangement directions is provided as an optical resonator. , It has been found that a laser element having an extremely low laser oscillation threshold can be realized. The present invention has been proposed based on these findings, and specifically has the following configuration.
[1] 配列方向が異なる少なくとも2種類の線状凸部配列を備えた二次元DFB回折格子構造を有するレーザ素子。
[2] 前記DFB回折格子構造が、同心矩形状を有する、[1]に記載のレーザ素子。
[3] 前記DFB回折格子構造が、同心正方形状を有する、[1]に記載のレーザ素子。
[4] 前記2種類の線状凸部の配列同士で格子周期が互いに同じである、[1]に記載のレーザ素子。
[5] 一対の電極を有していて、通電することによりレーザ発振する、[1]~[4]のいずれか1項に記載のレーザ素子。
[6] 前記DFB回折格子構造上に直接有機層が形成されている、[1]~[5]のいずれか1項に記載のレーザ素子。
[7] 前記有機層が、少なくとも1つのスチルベン単位を有する有機化合物を含む、[6]に記載のレーザ素子。
[8] 前記有機層が、4,4’-ビス[(N-カルバゾール)スチリル]ビフェニル(BSBCz)を含む、[6]または[7]に記載のレーザ素子。
[9] 前記有機層が、4,4’-ビス[(N-カルバゾール)スチリル]ビフェニル(BSBCz)と4,4’-ビス(N-カルバゾリル)-1,1’-ビフェニル(CBP)を含む、[8]に記載のレーザ素子。
[10] 前記有機層が、少なくとも1つのフルオレン単位を有する化合物を含む、[6]~[9]のいずれか1項に記載のレーザ素子。
[11] 前記有機層が、80~350nmの厚さを有する、[6]~[10]のいずれか1項に記載のレーザ素子。
[12] 前記DFB回折格子構造を構成する各線状凸部の高さが75nm未満である、[1]~[11]のいずれか1項に記載のレーザ素子。
[13] 前記DFB回折格子構造がSiOで構成される、[1]~[12]のいずれか1項に記載のレーザ素子。
[14] 前記DFB回折格子構造が前記有機層と透明電極の間に設けられている、[6]~[13]のいずれか1項に記載のレーザ素子。
[15] 三重項消光剤を含まない、[1]~[14]のいずれか1項に記載のレーザ素子。
[1] A laser element having a two-dimensional DFB diffraction grating structure having at least two types of linear convex arrangements having different arrangement directions.
[2] The laser element according to [1], wherein the DFB diffraction grating structure has a concentric rectangular shape.
[3] The laser element according to [1], wherein the DFB diffraction grating structure has a concentric square shape.
[4] The laser element according to [1], wherein the arrangements of the two types of linear convex portions have the same lattice period.
[5] The laser element according to any one of [1] to [4], which has a pair of electrodes and oscillates a laser when energized.
[6] The laser device according to any one of [1] to [5], wherein an organic layer is directly formed on the DFB diffraction grating structure.
[7] The laser device according to [6], wherein the organic layer contains an organic compound having at least one stilbene unit.
[8] The laser device according to [6] or [7], wherein the organic layer contains 4,4'-bis [(N-carbazole) styryl] biphenyl (BSBCz).
[9] The organic layer contains 4,4'-bis [(N-carbazole) styryl] biphenyl (BSBCz) and 4,4'-bis (N-carbazolyl) -1,1'-biphenyl (CBP). , [8].
[10] The laser device according to any one of [6] to [9], wherein the organic layer contains a compound having at least one fluorene unit.
[11] The laser device according to any one of [6] to [10], wherein the organic layer has a thickness of 80 to 350 nm.
[12] The laser element according to any one of [1] to [11], wherein the height of each linear convex portion constituting the DFB diffraction grating structure is less than 75 nm.
[13] The laser element according to any one of [1] to [12], wherein the DFB diffraction grating structure is composed of SiO 2.
[14] The laser device according to any one of [6] to [13], wherein the DFB diffraction grating structure is provided between the organic layer and the transparent electrode.
[15] The laser device according to any one of [1] to [14], which does not contain a triplet quencher.
 本発明によれば、レーザ発振閾値が低いレーザ素子を実現することができる。 According to the present invention, it is possible to realize a laser element having a low laser oscillation threshold.
本発明のレーザ素子が備えるDFB回折格子構造の一例を示す概略平面図である。It is a schematic plan view which shows an example of the DFB diffraction grating structure provided in the laser element of this invention. 本発明のレーザ素子の層構成例を示す概略断面図である。It is a schematic cross-sectional view which shows the layer structure example of the laser element of this invention. 実施例1で行ったレーザ素子の製造工程を示す概略斜視図である。It is a schematic perspective view which shows the manufacturing process of the laser element performed in Example 1. FIG. 実施例1で製造したレーザ素子と比較例2~7で製造したレーザ素子のDFB回折格子構造のSEM写真である。It is an SEM photograph of the DFB diffraction grating structure of the laser element manufactured in Example 1 and the laser element manufactured in Comparative Examples 2-7. 実施例1で製造した同心正方形状のDFB回折格子構造を有するレーザ素子と、比較例1で製造したDFB回折格子構造を有しないレーザ素子のDC駆動時の電流密度-電圧特性を示すグラフである。It is a graph which shows the current density-voltage characteristic at the time of DC drive of the laser element which has a concentric square DFB diffraction grating structure manufactured in Example 1, and the laser element which does not have a DFB diffraction grating structure manufactured in Comparative Example 1. .. 実施例1で製造した同心正方形状のDFB回折格子構造を有するレーザ素子について、各種電流密度で測定したパルス駆動時の発光スペクトルである。It is an emission spectrum at the time of pulse driving measured with various current densities about the laser element having a concentric square DFB diffraction grating structure manufactured in Example 1. 図6における発光ピーク強度を、電流密度を横軸にしてプロットした両対数グラフである。6 is a log-log graph in which the emission peak intensities in FIG. 6 are plotted with the current density on the horizontal axis. 実施例1で製造した同心正方形状のDFB回折格子構造を有するレーザ素子について、110Acm-2で測定した発光強度の角度依存性を示すグラフである。It is a graph which shows the angle dependence of the emission intensity measured at 110Acm-2 about the laser element which has the concentric square DFB diffraction grating structure manufactured in Example 1. FIG.
 以下において、本発明の内容について詳細に説明する。以下に記載する構成要件の説明は、本発明の代表的な実施態様や具体例に基づいてなされることがあるが、本発明はそのような実施態様や具体例に限定されるものではない。なお、本明細書において「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。また、本明細書において「主成分」というときは、その構成成分のうち、最も含有量が大きい成分のことをいう。また、本発明に用いられる化合物の分子内に存在する水素原子の同位体種は特に限定されず、例えば分子内の水素原子がすべてHであってもよいし、一部または全部がH(デューテリウムD)であってもよい。 Hereinafter, the contents of the present invention will be described in detail. The description of the constituent elements described below may be based on typical embodiments and specific examples of the present invention, but the present invention is not limited to such embodiments and specific examples. The numerical range represented by using "-" in the present specification means a range including the numerical values before and after "-" as the lower limit value and the upper limit value. In addition, the term "main component" in the present specification means the component having the highest content among the constituent components. Further, the isotope species of the hydrogen atom existing in the molecule of the compound used in the present invention is not particularly limited, and for example, all the hydrogen atoms in the molecule may be 1 H, or part or all of them may be 2 H. (Duterium D) may be used.
<レーザ素子>
 本発明のレーザ素子は、配列方向が異なる少なくとも2種類の線状凸部配列を備えた二次元DFB(distributed feedback)回折格子構造(分布帰還型回折格子構造)を有することを特徴とする。
 以下において、本発明のレーザ素子が有するDFB回折格子構造と、レーザ素子の構成例について説明する。
<Laser element>
The laser element of the present invention is characterized by having a two-dimensional DFB (distributed feedback) diffraction grating structure (distributed feedback type diffraction grating structure) having at least two types of linear convex arrangements having different arrangement directions.
Hereinafter, the DFB diffraction grating structure of the laser element of the present invention and a configuration example of the laser element will be described.
[DFB回折格子構造]
 本発明で用いるDFB回折格子構造は、配列方向が異なる少なくとも2種類の線状凸部配列を備えている。
 ここで、「線状凸部」は凸部の線分であり、線状凸部の延在方向に対する直交方向に2つ以上の線状凸部が互いに間隔を隔てて配列している。このため「配列方向」は線状凸部の延在方向に対する直交方向に対応する。本発明で用いるDFB回折格子構造には、このように互いに間隔を隔てて配列した線状凸部からなる群が少なくとも2群あり、それらの群同士は互いに線状凸部の配列方向が異なっている。本発明で用いるDFB回折格子構造には、互いに配列方向が異なる線状凸部群が2~6群存在していることが好ましく、2~4群存在していることがより好ましい。例えば、互いに配列方向が異なる線状凸部群が2群あって同心矩形状のDFB回折格子構造を形成していてもよいし、互いに配列方向が異なる線状凸部群が3群あって同心六角形状のDFB回折格子構造を形成していてもよいし、互いに配列方向が異なる線状凸部群が4群あって同心八角形状のDFB回折格子構造を形成していてもよい。各群を構成する線状凸部は周期的に配列している領域を含むことが好ましい。ここで「周期的な」とは、線状凸部が略一定の間隔で配列していることを意味し、本明細書中では、隣り合う線状凸部もしくは隣り合う矩形環の外周縁同士の間隔Λを「格子周期」という。
 本発明で用いるDFB回折格子構造は、同心状に形成されたものであることが好ましい。
 本発明における「同心状」とは、平面視で環状(環から該環よりも一回り小さい略相似形を切り抜いた形状)をなす第1格子凸部と、この第1格子凸部と平面視で略相似形をなす第2格子凸部~第n格子凸部が、中心が重なるように配列した形状のことをいう。ここで、第2格子凸部~第n格子凸部(nは3以上の整数)も互いに略相似形であり、第1格子凸部の環が最も小さく、nの数が大きくなる程、環が大きくなることとする。nは、例えば3以上の範囲、10以上の範囲、50以上の範囲、100以上の範囲、200以上の範囲、500以上の範囲、1000以上の範囲から選択してもよい。また、nは2000未満の範囲、800未満の範囲、400未満の範囲、150未満の範囲から選択してもよい。なお、ここでいう環は、完全な環状でなくてもよく、例えば一部が欠けていたり、隣り合う格子凸部同士で環が連結していたりしてもよい。また、環の幅が、一部の箇所で大半を占める領域よりも狭くなるか、太くなっていてもよい。
 また、第1格子凸部~第n格子凸部で重なる環の中心とは、該環の重心のことを意味し、例えば回転対称性を有する環の場合には、回転対称の中心である。ここで、このDFB回折格子構造では、第1格子凸部よりも内側であって環の中心を含む領域に環状凸部を有していてもよい。この環状凸部は、平面視で第1格子凸部の環と略相似形であることが好ましい。
 同心状に形成される環は、多角形の環であることが好ましい。このとき、多角形の環の一部に曲線部が含まれていてもよい。例えば、多角形を構成する辺が交わる部位(角)が曲線状に形成されていてもよい。また、多角形の環には曲線部が含まれていなくてもよい。また、多角形の環についても、一部が欠けていてもよく、例えば角が欠けていたり、辺の途中が欠けていたりしてもよい。多角形の環は、環の内角がすべて等しくてもよいが、異なっていてもよい。多角形の環は正多角形であってもよい。多角形の例として、矩形、六角形、八角形などを挙げることができる。
 本発明の好ましい一態様では、DFB回折格子構造は、同心矩形状に形成されたものである。同心矩形状の「矩形」は四角形を意味する。すなわち、4本の直線で囲まれた形状であればよい。「矩形」の具体例として、正方形、長方形、菱形、平行四辺形等を挙げることができ、正方形、長方形であることが好ましく、正方形であることがより好ましい。例えば、図1に示すような同心正方形状では、矩形環形状の隣辺(隣り合う線状凸部)の配列同士で配列方向がX方向とY方向の異なる方向に形成されている。
 本発明のレーザ素子では、こうした同心状の二次元DFB回折格子構造を有することにより、各配列方向で光のフィードバックが起こって反転分布が効率良く形成されると推測され、極めて低いレーザ発振閾値を実現することができる。
[DFB diffraction grating structure]
The DFB diffraction grating structure used in the present invention includes at least two types of linear convex arrangements having different arrangement directions.
Here, the "linear convex portion" is a line segment of the convex portion, and two or more linear convex portions are arranged at intervals from each other in a direction orthogonal to the extending direction of the linear convex portion. Therefore, the "arrangement direction" corresponds to the direction orthogonal to the extending direction of the linear convex portion. In the DFB diffraction grating structure used in the present invention, there are at least two groups consisting of linear convex portions arranged at intervals in this way, and these groups have different arrangement directions of the linear convex portions. There is. In the DFB diffraction grating structure used in the present invention, it is preferable that 2 to 6 groups of linear convex portions having different arrangement directions are present, and more preferably 2 to 4 groups are present. For example, two groups of linear convex portions having different arrangement directions may form a concentric rectangular DFB diffraction grating structure, or three groups of linear convex portions having different arrangement directions may be concentric. A hexagonal DFB diffraction grating structure may be formed, or four linear convex portions having different arrangement directions may be formed to form a concentric octagonal DFB diffraction grating structure. The linear protrusions constituting each group preferably include regions that are periodically arranged. Here, "periodic" means that the linear convex portions are arranged at substantially constant intervals, and in the present specification, the outer peripheral edges of adjacent linear convex portions or adjacent rectangular rings are arranged with each other. The interval Λ of is called the "lattice period".
The DFB diffraction grating structure used in the present invention is preferably formed concentrically.
The "concentric shape" in the present invention means a first lattice convex portion forming an annular shape (a shape obtained by cutting out a substantially similar figure one size smaller than the ring from the ring) in a plan view, and the first lattice convex portion and the plan view. Refers to a shape in which the second lattice convex portion to the nth lattice convex portion, which have substantially similar figures, are arranged so that their centers overlap. Here, the second lattice convex portion to the nth lattice convex portion (n is an integer of 3 or more) are also substantially similar to each other, and the ring of the first lattice convex portion is the smallest, and the larger the number of n, the more the ring. Will be larger. n may be selected from, for example, a range of 3 or more, a range of 10 or more, a range of 50 or more, a range of 100 or more, a range of 200 or more, a range of 500 or more, and a range of 1000 or more. Further, n may be selected from a range of less than 2000, a range of less than 800, a range of less than 400, and a range of less than 150. The ring referred to here does not have to be a perfect ring, for example, a part may be missing, or the rings may be connected to each other by adjacent lattice convex portions. Also, the width of the ring may be narrower or thicker than the region that occupies most of the area.
The center of the ring overlapping between the convex portion of the first lattice and the convex portion of the nth lattice means the center of gravity of the ring. For example, in the case of a ring having rotational symmetry, it is the center of rotational symmetry. Here, in this DFB diffraction grating structure, the annular convex portion may be provided in the region inside the first lattice convex portion and including the center of the ring. It is preferable that the annular convex portion has a shape substantially similar to the ring of the first lattice convex portion in a plan view.
The rings formed concentrically are preferably polygonal rings. At this time, a curved portion may be included in a part of the ring of the polygon. For example, the portion (corner) where the sides forming the polygon intersect may be formed in a curved shape. Further, the polygonal ring does not have to include a curved portion. Further, the polygonal ring may also be partially missing, for example, the corners may be missing, or the middle of the side may be missing. Polygonal rings may have all the same internal angles, but they may be different. The ring of the polygon may be a regular polygon. Examples of polygons include rectangles, hexagons, and octagons.
In a preferred embodiment of the present invention, the DFB diffraction grating structure is formed in a concentric rectangular shape. A concentric rectangular "rectangle" means a quadrangle. That is, the shape may be any shape surrounded by four straight lines. Specific examples of the "rectangle" include a square, a rectangle, a rhombus, a parallelogram, and the like, preferably a square and a rectangle, and more preferably a square. For example, in the concentric square shape as shown in FIG. 1, the arrangement directions of the adjacent sides (adjacent linear convex portions) of the rectangular ring shape are formed in different directions in the X direction and the Y direction.
By having such a concentric two-dimensional DFB diffraction grating structure in the laser element of the present invention, it is presumed that light feedback occurs in each arrangement direction to efficiently form a population inversion, and an extremely low laser oscillation threshold is set. It can be realized.
 本発明で用いるDFB回折格子構造において、各線状凸部の配列の格子周期Λは、Λ=λ/2neff(λ:ブラッグ反射を起こす光の波長、neff:回折格子の有効平均屈折率)を指標として選択される。
 各線状凸部の高さhは、好ましくは75nm未満であり、より好ましくは20~70nmである。
 ここで、線状凸部の配列の格子周期Λは、各配列同士で互いに同じであっても異なっていてもよいが、略同じであることが好ましい。、各線状凸部の幅wおよび高さhは、各配列内で互いに同じであっても異なっていてもよいが、略同じであることが好ましい。また、各線状凸部の幅wおよび高さhは、各配列同士で互いに同じであっても異なっていてもよいが、略同じであることが好ましい。
In the DFB diffraction grating structure used in the present invention, the lattice period Λ of the arrangement of each linear convex portion is Λ = λ / 2 n eff (λ: wavelength of light causing Bragg reflection, n eff : effective average refractive index of the diffraction grating). Is selected as an index.
The height h of each linear convex portion is preferably less than 75 nm, more preferably 20 to 70 nm.
Here, the lattice period Λ of the arrangement of the linear convex portions may be the same or different from each other in each arrangement, but it is preferable that they are substantially the same. , The width w and the height h of each linear convex portion may be the same or different from each other in each arrangement, but are preferably substantially the same. Further, the width w and the height h of each linear convex portion may be the same or different from each other in each arrangement, but it is preferable that they are substantially the same.
 DFB回折格子構造(各格子凸部および環状凸部)の構成材料としては、DFB回折格子として使用可能な材料や使用されてきた材料を挙げることができる。SiOを用いることが好ましい。 Examples of the constituent material of the DFB diffraction grating structure (each lattice convex portion and annular convex portion) include a material that can be used as a DFB diffraction grating and a material that has been used. It is preferable to use SiO 2.
[レーザ素子の構成例]
 本発明のレーザ素子は、活性層に励起光が照射されることでレーザ発振する光励起型レーザ素子であってもよいし、活性層に正孔と電子が注入され、それらが再結合して生じたエネルギーによりレーザ発振する電流励起型レーザ素子(半導体レーザ素子)であってもよい。光励起型レーザ素子は、基板上に少なくともDFB回折格子構造および活性層を形成した構造を有する。また、電流励起型レーザ素子は、少なくとも陽極および陰極(一対の電極)と、陽極と陰極の間にDFB回折格子構造および活性層を形成した構造を有し、一対の電極間に電圧を印加して活性層に通電することによりレーザ発振する。各レーザ素子において、DFB回折格子構造は同心状を有する。
[Construction example of laser element]
The laser device of the present invention may be a photoexcited laser device that oscillates by laser irradiation when the active layer is irradiated with excitation light, or holes and electrons are injected into the active layer and they are recombined to be generated. It may be a current excitation type laser element (semiconductor laser element) that oscillates a laser by the energy generated. The photoexcited laser element has a structure in which at least a DFB diffraction grating structure and an active layer are formed on a substrate. Further, the current excitation type laser element has at least an anode and a cathode (a pair of electrodes) and a structure in which a DFB diffraction grating structure and an active layer are formed between the anode and the cathode, and a voltage is applied between the pair of electrodes. The laser oscillates by energizing the active layer. In each laser element, the DFB diffraction grating structure is concentric.
 活性層は、エネルギーを受け取って励起子を生成し、反転分布を形成した後、光の入射により誘導放出を起こす層である。
 ここで、電流励起型のレーザ素子では、電流励起により活性層で発生した励起子が実質的に励起子消滅(励起子同士の衝突による消滅)しないことが好ましい。具体的には、励起子消滅による損失は、好ましくは10%未満、より好ましくは5%未満、さらに好ましくは1%未満、さらにより好ましくは0.1%未満、特に好ましくは0.01%未満、最も好ましくは0%である。
 また、電流励起型レーザ素子では、レーザ発振波長において実質的なポーラロン吸収損失を示さないこと、すなわち、ポーラロン吸収スペクトルと発光スペクトルとの間に実質的な重なりがないことが好ましい。具体的には、ポーラロン吸収による損失は、好ましくは10%未満、より好ましくは5%未満、さらに好ましくは1%未満、さらにより好ましくは0.1%未満、特に好ましくは0.01%未満、最も好ましくは0%である。
 また、レーザ素子の発振波長は、励起状態での吸収波長領域、および、ラジカルカチオンやラジカルアニオンの吸収波長領域と実質的に重ならないことが好ましい。励起状態における吸収による損失は、好ましくは10%未満、より好ましくは5%未満、さらに好ましくは1%未満、さらにより好ましくは0.1%未満、特に好ましくは0.01%未満、最も好ましくは0%である。
 また、本発明のレーザ素子は、三重項消光剤を含まないことが好ましい。
The active layer is a layer that receives energy to generate excitons, forms a population inversion, and then causes stimulated emission due to the incident of light.
Here, in the current excitation type laser element, it is preferable that the excitons generated in the active layer by the current excitation do not substantially disappear (disappearance due to collision between excitons). Specifically, the loss due to exciton annihilation is preferably less than 10%, more preferably less than 5%, even more preferably less than 1%, even more preferably less than 0.1%, particularly preferably less than 0.01%. , Most preferably 0%.
Further, it is preferable that the current excitation type laser element does not show a substantial polaron absorption loss at the laser oscillation wavelength, that is, there is no substantial overlap between the polaron absorption spectrum and the emission spectrum. Specifically, the loss due to polaron absorption is preferably less than 10%, more preferably less than 5%, even more preferably less than 1%, even more preferably less than 0.1%, particularly preferably less than 0.01%. Most preferably 0%.
Further, it is preferable that the oscillation wavelength of the laser element does not substantially overlap the absorption wavelength region in the excited state and the absorption wavelength region of the radical cation or the radical anion. The loss due to absorption in the excited state is preferably less than 10%, more preferably less than 5%, even more preferably less than 1%, even more preferably less than 0.1%, particularly preferably less than 0.01%, most preferably less than 0.01%. It is 0%.
Further, the laser device of the present invention preferably does not contain a triplet quencher.
 本発明のレーザ素子において、活性層は有機化合物を含む有機層であることが好ましく、有機化合物からなる有機層であることがより好ましい。また、活性層は他の層とともに発光部を構成していてもよい。ここで発光部は、活性層と該活性層に積層された他の層からなる積層構造を有し、例えば、電流励起型レーザ素子では、陽極と陰極の間に、発光部全体が配置される。発光部を構成する他の層は、有機化合物を含有する有機層であることが好ましいが、有機層の他に無機層を含んでいてもよい。ここで、有機層は有機化合物のみからなるものであってもよいし、有機化合物と無機物を含む層であってもよい。ただし、有機化合物と無機物を含む層である場合には、有機化合物が主成分(60重量%以上の成分)であることが好ましい。なお、本明細書中では、発光部を構成する各有機層をそれぞれ「有機層」ということがあり、また、有機層が連続して積層されている場合(無機層を間に挟まずに積層されている場合)には、その有機層の積層構造全体を「有機層」ということもある。また、有機層として活性層のみを有する場合の該有機層(活性層)、および、活性層と他の有機層とが連続して積層されている場合の、有機層の積層構造全体を「一体としての有機層」ということがある。 In the laser device of the present invention, the active layer is preferably an organic layer containing an organic compound, and more preferably an organic layer composed of an organic compound. Further, the active layer may form a light emitting portion together with other layers. Here, the light emitting portion has a laminated structure composed of an active layer and another layer laminated on the active layer. For example, in a current excitation type laser element, the entire light emitting portion is arranged between the anode and the cathode. .. The other layer constituting the light emitting portion is preferably an organic layer containing an organic compound, but may contain an inorganic layer in addition to the organic layer. Here, the organic layer may be composed of only an organic compound, or may be a layer containing an organic compound and an inorganic substance. However, in the case of a layer containing an organic compound and an inorganic substance, it is preferable that the organic compound is the main component (60% by weight or more of the components). In the present specification, each organic layer constituting the light emitting portion may be referred to as an "organic layer", and when the organic layers are continuously laminated (laminated without sandwiching the inorganic layer in between). In some cases), the entire laminated structure of the organic layer may be referred to as an "organic layer". Further, the entire laminated structure of the organic layer (active layer) when only the active layer is provided as the organic layer and the active layer and another organic layer are continuously laminated is "integrated". It is sometimes called "organic layer as".
 DFB回折格子構造の上には、直接有機層が形成されていることが好ましい。これにより、DFB回折格子構造でブラッグ反射した光を直接有機層に導入して活性層における誘導放出に寄与させることができる。DFB回折格子構造上に直接形成された有機層の屈折率は、DFB回折格子構造の屈折率と異なることが好ましい。
 DFB回折格子構造上に直接形成された有機層は、活性層であってもよいし、DFB回折格子構造と活性層に間に配された有機層であってもよい。この場合、DFB回折格子構造と活性層の間の有機層は、単層構成であって多層構成であってもよい。
 DFB回折格子構造上に直接形成された有機層(一体としての有機層)は、少なくとも1つのスチルベン単位を有する有機化合物を含むことが好ましく、4,4’-ビス[(N-カルバゾール)スチリル]ビフェニル(BSBCz)を含むことがより好ましく、4,4’-ビス[(N-カルバゾール)スチリル]ビフェニル(BSBCz)と4,4’-ビス(N-カルバゾリル)-1,1’-ビフェニル(CBP)を含むことがさらに好ましい。また、DFB回折格子構造上に直接形成された有機層(一体としての有機層)は、少なくとも1つのフルオレン単位を有する有機化合物を含むことも好ましい。少なくとも1つのスチルベン単位を有する有機化合物および少なくとも1つのフルオレン単位を有する有機化合物は、反転分布を形成し易く、効率よく誘導放出を起こすことができる。そのため、これらの化合物は活性層に含まれていることが好ましい。また、特に、BSBCzとCBPを有機層に含むレーザ素子は、ほぼ100%のPL量子収率、約1nsの短いPL寿命、大きい放射崩壊定数(Kr)、低いASE閾値を示すという特徴がある。
It is preferable that an organic layer is directly formed on the DFB diffraction grating structure. This makes it possible to directly introduce the Bragg-reflected light in the DFB diffraction grating structure into the organic layer and contribute to stimulated emission in the active layer. The refractive index of the organic layer directly formed on the DFB diffraction grating structure is preferably different from the refractive index of the DFB diffraction grating structure.
The organic layer directly formed on the DFB diffraction grating structure may be an active layer, or may be an organic layer arranged between the DFB diffraction grating structure and the active layer. In this case, the organic layer between the DFB diffraction grating structure and the active layer may have a single-layer structure or a multi-layer structure.
The organic layer (integral organic layer) formed directly on the DFB diffraction lattice structure preferably contains an organic compound having at least one stilbene unit, preferably 4,4'-bis [(N-carbazole) styryl]. More preferably, it contains biphenyl (BSBCz), 4,4'-bis [(N-carbazole) stilbene] biphenyl (BSBCz) and 4,4'-bis (N-carbazolyl) -1,1'-biphenyl (CBP). ) Is more preferably included. Further, the organic layer (organic layer as a unit) directly formed on the DFB diffraction grating structure preferably contains an organic compound having at least one fluorene unit. An organic compound having at least one stilbene unit and an organic compound having at least one fluorene unit can easily form a population inversion and can efficiently cause stimulated emission. Therefore, it is preferable that these compounds are contained in the active layer. Further, in particular, a laser device containing BSBCz and CBP in the organic layer is characterized in that it exhibits a PL quantum yield of almost 100%, a short PL lifetime of about 1 ns, a large radiation decay constant (Kr), and a low ASE threshold.
 DFB回折格子構造上に直接形成された有機層の厚さは、好ましくは80~350nm、より好ましくは100~300nm、更に好ましくは150~250nmである。ここでDFB回折格子構造上に直接形成された有機層の上に、連続して有機層が積層されている場合には、その有機層の積層構造全体の厚さ、すなわち一体としての有機層の厚さが上記の厚さ範囲であることとする。例えば、発光部のうち、DFB回折格子構造から最も遠い層が無機層で、他の層が有機層である場合には、発光部の厚さから無機層の厚さを除いた厚さが上記の厚さ範囲であることとする。 The thickness of the organic layer directly formed on the DFB diffraction grating structure is preferably 80 to 350 nm, more preferably 100 to 300 nm, and further preferably 150 to 250 nm. Here, when the organic layer is continuously laminated on the organic layer directly formed on the DFB diffraction grating structure, the thickness of the entire laminated structure of the organic layer, that is, the organic layer as an integral body. It is assumed that the thickness is in the above thickness range. For example, when the layer farthest from the DFB diffraction grating structure is an inorganic layer and the other layers are organic layers, the thickness obtained by subtracting the thickness of the inorganic layer from the thickness of the light emitting portion is the above. It shall be in the thickness range of.
 また、DFB回折格子構造は、電極と有機層の間に設けられていることが好ましい。例えば、DFB回折格子構造は、陰極と有機層の間に設けられていてもよいし、陽極と有機層の間に設けられていてもよいし、その両方に設けられていてもよい。この場合、有機層との間にDFB回折格子構造を挟む電極は、透明電極であることが好ましい。また、DFB回折格子構造は、電極の上に直接形成されていることが好ましい。 Further, it is preferable that the DFB diffraction grating structure is provided between the electrode and the organic layer. For example, the DFB diffraction grating structure may be provided between the cathode and the organic layer, may be provided between the anode and the organic layer, or may be provided in both of them. In this case, the electrode that sandwiches the DFB diffraction grating structure with the organic layer is preferably a transparent electrode. Further, the DFB diffraction grating structure is preferably formed directly on the electrodes.
 発光部を構成する他の層として、正孔輸送層、正孔注入層、電子阻止層、正孔阻止層、電子注入層、電子輸送層、励起子阻止層などを挙げることができる。正孔輸送層は正孔注入機能を有した正孔注入輸送層でもよく、電子輸送層は電子注入機能を有した電子注入輸送層でもよい。具体的な電流励起型レーザ素子の構造例を図2に示す。図2において、1は基板、2は陰極、3はDFB回折格子構造、4は電子注入層、5は活性層、6は正孔注入層、7は陽極を表わす。ここで、図2に示すレーザ素子の例として、正孔注入層6が酸化モリブデン等の金属酸化物層であり、電子注入層4および活性層5が有機層である構成を挙げることができる。また、金属酸化物層と陽極7の間にはHAT-CN等からなる有機層が挿入されてもよい。また、金属酸化物層とDFB回折格子構造3の間の有機層は、図2に示す2層構成の他、単層構成であってもよいし、3層以上の多層構成であってもよい。
 電流励起型の電流励起型レーザ素子において、活性層で生じたレーザ光は、陽極を透過して外部に取り出されても、陰極を透過して外部に取り出されてもよく、陽極および陰極を透過して外部に取り出されてもよい。また、活性層で生じたレーザ光は、発光部の端面から外部に取り出されてもよい。
 以下において、電流励起型レーザ素子の各部材および各層について説明する。なお、基板と活性層の説明は光励起型レーザ素子と活性層にも該当する。DFB回折格子構造の説明については、[DFB回折格子構造]の項の記載を参照することができる。
Examples of other layers constituting the light emitting portion include a hole transport layer, a hole injection layer, an electron blocking layer, a hole blocking layer, an electron injection layer, an electron transport layer, and an exciton blocking layer. The hole transport layer may be a hole injection transport layer having a hole injection function, and the electron transport layer may be an electron injection transport layer having an electron injection function. A specific structural example of the current-excited laser device is shown in FIG. In FIG. 2, 1 is a substrate, 2 is a cathode, 3 is a DFB diffraction grating structure, 4 is an electron injection layer, 5 is an active layer, 6 is a hole injection layer, and 7 is an anode. Here, as an example of the laser device shown in FIG. 2, a configuration in which the hole injection layer 6 is a metal oxide layer such as molybdenum oxide and the electron injection layer 4 and the active layer 5 are organic layers can be mentioned. Further, an organic layer made of HAT-CN or the like may be inserted between the metal oxide layer and the anode 7. Further, the organic layer between the metal oxide layer and the DFB diffraction grating structure 3 may have a single-layer structure or a multi-layer structure of three or more layers in addition to the two-layer structure shown in FIG. ..
In the current-excited current-excited laser element, the laser light generated in the active layer may pass through the anode and be taken out to the outside, or may pass through the cathode and be taken out to the outside, and pass through the anode and the cathode. And may be taken out to the outside. Further, the laser beam generated in the active layer may be taken out from the end face of the light emitting portion.
Hereinafter, each member and each layer of the current excitation type laser element will be described. The description of the substrate and the active layer also applies to the photoexcited laser device and the active layer. For a description of the DFB diffraction grating structure, the description in the section [DFB diffraction grating structure] can be referred to.
(基板)
 本発明の電流励起型レーザ素子は、基板に支持されていることが好ましい。基板としては、電流励起型レーザ素子が基板側からレーザ光を取り出す構成である場合には、レーザ光に対して透光性を有する基板が用いられ、ガラス、透明プラスチック、石英などからなる透明基板を用いることが好ましい。一方、電流励起型レーザ素子が基板と反対側からレーザ光を取り出す構成である場合には、基板は特に制限されず、上記の透明基板の他、シリコン、紙、布からなる基板も用いることができる。
(substrate)
The current-excited laser device of the present invention is preferably supported by a substrate. When the current excitation type laser element is configured to extract the laser light from the substrate side, a substrate having translucency to the laser light is used as the substrate, and a transparent substrate made of glass, transparent plastic, quartz, or the like is used. Is preferably used. On the other hand, when the current excitation type laser element has a configuration in which the laser beam is extracted from the side opposite to the substrate, the substrate is not particularly limited, and a substrate made of silicon, paper, or cloth may be used in addition to the above transparent substrate. can.
(陽極)
 電流励起型レーザ素子における陽極としては、仕事関数の大きい(4eV以上)金属、合金、電気伝導性化合物およびこれらの混合物を電極材料とするものが好ましく用いられる。このような電極材料の具体例としてはAl、Au等の金属、CuI、インジウムチンオキシド(ITO)、SnO、ZnO、TiN等の導電性透明材料が挙げられる。また、IDIXO(In-ZnO)等の非晶質で透明導電膜を作製可能な材料を用いてもよい。陽極は、これらの電極材料を蒸着やスパッタリング等の方法により成膜して形成することができる。また、形成した薄膜に、フォトリソグラフィー法で所望の形状のパターンを形成して陽極としてもよく、あるいはパターン精度をあまり必要としない場合は(100μm以上程度)、上記電極材料の蒸着やスパッタリング時に所望の形状のマスクを介してパターンを形成してもよい。あるいは、有機導電性化合物のように塗布可能な材料を用いる場合には、印刷方式、コーティング方式等湿式成膜法を用いることもできる。
 ただし、電流励起型レーザ素子が、陽極を透過させてレーザ光を取り出す構成である場合には、陽極はレーザ光に対して透光性を有することを要し、そのレーザ光の透過率が1%より大きくなるように構成することが好ましく、10%より大きくなるように構成することがより好ましい。具体的には、上記の導電性透明材料を陽極に用いるか、金属または合金を10~100nmの厚さで形成した薄膜を陽極に用いることが好ましい。
 陽極としてのシート抵抗は数百Ω/□以下が好ましい。さらに膜厚は材料にもよるが、通常10~1000nm、好ましくは10~200nmの範囲で選ばれる。
(anode)
As the anode in the current excitation type laser element, a metal having a large work function (4 eV or more), an alloy, an electrically conductive compound, or a mixture thereof as an electrode material is preferably used. Specific examples of such electrode materials include metals such as Al and Au, and conductive transparent materials such as CuI, indium zinc oxide (ITO), SnO 2, ZnO, and TiN. Further, a material capable of producing an amorphous transparent conductive film such as IDIXO (In 2 O 3-ZnO) may be used. The anode can be formed by forming a film of these electrode materials by a method such as vapor deposition or sputtering. Further, a pattern having a desired shape may be formed on the formed thin film by a photolithography method to serve as an anode, or when pattern accuracy is not required so much (about 100 μm or more), it is desired at the time of vapor deposition or sputtering of the electrode material. The pattern may be formed through a mask having the shape of. Alternatively, when a coatable material such as an organic conductive compound is used, a wet film forming method such as a printing method or a coating method can also be used.
However, when the current excitation type laser element is configured to transmit the laser light through the anode, the anode needs to have translucency with respect to the laser light, and the transmittance of the laser light is 1. It is preferably configured to be greater than%, and more preferably configured to be greater than 10%. Specifically, it is preferable to use the above-mentioned conductive transparent material for the anode, or to use a thin film formed of a metal or alloy having a thickness of 10 to 100 nm for the anode.
The sheet resistance as an anode is preferably several hundred Ω / □ or less. Further, the film thickness depends on the material, but is usually selected in the range of 10 to 1000 nm, preferably 10 to 200 nm.
(陰極)
 一方、陰極としては、陽極に用いる材料よりも仕事関数が小さい金属(電子注入性金属と称する)、合金、電気伝導性化合物およびこれらの混合物を電極材料とするものが用いられる。このような電極材料の具体例としては、ナトリウム、ナトリウム-カリウム合金、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、インジウム、リチウム/アルミニウム混合物、希土類金属等が挙げられる。これらの中で、電子注入性および酸化等に対する耐久性の点から、電子注入性金属とこれより仕事関数の値が大きく安定な金属である第二金属との混合物、例えば、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、リチウム/アルミニウム混合物、アルミニウム等が好適である。陰極は、これらの電極材料を蒸着やスパッタリング等の方法により成膜して形成することができる。
 ただし、電流励起型レーザ素子が、陰極を透過させてレーザ光を取り出す構成である場合には、陰極はレーザ光に対して透光性を有することを要し、そのレーザ光の透過率が1%より大きくなるように構成することが好ましく、10%より大きくなるように構成することがより好ましい。具体的には、上記の電極材料を10~100nmの厚さで形成した薄膜を陰極に用いるか、上記の(陽極)の項で例示したITO等の導電性透明材料を陰極に用いることが好ましい。
 陰極としてのシート抵抗は数百Ω/□以下が好ましく、膜厚は通常10nm~5μm、好ましくは50~200nmの範囲で選ばれる。
(cathode)
On the other hand, as the cathode, a metal having a smaller work function than the material used for the anode (referred to as an electron-injectable metal), an alloy, an electrically conductive compound, or a mixture thereof is used as an electrode material. Specific examples of such electrode materials include sodium, sodium-potassium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O). 3 ) Examples thereof include a mixture, an indium, a lithium / aluminum mixture, and a rare earth metal. Among these, from the viewpoint of electron injectability and durability against oxidation and the like, a mixture of an electron injectable metal and a second metal which is a stable metal having a larger work function value than this, for example, a magnesium / silver mixture. Magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O 3 ) mixture, lithium / aluminum mixture, aluminum and the like are suitable. The cathode can be formed by forming a film of these electrode materials by a method such as vapor deposition or sputtering.
However, when the current excitation type laser element is configured to transmit the laser light through the cathode, the cathode needs to have translucency with respect to the laser light, and the transmittance of the laser light is 1. It is preferably configured to be greater than%, and more preferably configured to be greater than 10%. Specifically, it is preferable to use a thin film formed by forming the above electrode material with a thickness of 10 to 100 nm for the cathode, or to use a conductive transparent material such as ITO exemplified in the above (anode) section for the cathode. ..
The sheet resistance as a cathode is preferably several hundred Ω / □ or less, and the film thickness is usually selected in the range of 10 nm to 5 μm, preferably 50 to 200 nm.
(活性層)
 活性層は、陽極および陰極のそれぞれから注入された正孔および電子が再結合することにより励起子が生成し、反転分布が形成された後、光の入射により誘導放出する層である。
 活性層は有機化合物を含むことが好ましく、有機化合物からなることが好ましい。また、活性層は、有機化合物をレーザ用発光材料として含むことが好ましい。レーザ用発光材料としては、公知のものがいずれも使用可能であるが、好ましいのは少なくとも1つのスチルベン単位を有する有機化合物および少なくとも1つのフルオレン単位を有する有機化合物である。少なくとも1つのスチルベン単位を有する有機化合物の具体例としてBSBCzを挙げることができる。
 また、高い発光効率を発現するためには、活性層に供給されたエネルギーを効率よく励起一重項エネルギーに変換して発光材料に移動させ、発光材料に生成した一重項励起子を、この発光材料中に閉じ込めることが重要である。従って、活性層は、発光材料とともにホスト材料を含むことが好ましい。ホスト材料としては、最低励起一重項エネルギー準位が発光材料よりも高い値を有する有機化合物を用いることができる。その結果、ホスト材料で生成した励起一重項エネルギーを容易に発光材料に移動させるとともに、発光材料に生成した一重項励起子を、この発光材料の分子中に閉じ込めることが可能となり、その発光効率を十分に引き出すことが可能となる。もっとも、一重項励起子を十分に閉じ込めることができなくても、高い発光効率を得ることが可能な場合もあるため、高い発光効率を実現しうるホスト材料であれば特に制約なく本発明に用いることができる。ホスト材料は、発光材料に応じて適宜選択することができ、例えばBSBCzを発光材料に用いる場合、CBPをホスト材料として好ましく用いることができる。
 ホスト材料を用いる場合、レーザ用発光材料が活性層中に含有される量は0.1重量%以上であることが好ましく、1重量%以上であることがより好ましく、また、50重量%以下であることが好ましく、20重量%以下であることがより好ましく、10重量%以下であることがさらに好ましい。
 活性層におけるホスト材料としては、正孔輸送能、電子輸送能を有し、かつ発光の長波長化を防ぎ、なおかつ高いガラス転移温度を有する有機化合物であることが好ましい。
 活性層は、厚さが5~500nmであることが好ましく、50~300nmであることがより好ましい。
(Active layer)
The active layer is a layer in which excitons are generated by recombination of holes and electrons injected from the anode and cathode, respectively, an inverted distribution is formed, and then stimulated emission is induced by light incident.
The active layer preferably contains an organic compound, and is preferably composed of an organic compound. Further, the active layer preferably contains an organic compound as a light emitting material for a laser. As the light emitting material for a laser, any known material can be used, but an organic compound having at least one stilbene unit and an organic compound having at least one fluorene unit are preferable. BSBCz can be mentioned as a specific example of an organic compound having at least one stilbene unit.
Further, in order to exhibit high luminous efficiency, the energy supplied to the active layer is efficiently converted into excited singlet energy and transferred to the luminescent material, and the singlet exciter generated in the luminescent material is used as the luminescent material. It is important to keep it inside. Therefore, the active layer preferably contains a host material as well as a light emitting material. As the host material, an organic compound having a lowest excited singlet energy level higher than that of the light emitting material can be used. As a result, the excited singlet energy generated in the host material can be easily transferred to the light emitting material, and the singlet exciter generated in the light emitting material can be confined in the molecule of this light emitting material, and the light emitting efficiency can be improved. It will be possible to fully withdraw. However, even if the singlet excitons cannot be sufficiently confined, it may be possible to obtain high luminous efficiency. Therefore, any host material capable of achieving high luminous efficiency is used in the present invention without particular limitation. be able to. The host material can be appropriately selected depending on the light emitting material. For example, when BSBCz is used as the light emitting material, CBP can be preferably used as the host material.
When a host material is used, the amount of the light emitting material for laser contained in the active layer is preferably 0.1% by weight or more, more preferably 1% by weight or more, and 50% by weight or less. It is preferably 20% by weight or less, and further preferably 10% by weight or less.
The host material in the active layer is preferably an organic compound having a hole transporting ability and an electron transporting ability, preventing a long wavelength of light emission, and having a high glass transition temperature.
The thickness of the active layer is preferably 5 to 500 nm, more preferably 50 to 300 nm.
(注入層)
 注入層とは、駆動電圧低下や発光輝度向上のために電極と活性層間に設けられる層のことで、正孔注入層と電子注入層があり、陽極と活性層または正孔輸送層の間、および陰極と活性層または電子輸送層との間に存在させてもよい。注入層は必要に応じて設けることができる。正孔注入材料および電子注入材料には、公知の有機正孔注入材料または公知の有機電子注入材料を用いることができるが、酸化モリブデン等の金属酸化物を正孔注入材料として用いることもでき、Cs等のアルカリ金属を添加した有機材料を電子注入材料として用いることもできる。
(Injection layer)
The injection layer is a layer provided between the electrode and the active layer for lowering the driving voltage and improving the emission brightness. There are a hole injection layer and an electron injection layer, and between the anode and the active layer or the hole transport layer, And may be present between the cathode and the active layer or electron transport layer. The injection layer can be provided as needed. As the hole injection material and the electron injection material, a known organic hole injection material or a known organic electron injection material can be used, but a metal oxide such as molybdenum oxide can also be used as the hole injection material. An organic material to which an alkali metal such as Cs is added can also be used as an electron injection material.
(阻止層)
 阻止層は、活性層中に存在する電荷(電子もしくは正孔)および/または励起子の活性層外への拡散を阻止することができる層である。電子阻止層は、活性層および正孔輸送層の間に配置されることができ、電子が正孔輸送層の方に向かって活性層を通過することを阻止する。同様に、正孔阻止層は活性層および電子輸送層の間に配置されることができ、正孔が電子輸送層の方に向かって活性層を通過することを阻止する。阻止層はまた、励起子が活性層の外側に拡散することを阻止するために用いることができる。すなわち電子阻止層、正孔阻止層はそれぞれ励起子阻止層としての機能も兼ね備えることができる。本明細書でいう電子阻止層または励起子阻止層は、一つの層で電子阻止層および励起子阻止層の機能を有する層を含む意味で使用される。
(Blocking layer)
The blocking layer is a layer capable of blocking the diffusion of charges (electrons or holes) and / or excitons existing in the active layer to the outside of the active layer. The electron blocking layer can be placed between the active layer and the hole transporting layer to prevent electrons from passing through the active layer towards the hole transporting layer. Similarly, the hole blocking layer can be placed between the active layer and the electron transporting layer, blocking holes from passing through the active layer towards the electron transporting layer. The blocking layer can also be used to prevent excitons from diffusing outside the active layer. That is, the electron blocking layer and the hole blocking layer can also function as exciton blocking layers, respectively. The electron blocking layer or exciton blocking layer referred to in the present specification is used in the sense that one layer includes a layer having the functions of an electron blocking layer and an exciton blocking layer.
(正孔阻止層)
 正孔阻止層とは広い意味では電子輸送層の機能を有する。正孔阻止層は電子を輸送しつつ、正孔が電子輸送層へ到達することを阻止する役割があり、これにより活性層中での電子と正孔の再結合確率を向上させることができる。正孔阻止層の材料としては、後述する電子輸送層の材料を必要に応じて用いることができる。
(Hole blocking layer)
The hole blocking layer has a function of an electron transporting layer in a broad sense. The hole blocking layer has a role of blocking the holes from reaching the electron transporting layer while transporting electrons, which can improve the recombination probability of electrons and holes in the active layer. As the material of the hole blocking layer, a material of the electron transport layer described later can be used as needed.
(電子阻止層)
 電子阻止層とは、広い意味では正孔を輸送する機能を有する。電子阻止層は正孔を輸送しつつ、電子が正孔輸送層へ到達することを阻止する役割があり、これにより活性層中での電子と正孔が再結合する確率を向上させることができる。
(Electronic blocking layer)
The electron blocking layer has a function of transporting holes in a broad sense. The electron blocking layer has a role of blocking electrons from reaching the hole transporting layer while transporting holes, which can improve the probability of recombination of electrons and holes in the active layer. ..
(励起子阻止層)
 励起子阻止層とは、活性層内で正孔と電子が再結合することにより生じた励起子が電荷輸送層に拡散することを阻止するための層であり、本層の挿入により励起子を効率的に活性層内に閉じ込めることが可能となり、素子の発光効率を向上させることができる。励起子阻止層は活性層に隣接して陽極側、陰極側のいずれにも挿入することができ、両方同時に挿入することも可能である。すなわち、励起子阻止層を陽極側に有する場合、正孔輸送層と活性層の間に、活性層に隣接して該層を挿入することができ、陰極側に挿入する場合、活性層と陰極との間に、活性層に隣接して該層を挿入することができる。また、陽極と、活性層の陽極側に隣接する励起子阻止層との間には、正孔注入層や電子阻止層などを有することができ、陰極と、活性層の陰極側に隣接する励起子阻止層との間には、電子注入層、電子輸送層、正孔阻止層などを有することができる。阻止層を配置する場合、阻止層として用いる材料の励起一重項エネルギーおよび励起三重項エネルギーの少なくともいずれか一方は、発光材料の励起一重項エネルギーおよび励起三重項エネルギーよりも高いことが好ましい。
(Exciton blocking layer)
The exciton blocking layer is a layer for preventing excitons generated by recombination of holes and electrons in the active layer from diffusing into the charge transport layer, and the excitons are inserted by inserting this layer. It is possible to efficiently confine it in the active layer, and it is possible to improve the light emission efficiency of the element. The exciton blocking layer can be inserted into either the anode side or the cathode side adjacent to the active layer, and both can be inserted at the same time. That is, when the exciton blocking layer is provided on the anode side, the layer can be inserted between the hole transport layer and the active layer adjacent to the active layer, and when inserted on the cathode side, the active layer and the cathode can be inserted. The layer can be inserted adjacent to the active layer between and. Further, a hole injection layer, an electron blocking layer, or the like can be provided between the anode and the exciton blocking layer adjacent to the anode side of the active layer, and the cathode and the excitation adjacent to the cathode side of the active layer can be provided. An electron injection layer, an electron transport layer, a hole blocking layer, and the like can be provided between the child blocking layer and the electron blocking layer. When the blocking layer is arranged, it is preferable that at least one of the excitation singlet energy and the excitation triplet energy of the material used as the blocking layer is higher than the excitation singlet energy and the excitation triplet energy of the light emitting material.
(正孔輸送層)
 正孔輸送層とは正孔を輸送する機能を有する正孔輸送材料からなり、正孔輸送層は単層または複数層設けることができる。
 正孔輸送材料としては、正孔の注入または輸送、電子の障壁性のいずれかを有するものであり、有機物、無機物のいずれであってもよい。使用できる公知の正孔輸送材料としては例えば、トリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、カルバゾール誘導体、インドロカルバゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体およびピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、アニリン系共重合体、また導電性高分子オリゴマー、特にチオフェンオリゴマー等が挙げられるが、ポルフィリン化合物、芳香族第3級アミン化合物およびスチリルアミン化合物を用いることが好ましく、芳香族第3級アミン化合物を用いることがより好ましい。
(Hole transport layer)
The hole transport layer is made of a hole transport material having a function of transporting holes, and the hole transport layer may be provided with a single layer or a plurality of layers.
The hole transporting material has either injection or transport of holes or an electron barrier property, and may be either an organic substance or an inorganic substance. Known hole transporting materials that can be used include, for example, triazole derivatives, oxadiazole derivatives, imidazole derivatives, carbazole derivatives, indolocarbazole derivatives, polyarylalkane derivatives, pyrazoline derivatives and pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, etc. Amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, stilben derivatives, silazane derivatives, aniline copolymers, conductive polymer oligomers, especially thiophene oligomers, etc., but porphyrin compounds, aromatics, etc. It is preferable to use a group tertiary amine compound and a styrylamine compound, and it is more preferable to use an aromatic tertiary amine compound.
(電子輸送層)
 電子輸送層とは電子を輸送する機能を有する材料からなり、電子輸送層は単層または複数層設けることができる。
 電子輸送材料(正孔阻止材料を兼ねる場合もある)としては、陰極より注入された電子を活性層に伝達する機能を有していればよい。使用できる電子輸送層としては例えば、ニトロ置換フルオレン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、カルボジイミド、フレオレニリデンメタン誘導体、アントラキノジメタンおよびアントロン誘導体、オキサジアゾール誘導体等が挙げられる。さらに、上記オキサジアゾール誘導体において、オキサジアゾール環の酸素原子を硫黄原子に置換したチアジアゾール誘導体、電子吸引基として知られているキノキサリン環を有するキノキサリン誘導体も、電子輸送材料として用いることができる。さらにこれらの材料を高分子鎖に導入した、またはこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。
(Electronic transport layer)
The electron transport layer is made of a material having a function of transporting electrons, and the electron transport layer may be provided with a single layer or a plurality of layers.
The electron transporting material (which may also serve as a hole blocking material) may have a function of transferring electrons injected from the cathode to the active layer. Examples of the electron transporting layer that can be used include nitro-substituted fluorene derivatives, diphenylquinone derivatives, thiopyrandioxide derivatives, carbodiimides, freolenidenemethane derivatives, anthracinodimethane and anthrone derivatives, and oxadiazole derivatives. Further, among the oxadiazole derivatives, a thiadiazole derivative in which the oxygen atom of the oxadiazole ring is replaced with a sulfur atom, and a quinoxalin derivative having a quinoxalin ring known as an electron-withdrawing group can also be used as an electron transport material. Further, a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used.
 これらのレーザ素子を構成する各層の製膜方法は特に限定されず、ドライプロセス、ウェットプロセスのどちらで作製してもよい。 The film forming method of each layer constituting these laser elements is not particularly limited, and may be produced by either a dry process or a wet process.
 以上のような電流励起型レーザ素子は、陽極と陰極の間に閾値電流密度以上の電流を流すと、活性層に正孔および電子が注入されて励起子が生成し、反転分布が形成された後、誘導放出が起こって活性層から誘導放出光が放射される。活性層から放射された光は、DFB回折格子構造にてブラッグ反射することにより、特定波長の光が強め合い、また、基板の主面に対して水平方向に伝搬して活性層に帰還し、活性層にて誘導放出を誘起する。こうした光のフィードバックの繰り返しにより、単一縦モードのレーザ発振が起こる。このとき、本発明のレーザ素子では、DFB回折格子構造が配列方向が異なる少なくとも2種類の線状凸部配列を有するため、各配列方向で光のフィードバックが起こって反転分布が効率よく形成されるとともに、ブラッグ反射による光の強め合い、および、活性層への光の帰還が効率よく起きる。これにより、レーザ発振閾値を大幅に低減することができ、また、良好なレーザ発振特性を得ることができる。 In the current excitation type laser element as described above, when a current equal to or higher than the threshold current density is passed between the anode and the cathode, holes and electrons are injected into the active layer to generate excitons, and a population inversion is formed. Later, stimulated emission occurs and stimulated emission light is emitted from the active layer. The light radiated from the active layer is Bragg-reflected by the DFB diffraction grating structure, so that the light of a specific wavelength strengthens each other and propagates horizontally to the main surface of the substrate and returns to the active layer. Induces stimulated emission in the active layer. By repeating such light feedback, laser oscillation in a single longitudinal mode occurs. At this time, in the laser element of the present invention, since the DFB diffraction grating structure has at least two types of linear convex arrangements having different arrangement directions, light feedback occurs in each arrangement direction to efficiently form a population inversion. At the same time, the intensification of light by Bragg reflection and the return of light to the active layer occur efficiently. As a result, the laser oscillation threshold value can be significantly reduced, and good laser oscillation characteristics can be obtained.
 以下に実施例を挙げて本発明の特徴をさらに具体的に説明する。以下に示す材料、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。なお、パルス駆動時の発光スペクトルの測定はマルチチャネル分光計(浜松ホトニクス社製:PMA-50)を用いて行い、パルス駆動時の素子特性の測定は増幅器(NF社:HSA4101)と光電子増倍管 (浜松ホトニクス社製:C9525-02)を用いて行った。また、回折格子を形成するための電子ビームリソグラフィは(日本電子社製:JBX-5500SCシステム)を用いて行い、膜厚の測定はプロフィロメーター(ブルカー社製:DektakXT)を用いて行い、SEM写真の撮影は、走査電子顕微鏡(日立ハイテク社製:SU8000)を用いて行った。 The features of the present invention will be described in more detail with reference to examples below. The materials, treatment contents, treatment procedures, etc. shown below can be appropriately changed as long as they do not deviate from the gist of the present invention. Therefore, the scope of the present invention should not be construed as limited by the specific examples shown below. The emission spectrum during pulse drive is measured using a multi-channel spectrometer (Hamamatsu Photonics: PMA-50), and the element characteristics during pulse drive are measured with an amplifier (NF: HSA4101) and photomultiplier tubes. This was performed using a tube (manufactured by Hamamatsu Photonics Co., Ltd .: C9525-02). In addition, electron beam lithography for forming a diffraction grating is performed using (JBX-5500SC system manufactured by JEOL Ltd.), and film thickness is measured using a profileometer (DektakXT manufactured by Bruker Co., Ltd.) and SEM. The photograph was taken using a scanning electron microscope (manufactured by Hitachi High-Tech Co., Ltd .: SU8000).
(実施例1) 同心正方形状のDFB回折格子構造を有するレーザ素子の製造
 本実施例で行ったレーザ素子の製造工程を図3に示す。ここでは、回折格子構造として、図1に示す同心正方形状のDFB回折格子構造を形成した。同心正方形状を構成する各線状凸部の格子周期Λは280nm、幅wは140nm、高さhは60nmとした。
 まず、図3(a)に示すように、膜厚30nmのインジウム・スズ酸化物(ITO)からなる陰極が形成されたガラス基板を準備した。そして、図3(b)に示すように、このITOの中央領域(10×10mm)に、酸化ケイ素(SiO)をスパッタリング法にて60nmの厚さに成膜してSiO膜を形成した。続いて、図3(c)に示すように、このSiO膜に、電子ビームリソグラフィ法とドライエッチング法を用いて同心正方形状のパターンを4つ形成し、DFB回折格子構造を形成した。このSiO膜のパターニングは以下のようにして行った。
 まず、SiO膜の表面にヘキサメチルジシラザン(HMDS)をスピンコートし、120℃で120秒間アニールすることにより、HMDS処理を行った。次に、レジスト溶液(ゼオン社製:ZEP520A-7)をスピンコートし、ベーキングすることで厚さ70nmのレジスト層を形成した。このレジスト層に、電子ビームリソグラフィ装置にて電子ビーム線を照射し、現像液(ゼオン社製:ZED-N50)で処理することにより、DFB回折格子構造に対応するパターンを有するレジストマスクを得た。続いて、このレジストマスクの上から、CHFによるプラズマエッチングを行い、マスクが形成されていない領域のSiOをITO表面が露出するまでエッチングした。その後、Oによるプラズマエッチングを行い、レジストマスクを除去することにより、図1に示す同心正方形状のDFB回折格子構造を形成した。
 次に、図3(d)に示すように、DFB回折格子構造上に、発光部を構成する各薄膜および陽極を、真空蒸着法にて真空度1.5×10-4Paで積層した。まず、DFB回折格子構造上にセシウム(Cs)とCBPを異なる蒸着源から共蒸着し、50nmの厚さの層を形成した。この時、セシウムの濃度は20重量%とした。次に、BSBCzとCBPを異なる蒸着源から共蒸着し、160nmの厚さの層を形成して活性層とした。この時、BSBCzの濃度は6重量%とした。次に、三酸化モリブデン(MoO)を10nmの厚さに形成し、さらにアルミニウム(Al)を100nmの厚さに蒸着して陽極を形成することにより、レーザ素子とした。
(Example 1) Manufacture of a laser element having a concentric square DFB diffraction grating structure The manufacturing process of the laser element performed in this example is shown in FIG. Here, as the diffraction grating structure, the concentric square DFB diffraction grating structure shown in FIG. 1 was formed. The lattice period Λ of each linear convex portion constituting the concentric square shape was 280 nm, the width w was 140 nm, and the height h was 60 nm.
First, as shown in FIG. 3A, a glass substrate on which a cathode made of indium tin oxide (ITO) having a film thickness of 30 nm was formed was prepared. Then, as shown in FIG. 3B, silicon oxide (SiO 2 ) was formed into a film having a thickness of 60 nm in the central region (10 × 10 mm) of the ITO by a sputtering method to form a SiO 2 film. .. Subsequently, as shown in FIG. 3C , four concentric square patterns were formed on the SiO 2 film by using an electron beam lithography method and a dry etching method to form a DFB diffraction grating structure. The patterning of this SiO 2 film was performed as follows.
First, HMDS treatment was performed by spin-coating the surface of the SiO 2 film with hexamethyldisilazane (HMDS) and annealing at 120 ° C. for 120 seconds. Next, a resist solution (manufactured by Zeon Co., Ltd .: ZEP520A-7) was spin-coated and baked to form a resist layer having a thickness of 70 nm. This resist layer was irradiated with an electron beam beam by an electron beam lithography apparatus and treated with a developing solution (ZED-N50) to obtain a resist mask having a pattern corresponding to the DFB diffraction grating structure. .. Subsequently, plasma etching with CHF 3 was performed on the resist mask, and SiO 2 in the region where the mask was not formed was etched until the ITO surface was exposed. Then, plasma etching with O 2 was performed to remove the resist mask to form a concentric square DFB diffraction grating structure shown in FIG.
Next, as shown in FIG. 3D, each thin film and anode constituting the light emitting portion were laminated on the DFB diffraction grating structure at a vacuum degree of 1.5 × 10 -4 Pa by a vacuum deposition method. First, cesium (Cs) and CBP were co-deposited from different vapor deposition sources on the DFB diffraction grating structure to form a layer having a thickness of 50 nm. At this time, the concentration of cesium was set to 20% by weight. Next, BSBCz and CBP were co-deposited from different vapor deposition sources to form a layer having a thickness of 160 nm, which was used as an active layer. At this time, the concentration of BSBCz was set to 6% by weight. Next, molybdenum trioxide (MoO 3 ) was formed to a thickness of 10 nm, and aluminum (Al) was further vapor-deposited to a thickness of 100 nm to form an anode to form a laser device.
(比較例1) DFB回折格子構造を有しないレーザ素子の製造
 DFB回折格子構造を形成せず、ITO上に直接発光部を形成し、その上にAl陽極を形成したこと以外は実施例1と同様にしてレーザ素子を製造した。
(Comparative Example 1) Manufacture of a laser element having no DFB diffraction grating structure Same as Example 1 except that a light emitting portion is formed directly on ITO without forming a DFB diffraction grating structure and an Al anode is formed on the light emitting portion. A laser element was manufactured in the same manner.
(比較例2~7) 他のDFB回折格子構造を有するレーザ素子の製造
 DFB回折格子構造の平面視形状を、図4(a)~(f)のSEM写真に示す形状に変えたこと以外は、実施例1と同様にしてレーザ素子を製造した。図4(g)は実施例1で形成したDFB回折格子構造のSEM写真である。
(Comparative Examples 2 to 7) Manufacture of Laser Elements Having Other DFB Diffraction Grating Structures Except that the plan view shape of the DFB diffraction grating structure was changed to the shape shown in the SEM photographs of FIGS. 4 (a) to 4 (f). , A laser element was manufactured in the same manner as in Example 1. FIG. 4 (g) is an SEM photograph of the DFB diffraction grating structure formed in Example 1.
 実施例1および比較例1の各レーザ素子に直流電圧を印加したときの電流密度-電圧特性を図5に示す。100~150Acm-2の範囲で外部量子効率を測定したところ、実施例1のレーザ素子の方が、比較例1のレーザ素子よりも高い外部量子効率を示した。
 実施例1のレーザ素子に、各種電流密度でパルス電圧を印加したときの発光スペクトルを図6に示し、その発光ピーク強度を電流密度に対してプロットした結果を図7に示す。ここで使用したパルス電圧は、パルス幅が400ns、パルス周波数が1kHzである。
 図6に示すように、パルス電圧の印加により、実施例1のレーザ素子から、レーザ発振に由来する鋭いピークが観測された。また、図7から求めたレーザ発振閾値は20Acm-1であり、極めて低い値であった。
 実施例1のレーザ素子を、閾値を超える110Acm-2で駆動して発光強度の角度依存性を測定した結果を図8に示す。図8のグラフにおける横軸は発光強度の測定角度を示し、基板面に対する法線方向から測定した場合を90°、基板面に対する水平方向から測定した場合を0°または180°としたものである。図8に示すように、実施例1のレーザ素子では、基板面に対する法線方向で発光強度が最も高くなっており、発光に指向性が認められた。
FIG. 5 shows the current density-voltage characteristics when a DC voltage is applied to each of the laser elements of Example 1 and Comparative Example 1. When the external quantum efficiency was measured in the range of 100 to 150 Acm- 2 , the laser element of Example 1 showed higher external quantum efficiency than the laser element of Comparative Example 1.
The emission spectrum when pulse voltage is applied to the laser element of Example 1 at various current densities is shown in FIG. 6, and the result of plotting the emission peak intensity with respect to the current density is shown in FIG. The pulse voltage used here has a pulse width of 400 ns and a pulse frequency of 1 kHz.
As shown in FIG. 6, by applying a pulse voltage, a sharp peak derived from laser oscillation was observed from the laser element of Example 1. The laser oscillation threshold obtained from FIG. 7 was 20 Acm -1 , which was an extremely low value.
FIG. 8 shows the results of measuring the angle dependence of the emission intensity by driving the laser element of Example 1 at 110 Acm- 2 exceeding the threshold value. The horizontal axis in the graph of FIG. 8 indicates the measurement angle of the emission intensity, which is 90 ° when measured from the normal direction with respect to the substrate surface and 0 ° or 180 ° when measured from the horizontal direction with respect to the substrate surface. .. As shown in FIG. 8, in the laser element of Example 1, the emission intensity was the highest in the normal direction with respect to the substrate surface, and directivity was recognized in the emission.
 また、比較例2~7の各レーザ素子についても、実施例1と同様にしてレーザ発振閾値Jthを求め、その閾値Jthでの発光波長λDFBと半値幅FWHMを測定した。これらの測定結果を表1に示す。 Also, each laser element of Comparative Example 2-7 also determines the lasing threshold J th in the same manner as in Example 1, was measured emission wavelength lambda DFB and the half-value width FWHM of its threshold J th. The results of these measurements are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、実施例1のレーザ素子のレーザ発振閾値Jthは、比較例2~7のレーザ発振閾値Jthに比べて遥かに低い値であった。このことから、DFB回折格子構造を配列方向が異なる少なくとも2種類の線状凸部配列を備えた構造とすることにより、レーザ発振閾値を効果的に低減でき、比較的低い電流密度でレーザ発振する電流励起型有機レーザ素子が実現することがわかった。
 なお、実施例1のレーザ素子は、Al陽極とMoO層の間にHAT―CNからなる層を挿入してもよい。
As shown in Table 1, the laser oscillation threshold J th of the laser device of Example 1 was much lower value than the laser oscillation threshold J th of Comparative Examples 2-7. Therefore, by forming the DFB diffraction grating structure with at least two types of linear convex arrangements having different arrangement directions, the laser oscillation threshold can be effectively reduced and the laser is oscillated at a relatively low current density. It was found that a current-excited organic laser element can be realized.
In the laser element of Example 1, a layer made of HAT-CN may be inserted between the Al anode and the MoO 3 layer.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 本発明のレーザ素子はレーザ発振閾値が極めて低く、電流励起型の有機レーザ素子として構成した場合にも、比較的低い電流密度でレーザ発振することができる。そのため、本発明によれば、実用性が高い電流励起型有機レーザ素子を実現することもできる。このため、本発明は産業上の利用可能性が高い。 The laser element of the present invention has an extremely low laser oscillation threshold value, and even when configured as a current-pumped organic laser element, laser oscillation can be performed with a relatively low current density. Therefore, according to the present invention, it is possible to realize a highly practical current-excited organic laser element. Therefore, the present invention has high industrial applicability.
 1 基板
 2 陰極
 3 DFB回折格子構造
 4 電子注入層
 5 活性層
 6 正孔注入層
 7 陽極
1 Substrate 2 Cathode 3 DFB diffraction grating structure 4 Electron injection layer 5 Active layer 6 Hole injection layer 7 Anode

Claims (15)

  1.  配列方向が異なる少なくとも2種類の線状凸部配列を備えた二次元DFB回折格子構造を有するレーザ素子。 A laser element having a two-dimensional DFB diffraction grating structure having at least two types of linear convex arrangements having different arrangement directions.
  2.  前記DFB回折格子構造が、同心矩形状を有する、請求項1に記載のレーザ素子。 The laser element according to claim 1, wherein the DFB diffraction grating structure has a concentric rectangular shape.
  3.  前記DFB回折格子構造が、同心正方形状を有する、請求項1に記載のレーザ素子。 The laser element according to claim 1, wherein the DFB diffraction grating structure has a concentric square shape.
  4.  前記2種類の線状凸部の配列同士で格子周期が互いに同じである、請求項1に記載のレーザ素子。 The laser element according to claim 1, wherein the array of the two types of linear convex portions has the same lattice period.
  5.  一対の電極を有していて、通電することによりレーザ発振する、請求項1~4のいずれか1項に記載のレーザ素子。 The laser element according to any one of claims 1 to 4, which has a pair of electrodes and oscillates a laser when energized.
  6.  前記DFB回折格子構造上に直接有機層が形成されている、請求項1~5のいずれか1項に記載のレーザ素子。 The laser device according to any one of claims 1 to 5, wherein an organic layer is directly formed on the DFB diffraction grating structure.
  7.  前記有機層が、少なくとも1つのスチルベン単位を有する有機化合物を含む、請求項6に記載のレーザ素子。 The laser device according to claim 6, wherein the organic layer contains an organic compound having at least one stilbene unit.
  8.  前記有機層が、4,4’-ビス[(N-カルバゾール)スチリル]ビフェニル(BSBCz)を含む、請求項6または7に記載のレーザ素子。 The laser device according to claim 6 or 7, wherein the organic layer contains 4,4'-bis [(N-carbazole) styryl] biphenyl (BSBCz).
  9.  前記有機層が、4,4’-ビス[(N-カルバゾール)スチリル]ビフェニル(BSBCz)と4,4’-ビス(N-カルバゾリル)-1,1’-ビフェニル(CBP)を含む、請求項8に記載のレーザ素子。 Claim that the organic layer comprises 4,4'-bis [(N-carbazole) styryl] biphenyl (BSBCz) and 4,4'-bis (N-carbazolyl) -1,1'-biphenyl (CBP). 8. The laser element according to 8.
  10.  前記有機層が、少なくとも1つのフルオレン単位を有する化合物を含む、請求項6~9のいずれか1項に記載のレーザ素子。 The laser device according to any one of claims 6 to 9, wherein the organic layer contains a compound having at least one fluorene unit.
  11.  前記有機層が、80~350nmの厚さを有する、請求項6~10のいずれか1項に記載のレーザ素子。 The laser device according to any one of claims 6 to 10, wherein the organic layer has a thickness of 80 to 350 nm.
  12.  前記DFB回折格子構造を構成する各線状凸部の高さが75nm未満である、請求項1~11のいずれか1項に記載のレーザ素子。 The laser element according to any one of claims 1 to 11, wherein the height of each linear convex portion constituting the DFB diffraction grating structure is less than 75 nm.
  13.  前記DFB回折格子構造がSi0で構成される、請求項1~12のいずれか1項に記載のレーザ素子。 The DFB grating structure is composed of Si0 2, laser device according to any one of claims 1 to 12.
  14.  前記DFB回折格子構造が前記有機層と透明電極の間に設けられている、請求項6~13のいずれか1項に記載のレーザ素子。 The laser element according to any one of claims 6 to 13, wherein the DFB diffraction grating structure is provided between the organic layer and the transparent electrode.
  15.  三重項消光剤を含まない、請求項1~14のいずれか1項に記載のレーザ素子。 The laser element according to any one of claims 1 to 14, which does not contain a triplet quencher.
PCT/JP2021/006969 2020-02-26 2021-02-25 Laser element WO2021172393A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-031025 2020-02-26
JP2020031025 2020-02-26

Publications (1)

Publication Number Publication Date
WO2021172393A1 true WO2021172393A1 (en) 2021-09-02

Family

ID=77491867

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/006969 WO2021172393A1 (en) 2020-02-26 2021-02-25 Laser element

Country Status (2)

Country Link
TW (1) TW202139553A (en)
WO (1) WO2021172393A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023145847A1 (en) * 2022-01-28 2023-08-03 Kyushu University, National University Corporation Method for improving organic semiconductor laser device, program, computer and organic semiconductor laser device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07263797A (en) * 1994-03-25 1995-10-13 Toshiba Corp Semiconductor laser device
JPH10209555A (en) * 1997-01-17 1998-08-07 Fujikura Ltd Surface emission type semiconductor laser
JP2005277080A (en) * 2004-03-24 2005-10-06 Toyota Central Res & Dev Lab Inc Surface-emitting semiconductor laser device
JP2013021205A (en) * 2011-07-13 2013-01-31 Mitsubishi Electric Corp Plane-emitting laser diode
JP2019526937A (en) * 2016-09-02 2019-09-19 国立大学法人九州大学 Continuous wave organic thin film distributed feedback laser and electrically driven organic semiconductor laser diode

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07263797A (en) * 1994-03-25 1995-10-13 Toshiba Corp Semiconductor laser device
JPH10209555A (en) * 1997-01-17 1998-08-07 Fujikura Ltd Surface emission type semiconductor laser
JP2005277080A (en) * 2004-03-24 2005-10-06 Toyota Central Res & Dev Lab Inc Surface-emitting semiconductor laser device
JP2013021205A (en) * 2011-07-13 2013-01-31 Mitsubishi Electric Corp Plane-emitting laser diode
JP2019526937A (en) * 2016-09-02 2019-09-19 国立大学法人九州大学 Continuous wave organic thin film distributed feedback laser and electrically driven organic semiconductor laser diode

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023145847A1 (en) * 2022-01-28 2023-08-03 Kyushu University, National University Corporation Method for improving organic semiconductor laser device, program, computer and organic semiconductor laser device

Also Published As

Publication number Publication date
TW202139553A (en) 2021-10-16

Similar Documents

Publication Publication Date Title
KR101727681B1 (en) A high efficiency hybrid light-emitting diode
JP2991183B2 (en) Organic electroluminescence device
EP3171421B1 (en) Organic light-emitting element
KR20100108507A (en) Organic el element having cathode buffer layer
KR20080090988A (en) Organic electroluminescent device
JP2006164937A (en) Organic electroluminescent element and method of manufacturing the same
US20080003455A1 (en) Organic El Device
JP2009277791A (en) Organic el element
JP2018092993A (en) Organic electroluminescent device and bioinstrumentation device
KR20130006937A (en) Organic light emitting element
US9099598B2 (en) Light-emitting device and method for manufacturing light-emitting device
JP2007305783A (en) Light emitting element
JP2947250B2 (en) Organic electroluminescence device and method of manufacturing the same
CN111697155A (en) Organic light emitting device
WO2021172393A1 (en) Laser element
US20200035921A1 (en) Organic semiconductor laser element
JP2010027885A (en) Organic electroluminescent element
US11476435B2 (en) Film and organic light-emitting device containing perovskite-type compound and organic light-emitting material
JP5791129B2 (en) ORGANIC ELECTROLUMINESCENT ELEMENT AND ORGANIC ELECTROLUMINESCENT LIGHTING DEVICE
JP2007243044A (en) Method for manufacturing organic electroluminescent (el) element
JP2018093175A (en) Organic electroluminescent device and bioinstrumentation device
JP2017054870A (en) Organic light emitting element and light source device
KR20210133999A (en) Electrically driven organic semiconductor laser diode and method for manufacturing the same
WO2014084159A1 (en) Organic el element and method for manufacturing same
JP2015179669A (en) organic light-emitting element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21761650

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21761650

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP