JPH10209512A - Dielectric thin film and method and device for forming meal thin film - Google Patents

Dielectric thin film and method and device for forming meal thin film

Info

Publication number
JPH10209512A
JPH10209512A JP827797A JP827797A JPH10209512A JP H10209512 A JPH10209512 A JP H10209512A JP 827797 A JP827797 A JP 827797A JP 827797 A JP827797 A JP 827797A JP H10209512 A JPH10209512 A JP H10209512A
Authority
JP
Japan
Prior art keywords
thin film
forming
film
plt
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP827797A
Other languages
Japanese (ja)
Inventor
Kazuki Komaki
一樹 小牧
Tokumi Kotani
徳巳 小谷
Koji Nomura
幸治 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP827797A priority Critical patent/JPH10209512A/en
Publication of JPH10209512A publication Critical patent/JPH10209512A/en
Pending legal-status Critical Current

Links

Landscapes

  • Formation Of Insulating Films (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Radiation Pyrometers (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a thin film which has a crystal structure of a growing initial stage, excellent crystallinity and pyroelectric characteristic at a speed higher than conventional, by depositing first dielectric thin film at a low deposition speed at a high density and forming a second (Pb1-(x+y) Lax Mgy )Ti1-(x+y) /4 O3 deposition film on the first dielectric thin film at a high deposition speed, in a process of forming a perovskite compound thin film made of (Pb1-(x+y) Lax Mgy ) Ti1-(x+y) /4 O3 . SOLUTION: In a dielectric thin film forming apparatus, a first layer thin film is formed by arranging a shielding plate 6 whose 1/2 area is opened between a target 5 and a substrate holder 2 and rotating the substrate holder 2 at 3rpm. At the time of forming a second layer thin film, the shielding plate 6 is removed. A (Pb1-(x+y) Lax Mgy )Ti1-(x+y) /4 O3 thin film is formed by at lest two processes.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、薄膜の形成方法と
形成装置に関し、特に、誘電体薄膜及び金属薄膜の形成
方法と形成装置に関する。
The present invention relates to a method and an apparatus for forming a thin film, and more particularly to a method and an apparatus for forming a dielectric thin film and a metal thin film.

【0002】[0002]

【従来の技術】薄膜化技術は、エレクトロニクス分野、
特に、半導体製造プロセスを中心に発展し、新材料の開
発と共に進歩してきた。これらの薄膜は、単体元素の場
合はごくまれで、一般に合金あるいは化合物である場合
が多く、形成方法により著しく特性が変化する。これら
新材料の創成およびそのデバイス化は、人工格子材料な
どに代表されるように、薄膜化技術の向上によるところ
が多い。
2. Description of the Related Art Thin-film technology is used in the field of electronics,
In particular, it has developed mainly in the semiconductor manufacturing process, and has progressed with the development of new materials. These thin films are extremely rare in the case of a single element, and are generally alloys or compounds in many cases, and the characteristics are significantly changed depending on the forming method. The creation of these new materials and their deviceization often depend on improvements in thin film technology, as typified by artificial lattice materials.

【0003】近年注目されている薄膜材料に、ABO3
で構成されるペロブスカイト型構造を有する誘電体材料
がある。ここで、Aサイトは、Pb,Ba,Sr,La
またはMgの少なくとも1種、Bサイトは、Tiおよび
Zrのうち少なくとも1種の元素を含む。(Pb
1-(x+y)LaxMgy)(ZrzTi1-z1-(x+y)/4
3(以下PLMT)、BaTiO3に代表される強誘電体
材料は、優れた強誘電性、圧電性、焦電性、さらには電
気光学特性等を示し、これを利用した種々の機能デバイ
スが検討されている。特に、PLMT薄膜に代表される
焦電体材料は赤外線を検知する事で温度変化を電気信号
に変換することから、焦電型赤外線センサへの応用が期
待されている。
[0003] ABO 3
Is a dielectric material having a perovskite structure. Here, the A site is Pb, Ba, Sr, La
Alternatively, at least one kind of Mg and the B site contain at least one kind of element of Ti and Zr. (Pb
1- (x + y) La x Mg y ) (Zr z Ti 1-z ) 1- (x + y) / 4 O
3 (hereinafter referred to as PLMT) and ferroelectric materials represented by BaTiO 3 exhibit excellent ferroelectricity, piezoelectricity, pyroelectricity, and electro-optical properties, and various functional devices using the same are being studied. Have been. In particular, a pyroelectric material represented by a PLMT thin film converts a temperature change into an electric signal by detecting infrared rays, and is therefore expected to be applied to a pyroelectric infrared sensor.

【0004】これらの材料の特性の向上あるいは集積化
のためには、その薄膜化が非常に重要である。また、こ
の薄膜を焦電型赤外線センサとして利用する場合、いか
に結晶性良く薄膜を成長させるかによるところが大き
く、下地となる材料の影響も充分に考慮する必要があ
る。PLMT薄膜の形成には一般的に格子定数や熱膨張
係数の関係からMgO単結晶基板が用いられる事が多
く、また下地電極材料にはPt薄膜が最適であるとされ
ている。
[0004] In order to improve the characteristics of these materials or to integrate them, it is very important to make them thinner. In addition, when this thin film is used as a pyroelectric infrared sensor, it depends greatly on how the thin film is grown with good crystallinity, and it is necessary to sufficiently consider the influence of the underlying material. In general, a MgO single crystal substrate is often used for forming a PLMT thin film because of the relationship between a lattice constant and a thermal expansion coefficient, and a Pt thin film is considered to be optimal as a base electrode material.

【0005】これらの異種材料上に積層する薄膜の結晶
性を向上させる膜形成技術が各研究期間で開発されてい
る。また、これらの成膜時間が長時間に渡ることから量
産性の向上が難しい事もこの薄膜プロセスの課題となっ
ている。
[0005] A film forming technique for improving the crystallinity of a thin film laminated on these dissimilar materials has been developed in each research period. Further, it is difficult to improve mass productivity because the film formation time is long, which is a problem of the thin film process.

【0006】[0006]

【発明が解決しようとする課題】前記従来技術で用いら
れるスパッタやCVD法(化学気相成長法)などの堆積
方法によって形成した薄膜の結晶性は、基本的に基板材
料・化学組成・形成温度で制御される。酸化物誘電体材
料の薄膜化において従来最も一般的に用いられていたス
パッタリング法では、ターゲット材料である酸化物焼結
体と形成された薄膜のあいだで、化学組成にずれが生じ
易く、しかもスパッタリング条件に大きく左右されてい
た。
The crystallinity of a thin film formed by a deposition method such as sputtering or CVD (Chemical Vapor Deposition) used in the prior art basically depends on the substrate material, chemical composition, and formation temperature. Is controlled by In the sputtering method most commonly used in the past for thinning an oxide dielectric material, a chemical composition easily shifts between an oxide sintered body as a target material and a formed thin film. It was very dependent on the conditions.

【0007】最近、活性度の高い、非熱平衡プロセスを
利用した薄膜堆積方法の開発により、このプロセスの形
成温度はかなり低減されているものの、良好な結晶性の
薄膜を得るには、依然、600℃前後の高い基板温度が
必要であり、そのため基板と堆積薄膜との間で相互拡散
が生じるという問題があった。
[0007] Recently, with the development of a thin film deposition method utilizing a non-thermal equilibrium process having a high activity, the formation temperature of this process has been considerably reduced, but it is still necessary to obtain a thin film of good crystallinity by 600 times. A high substrate temperature of about ° C. is required, which causes a problem that interdiffusion occurs between the substrate and the deposited thin film.

【0008】また量産の必要から高速成膜を行う際、R
F電力の増加や基板−ターゲット間距離の短縮といった
成膜条件を変える必要が生じるが、この場合、堆積膜が
高いエネルギーを持ったイオン等の衝突によって損傷を
受けたり、あるいは低密度のポーラスな膜が成長するこ
とでピンホールや欠陥を生じるという問題があった。そ
のため、緻密でかつ高速成膜の可能な薄膜を得るために
は、さらに結晶制御性がよい薄膜堆積方法を用いる必要
があった。
When performing high-speed film formation due to the necessity of mass production, R
It is necessary to change film forming conditions such as an increase in F power and a reduction in the distance between the substrate and the target. In this case, the deposited film may be damaged by collision of ions or the like having high energy, or may have a low density of porous material. There has been a problem that pinholes and defects are generated when the film grows. Therefore, in order to obtain a thin film that is dense and capable of high-speed film formation, it is necessary to use a thin film deposition method with better crystallographic controllability.

【0009】本発明は前記従来技術の課題を解決するた
め、成長初期過程の薄膜の結晶構造を改善し、さらに従
来より短時間で結晶性・焦電特性の良好な薄膜を得るこ
とを目的とする。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems of the prior art, it is an object of the present invention to improve the crystal structure of a thin film in an initial growth process, and to obtain a thin film having good crystallinity and pyroelectric properties in a shorter time than before. I do.

【0010】また、PLMT薄膜の形成には一般的にM
gO単結晶基板を用い、下地電極にはPt薄膜を用いる
ことが出来るが、積層したPt/PLMT/MgOの一
部が高温加熱や薬品によるエッチングプロセスによって
剥離する問題もあり、各層間の密着性の向上も課題とな
っている。そこで、本発明は前記の課題を解決するため
に、成長初期過程の薄膜の結晶構造を改善し、密着性の
良好な薄膜を得ることを目的とする。
In general, the formation of a PLMT thin film is generally performed using M
Although a gO single crystal substrate is used, and a Pt thin film can be used as a base electrode, there is a problem that a part of the laminated Pt / PLMT / MgO is peeled off by a high-temperature heating or an etching process by a chemical. Is also an issue. Accordingly, an object of the present invention is to improve the crystal structure of a thin film in the initial growth stage and to obtain a thin film having good adhesion in order to solve the above problems.

【0011】[0011]

【課題を解決するための手段】この目的を達成するため
に本発明は、ペロブスカイト型複合化合物である(Pb
1-(x+y)LaxMgy)Ti1-(x+y)/43薄膜の作製にお
いて、第一の誘電体薄膜を低堆積速度で高密度に堆積
し、その上に第二の(Pb1-(x+y)LaxMgy)Ti
1-(x+y)/43堆積膜を成膜させており、これにより、従
来より高速で結晶性・焦電特性の良い薄膜を得ることが
出来る。
In order to achieve this object, the present invention provides a perovskite-type composite compound (Pb
In the production of 1- (x + y) La x Mg y ) Ti 1- (x + y) / 4 O 3 thin film, a first dielectric thin film is deposited at a high deposition rate at a low deposition rate, and a first dielectric thin film is deposited thereon. Two (Pb 1- (x + y) La x Mg y ) Ti
Since a 1- (x + y) / 4O 3 deposited film is formed, a thin film having better crystallinity and pyroelectric properties can be obtained at higher speed than before.

【0012】また、下地金属薄膜であるPt薄膜の作製
において、第一のPt薄膜を0.20≦O2/Ar≦
1.00のガス流量比として形成し、その第一のPt薄
膜上に第二のPt薄膜をO2/Ar≦0.50のガス流
量比として形成させており、これにより、従来より高歩
留まりで密着性の良い薄膜を得ることが出来る。
In the production of a Pt thin film which is a base metal thin film, the first Pt thin film is formed such that 0.20 ≦ O 2 / Ar ≦
A gas flow ratio of 1.00 is formed, and a second Pt thin film is formed on the first Pt thin film at a gas flow ratio of O 2 /Ar≦0.50. Thus, a thin film having good adhesion can be obtained.

【0013】[0013]

【発明の実施の形態】本発明の請求項1に記載の発明
は、ペロブスカイト型複合化合物である(Pb 1-(x+y)
LaxMgy)Ti1-(x+y)/43薄膜の作製において、第
一の誘電体薄膜の形成として0.15nm/sec以下の低
堆積速度で高密度の(Pb1-(x+y)LaxMgy)Ti
1-(x+y)/43薄膜を形成し、その上に0.15nm/sec
以上の高堆積速度で(Pb1-(x+y)LaxMgy)Ti
1-(x+y)/43薄膜を形成したものであり、緻密で粒成長
が十分にされているPLT薄膜を第一層として形成した
ことで薄膜成長初期の結晶構造を改善できるという作用
を有する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The invention according to claim 1 of the present invention
Is a perovskite-type composite compound (Pb 1- (x + y)
LaxMgy) Ti1- (x + y) / 4OThreeIn the production of thin films,
As low as 0.15 nm / sec or less for forming one dielectric thin film
High density (Pb1- (x + y)LaxMgy) Ti
1- (x + y) / 4OThreeA thin film is formed and 0.15 nm / sec is formed on it.
With the above high deposition rate (Pb1- (x + y)LaxMgy) Ti
1- (x + y) / 4OThreeA thin film formed, dense and grain-grown
PLT thin film with sufficient thickness was formed as the first layer
Function to improve the crystal structure at the beginning of thin film growth
Having.

【0014】また、請求項6に記載の発明は、Pt薄膜
の作製において、第一のPt薄膜を0.20≦O2/A
r≦1.00のガス流量比として形成し、その第一のP
t薄膜上に第二のPt薄膜をO2/Ar≦0.50のガ
ス流量比として形成したものであり、成長初期過程のP
t薄膜の構造を改善できたため、MgO基板とPt薄膜
の密着性を改善できるという作用を有する。
According to a sixth aspect of the present invention, in the production of a Pt thin film, the first Pt thin film has a thickness of 0.20 ≦ O 2 / A.
r ≦ 1.00, and the first P
A second Pt thin film is formed on the t thin film at a gas flow ratio of O 2 /Ar≦0.50.
Since the structure of the t thin film can be improved, it has an effect that the adhesion between the MgO substrate and the Pt thin film can be improved.

【0015】(実施の形態1)以下、本発明の実施の形
態1を図面とともに説明する。まず最初に、誘電体薄膜
形成用の装置概略図を図1に示す。本装置は、ペロブス
カイト型酸化物誘電体薄膜を作製する際、最も一般的に
用いられるマグネトロンスパッタ装置である。
Embodiment 1 Hereinafter, Embodiment 1 of the present invention will be described with reference to the drawings. First, FIG. 1 shows a schematic view of an apparatus for forming a dielectric thin film. This apparatus is the most commonly used magnetron sputtering apparatus when producing a perovskite oxide dielectric thin film.

【0016】ここで本装置には、従来のシースヒーター
に変えて、カーボンヒーターから熱が均質に放射するよ
うに、ヒーター一面に窒化ホウ素被膜をコーティングし
たp−BNヒーター1を用いている。さらに、このヒー
ター1から10mm離した位置に基板ホルダー2を設置し
てあるが、ここで基板ホルダーとp−BNヒーター間に
は2mm厚さの黒体ステンレス板を均熱板3として用い
た。
Here, this apparatus uses a p-BN heater 1 in which a boron nitride film is coated on one side of the heater so that heat is uniformly radiated from the carbon heater, instead of the conventional sheath heater. Further, a substrate holder 2 was set at a position 10 mm away from the heater 1. Here, a black body stainless steel plate having a thickness of 2 mm was used as the soaking plate 3 between the substrate holder and the p-BN heater.

【0017】従って本実施の形態での基板加熱は、p−
BNヒーター1から輻射で均熱板3を加熱し、さらに熱
伝導で基板ホルダー2に取り付けたMgO基板4を加熱
するという機構となる。
Therefore, the substrate heating in this embodiment is performed by p-
The mechanism is such that the soaking plate 3 is heated by radiation from the BN heater 1 and the MgO substrate 4 attached to the substrate holder 2 is further heated by heat conduction.

【0018】また、本実施の形態では焼結した(Pb
0.9La0.1)Ti0.9753(さらにPbOを20〜30
mol%過剰にして焼結した)10インチの酸化物強誘電
体材料をターゲット5として装着し、このセラミックタ
ーゲット5のエロージョン部分の真上にMgO基板4が
位置するようにセットした。さらにMgO基板4とセラ
ミック焼結体ターゲット5の直線距離は100mmであ
る。
In the present embodiment, the sintered (Pb
0.9 La 0.1 ) Ti 0.975 O 3 (moreover, PbO is 20 to 30)
A 10-inch oxide ferroelectric material (sintered with an excess of mol%) was mounted as a target 5 and set so that the MgO substrate 4 was located directly above the erosion portion of the ceramic target 5. The linear distance between the MgO substrate 4 and the ceramic sintered body target 5 is 100 mm.

【0019】この様な薄膜形成装置において、RF電力
=1200W、基板温度=600℃、ガス圧=0.15
Pa,Ar/O2ガス流量比=25/1の成膜条件にて
(Pb0.9La0.1)Ti0.9753(以下PLT)薄膜を
堆積した。また膜厚は約2μmとした。この際の堆積速
度は0.20nm/secであり堆積時間は約2時間47分
であった。さらに、堆積したPLT薄膜の結晶性をX線
回折によって、そしてMgO基板をエッチングして被膜
を遊離させ、その表裏に電極をつける事によって膜厚方
向の電気的性質、おもに焦電特性を評価した。
In such a thin film forming apparatus, RF power = 1200 W, substrate temperature = 600 ° C., gas pressure = 0.15
A (Pb 0.9 La 0.1 ) Ti 0.975 O 3 (hereinafter, PLT) thin film was deposited under the film forming conditions of Pa, Ar / O 2 gas flow ratio = 25/1 . The thickness was about 2 μm. At this time, the deposition rate was 0.20 nm / sec, and the deposition time was about 2 hours and 47 minutes. Furthermore, the crystallinity of the deposited PLT thin film was evaluated by X-ray diffraction, and the MgO substrate was etched to release the film, and by attaching electrodes on the front and back surfaces, the electrical properties in the film thickness direction, mainly pyroelectric properties, were evaluated. .

【0020】まずX線回折によって測定したPLT(0
01)ピークの半値幅は0.24°、ピーク強度が18
9kcps、そしてc軸配向率は92%と良好な結晶性を示
していた。しかしながら電気特性については、ε〜40
0、γ〜3.0×10-8C/cm2・Kと十分な焦電特性
が得られていなかった。これらの結果は、結晶粒の成長
状態などのモフォロジーあるいは安定性に起因する問題
と考えられる。従って薄膜の特性向上のためには、結晶
粒の十分な成長と安定化を確保しながら成膜する形成方
法が必要となる。
First, the PLT (0
01) The half width of the peak is 0.24 ° and the peak intensity is 18
9 kcps and a c-axis orientation ratio of 92% showed good crystallinity. However, for the electrical characteristics, ε-40
0, γ to 3.0 × 10 −8 C / cm 2 · K, which was insufficient for obtaining sufficient pyroelectric properties. These results are considered to be problems due to morphology or stability such as the growth state of crystal grains. Therefore, in order to improve the characteristics of the thin film, a formation method for forming a film while ensuring sufficient growth and stabilization of crystal grains is required.

【0021】次に、上記のPLT薄膜の安定化のため
に、PLT薄膜の形成において、薄膜堆積時間の内、薄
膜を堆積しない、あるいは堆積速度の小さい安定化工程
を間欠的・周期的に導入しながら成膜する方法を試み
た。本実施の形態においては薄膜堆積に際し、ターゲッ
トと基板ホルダー間に1/2の部分が開放したステンレ
スの遮蔽円板(5mm厚)6を設置し、さらに基板ホルダ
ーを3rpmで回転させた。
Next, in order to stabilize the PLT thin film, in forming the PLT thin film, a stabilizing step in which the thin film is not deposited or the deposition rate is low is intermittently and periodically introduced during the thin film deposition time. We tried a method of forming a film. In this embodiment, when depositing a thin film, a stainless steel shielding disk (5 mm thick) 6 having an open half was placed between the target and the substrate holder, and the substrate holder was further rotated at 3 rpm.

【0022】この装置構造により、基板が遮蔽板の開放
部分上にある場合はターゲットからのスパッタ粒子が基
板付近に飛来し薄膜を形成するが、基板が回転して遮蔽
板上に位置するとき(堆積時間の1/2の時間)はター
ゲットからの堆積粒子が遮蔽板に遮られて基板付近に届
かず、形成した薄膜が加熱されるだけのアニール工程と
なる。この様な堆積工程とアニール工程とを周期的に繰
り返す事によって薄膜を随時安定化させた。
With this device structure, when the substrate is on the open portion of the shielding plate, sputtered particles from the target fly near the substrate and form a thin film, but when the substrate rotates and is positioned on the shielding plate ( (The half of the deposition time) is an annealing step in which deposited particles from the target are blocked by the shielding plate and do not reach the vicinity of the substrate, and only the formed thin film is heated. By periodically repeating such a deposition step and an annealing step, the thin film was stabilized as needed.

【0023】ここで、PLT薄膜の成膜条件は上記実験
と同条件で、かつ膜厚も2μmと同一にした。このPL
T薄膜のX線回折のPLT(001)ピークの半値幅は
0.23°、ピーク強度187kcps、そしてc軸配向率
は95%と連続成膜した場合と同様に良好な結晶性を示
していた。一方電気特性については、ε〜190、γ〜
4.0×10-8C/cm2・Kと非常に高い焦電特性が得
られた。
Here, the conditions for forming the PLT thin film were the same as those in the above experiment, and the film thickness was the same as 2 μm. This PL
The half width of the PLT (001) peak in the X-ray diffraction of the T thin film was 0.23 °, the peak intensity was 187 kcps, and the c-axis orientation ratio was 95%, indicating good crystallinity as in the case of continuous film formation. . On the other hand, regarding electrical characteristics, ε ~ 190, γ ~
An extremely high pyroelectric property of 4.0 × 10 −8 C / cm 2 · K was obtained.

【0024】しかしながらこの場合、遮蔽板によって薄
膜堆積が行なわれていない時間の付加によってトータル
の堆積速度は0.09nm/secと従来に比べて遅く、2
μmの薄膜を形成する堆積時間も約6時間10分かかっ
た。これらの誘電体薄膜の量産性を考えた場合、堆積速
度が遅く堆積時間が長くかかることは望ましくない。従
って、結晶性・電気特性の良好な薄膜をいかに短時間で
形成するかが重要な課題となる。
However, in this case, the total deposition rate is 0.09 nm / sec, which is slower than the conventional one due to the addition of the time when the thin film is not deposited by the shielding plate.
The deposition time to form a μm thin film also took about 6 hours and 10 minutes. Considering the mass productivity of these dielectric thin films, it is not desirable that the deposition rate is slow and the deposition time is long. Therefore, how to form a thin film having good crystallinity and electric characteristics in a short time is an important issue.

【0025】本実施の形態ではこれらの課題を解決する
ために、次にPLT薄膜の形成を2つの工程に分けて行
なった。まず第一のPLT薄膜の形成方法として、上記
の遮蔽板をターゲットと基板ホルダーの間に設置して、
RF電力=1200W、基板温度=600℃、ガス圧=
0.15Pa,Ar/O2ガス流量比=25/1の成膜条
件にて約0.3μm成膜した。その後、遮蔽板を取り外
し、第一のPLT薄膜上に第二のPLT薄膜を同条件で
1.7μm形成した。
In the present embodiment, in order to solve these problems, the formation of a PLT thin film is performed in two steps. First, as a method of forming a first PLT thin film, the above-mentioned shielding plate is set between a target and a substrate holder,
RF power = 1200 W, substrate temperature = 600 ° C., gas pressure =
A film of about 0.3 μm was formed under a film forming condition of 0.15 Pa and an Ar / O 2 gas flow rate ratio of 25/1. Thereafter, the shielding plate was removed, and a second PLT thin film was formed on the first PLT thin film under the same conditions at a thickness of 1.7 μm.

【0026】従って、PLT薄膜の全体の膜厚は0.3
μm(第一のPLT薄膜)+1.7μm(第二のPLT
薄膜)で2μmとした。つまり第一層である0.3μm
の成長初期の過程では遮蔽板を用いて0.09nm/sec
と非常に低堆積速度で緻密で安定化させたPLT薄膜を
形成して、その後、第二層として0.20nm/secの高
速でPLT薄膜を堆積したことになる。
Therefore, the overall thickness of the PLT thin film is 0.3
μm (first PLT thin film) +1.7 μm (second PLT thin film)
(Thin film). In other words, the first layer, 0.3 μm
In the early stage of the growth of 0.09 nm / sec using a shielding plate
This means that a dense and stabilized PLT thin film was formed at a very low deposition rate, and then a PLT thin film was deposited as a second layer at a high speed of 0.20 nm / sec.

【0027】この様にして形成した2μmのPLT薄膜
の結晶性はそれぞれ、PLT(001)ピークの半値幅
0.22°、ピーク強度191kcps、c軸配向率96%
となり、さらに電気的特性はε〜200、γ〜4.0×
10-8C/cm2・Kと高い焦電特性が得られていた。特
にこの実験における焦電特性の改善は、堆積膜自体を安
定化させる工程を持った堆積法により緻密で粒成長が十
分にされているPLT薄膜を第一層として形成したこと
で薄膜成長初期状態の結晶構造が改善出来たことによる
ものである。
The crystallinity of the 2 μm PLT thin film formed in this way is such that the PLT (001) peak has a half-value width of 0.22 °, a peak intensity of 191 kcps, and a c-axis orientation ratio of 96%.
And the electrical characteristics are ε-200, γ-4.0 ×
High pyroelectric properties of 10 −8 C / cm 2 · K were obtained. In particular, the improvement in the pyroelectric properties in this experiment was achieved by forming a dense and grain-grown PLT thin film as the first layer by a deposition method with a step of stabilizing the deposited film itself, thereby achieving an initial state of thin film growth. This is because the crystal structure of was improved.

【0028】また、この時の第一層の堆積時間が55分
そして第二層の堆積時間が2時間20分でありトータル
の堆積時間も3時間15分と短時間で2μmの膜厚のP
LT薄膜の形成が達成出来た。この他、遮蔽板取り外し
のための基板冷却時間と遮蔽板の取り外し時間を含める
と5時間10分となり、一貫して遮蔽板を用いて成膜し
た場合に比べて1時間の時間短縮が出来た。
At this time, the deposition time of the first layer is 55 minutes and the deposition time of the second layer is 2 hours and 20 minutes. The total deposition time is 3 hours and 15 minutes, and the P layer having a thickness of 2 μm is short.
The formation of the LT thin film was achieved. In addition, including the substrate cooling time for removing the shielding plate and the time for removing the shielding plate, the time was 5 hours and 10 minutes, and the time was consistently reduced by one hour as compared with the case where the film was formed using the shielding plate. .

【0029】従来では、量産の必要性から考えた場合、
高速成膜を行うためにRF電力の増加や基板ターゲット
間距離の短縮といった成膜条件を変える必要が生じ、そ
れによって堆積膜が高いエネルギーを持ったイオン等の
衝突によって損傷を受けたり、あるいは低密度のポーラ
スな膜が成長することでピンホールや欠陥を生じるとい
う事が問題となっていた。
Conventionally, considering the necessity of mass production,
In order to perform high-speed film formation, it is necessary to change film formation conditions such as an increase in RF power and a reduction in the distance between substrate targets, so that the deposited film may be damaged by collision with ions having high energy, or may be damaged. There has been a problem that the growth of a porous film having a high density causes pinholes and defects.

【0030】しかしながら、本実施の形態に示したよう
に、PLT薄膜を形成する工程において、基板上にPL
T薄膜を0.15nm/sec以下の低堆積速度で形成する
工程と、前記第一層のPLT薄膜上に第二層として0.
15nm/sec以上の高堆積速度でPLT薄膜を成膜する
少なくとも2つ以上の工程からなる薄膜の製造方法を用
いることで、高い焦電特性及び結晶性を示すPLT薄膜
が高スループットで実現出来た。
However, as shown in this embodiment, in the step of forming the PLT thin film, the PLT
Forming a T thin film at a low deposition rate of 0.15 nm / sec or less;
By using a method of manufacturing a PLT thin film at a high deposition rate of 15 nm / sec or more and comprising a thin film including at least two steps, a PLT thin film exhibiting high pyroelectric characteristics and crystallinity can be realized at a high throughput. .

【0031】(実施の形態2)以下、本発明の実施の形
態2を図面とともに説明する。同様に、PLT薄膜の形
成には図1に示したマグネトロンスパッタ装置を用い
た。
Embodiment 2 Hereinafter, Embodiment 2 of the present invention will be described with reference to the drawings. Similarly, the magnetron sputtering apparatus shown in FIG. 1 was used for forming the PLT thin film.

【0032】上記実施の形態1では薄膜の安定化のため
に、誘電体薄膜の形成において、薄膜堆積時間の内薄膜
を堆積しない、あるいは堆積速度の小さい安定化工程を
間欠的・周期的に導入しながら成膜した例を示したが、
具体的にはターゲットと基板ホルダー間に1/2の部分
が開放したステンレスの遮蔽円板(5mm厚)を設置する
ことによって行なっている。
In the first embodiment, in order to stabilize the thin film, in forming the dielectric thin film, a stabilizing step in which the thin film is not deposited during the thin film deposition time or a deposition rate is low is intermittently and periodically introduced. An example of film formation was shown while
Specifically, this is performed by installing a stainless shielding disk (5 mm thick) having a half opening between the target and the substrate holder.

【0033】従って、高速で第二層のPLT薄膜を形成
する前に、真空槽内の真空を大気にまで戻して遮蔽板を
取り外す作業が必要であった。実際、600度付近の高
温にまで加熱された基板ホルダーを大気中にさらすのは
膜中への不純物の混入やヒーターの酸化等から考えて望
ましくなく、また遮蔽板の取り外しの作業手間もかかっ
てしまっていた。本実施の形態2では、第一層目のPL
T薄膜の形成後に連続して第二層目にPLT薄膜を形成
するために遮蔽板の構造を真空槽を破る事なく変化させ
た。
Therefore, before forming the PLT thin film of the second layer at a high speed, it is necessary to return the vacuum in the vacuum chamber to the atmosphere and remove the shielding plate. Actually, it is not desirable to expose the substrate holder heated to a high temperature of about 600 degrees to the air in view of contamination of the film into the film and oxidation of the heater, and it also takes time and labor to remove the shield plate. Was gone. In the second embodiment, the first layer PL
In order to form a PLT thin film on the second layer continuously after the formation of the T thin film, the structure of the shielding plate was changed without breaking the vacuum chamber.

【0034】図2(a)に遮蔽板の概略図を示したが、
5mm厚のステンレスの円板の内、3/4部分が開口した
物を2枚重ね合わせた構造とした。この遮蔽板をターゲ
ットと基板ホルダー間に設置した。まず第一層目の0.
3μmのPLT薄膜を形成する際には図2(b)の様に
1/2の部分が開口した円板の形を作り、これを第二層
の1.7μmのPLT薄膜を形成する際には図2(c)
の様に3/4の部分が開口した円板の形に変化させた。
遮蔽板の構造は真空槽外の手動レバーによって変化させ
る事が出来る。
FIG. 2A is a schematic view of the shielding plate.
Two 5 mm-thick stainless steel discs with three-quarters opened were stacked. This shielding plate was set between the target and the substrate holder. First, the first layer, 0.
When forming a 3 μm PLT thin film, as shown in FIG. 2 (b), a half-opened disk is formed, and this is used to form a 1.7 μm PLT thin film of the second layer. Figure 2 (c)
The shape was changed to a disk having a 3/4 opening as shown in FIG.
The structure of the shielding plate can be changed by a manual lever outside the vacuum chamber.

【0035】この様な遮蔽板を備えた薄膜形成装置を用
いて、RF電力=1200W、基板温度=600℃、ガ
ス圧=0.15Pa,Ar/O2ガス流量比=25/1の
成膜条件にて約2μmのPLT薄膜を形成した。この時
のPLT薄膜のX線回折のPLT(001)ピークの半
値幅は0.23°、ピーク強度197kcps、そしてc軸
配向率は90%と連続成膜した場合と同様に良好な結晶
性を示し、また電気特性についてもε〜178、γ〜
4.2×10-8C/cm2・Kと非常に高い焦電特性を得
た。
Using a thin film forming apparatus having such a shielding plate, a film is formed at an RF power of 1200 W, a substrate temperature of 600 ° C., a gas pressure of 0.15 Pa, and an Ar / O 2 gas flow ratio of 25/1. Under the conditions, a PLT thin film of about 2 μm was formed. At this time, the PLT (001) peak of the X-ray diffraction of the PLT thin film had a half value width of 0.23 °, a peak intensity of 197 kcps, and a c-axis orientation ratio of 90%, indicating good crystallinity as in the case of continuous film formation. The electrical characteristics are shown as ε-178, γ-
An extremely high pyroelectric characteristic of 4.2 × 10 −8 C / cm 2 · K was obtained.

【0036】また、本実施の形態の方法及び装置を用い
ることによって、2μmの膜厚のPLT薄膜を形成する
ための時間は、55分(第一層PLT薄膜)+3時間5
分(第二層PLT薄膜)となり、遮蔽板を用いて成膜し
た場合に比べて性能指数を低下させる事なく2時間の時
間短縮が出来た。
Also, by using the method and the apparatus of the present embodiment, the time for forming a PLT thin film having a thickness of 2 μm is 55 minutes (first layer PLT thin film) +3 hours 5
Minutes (second layer PLT thin film), and the time was reduced by 2 hours without lowering the figure of merit as compared with the case where the film was formed using the shielding plate.

【0037】従って、本実施の形態によって、遮蔽板の
取り外しの作業もなく、高い焦電特性及び結晶性を示す
PLT薄膜が高スループットで実現出来た。
Therefore, according to the present embodiment, a PLT thin film exhibiting high pyroelectric characteristics and crystallinity can be realized at high throughput without the work of removing the shielding plate.

【0038】(実施の形態3)以下、本発明の実施の形
態3を図面とともに説明する。同様に、誘電体薄膜の形
成には4インチカソードのRFマグネトロンスパッタ装
置を用いた。本実施の形態ではSrTiO3(以下ST
O)薄膜の形成を目的とした。ここで、焼結したSrT
iO3の4インチの酸化物誘電体材料をターゲットとし
て装着し、このターゲットのエロージョン部分の真上に
基板が位置するようにセットした。さらに基板とターゲ
ットの直線距離はに80mmである。この様な薄膜形成装
置において、RF電力=200W、基板温度=200
℃、ガス圧=0.15Pa,Ar/O 2ガス流量比=10
/1の成膜条件にてSTO薄膜を堆積した。また膜厚は
約0.2μmとした。この時STO薄膜のX線回折のS
rTiO3ピークの半値幅は0.40°、ピーク強度5k
cpsであった。
(Embodiment 3) Hereinafter, embodiments of the present invention will be described.
State 3 will be described with reference to the drawings. Similarly, the shape of the dielectric thin film
RF magnetron sputtering equipment with 4 inch cathode
Was used. In the present embodiment, SrTiOThree(Hereinafter ST
O) For the purpose of forming a thin film. Here, the sintered SrT
iOThreeTarget 4 inch oxide dielectric material
And put it right above the erosion part of this target
It was set so that the substrate was positioned. Further substrate and target
The linear distance of the set is 80 mm. Such thin film forming equipment
RF power = 200 W, substrate temperature = 200
° C, gas pressure = 0.15 Pa, Ar / O TwoGas flow ratio = 10
An STO thin film was deposited under a film forming condition of / 1. The film thickness is
It was about 0.2 μm. At this time, the S
rTiOThreeThe peak half width is 0.40 ° and the peak intensity is 5k
cps.

【0039】次に、上記PLT薄膜の実施の形態と同様
に2工程のSTO薄膜の形成法を行なった。まず第一層
目のSTO薄膜の形成にはターゲットと基板ホルダー間
に1/2の部分が開放したステンレスの遮蔽円板(5mm
厚)を設置し、さらに基板ホルダーを3rpmで回転させ
ながら行なった。その後、遮蔽板を取り外した装置構造
として、第一層の薄膜上に第二のPbTiO3薄膜を同
条件で形成した。この時のSTO薄膜のX線回折のSr
TiO3ピークの半値幅は0.35°、ピーク強度21k
cpsと同条件で連続成膜した上記の結果に比べて結晶性
が向上した。
Next, a two-step method of forming an STO thin film was performed in the same manner as in the embodiment of the PLT thin film. First, for the formation of the first layer of STO thin film, a stainless shielding disk (5 mm) with a half portion opened between the target and the substrate holder
Thickness) was set, and the substrate holder was rotated at 3 rpm. Thereafter, a second PbTiO 3 thin film was formed on the first thin film under the same conditions as the device structure with the shielding plate removed. The Sr of the X-ray diffraction of the STO thin film at this time
The half width of the TiO 3 peak is 0.35 ° and the peak intensity is 21 k.
The crystallinity was improved as compared with the above results of continuous film formation under the same conditions as cps.

【0040】(実施の形態4)焦電体素子の形成を行な
う場合、PLT薄膜の形成の前には、MgO単結晶基板
上に下地電極として6インチカソードのRFマグネトロ
ンスパッタ装置によってPt薄膜を0.2μm形成す
る。この後、PLT薄膜を形成し、パターニング、上部
電極形成とプロセス進行する。従ってPLT/Pt/M
gO素子はPLT薄膜形成後に多くのエッチングや高温
加熱工程にさらされることになる。このプロセス進行時
において、まれにPt/MgO界面でのPt剥離が生じ
ることが問題となっていた。スパッタ条件を基板温度6
00℃、ガス圧10mTorr、RF電力50W、O2/Ar
ガス流量比0.25として0.15μmのPt薄膜を形
成した後に、10インチRFマグネトロンスパッタ装置
によってRF電力=1200W、基板温度=600℃、
ガス圧=0.15Pa,Ar/O2ガス流量比=25/1
の成膜条件にて2μmのPLT薄膜を堆積した場合、P
LT/Pt/MgO素子の剥離不良率は約30%程度で
あった。
(Embodiment 4) When a pyroelectric element is formed, before forming a PLT thin film, a Pt thin film is formed on a MgO single crystal substrate by a 6-inch cathode RF magnetron sputtering apparatus as a base electrode. 2 .mu.m. Thereafter, a PLT thin film is formed, and patterning and formation of an upper electrode are performed. Therefore PLT / Pt / M
The gO element is subjected to many etching and high-temperature heating steps after forming the PLT thin film. During this process, Pt peeling at the Pt / MgO interface rarely occurs. Sputtering condition: substrate temperature 6
00 ° C, gas pressure 10mTorr, RF power 50W, O 2 / Ar
After forming a Pt thin film of 0.15 μm with a gas flow rate of 0.25, RF power = 1200 W, substrate temperature = 600 ° C. by a 10-inch RF magnetron sputtering apparatus,
Gas pressure = 0.15 Pa, Ar / O 2 gas flow ratio = 25/1
When a 2 μm PLT thin film is deposited under
The peeling failure rate of the LT / Pt / MgO element was about 30%.

【0041】MgO基板とPt薄膜界面の密着性向上の
ための対策として層間に数十nm厚さのTi等のバッファ
薄膜を形成する方法が報告されているが、2工程の下地
電極薄膜の形成を行なわなければいけない、あるいはマ
ルチターゲットのスパッタ装置を用いる必要があるなど
量産性に問題がある。
As a measure for improving the adhesion between the MgO substrate and the Pt thin film interface, a method of forming a buffer thin film of Ti or the like having a thickness of several tens of nm between layers has been reported. , Or a multi-target sputtering apparatus needs to be used.

【0042】そこで、本発明ではPt薄膜を形成する工
程において、少なくとも2つ以上の工程からなる金属薄
膜の製造方法を用いた。全工程共通のスパッタ条件を、
基板温度600℃、ガス圧10mTorr、RF電力50W
として、Ar/O2ガス流量比のみを成膜中に変化させ
た。第一のPt薄膜をO2/Ar=0.25のガス流量
比として50nm形成し、第一のPt薄膜上に第二のPt
薄膜をO2/Ar=0のガス流量比として150nm程度
連続形成した。この後同様に10インチRFマグネトロ
ンスパッタ装置によってRF電力=1200W、基板温
度=600℃、ガス圧=0.15Pa,Ar/O2ガス流
量比=25/1の成膜条件にて2μmのPLT薄膜を堆
積した場合、PLT/Pt/MgO素子の剥離不良率は
約0%に低減できた。
Therefore, in the present invention, in the step of forming the Pt thin film, a method of manufacturing a metal thin film comprising at least two or more steps is used. Sputtering conditions common to all processes
Substrate temperature 600 ° C, gas pressure 10mTorr, RF power 50W
Only the Ar / O 2 gas flow ratio was changed during the film formation. A first Pt thin film is formed with a gas flow ratio of O 2 /Ar=0.25 at 50 nm, and a second Pt thin film is formed on the first Pt thin film.
A thin film was continuously formed at a gas flow ratio of O 2 / Ar = 0 of about 150 nm. Thereafter, similarly, a 2 μm PLT thin film is formed using a 10-inch RF magnetron sputtering apparatus under the conditions of RF power = 1200 W, substrate temperature = 600 ° C., gas pressure = 0.15 Pa, and Ar / O 2 gas flow ratio = 25/1. In the case where was deposited, the peeling failure rate of the PLT / Pt / MgO element could be reduced to about 0%.

【0043】本発明におけるMgO基板とPt薄膜の密
着性の改善は、成長初期過程のPt薄膜の構造を改善出
来たためである。
The improvement in the adhesion between the MgO substrate and the Pt thin film in the present invention is due to the fact that the structure of the Pt thin film in the initial stage of growth could be improved.

【0044】[0044]

【発明の効果】以上説明した通り、本発明によれば、
(Pb1-(x+y)LaxMgy)Ti1-(x+y) /43からなる
ペロブスカイト型複合化合物薄膜を形成する工程におい
て、基板上に第一の(Pb1-(x+y)LaxMgy)Ti
1-(x+y)/43薄膜を0.15nm/sec以下の低堆積速度
で形成する工程と、前記第一の薄膜上に第二の(Pb
1-(x+y)LaxMgy)Ti1-(x+y)/43薄膜を0.15n
m/sec以上の高堆積速度で成膜する少なくとも2つ以上
の工程からなる誘電体薄膜の形成方法を用いる事によっ
て高い焦電特性及び結晶性を示す(Pb1-(x+y)Lax
y)Ti1-(x+y)/43薄膜を高スループットで実現で
きる。
As described above, according to the present invention,
In the step of forming a perovskite-type composite compound thin film composed of (Pb 1- (x + y) La x Mg y ) Ti 1- (x + y) / 4 O 3 , the first (Pb 1- ( x + y) La x Mg y ) Ti
Forming a 1- (x + y) / 4 O 3 thin film at a low deposition rate of 0.15 nm / sec or less; and forming a second (Pb) film on the first thin film.
1- (x + y) La x Mg y ) Ti 1- (x + y) / 4 O 3 thin film is 0.15 n
By using a method of forming a dielectric thin film comprising at least two steps for forming a film at a high deposition rate of m / sec or more, high pyroelectric characteristics and crystallinity are exhibited (Pb 1- (x + y) La x M
g y ) Ti 1- (x + y) / 4 O 3 thin film can be realized with high throughput.

【0045】また、Pt薄膜を形成する工程において、
基板上に第一のPt薄膜を0.20≦O2/Ar≦1.
00のガス流量比として形成する工程と、第一のPt薄
膜上に第二のPt薄膜をO2/Ar≦0.50のガス流
量比として形成する少なくとも2つ以上の工程からなる
金属薄膜の製造方法を用いる事によって、PLT/Pt
/MgO焦電体素子としてプロセス進行させた時のMg
O基板とPt薄膜との剥離不良の低減が出来る。
In the step of forming a Pt thin film,
A first Pt thin film is formed on a substrate by 0.20 ≦ O 2 / Ar ≦ 1.
A metal thin film comprising at least two steps of forming a second Pt thin film on the first Pt thin film at a gas flow ratio of O 2 /Ar≦0.50. By using the manufacturing method, PLT / Pt
/ MgO when processed as pyroelectric element
The peeling failure between the O substrate and the Pt thin film can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施の形態の誘電体薄膜形成装置の
基本構成を示す模式図
FIG. 1 is a schematic diagram showing a basic configuration of a dielectric thin film forming apparatus according to an embodiment of the present invention.

【図2】(a)本発明の一実施の形態の遮蔽板の構成断
面図 (b)本発明の一実施の形態の遮蔽板の第一層の薄膜形
成時の構成断面図 (c)本発明の一実施の形態の遮蔽板の第二層の薄膜形
成時の構成断面図
FIG. 2A is a cross-sectional view illustrating a configuration of a shield plate according to an embodiment of the present invention. FIG. 2B is a cross-sectional view illustrating a configuration of a first layer of the shield plate according to an embodiment of the present invention when a thin film is formed. FIG. 2 is a cross-sectional view illustrating the configuration of the shielding plate according to the embodiment of the present invention when the second layer is formed as a thin film

【符号の説明】[Explanation of symbols]

1 基板加熱ヒーター(p−BNヒーター) 2 基板ホルダー 3 均熱板 4 MgO基板 5 PLTセラミック焼結体ターゲット 6 遮蔽板(スリット板) DESCRIPTION OF SYMBOLS 1 Substrate heater (p-BN heater) 2 Substrate holder 3 Heat equalizing plate 4 MgO substrate 5 PLT ceramic sintered compact target 6 Shield plate (slit plate)

フロントページの続き (51)Int.Cl.6 識別記号 FI G01J 1/02 G01J 1/02 Y 5/02 5/02 A H01L 21/316 H01L 21/316 Y 41/187 41/18 101C 41/24 41/22 A Continued on the front page (51) Int.Cl. 6 Identification symbol FI G01J 1/02 G01J 1/02 Y 5/02 5/02 A H01L 21/316 H01L 21/316 Y 41/187 41/18 101C 41/24 41/22 A

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 (Pb1-(x+y)LaxMgy)Ti
1-(x+y)/43からなるペロブスカイト型複合化合物薄膜
を形成する工程において、基板上に第一の(Pb1-(x
+y)LaxMgy)Ti1-(x+y)/43薄膜を0.15nm/s
ec以下の低堆積速度で形成する工程と、前記第一の薄膜
上に第二の(Pb1-(x+y)LaxMgy)Ti1-(x+ y)/4
3薄膜を0.15nm/sec以上の高堆積速度で成膜する少
なくとも2つ以上の工程からなる誘電体薄膜の形成方
法。
1. (Pb 1- (x + y) La x Mg y ) Ti
In the step of forming a perovskite-type composite compound thin film composed of 1- (x + y) / 4O 3 , the first (Pb 1- (x
+ y) La x Mg y ) Ti 1- (x + y) / 4 O 3 thin film of 0.15 nm / s
forming the following low deposition rate ec, the second to the first thin film (Pb 1- (x + y) La x Mg y) Ti 1- (x + y) / 4 O
3. A method for forming a dielectric thin film comprising at least two or more steps of forming a thin film at a high deposition rate of 0.15 nm / sec or more.
【請求項2】 第一の(Pb1-(x+y)LaxMgy)Ti
1-(x+y)/43薄膜の形成方法として、開口度が少なくと
も1より小さい遮蔽板をターゲットと基板ホルダーの間
に設置して薄膜形成を行なう事からなる請求項1記載の
誘電体薄膜の形成方法。
2. The first (Pb 1- (x + y) La x Mg y ) Ti
1- (x + y) / 4 O 3 as a method of forming the thin film, the dielectric of the opening degree is made of carrying out the thin film formation by installing at least one smaller shielding plate between the target and the substrate holder according to claim 1, wherein Method of forming body thin film.
【請求項3】 第二の(Pb1-(x+y)LaxMgy)Ti
1-(x+y)/43薄膜の形成方法として、設置した遮蔽板の
開口度を増加させた後に薄膜形成を行なう事からなる請
求項1記載の誘電体薄膜の形成方法。
3. The second (Pb 1- (x + y) La x Mg y ) Ti
1- (x + y) / 4 O 3 as a thin film forming method, placed claims 1 dielectric thin film forming method according consisting carrying out the thin film formed after increasing the opening degree of the shield plate.
【請求項4】 第二の(Pb1-(x+y)LaxMgy)Ti
1-(x+y)/43薄膜の形成方法として、設置した遮蔽板の
開口度を増加させた後に薄膜を成膜するための誘電体薄
膜の形成装置。
4. A second (Pb 1- (x + y) La x Mg y ) Ti
As a method for forming a 1- (x + y) / 4O 3 thin film, an apparatus for forming a dielectric thin film for forming a thin film after increasing the aperture of an installed shielding plate.
【請求項5】 SrTiO3薄膜を形成する工程におい
て、基板上に第一のSrTiO3薄膜を0.15nm/sec
以下の低堆積速度で形成する工程と、第一の薄膜上に第
二のSrTiO3薄膜を0.15nm/sec以上の高堆積速
度で形成する少なくとも2つ以上の工程からなる誘電体
薄膜の形成方法。
5. A process for forming a SrTiO 3 thin film, comprising: forming a first SrTiO 3 thin film on a substrate at 0.15 nm / sec.
Forming a dielectric thin film comprising at least two steps of forming a second SrTiO 3 thin film on a first thin film at a high deposition rate of 0.15 nm / sec or more, Method.
【請求項6】 Pt薄膜を形成する工程において、基板
上に第一のPt薄膜を0.20≦O2/Ar≦1.00
のガス流量比として形成する工程と、第一のPt薄膜上
に第二のPt薄膜をO2/Ar≦0.50のガス流量比
として形成する少なくとも2つ以上の工程からなる金属
薄膜の形成方法。
6. The method of forming a Pt thin film, comprising: forming a first Pt thin film on a substrate in a range of 0.20 ≦ O 2 /Ar≦1.00.
Forming a second Pt thin film on the first Pt thin film at a gas flow ratio of O 2 /Ar≦0.50. Method.
JP827797A 1997-01-21 1997-01-21 Dielectric thin film and method and device for forming meal thin film Pending JPH10209512A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP827797A JPH10209512A (en) 1997-01-21 1997-01-21 Dielectric thin film and method and device for forming meal thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP827797A JPH10209512A (en) 1997-01-21 1997-01-21 Dielectric thin film and method and device for forming meal thin film

Publications (1)

Publication Number Publication Date
JPH10209512A true JPH10209512A (en) 1998-08-07

Family

ID=11688695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP827797A Pending JPH10209512A (en) 1997-01-21 1997-01-21 Dielectric thin film and method and device for forming meal thin film

Country Status (1)

Country Link
JP (1) JPH10209512A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021036616A (en) * 2010-03-18 2021-03-04 株式会社リコー Ink for forming oxide insulating film
JPWO2020031572A1 (en) * 2018-08-10 2021-03-18 株式会社アルバック Sputtering equipment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021036616A (en) * 2010-03-18 2021-03-04 株式会社リコー Ink for forming oxide insulating film
JPWO2020031572A1 (en) * 2018-08-10 2021-03-18 株式会社アルバック Sputtering equipment

Similar Documents

Publication Publication Date Title
US5196101A (en) Deposition of thin films of multicomponent materials
WO1994005455A2 (en) Modulated-structure of pzt/pt ferroelectric thin films for non-volatile random access memories
TWI817054B (en) Physical vapor deposition of piezoelectric films
JP2688872B2 (en) Method for producing PZT thin film and sputtering apparatus
JPH10209512A (en) Dielectric thin film and method and device for forming meal thin film
Maki et al. Low-temperature crystallization of sol-gel derived Pb (Zr0. 4, Ti0. 6) O3 thin films
Guoping et al. Structures and properties of a Ta2O5 thin film deposited by dc magnetron reactive sputtering in a pure O2 atmosphere
Zeng et al. Sol‐Gel Preparation of Pb (Zr0. 50Ti0. 50) O3 Ferroelectric Thin Films Using Zirconium Oxynitrate as the Zirconium Source
JPS63239742A (en) Manufacture for film superconductor
Lee et al. Microstructures and electrical properties of (Pb, La) TiO3 thin films grown on the Pt electrodes with a percolating network structure
JPH0967193A (en) Production of thin ferroelectric film
JPH07172996A (en) Production of thin film of dielectric material and production device therefor
Bruchhaus et al. Sputtered PZT films for ferroelectric devices
JPH01208327A (en) Production of thin film of superconductor
JP3431318B2 (en) Method for producing chalcopyrite structure semiconductor thin film
Wang et al. Effect of Zr/Ti ratio in targets on electrical properties of lead zirconate titanate thin films derived by pulsed laser deposition on template layer
JP2702711B2 (en) Manufacturing method of thin film superconductor
Wang et al. Characteristics and crystal structure of the Ba (ZrxTi1− x) O3 thin films deposited by RF magnetron sputtering
Bruchhaus et al. Ferroelectric Pb (Zr, Ti) O3 thin films prepared by planar multi-target sputtering
Lu et al. RF sputtered PLZT thin film on Pt/Ti electrode
JP2529438B2 (en) Method of manufacturing oxide thin film
Lee et al. Phase development of radio-frequency magnetron sputter-deposited Pb (Mg 1/3 Nb 2/3) O 3–PbTiO 3 (90/10) thin films
JPH0849061A (en) Production of dielectric thin film and device therefor
Blossfeld et al. Ferroelectric Pb (Zr, Ti) O3 thin films by reactive sputtering from a metallic target
JP3409944B2 (en) Ferroelectric element and method of manufacturing the same