JPH10208994A - Alignment method and aligner - Google Patents

Alignment method and aligner

Info

Publication number
JPH10208994A
JPH10208994A JP9005375A JP537597A JPH10208994A JP H10208994 A JPH10208994 A JP H10208994A JP 9005375 A JP9005375 A JP 9005375A JP 537597 A JP537597 A JP 537597A JP H10208994 A JPH10208994 A JP H10208994A
Authority
JP
Japan
Prior art keywords
temperature
semiconductor substrate
substrate
expansion
contraction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9005375A
Other languages
Japanese (ja)
Inventor
Takeo Hashimoto
武夫 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP9005375A priority Critical patent/JPH10208994A/en
Priority to KR1019980001267A priority patent/KR100289674B1/en
Priority to GB9800991A priority patent/GB2321316B/en
Publication of JPH10208994A publication Critical patent/JPH10208994A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70858Environment aspects, e.g. pressure of beam-path gas, temperature
    • G03F7/70866Environment aspects, e.g. pressure of beam-path gas, temperature of mask or workpiece
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2002Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70858Environment aspects, e.g. pressure of beam-path gas, temperature
    • G03F7/70866Environment aspects, e.g. pressure of beam-path gas, temperature of mask or workpiece
    • G03F7/70875Temperature, e.g. temperature control of masks or workpieces via control of stage temperature

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Atmospheric Sciences (AREA)
  • Toxicology (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce the expanding or shrinking amount of a semiconductor substrate to zero by finding the temperature difference corresponding to the expanding or shrinking amount of the substrate by dividing the measured expanding or shrinking amount of the substrate by the coefficient of thermal expansion of the substrate and heating or cooling the substrate. SOLUTION: After a semiconductor substrate 35 is roughly aligned by measuring the temperature of the substrate 35, the positional deviations of alignment marks at several points on the substrate 35 are measured with a detector 6 and a signal processing unit 5 extracts an expanding or shrinking component and finds the target temperature of the substrate 35 from the expanding or shrinking amount of the component. Then a temperature controller 3 controls the temperature of a fluid and adjusts the temperature of a holder 9 by circulating a fluid to the holder 9. A temperature sensor 2 measures the temperature of the substrate 34 while the substrate 35 is heated or cooled and, when the temperature of the substrate 35 reaches a target value, alignment is started. Consequently, highly accurate in-chip overlay can be performed by correcting the positional deviation of the substrate 35.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、マスク上に形成さ
れた回路パターンを半導体基板上に位置決めし前記回路
パターンを転写する露光方法及び露光装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exposure method and an exposure apparatus for positioning a circuit pattern formed on a mask on a semiconductor substrate and transferring the circuit pattern.

【0002】[0002]

【従来の技術】半導体集積回路のパターン寸法の微細化
に伴いマスクパターン間の重ね合わせ精度に対する要求
も非常に厳しくなってきている。一般に、重ね合わせ精
度は最小設計寸法の1/4乃至1/3程度必要であると
言われている。これを代表的な半導体集積回路であるダ
イナミックランダムアクセスメモリー(DRAM)に当
てはめると、64MDRAM(最小寸法0.35μm)
では0.10μm、256MDRAM(最小寸法0.2
5μm)では0.07μm、1GDRAM(最小寸法
0.18μm)では0.05μmとなり極めて厳しい。
2. Description of the Related Art With the miniaturization of the pattern size of a semiconductor integrated circuit, the demand for the overlay accuracy between mask patterns has become very strict. Generally, it is said that the overlay accuracy is required to be about 1/4 to 1/3 of the minimum design size. Applying this to a dynamic random access memory (DRAM), which is a typical semiconductor integrated circuit, a 64 MDRAM (minimum dimension 0.35 μm)
Is 0.10 μm, 256M DRAM (minimum dimension 0.2
5 μm) is 0.07 μm, and that of 1GDRAM (minimum dimension 0.18 μm) is 0.05 μm.

【0003】図4はチップ間重ね合わせ状態を説明する
ための半導体基板を示す模式平面図である。重ね合わせ
精度に影響を与える要因は多々あり分類の仕方も様々で
あるが、一つの分類の方法としてチップ間重ね合わせと
チップ内重ね合わせを区別する方法がある。チップ間重
ね合わせは、図4に示すとおり、チップを代表する計測
点Aが半導体基板35上で正確に重ね合わされているこ
とを対象としており、チップ内の複数の計測点が正確に
重ね合わされているかどうかを必ずしも問題とするもの
ではない。
FIG. 4 is a schematic plan view showing a semiconductor substrate for explaining a state of superposition between chips. There are many factors that affect the overlay accuracy, and the classification methods are various. One of the classification methods is a method of distinguishing between the overlap between chips and the overlap within the chips. As shown in FIG. 4, the chip-to-chip superimposition is intended for the measurement point A representing the chip to be accurately superimposed on the semiconductor substrate 35, and a plurality of measurement points in the chip to be superimposed accurately. Does not always matter.

【0004】図5(a)及び(b)はチップ内重ね合わ
せの場合のずれを説明するためのチップを示す模式平面
図である。これに対しチップ内重ね合わせにおいては、
図5に示したとおり、チップ内のあらゆる点または少な
くとも複数の計測点(A〜I)で正確に重ね合わされて
いることを対象とするものである。
FIGS. 5 (a) and 5 (b) are schematic plan views showing a chip for explaining displacement in the case of superposition within a chip. On the other hand, in the superposition in the chip,
As shown in FIG. 5, it is intended to be accurately superimposed at any point in the chip or at least a plurality of measurement points (A to I).

【0005】前者は主に露光装置のアライメントセンサ
ーの精度及びステージ精度などの影響を受け、後者には
主にレンズディストーション(倍率を含む)及びレチク
ルローテーション等の影響を受ける。チップ内及びチッ
プ間重ね合わせ精度向上策はいずれも重要な問題として
従来から検討されてきたが、256MDRAMクラスの
高集積度メモリーを製造するにあたって特にチップ内重
ね合わせ精度の向上が極めて重要な問題として注目され
るようになってきた。その理由は主に次の2点である。
The former is mainly affected by the accuracy of the alignment sensor and the stage accuracy of the exposure apparatus, and the latter is mainly affected by lens distortion (including magnification) and reticle rotation. Both the intra-chip and inter-chip overlay accuracy improvement measures have been considered as important issues, but the improvement of the intra-chip overlay accuracy is particularly important in manufacturing 256-M DRAM high-density memories. Attention has come to attention. The reasons are mainly the following two points.

【0006】第一の理由は、シリコン窒化膜、シリコン
酸化膜及び多結晶シリコン膜等の形成により、シリコン
に代表される半導体基板に伸縮が発生し、重ね合わせ誤
差を生じる事が判明したことである(参考;A.Ima
i et.al,SPIE.Vol.2726,199
6,pp.104−pp.112等)。第二の理由は、
ある一定の伸縮率で半導体基板が伸縮した場合、チップ
サイズが大きくなるにつれチップ内重ね合わせ誤差量も
増加することである。
The first reason is that it has been found that the formation of a silicon nitride film, a silicon oxide film, a polycrystalline silicon film, etc. causes expansion and contraction of a semiconductor substrate represented by silicon, resulting in an overlay error. Yes (Reference: A. Ima
i et. al, SPIE. Vol. 2726,199
6, pp. 104-pp. 112 etc.). The second reason is
When the semiconductor substrate expands and contracts at a certain expansion and contraction rate, the amount of intra-chip overlay error increases as the chip size increases.

【0007】図6はチップ内重ね合わせ誤差を説明する
ための一チップの平面図、図7は膜種/膜厚と基板伸縮
量を示す表である。この基板伸縮によるチップ内重ね合
わせ誤差の例として、図6に示すように、チップの長辺
方向に22mmの長さを有する半導体チップの上下に重
ね合わせ誤差測定マークを配置し、各種成膜によりどれ
だけの伸縮が発生するかを調べた。その結果、図7の表
に示すように、チップ内で最大0.1〜0.2μm程度
の重ね合わせ誤差が発生しており、何らかの補正を行わ
ないと256MDRAMクラスのデバイスには対応でき
ないことが判明した。
FIG. 6 is a plan view of one chip for explaining an intra-chip overlay error, and FIG. 7 is a table showing film types / film thicknesses and substrate expansion / contraction amounts. As an example of the in-chip overlay error due to the expansion and contraction of the substrate, as shown in FIG. 6, overlay error measurement marks are arranged above and below a semiconductor chip having a length of 22 mm in the long side direction of the chip. We examined how much stretching would occur. As a result, as shown in the table of FIG. 7, a maximum overlay error of about 0.1 to 0.2 μm is generated in the chip, and it is impossible to cope with a 256 MDRAM class device without any correction. found.

【0008】このような半導体基板の伸縮によるチップ
内重ね合わせ誤差の補正方法として、従来、投影露光装
置において投影倍率を微少量調整する方法が提案されて
いる。この一例として特開平4−107465に開示さ
れている内容について、以下に説明する。
As a method for correcting such an intra-chip overlay error due to the expansion and contraction of the semiconductor substrate, a method of adjusting the projection magnification in a projection exposure apparatus by a small amount has been conventionally proposed. As an example of this, the contents disclosed in JP-A-4-107465 will be described below.

【0009】図8は従来の一例におけるチップ内重ね合
わせ誤差の補正方法を説明するためのフローチャート、
図9はウェハーの計測点を示す図である。この補正方法
は、まず、図8のステップAで、フォトレジストを塗布
したウェハーを露光装置に搬入しウェハーホルダに載置
する。次に、図8のステップBで、ウェハーの粗アライ
メントを行い、ステップCで、露光装置のアライメント
センサーによりウェハー上の数ヵ所の位置ずれ量を測定
していた。このときの測定は、例えば、図9に示した様
にウェハーの周辺4ヵ所(計測点J〜M)の位置ズレ量
を測定すれば、ステップD及びステップEによりX方向
及びY方向の基板伸縮率は以下の式から計算により求め
ることができる。
FIG. 8 is a flowchart for explaining a method of correcting an intra-chip overlay error in an example of the related art.
FIG. 9 is a diagram showing measurement points on a wafer. In this correction method, first, in step A of FIG. 8, a wafer coated with a photoresist is carried into an exposure apparatus and placed on a wafer holder. Next, in step B of FIG. 8, rough alignment of the wafer was performed, and in step C, the amount of misalignment at several locations on the wafer was measured by the alignment sensor of the exposure apparatus. At this time, for example, as shown in FIG. 9, if the positional deviation amount at four locations (measurement points J to M) around the wafer is measured, the substrate expansion and contraction in the X and Y directions can be performed in steps D and E. The rate can be calculated by the following equation.

【0010】 X方向伸縮率:(ΔX4 +ΔX3 )/Lx (ppm) (2) Y方向伸縮率:(ΔY1 +ΔY2 )/Ly (ppm) (2) 但し、ΔY1 は計測点JにおけるY方向の位置ずれ量、
−ΔY2 は計測点KにおけるY方向位置ずれ量、−ΔX
3 は計測点LにおけるX方向のずれ量、ΔX4は計測点
M(284)におけるX方向ずれ量であり、Lyは計測
点J及びK間の距離、Lxは計測点L及びM間の距離で
ある。また簡略に説明するために、計測点J及びKのX
方向ずれ量は0、計測点L及びMのY方向のずれ量も0
としてある。
X-direction expansion and contraction ratio: (ΔX 4 + ΔX 3 ) / Lx (ppm) (2) Y-direction expansion and contraction ratio: (ΔY 1 + ΔY 2 ) / Ly (ppm) (2) where ΔY 1 is at measurement point J The amount of displacement in the Y direction,
−ΔY 2 is the amount of displacement in the Y direction at the measurement point K, −ΔX
3 is a displacement amount in the X direction at the measurement point L, ΔX 4 is a displacement amount in the X direction at the measurement point M (284), Ly is a distance between the measurement points J and K, and Lx is a distance between the measurement points L and M. It is. For simplicity, the X of the measurement points J and K
The direction shift amount is 0, and the shift amounts of the measurement points L and M in the Y direction are also 0.
There is.

【0011】次に、ステップFにより、シフト、回転、
直交度及びスケーリング等の補正を行う。この補正と平
行してステップG及びHにより、先程求めた基板伸縮率
から縮小倍率の補正量を求め補正を行った後、ステップ
Iで露光を行う。
Next, in step F, shift, rotation,
Correction such as orthogonality and scaling is performed. In parallel with this correction, in steps G and H, a correction amount of the reduction magnification is obtained from the previously obtained substrate expansion / contraction ratio and correction is performed, and then exposure is performed in step I.

【0012】[0012]

【発明が解決しようとする課題】上述した従来のチップ
内重ね合わせ誤差の補正方法では、投影倍率の微調整は
投影レンズ群の間圧力の変更、即ち屈折率の変更により
行われるものの、屈折率範囲にはレンズ設計上制約があ
るため、縮小投影露光装置の投影倍率は伸縮量に変換し
5〜10ppm程度の、ごく限られた範囲でしか変更で
きないという問題点がある。
In the above-described conventional method for correcting an in-chip overlay error, fine adjustment of the projection magnification is performed by changing the pressure between the projection lens groups, that is, by changing the refractive index. Since the range is limited by the lens design, there is a problem that the projection magnification of the reduction projection exposure apparatus can be changed only in a very limited range of about 5 to 10 ppm after being converted into an amount of expansion and contraction.

【0013】また、等倍X線露光装置に代表される等倍
露光装置では投影倍率を調整することは原理的にできな
いことが挙げられ、投影倍率の変更は必ずしも全ての露
光装置で行えないという欠点である。
In addition, it is pointed out that it is impossible in principle to adjust the projection magnification with a 1: 1 exposure apparatus typified by a 1: 1 X-ray exposure apparatus, and the projection magnification cannot be changed by all the exposure apparatuses. It is a disadvantage.

【0014】従って、本発明の目的は、露光方式の如何
にかかわらず半導体基板の広い範囲の伸縮率に対して高
精度のチップ内重ね合わせを実現できる露光方法及び露
光装置を提供することにある。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide an exposure method and an exposure apparatus capable of realizing high-accuracy in-chip superposition for a wide range of expansion and contraction ratio of a semiconductor substrate regardless of an exposure method. .

【0015】[0015]

【課題を解決するための手段】本発明の特徴は、半導体
基板上にマスクパターンを位置合わせして露光転写する
露光方法において、前工程の処理による前記半導体基板
の平面上の伸縮量を計測し、計測される該伸縮量を前記
半導体基板の熱膨張係数で除して前記伸縮量に対応する
温度差を求め、前記半導体基板を前記温度差が零になる
ように前記半導体基板を加熱あるいは冷却し前記伸縮量
が無くし、しかる後前記マスクパターンを前記半導体基
板に露光転写する露光方法である。また、前記半導体基
板の一方向および該一方向に直交する方向に該半導体基
板の中心に対象に配置される少なくとも一対のアライメ
ントマークの座標間の距離における前工程との距離の差
を測定することによって前記伸縮量を求めることが望ま
しい。
A feature of the present invention is that in an exposure method for aligning and transferring a mask pattern on a semiconductor substrate by exposure and transfer, the amount of expansion and contraction of the semiconductor substrate on a plane due to a previous process is measured. Dividing the measured expansion / contraction amount by the thermal expansion coefficient of the semiconductor substrate to obtain a temperature difference corresponding to the expansion / contraction amount, and heating or cooling the semiconductor substrate so that the temperature difference becomes zero. An exposure method for eliminating the amount of expansion and contraction, and thereafter exposing and transferring the mask pattern onto the semiconductor substrate. Also, measuring a difference between a distance between a coordinate of at least one pair of alignment marks arranged at a center of the semiconductor substrate in one direction of the semiconductor substrate and a direction orthogonal to the one direction from a preceding process. It is desirable to determine the amount of expansion and contraction by the following formula.

【0016】また、本発明の他の特徴は、前記マスクパ
ターンが形成されるレチクルに露光光を投射する露光光
学系と、ステージのホルダに載置される前記半導体基板
に前記マスクパターンを投影する投影レンズとを備える
露光装置において、前記アライメントマークの該座標か
ら前記半導体基板の該伸縮量を測定し伸縮率を測定する
計測機構と、前記伸縮率を零にするように前記半導体基
板の温度を制御する温度制御機構とを備える露光装置で
ある。さらに、前記半導体基板の温度を常に一定の温度
に維持するための温調ユニットを備えることが望まし
い。
Another feature of the present invention is that an exposure optical system for projecting exposure light on a reticle on which the mask pattern is formed, and that the mask pattern is projected on the semiconductor substrate mounted on a holder of a stage. In an exposure apparatus including a projection lens, a measuring mechanism for measuring the amount of expansion and contraction of the semiconductor substrate from the coordinates of the alignment mark and measuring the expansion and contraction ratio, and measuring the temperature of the semiconductor substrate so that the expansion and contraction ratio becomes zero. The exposure apparatus includes a temperature control mechanism for controlling the exposure. Further, it is desirable to provide a temperature control unit for always maintaining the temperature of the semiconductor substrate at a constant temperature.

【0017】[0017]

【発明の実施の形態】次に本発明について図面を参照し
て説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, the present invention will be described with reference to the drawings.

【0018】図1は本発明の一実施の形態における露光
装置を示す模式断面図である。この露光装置は、図1に
示すように、少なくともXとY方向の二ヵ所の半導体基
板35のアライメントマークの位置をアライメント光学
系7を介して認識し前工程からの半導体基板35の位置
ずれによる伸縮量を測定するディテクタ6と、ディテク
タ6からの伸縮量と元のアライメントマーク位置から半
導体基板35の伸縮率を求める信号処理ユニット5及び
制御ユニット4と、半導体基板35を載置するホルダ9
に内蔵される温調流体循環機構1と、半導体基板35の
温度を測定する温度センサ2と、信号処理ユニットから
の伸縮率信号と温度センサ2の温度信号とから温調器3
のPID制御を行う制御ユニット4とを設けている。
FIG. 1 is a schematic sectional view showing an exposure apparatus according to an embodiment of the present invention. As shown in FIG. 1, the exposure apparatus recognizes at least two positions of alignment marks on the semiconductor substrate 35 in the X and Y directions through the alignment optical system 7 and detects a position shift of the semiconductor substrate 35 from a previous process. A detector 6 for measuring the amount of expansion and contraction, a signal processing unit 5 and a control unit 4 for calculating the expansion and contraction ratio of the semiconductor substrate 35 from the amount of expansion and contraction from the detector 6 and the original alignment mark position, and a holder 9 for mounting the semiconductor substrate 35
A temperature control fluid circulating mechanism 1 built-in, a temperature sensor 2 for measuring the temperature of the semiconductor substrate 35, and a temperature controller 3 based on an expansion / contraction rate signal from the signal processing unit and a temperature signal from the temperature sensor 2.
And a control unit 4 for performing PID control.

【0019】この露光装置の露光光は、例えば、波長2
48nmのエキシマレーザ22を使用している。そし
て、このエキシマレーザ22から狭帯域化されたKrF
エキシマレーザー光が取り出されビームイクスパンダ2
1によって適切な形状に整形される。次いで反射ミラー
20を介してフライアイレンズ19に入射し2次光源を
アパーチャストップ18及びコンデンサレンズ23を介
し形成した後、露光光はレチクル13を均一に照射す
る。レチクル13に形成された回路パターンは投影レン
ズ12により所定の投影倍率に縮小され半導体基板35
の表面に結像しパターンを転写する。
The exposure light of this exposure apparatus has a wavelength of 2
A 48 nm excimer laser 22 is used. Then, the KrF band narrowed from the excimer laser 22 is used.
Excimer laser beam is extracted and beam expander 2
It is shaped into an appropriate shape by 1. Next, the light enters the fly-eye lens 19 via the reflection mirror 20 to form a secondary light source via the aperture stop 18 and the condenser lens 23, and then the exposure light uniformly irradiates the reticle 13. The circuit pattern formed on the reticle 13 is reduced to a predetermined projection magnification by the projection lens 12 so that the semiconductor substrate 35
The image is formed on the surface of the substrate and the pattern is transferred.

【0020】なお、投影光学系の外にオフアキシスのア
ライメント光学系7を備えている。このアライメント光
学系7は、He−Neレーザ17のレーザ光を反射ミラ
ー16,15およびアライメント光学系7を介して半導
体基板35上に形成されたアライメントマークに照射
し、回折光をディテクタ6で検出することにより位置情
報を得る。アライメント光は必ずしもHe−Neレーザ
ー光でなくともよく、広帯域の波長の光を照射し、アラ
イメントマークの画像を検出しても良い。
An off-axis alignment optical system 7 is provided in addition to the projection optical system. The alignment optical system 7 irradiates the laser beam of the He-Ne laser 17 to the alignment mark formed on the semiconductor substrate 35 via the reflection mirrors 16 and 15 and the alignment optical system 7, and detects the diffracted light by the detector 6. To obtain position information. The alignment light is not necessarily He-Ne laser light, and light of a broadband wavelength may be applied to detect the image of the alignment mark.

【0021】一方、半導体基板35の温度を上げたり下
降させたりする温調流体機構1はホルダ9のジャケット
に配管を介して温調器3に接続され、ホルダ9に埋設さ
れた温度センサ2の温度を検出し制御ユニット4により
温調器3をPID制御し、半導体基板35の温度を所定
の温度に早い時間で達するようにしている。また、温度
センサ2は分解能の高い例えば白金抵抗体などを使用し
ている。さらに、制御ユニット4は、市販のPID制御
コントローラにマイクロコンピュータを組込んだ装置で
ある。
On the other hand, a temperature control fluid mechanism 1 for raising or lowering the temperature of the semiconductor substrate 35 is connected to the temperature controller 3 via a pipe on the jacket of the holder 9 and is connected to the temperature sensor 2 embedded in the holder 9. The temperature is detected and PID control of the temperature controller 3 is performed by the control unit 4 so that the temperature of the semiconductor substrate 35 reaches a predetermined temperature in a short time. The temperature sensor 2 uses a high-resolution platinum resistor, for example. Further, the control unit 4 is a device in which a microcomputer is incorporated in a commercially available PID controller.

【0022】XあるいはY方向のアライメントマーク間
の距離を測定するには、ステージ8の移動距離で行われ
る。そして、この移動距離は、ステージ8のミラー10
にレーザ光を照射しその反射光をレーザ干渉計11に入
光させ測定される。この動作は、後述するアライメント
マーク間の伸縮量を測定する際に利用される。
The distance between the alignment marks in the X or Y direction is measured by the moving distance of the stage 8. The moving distance is determined by the mirror 10 of the stage 8.
Is irradiated with laser light, and the reflected light enters the laser interferometer 11 for measurement. This operation is used when measuring the amount of expansion and contraction between the alignment marks described below.

【0023】ここで半導体基板35上に前述の図9に示
した如く、少なくともXおよびY方向に2点以上独立に
求めるために、望ましくは4点以上の測定点を基板外周
部に選択すれば、前述の(1)及び(2)式より基板の
伸縮率を求めることが可能である。また更に計測点を増
やせば、統計的により正確な伸縮率を求めることができ
る。
Here, as shown in FIG. 9 described above, at least two or more measurement points are preferably independently selected in the X and Y directions on the semiconductor substrate 35. The expansion and contraction ratio of the substrate can be obtained from the above equations (1) and (2). If the number of measurement points is further increased, a more accurate expansion and contraction ratio can be obtained statistically.

【0024】図2は図1の露光装置による露光方法を説
明するためのフローチャートである。次に、本発明の基
板伸縮を見込んで位置ずれを補正する方法を図1と図2
を用いて説明する。まず、図2のステップAで、半導体
基板35であるウェハーを図1のホルダ9上に載置し、
ステップBでウェハーの温度を測定する。しかる後、ス
テップCで、ウェハーの粗アライメントを行う。ここ
で、温度測定のステップBと粗アライメントのステップ
Cの順番は逆でも良い。次に、ステップDで、半導体基
板であるウェハー内数ヵ所のアライメントマークの位置
ずれ量を図1のディテクタ6により測定し、ステップE
で、図1の信号処理ユニット5で伸縮成分の抽出を行
う。そして、ステップFおよびステップGによりずれの
成分の抽出およびずれ成分の補正が行なわれる。
FIG. 2 is a flowchart for explaining an exposure method using the exposure apparatus of FIG. FIGS. 1 and 2 show a method of correcting a displacement according to the present invention.
This will be described with reference to FIG. First, in step A of FIG. 2, a wafer as the semiconductor substrate 35 is placed on the holder 9 of FIG.
In step B, the temperature of the wafer is measured. Thereafter, in step C, rough alignment of the wafer is performed. Here, the order of step B of temperature measurement and step C of coarse alignment may be reversed. Next, in step D, the amount of misalignment of several alignment marks in the wafer as the semiconductor substrate is measured by the detector 6 in FIG.
Then, the expansion / contraction component is extracted by the signal processing unit 5 of FIG. Then, in Steps F and G, the shift component is extracted and the shift component is corrected.

【0025】次に、ずれの補正の過程を説明する。通
常、物質の温度変化による伸縮量ΔLは熱膨張係数をα
として次式で求められる。
Next, the process of correcting the displacement will be described. Usually, the amount of expansion and contraction ΔL due to a change in temperature of a substance is represented by
Is obtained by the following equation.

【0026】 L=L0 (1+αT) (1) ΔL=L2 −L1 =L0 (1+αT2 )−L0 (1−αT1 ) (2) ここで、L;物体の長さ L0 ;0℃での物体の長
さ T;温度 L1 ;温度T1 での物体の長さ L2 ;温度T2 での物体の長さ である。ΔLは既に位置ずれ量から求めてあり、T1
既に計測した半導体基板35の温度である。L0 は理論
的なアライメントマーク間の距離であり、チップの情報
が得られれば決定される。αは物質に固有の値であり、
シリコンの場合は2.6×10-6である。またより正確
には、成膜及びパターン形成がなされた各工程毎に線膨
張係数を求めておくことが望ましい。しかし代表的な半
導体基板である6インチシリコン基板の場合には、厚さ
は約700μmであり、後の成膜の厚さに対し十分厚い
ため、上記の値を用いても大きな誤差は生じない。
L = L 0 (1 + αT) (1) ΔL = L 2 −L 1 = L 0 (1 + αT 2 ) −L 0 (1−αT 1 ) (2) where L: length of object L 0 The length of the object at 0 ° C. T; the temperature L 1 ; the length of the object at the temperature T 1 L 2 ; the length of the object at the temperature T 2 . ΔL has already been obtained from the displacement amount, and T 1 is the temperature of the semiconductor substrate 35 already measured. L 0 is the theoretical distance between the alignment marks and is determined if chip information is obtained. α is a value specific to the substance,
In the case of silicon, it is 2.6 × 10 −6 . More precisely, it is desirable to obtain the coefficient of linear expansion for each step of film formation and pattern formation. However, in the case of a 6-inch silicon substrate, which is a typical semiconductor substrate, the thickness is about 700 μm, which is sufficiently large with respect to the thickness of a film to be formed later. .

【0027】次に、ステップHで、目標基板温度を求め
る。これには、例えば、半導体基板35の温度が23
℃、アライメントマーク間の距離が100mm、二つの
アライメントマーク間の位置ずれ量の差が0.50μm
であるとすると、温度T2 は24.92℃(基板が縮ん
でいる場合、伸びている場合は21.08℃)と目標温
度を求めることができる。
Next, in step H, a target substrate temperature is determined. For example, when the temperature of the semiconductor substrate 35 is 23
° C, the distance between the alignment marks is 100 mm, and the difference in displacement between the two alignment marks is 0.50 μm.
When it is, (if shrinks substrate, if extending 21.08 ° C.) temperature T 2 is 24.92 ° C. can be obtained with the target temperature.

【0028】図1の制御ユニット4で行われた計算結果
に基づき目標温度が求まると、ステップIで、温調器3
でフロリナートなどの流体の温度が制御される。この流
体はホルダ9へ循環されホルダ9の温度を調節する。ま
た、半導体基板35の温度は温度センサ2により計測さ
れ、制御ユニット4でPID制御される。次に、半導体
基板35の温度が目標温度に対し十分近い温度、例えば
加減0.2℃以内に入ったことがステップJで確認され
た後、ステップKで、露光が開始される。このとき、以
上の処理と平行して各ずれ成分の補正が既に行われてい
る。このように、半導体基板の伸縮による位置ずれを適
切に補正することができる。
When the target temperature is determined based on the calculation result performed by the control unit 4 in FIG.
Controls the temperature of the fluid such as florinate. This fluid is circulated to the holder 9 to adjust the temperature of the holder 9. Further, the temperature of the semiconductor substrate 35 is measured by the temperature sensor 2 and PID-controlled by the control unit 4. Next, after it is confirmed in step J that the temperature of the semiconductor substrate 35 is sufficiently close to the target temperature, for example, within 0.2 ° C., exposure is started in step K. At this time, the correction of each shift component has already been performed in parallel with the above processing. As described above, the displacement due to the expansion and contraction of the semiconductor substrate can be appropriately corrected.

【0029】また、補正可能な伸縮範囲については、1
℃の温度変化に対し2.6ppm補正されるから20p
pmの補正はおよそ8℃の変化に相当する。この程度の
温度範囲であればレジストの光化学反応は問題なく起こ
るので、広い範囲に渡って制御可能である。
The range of expansion and contraction that can be corrected is 1
It is corrected to 2.6 ppm for temperature change of ℃.
The pm correction corresponds to a change of approximately 8 ° C. In this temperature range, the photochemical reaction of the resist occurs without any problem, so that it can be controlled over a wide range.

【0030】図3は図1の露光装置の変形例を示す模式
断面図である。この露光装置は、図3に示すように、温
調器3と温調流体循環器光1との配管経路途中に温調ユ
ニット3aを設けたことである。それ以外の構成は、図
1に示す露光装置と同じである。
FIG. 3 is a schematic sectional view showing a modification of the exposure apparatus shown in FIG. In this exposure apparatus, as shown in FIG. 3, a temperature control unit 3a is provided in the middle of a piping path between the temperature controller 3 and the temperature control fluid circulator light 1. Other configurations are the same as those of the exposure apparatus shown in FIG.

【0031】通常、半導体基板35を温調器3のみで温
調すると、PID制御を行なうにしても目標温度になる
のに時間がかかりスループットが低下する。そこで、複
数枚の半導体基板を処理する場合の二枚目以降の半導体
基板35に対しては、温調ユニット22で予め目標温度
に温調された後、ホルダ9上に半導体基板35をロード
し、温調ユニット3aの付加により半導体基板35の温
度上昇および下降がより早くなり、温調器3での目標温
度への達成時間が早くなりそれだけスループットの向上
が図れるという利点がある。
Normally, when the temperature of the semiconductor substrate 35 is controlled only by the temperature controller 3, even if the PID control is performed, it takes time to reach the target temperature and the throughput is reduced. Therefore, for the second and subsequent semiconductor substrates 35 in the case of processing a plurality of semiconductor substrates, the temperature is controlled in advance by the temperature control unit 22 to the target temperature, and then the semiconductor substrate 35 is loaded on the holder 9. With the addition of the temperature control unit 3a, there is an advantage that the temperature of the semiconductor substrate 35 rises and falls more quickly, the time required to reach the target temperature in the temperature controller 3 becomes shorter, and the throughput can be improved accordingly.

【0032】[0032]

【発明の効果】以上説明したように本発明は、アライメ
ントマーク間の距離の位置ずれ量を測定し前工程からの
半導体基板の伸縮量を求め、その伸縮量に対応する半導
体基板の温度上昇あるいは下降させる目標温度に半導体
基板に到達させてから露光するので、位置ずれは補正さ
れ精度の高いチップ内重ね合わせができ、重ね合わせ不
良が少なくなり歩留りが向上するという効果がある。
As described above, according to the present invention, the amount of displacement of the distance between the alignment marks is measured, the amount of expansion and contraction of the semiconductor substrate from the previous process is obtained, and the temperature of the semiconductor substrate corresponding to the amount of expansion or contraction is increased. Since exposure is performed after reaching the semiconductor substrate at the target temperature to be lowered, misalignment is corrected, and high-accuracy in-chip superimposition can be performed, which has the effect of reducing superimposition defects and improving yield.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施の形態における露光装置を示す
模式断面図である。
FIG. 1 is a schematic sectional view showing an exposure apparatus according to an embodiment of the present invention.

【図2】図1の露光装置による露光方法を説明するため
のフローチャートである。
FIG. 2 is a flowchart for explaining an exposure method by the exposure apparatus of FIG. 1;

【図3】図1の露光装置の変形例を示す模式断面図であ
る。
FIG. 3 is a schematic sectional view showing a modified example of the exposure apparatus of FIG.

【図4】チップ間重ね合わせ状態を説明するための半導
体基板を示す模式平面図である。
FIG. 4 is a schematic plan view showing a semiconductor substrate for explaining a state of superposition between chips.

【図5】チップ内重ね合わせの場合のずれを説明するた
めのチップを示す模式平面図である。
FIG. 5 is a schematic plan view showing a chip for explaining displacement in the case of superposition in a chip.

【図6】チップ内重ね合わせ誤差を説明するための一チ
ップの平面図である。
FIG. 6 is a plan view of one chip for explaining an intra-chip overlay error.

【図7】膜種/膜厚と基板伸縮量を示す表である。FIG. 7 is a table showing film types / film thicknesses and substrate expansion / contraction amounts.

【図8】従来の一例におけるチップ内重ね合わせ誤差の
補正方法を説明するためのフローチャートである。
FIG. 8 is a flowchart illustrating a method of correcting an intra-chip overlay error according to an example of the related art.

【図9】ウェハーの計測点を示す図である。FIG. 9 is a diagram showing measurement points on a wafer.

【符号の説明】[Explanation of symbols]

1 温調流体循環機構 2 温度センサ 3 温調器 3a 温調ユニット 4 制御ユニット 5 信号処理ユニット 6 ディテクタ 7 アライメント光学系 8 ステージ 9 ホルダ 10 ミラー 11 レーザ干渉計 12 投影レンズ 13 レチクル 14,15,16,20 反射ミラー 17 He−Neレーザ 18 アパーチャストップ 19 フライアイレンズ 21 ビームイクスパンダ 22 エキシマレーザ 23 コンデンサレンズ 35 半導体基板 DESCRIPTION OF SYMBOLS 1 Temperature control fluid circulation mechanism 2 Temperature sensor 3 Temperature controller 3a Temperature control unit 4 Control unit 5 Signal processing unit 6 Detector 7 Alignment optical system 8 Stage 9 Holder 10 Mirror 11 Laser interferometer 12 Projection lens 13 Reticle 14, 15, 16 , 20 Reflecting mirror 17 He-Ne laser 18 Aperture stop 19 Fly-eye lens 21 Beam expander 22 Excimer laser 23 Condenser lens 35 Semiconductor substrate

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板上にマスクパターンを位置合
わせして露光転写する露光方法において、前工程の処理
による前記半導体基板の平面上の伸縮量を計測し、計測
される該伸縮量を前記半導体基板の熱膨張係数で除して
前記伸縮量に対応する温度差を求め、前記半導体基板を
前記温度差が零になるように前記半導体基板を加熱ある
いは冷却し前記伸縮量が無くし、しかる後前記マスクパ
ターンを前記半導体基板に露光転写することを特徴とす
る露光方法。
1. An exposure method for exposing and transferring a mask pattern on a semiconductor substrate by exposing and transferring the mask pattern, the amount of expansion and contraction of the semiconductor substrate on a plane due to a process in a previous step is measured, and the measured amount of expansion and contraction is measured by the semiconductor. Dividing by the thermal expansion coefficient of the substrate to determine the temperature difference corresponding to the amount of expansion and contraction, heating or cooling the semiconductor substrate so that the temperature difference of the semiconductor substrate becomes zero, eliminating the amount of expansion and contraction, and then the An exposure method, comprising exposing and transferring a mask pattern onto the semiconductor substrate.
【請求項2】 前記半導体基板の一方向および該一方向
に直交する方向に該半導体基板の中心に対称に配置され
る少なくとも一対のアライメントマークの座標間の距離
における前工程との距離の差を測定することによって前
記伸縮量を求めることを特徴とする請求項1記載の露光
方法。
2. The method according to claim 1, wherein a difference between a distance between a coordinate of at least one pair of alignment marks symmetrically arranged at a center of the semiconductor substrate in one direction of the semiconductor substrate and a direction perpendicular to the one direction is different from a distance between the coordinates of the alignment mark and a previous step. The exposure method according to claim 1, wherein the amount of expansion and contraction is obtained by measuring.
【請求項3】 前記マスクパターンが形成されるレチク
ルに露光光を投射する露光光学系と、ステージのホルダ
に載置される前記半導体基板に前記マスクパターンを投
影する投影レンズとを備える露光装置において、前記ア
ライメントマークの該座標から前記半導体基板の該伸縮
量を測定し伸縮率を計測する計測機構と、前記伸縮率を
零にするように前記半導体基板の温度を制御する温度制
御機構とを備えることを特徴とする露光装置。
3. An exposure apparatus comprising: an exposure optical system that projects exposure light onto a reticle on which the mask pattern is formed; and a projection lens that projects the mask pattern onto the semiconductor substrate mounted on a stage holder. A measuring mechanism that measures the amount of expansion and contraction of the semiconductor substrate from the coordinates of the alignment mark to measure the expansion and contraction ratio, and a temperature control mechanism that controls the temperature of the semiconductor substrate so that the expansion and contraction ratio becomes zero. An exposure apparatus comprising:
【請求項4】 前記半導体基板の温度を常に一定の温度
に維持するための温調ユニットを備えることを特徴とす
る請求項3記載の露光装置。
4. The exposure apparatus according to claim 3, further comprising a temperature control unit for keeping the temperature of the semiconductor substrate constant at all times.
JP9005375A 1997-01-16 1997-01-16 Alignment method and aligner Pending JPH10208994A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP9005375A JPH10208994A (en) 1997-01-16 1997-01-16 Alignment method and aligner
KR1019980001267A KR100289674B1 (en) 1997-01-16 1998-01-16 Light exposure method and light exposure device
GB9800991A GB2321316B (en) 1997-01-16 1998-01-16 Light exposure method and light exposure device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9005375A JPH10208994A (en) 1997-01-16 1997-01-16 Alignment method and aligner

Publications (1)

Publication Number Publication Date
JPH10208994A true JPH10208994A (en) 1998-08-07

Family

ID=11609435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9005375A Pending JPH10208994A (en) 1997-01-16 1997-01-16 Alignment method and aligner

Country Status (3)

Country Link
JP (1) JPH10208994A (en)
KR (1) KR100289674B1 (en)
GB (1) GB2321316B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7415318B2 (en) 2002-10-11 2008-08-19 Spansion Llc Method and apparatus for manufacturing semiconductor device
JP2010522436A (en) * 2007-03-24 2010-07-01 ケーエルエー−テンカー・コーポレーション Temperature effect on overlay accuracy
KR101504388B1 (en) * 2008-06-26 2015-03-19 가부시키가이샤 니콘 Method and apparatus for manufacturing display element

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11307430A (en) * 1998-04-23 1999-11-05 Canon Inc Aligner, manufacture of device, and drive
KR100493379B1 (en) * 2001-12-27 2005-06-07 엘지.필립스 엘시디 주식회사 Liquid crystal display device and method for manufacturing the same
EP1513021B1 (en) * 2003-09-04 2007-10-03 ASML Netherlands B.V. Lithographic apparatus and a method of compensating for thermal deformation in a lithographic apparatus
EP1513017A1 (en) 2003-09-04 2005-03-09 ASML Netherlands B.V. Lithographic apparatus and device manufacturing method
KR101942136B1 (en) 2004-02-04 2019-01-24 가부시키가이샤 니콘 Exposure apparatus, exposure method, and device producing method
US7561251B2 (en) 2004-03-29 2009-07-14 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7830493B2 (en) 2005-10-04 2010-11-09 Asml Netherlands B.V. System and method for compensating for radiation induced thermal distortions in a substrate or projection system
US20090042139A1 (en) * 2007-04-10 2009-02-12 Nikon Corporation Exposure method and electronic device manufacturing method
US10775707B2 (en) 2016-10-07 2020-09-15 Asml Netherlands B.V. Lithographic apparatus and method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1578259A (en) * 1977-05-11 1980-11-05 Philips Electronic Associated Methods of manufacturing solid-state devices apparatus for use therein and devices manufactured thereby
JPS60158626A (en) * 1984-01-30 1985-08-20 Canon Inc Semiconductor exposure device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7415318B2 (en) 2002-10-11 2008-08-19 Spansion Llc Method and apparatus for manufacturing semiconductor device
JP2010522436A (en) * 2007-03-24 2010-07-01 ケーエルエー−テンカー・コーポレーション Temperature effect on overlay accuracy
KR101504388B1 (en) * 2008-06-26 2015-03-19 가부시키가이샤 니콘 Method and apparatus for manufacturing display element

Also Published As

Publication number Publication date
GB2321316B (en) 2001-06-20
KR100289674B1 (en) 2001-07-12
GB9800991D0 (en) 1998-03-11
GB2321316A (en) 1998-07-22
GB2321316A8 (en) 2001-08-30
KR19980070574A (en) 1998-10-26

Similar Documents

Publication Publication Date Title
US7053984B2 (en) Method and systems for improving focus accuracy in a lithography system
US5448333A (en) Exposure method
US4910679A (en) Step-and-repeat alignment and exposure method and apparatus
US20120218533A1 (en) Method of calculating model parameters of a substrate, a lithographic apparatus and an apparatus for controlling lithographic processing by a lithographic apparatus
US7804582B2 (en) Lithographic apparatus, method of calibrating a lithographic apparatus and device manufacturing method
TW200525600A (en) Optimized correction of wafer thermal deformations in a lithographic process
JP4405462B2 (en) Calibration substrate and lithographic apparatus calibration method
JP4408876B2 (en) Focus determination method, device manufacturing method, and mask
JPH10208994A (en) Alignment method and aligner
JP2646412B2 (en) Exposure equipment
JPH09260250A (en) Aligner and exposure method
JP3720582B2 (en) Projection exposure apparatus and projection exposure method
JP3077176B2 (en) Exposure method, apparatus, and element manufacturing method
JP2020512582A (en) Method for determining stress in a substrate, lithographic process, lithographic apparatus, and control system for controlling a computer program product
JP2019532342A (en) Processing apparatus and method for correcting parameter variations across a substrate
JPH06181168A (en) Aligning method
JPH04115518A (en) Exposure device
JP3735849B2 (en) Exposure equipment
JP3014513B2 (en) Fine pattern exposure method and reduced projection exposure apparatus
JP3702486B2 (en) Exposure method and reticle used therefor
JPH1064808A (en) Mask aligning method and projection exposing method
JPH0979829A (en) Moving mirror bend measuring method
JP3179406B2 (en) Exposure method and apparatus
JPH0963929A (en) X-ray exposure system and method using the same
JPH1197339A (en) Aligner

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20000201