JPH10206302A - Particulate dispersing method, particulate dispersing device and particle size distribution measuring device - Google Patents

Particulate dispersing method, particulate dispersing device and particle size distribution measuring device

Info

Publication number
JPH10206302A
JPH10206302A JP9008411A JP841197A JPH10206302A JP H10206302 A JPH10206302 A JP H10206302A JP 9008411 A JP9008411 A JP 9008411A JP 841197 A JP841197 A JP 841197A JP H10206302 A JPH10206302 A JP H10206302A
Authority
JP
Japan
Prior art keywords
fine particles
liquid
droplets
dispersing
dispersed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9008411A
Other languages
Japanese (ja)
Other versions
JP3735430B2 (en
Inventor
Yasuo Kosaka
保雄 向阪
Nobuhiko Fukushima
信彦 福嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON KAGAKU KOGYO KK
Nippon Chemical Industrial Co Ltd
Original Assignee
NIPPON KAGAKU KOGYO KK
Nippon Chemical Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON KAGAKU KOGYO KK, Nippon Chemical Industrial Co Ltd filed Critical NIPPON KAGAKU KOGYO KK
Priority to JP00841197A priority Critical patent/JP3735430B2/en
Publication of JPH10206302A publication Critical patent/JPH10206302A/en
Application granted granted Critical
Publication of JP3735430B2 publication Critical patent/JP3735430B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N2001/2893Preparing calibration standards

Landscapes

  • Sampling And Sample Adjustment (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

PROBLEM TO BE SOLVED: To easily disperse even particulates not more than 1μm in gas phase. SOLUTION: A solvent containing particulates in a coagulated condition is put in a vessel 1. Pressurized air is forcedly fed in an atomizing means 7 from a duct 5. Then, the solvent sucked through a capillary 3, and becomes a mist shape in a cavity 6. Microscopic droplets becoming a mist shape contain coagulated particulates as a nucleus. When a metallic pipe 8 to introduce the mist-shaped droplets is heated to a temperature sufficiently higher than a boiling point of the solvent, the mist-shaped droplets are rapidly heated. Then, the droplets are suddenly evaporated and boiled at heating time, and the coagulated particulates can be dispersed in a gas phase.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は微粒子を気相中に分
散させるための微粒子分散方法と微粒子分散装置及びそ
れを用いた粒径分布測定装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for dispersing fine particles in a gas phase, a fine particle dispersing apparatus, and a particle size distribution measuring apparatus using the same.

【0002】[0002]

【従来の技術】微粒子はその粒径分布等を測定するため
に、各粒子が凝集していない1次粒子の状態で液体中又
は空気中に分散させて測定が可能となる。しかし微粒子
の相互間にはファンデルワールス力、静電気力、液架橋
力等の力が働いて容易に凝集し、1次粒子にまで分散さ
せることが困難である。従って粒径分布を測定する際に
は、まず微粒子を十分に分散させる必要がある。又微粒
子を測定対象とする種々の機器を校正する場合や、クリ
ーンルーム等に用いられるフィルタの効率試験をする場
合にも、高濃度で十分気相中に分散した微粒子が必要と
なる。従来の微粒子分離方法としては、湿式分散法と乾
式分散法とが考えられている。湿式分散法は水中等液中
に微粒子を混入させ、界面活性剤等を用いて各粒子を分
離するものであり、乾式分離法は凝集体を機械的に粉砕
したり、高速気流中に入れることによって気相中に分散
させる方法である。
2. Description of the Related Art Fine particles can be measured by dispersing them in a liquid or air in the form of primary particles in which each particle is not aggregated in order to measure the particle size distribution and the like. However, between the fine particles, forces such as van der Waals force, electrostatic force, liquid bridging force, etc. act, and the particles are easily aggregated, and it is difficult to disperse them into primary particles. Therefore, when measuring the particle size distribution, it is first necessary to sufficiently disperse the fine particles. Also, when calibrating various instruments that measure fine particles or when performing an efficiency test of a filter used in a clean room or the like, fine particles having a high concentration and sufficiently dispersed in a gas phase are required. Conventional methods for separating fine particles include a wet dispersion method and a dry dispersion method. The wet dispersion method involves mixing fine particles in a liquid such as water and separating each particle using a surfactant.The dry separation method involves mechanically pulverizing aggregates or putting them in a high-speed air stream. In the gas phase.

【0003】[0003]

【発明が解決しようとする課題】しかしながらこのよう
な従来の分散装置においても、粒径の平均が1μm以下
の微粒子の場合には、凝集体を効率良く分散させること
は難しいという欠点があった。
However, even such a conventional dispersing apparatus has a drawback that it is difficult to efficiently disperse aggregates when the average particle diameter is 1 μm or less.

【0004】本発明は1μm以下の微粒子も比較的容易
に分散させることのできる分散方法と分散装置、及びこ
れを用いて粒子の粒径及び分布を測定するための粒径分
布測定装置を提供することを目的とする。
The present invention provides a dispersing method and a dispersing apparatus capable of relatively easily dispersing fine particles having a particle size of 1 μm or less, and a particle size distribution measuring apparatus for measuring the particle diameter and distribution using the same. The purpose is to:

【0005】[0005]

【課題を解決するための手段】本願の請求項1の発明
は、測定対象となる凝集した微粒子を液体中に分散さ
せ、前記分散させた液体を第1の細管を介して噴霧手段
に導き、前記噴霧手段に高圧空気を流入させることによ
って霧化し、前記霧化された液滴を前記液体の蒸発温度
より高い温度に加熱された加熱管に導くことにより霧化
された液滴を急激に沸騰蒸発させ、凝縮された微粒子を
空気中に分散させることを特徴とするものである。
According to a first aspect of the present invention, an agglomerated fine particle to be measured is dispersed in a liquid, and the dispersed liquid is guided to spraying means through a first thin tube. Atomization is performed by flowing high-pressure air into the spraying unit, and the atomized droplets are rapidly boiled by guiding the atomized droplets to a heating tube heated to a temperature higher than the evaporation temperature of the liquid. It is characterized by evaporating and dispersing the condensed fine particles in the air.

【0006】本願の請求項2の発明は、測定対象となる
凝集した微粒子を含む液体を第1の細管を介して供給す
る試料供給手段と、前記第1の細管の端部が開放された
第2の細管を有し、該第2の細管内に高圧空気を流入さ
せることによって噴霧する噴霧手段と、噴霧された液滴
が導かれ、前記液体の蒸発温度より高い温度に加熱され
た加熱管と、を有し、霧化された液滴を急激に沸騰蒸発
させることにより凝集した微粒子を気中に分散させるこ
とを特徴とするものである。
According to a second aspect of the present invention, there is provided a sample supply means for supplying a liquid containing agglomerated fine particles to be measured through a first capillary, and a sample supply means for opening the end of the first capillary. Atomizing means for spraying by flowing high-pressure air into the second thin tube, and a heating tube for guiding the sprayed droplets and heating the liquid to a temperature higher than the evaporation temperature of the liquid And agglomerated fine particles are dispersed in the air by rapidly boiling and evaporating the atomized droplets.

【0007】本願の請求項3の発明では、前記試料供給
手段の微粒子を分散させる液体はフッ素系不活性液体で
あることを特徴とするものである。
According to a third aspect of the present invention, the liquid in which the fine particles of the sample supply means are dispersed is a fluorine-based inert liquid.

【0008】本願の請求項4の発明は、請求項2又は3
のいずれか1項記載の微粒子分散装置と、前記微粒子分
散装置により気中に分散された微粒子を両極に帯電さ
せ、電圧を印加した二重円筒に導くと共に、円筒の空隙
より一部の微粒子を取り出す微分型電気移動度分析装置
と、前記微分型電気移動度分析装置により捕集された微
粒子の個数を計数する凝縮核カウンタと、を有すること
を特徴とするものである。
The invention of claim 4 of the present application is the invention of claim 2 or 3
The fine particle dispersing device according to any one of the above, the fine particles dispersed in the air by the fine particle dispersing device is charged to both poles, and guided to a double cylinder to which a voltage is applied, and a part of the fine particles from the gap of the cylinder is removed. A differential electric mobility analyzer to be taken out, and a condensation nucleus counter for counting the number of fine particles collected by the differential electric mobility analyzer are provided.

【0009】このような特徴を有する本願の請求項1,
2の発明によれば、凝集した微粒子を液体中に分散させ
て第1の細管を介して噴霧手段に導いている。噴霧手段
では高圧空気を流入させて霧状としており、霧状となっ
た微小な液滴を加熱管により急激に沸騰蒸発させる。こ
うすれば沸騰蒸発時に液滴中で凝集していた微粒子が核
分裂状態となって気中に1次微粒子として分散させるこ
とができる。又請求項4の発明では、これを用いて微粒
子の粒径分布を正確に測定することができるという効果
が得られる。
[0009] Claim 1 of the present application having such features.
According to the second aspect, the aggregated fine particles are dispersed in the liquid and guided to the spraying means via the first thin tube. In the spraying means, high-pressure air is flowed in to form a mist, and minute droplets in the form of mist are rapidly boiled and evaporated by a heating tube. In this way, the fine particles that have been agglomerated in the droplet at the time of boiling evaporation become a fission state and can be dispersed in the air as primary fine particles. Further, according to the invention of claim 4, there is an effect that the particle size distribution of the fine particles can be accurately measured by using this.

【0010】[0010]

【発明の実施の形態】次に本発明の一実施の形態による
微粒子の分散装置について説明する。図1はこの実施の
形態による微粒子分散装置の主要部の構成を示す図であ
る。本図において容器1には試料となる微量の微粒子を
凝集した状態で含む液体を入れる。この容器1を超音波
バス2中に保持し、超音波振動を加えることによって試
料をある程度まで分散させておくものとする。そしてこ
の容器1には第1の細管であるキャピラリ3を挿入して
噴霧手段の第2の細管4に連結するように構成する。第
2の細管4には外部より加圧した清浄な空気をダクト5
を介して流入させる。そして細管4の端部には熱絶縁体
から成るキャビティ6を設けておく。第2の細管4,ダ
クト5及びキャビティ6は噴霧手段7を構成している。
噴霧手段7は第2の細管4からキャビティ6に達すると
きに圧力の急激な低下によって霧状の微小な液滴を発生
させるものであって、その端部にはねじ止めにより継ぎ
手を介して絶縁された分散用の金属管8が連結される。
この金属管8は例えばステンレス製とし、一定の長さL
を有するものとする。この金属管8は外部より容器1の
液体の沸点より十分高い温度となるように一定の温度で
加熱しておく加熱用の管である。このためこの金属管8
にはヒータ9及び温度制御装置10が接続されている。
Next, an apparatus for dispersing fine particles according to an embodiment of the present invention will be described. FIG. 1 is a diagram showing a configuration of a main part of a fine particle dispersion apparatus according to this embodiment. In this figure, a container 1 is filled with a liquid containing a minute amount of fine particles serving as a sample in an aggregated state. The container 1 is held in an ultrasonic bath 2 and the sample is dispersed to some extent by applying ultrasonic vibration. The container 1 has a configuration in which a capillary 3 as a first thin tube is inserted and connected to the second thin tube 4 of the spraying means. Clean air pressurized from the outside is introduced into the duct 5 through the second thin tube 4.
Inflow through. A cavity 6 made of a thermal insulator is provided at the end of the thin tube 4. The second thin tube 4, the duct 5 and the cavity 6 constitute a spraying unit 7.
The spraying means 7 generates fine mist droplets due to a sharp drop in pressure when reaching the cavity 6 from the second thin tube 4, and its end is insulated through a joint by screwing. The dispersed metal tube 8 is connected.
The metal tube 8 is made of, for example, stainless steel and has a fixed length L.
Shall be provided. The metal tube 8 is a heating tube that is heated from the outside at a constant temperature so as to be sufficiently higher than the boiling point of the liquid in the container 1. Therefore, this metal tube 8
Is connected to the heater 9 and the temperature control device 10.

【0011】次にこの微粒子分散装置の動作について説
明する。容器1内に液体中に凝集している微粒子から成
る試料を微量混入させ、超音波バス2によってある程度
分散させる。そしてダクト5より圧縮した空気を導く
と、容器1内の試料を含む溶媒がキャピラリ3を介して
第2の細管4に吸引され、噴霧手段7のキャビティ6で
霧状となる。そして霧状となった微小な液滴は金属管8
に導かれる。キャビティ6は熱絶縁体で構成されている
ため、霧状の空気は金属管8に達してから急激に液滴の
温度が上昇する。従って液滴が沸騰蒸発することとな
り、微小液滴の核となっていた凝集している微粒子は核
分裂状態となって、液滴内に含まれていた微粒子を夫々
の微粒子毎に1次粒子として分離させ、気相中に分散さ
せることができる。そのため分散した微粒子の粒径分布
や個数濃度の測定を行うことができる。尚超音波バス2
により容器1に超音波振動を与えることにより、キャピ
ラリ3での詰まりが回避できるという副次的な効果があ
る。
Next, the operation of the fine particle dispersion apparatus will be described. A small amount of a sample composed of fine particles agglomerated in a liquid is mixed into the container 1 and dispersed to some extent by the ultrasonic bath 2. When the compressed air is introduced from the duct 5, the solvent containing the sample in the container 1 is sucked into the second thin tube 4 via the capillary 3, and becomes a mist in the cavity 6 of the spray unit 7. Then, the fine droplets in the form of a mist are applied to the metal tube 8
It is led to. Since the cavity 6 is made of a thermal insulator, the temperature of the droplets of the atomized air rapidly rises after reaching the metal tube 8. Therefore, the droplets will evaporate, and the aggregated fine particles that have been the nucleus of the fine droplets will be in a fission state, and the fine particles contained in the droplet will be converted into primary particles for each fine particle. It can be separated and dispersed in the gas phase. Therefore, the particle size distribution and the number concentration of the dispersed fine particles can be measured. Ultrasonic bath 2
By applying ultrasonic vibration to the container 1, there is a secondary effect that clogging in the capillary 3 can be avoided.

【0012】次にこの実施の形態による微粒子分散装置
を用いた粒径分布測定装置の全体構成について図2を用
いて説明する。微粒子分散装置の金属管8より分散した
微粒子を含む空気(エアロゾル)をダクト11を介して
空冷部12に導く。空冷部12は多数のフィン13が接
続されており、このエアロゾルを冷却するものである。
尚、空冷部12は水冷,電子冷却等の冷却機能によって
常温に温度制御できるものでもよい。又冷却によって生
じる液滴はドレイン14より排出される。
Next, the overall configuration of a particle size distribution measuring apparatus using the fine particle dispersion apparatus according to this embodiment will be described with reference to FIG. Air (aerosol) containing fine particles dispersed from the metal tube 8 of the fine particle dispersion device is guided to the air cooling unit 12 through the duct 11. The air cooling unit 12 is connected with a large number of fins 13 and cools the aerosol.
The air cooling unit 12 may be one that can control the temperature to normal temperature by a cooling function such as water cooling or electronic cooling. Droplets generated by cooling are discharged from the drain 14.

【0013】次に冷却された空気流は微分型電気移動度
分析装置(以下、DMA(ディファレンシャル モビィ
リティ アナライザ)という)に導かれる。DMAはJo
urnal of Aerosol Science, 1975, Vol.6, pp.443-451,
gAerosol classification by electric mobility : ap
peratus, theory, and applications"に示されているよ
うに、一定の電気移動度を持った粒子を分級する高精度
の分級装置である。図3(a)はその構成を示す概略図
であり、図示のように上部円筒21にAm−241等の
放射線源22を設けて通過する微粒子を両極の平衡帯電
状態とする。そしてこのエアロゾルを二重円筒から成る
微粒子捕集部23の外筒内の内壁側に導く。内筒の外周
部にはクリーンエアを導き、内筒に一定の電圧Vを印加
する。そして内筒の下部に内筒とわずかの間隙を介して
ダクト24の開口部を配置し、内筒によって捕集されな
かった微粒子をダクト24に導く。そしてダクト24に
流入した微粒子の個数を凝縮核カウンタ(CNC)25
によって計数する。凝縮核カウンタ25は微粒子を含ん
だ空気を水蒸気又はアルコール蒸気で飽和させ、夫々の
微粒子を核として水蒸気又はアルコール蒸気を凝縮さ
せ、成長粗大化して光学的に観察できるようにしてその
数を計数するものである。この場合には図3(b)に示
すように、印加した電圧Vに対して粒子の個数が直接得
られることとなる。尚発生粒子個数濃度が凝縮核カウン
タ25の測定上限濃度を越える場合には、凝縮核カウン
タ25の前段に希釈装置26を挿入して希釈した後、凝
縮核カウンタ25に加える。
Next, the cooled airflow is led to a differential mobility analyzer (hereinafter referred to as a DMA (Differential Mobility Analyzer)). DMA is Jo
urnal of Aerosol Science, 1975, Vol. 6, pp. 443-451,
gAerosol classification by electric mobility: ap
As shown in "peratus, theory, and applications", this is a high-precision classifier that classifies particles with a constant electric mobility. FIG. 3 (a) is a schematic diagram showing the configuration of the classifier. As shown in the figure, a radiation source 22 such as Am-241 is provided on an upper cylinder 21 so that fine particles passing therethrough are equilibrium-charged between the two poles. Clean air is guided to the outer periphery of the inner cylinder, a constant voltage V is applied to the inner cylinder, and an opening of the duct 24 is arranged below the inner cylinder with a slight gap from the inner cylinder. Then, the fine particles not collected by the inner cylinder are guided to the duct 24. The number of the fine particles flowing into the duct 24 is counted by a condensation nucleus counter (CNC) 25.
Count by The condensation nucleus counter 25 saturates the air containing the fine particles with water vapor or alcohol vapor, condenses the water vapor or alcohol vapor with each fine particle as a nucleus, grows coarsely, and counts the number so that it can be optically observed. Things. In this case, as shown in FIG. 3B, the number of particles can be directly obtained with respect to the applied voltage V. When the generated particle number concentration exceeds the upper limit of the measurement of the condensation nucleus counter 25, the dilution is performed by inserting a diluting device 26 before the condensation nucleus counter 25 and then added to the condensation nucleus counter 25.

【0014】ここでDMAに印加する電圧Vを変化させ
て捕集される微粒子の粒子数を計測する。こうすれば電
圧の連続的な変化により計数値が変化する。前述したよ
うに微粒子は十分分散しているため、微粒子の粒径分布
を正確に測定することができる。尚、微粒子分散装置に
よって分散された微粒子の粒径分布測定装置としては、
光散乱法をはじめ他の測定方法の適用も可能である。
Here, the voltage V applied to the DMA is changed, and the number of collected fine particles is measured. In this case, the count value changes due to the continuous change of the voltage. Since the fine particles are sufficiently dispersed as described above, the particle size distribution of the fine particles can be accurately measured. In addition, as a particle size distribution measuring device of the fine particles dispersed by the fine particle dispersing device,
Other measurement methods such as the light scattering method can be applied.

【0015】[0015]

【実施例】次に本発明の実施例について説明する。この
実施例においては、キャピラリ3の内径を0.95mmφ
とし、第2の細管4の内径を1.5mmφとし、金属管の
内径を11.5mmφとした。又金属管の長さLは30cm
とする。又容器1の凝集している粒子を入れる溶媒とし
てフッ素系不活性液体(例えば商品名フロリナート等)
を用いた。フロリナートは沸点56℃であり、蒸発潜熱
21cal /g、比熱0.25cal /g・℃であり、水と
比べて沸点及び潜熱が低いので容易に沸騰させることが
できる。又超純水のように不純物を溶かすことがなく蒸
発残渣が少ないので溶媒として好適である。又ダクト5
に加える空気の圧力は2気圧とした。又金属管8の温度
は溶媒であるフロリナートの沸点56℃より十分高い一
定の温度、例えば300℃となるようにあらかじめ制御
しておく。尚溶媒はフロリートに限定されているもので
はないが、沸点が低く容易に沸騰せることができる液体
であることが好ましい。又加熱する温度は霧状の液滴を
ごく短時間で沸騰蒸発させることができるように沸点よ
り十分高い温度を選択する。
Next, an embodiment of the present invention will be described. In this embodiment, the inner diameter of the capillary 3 is 0.95 mmφ.
The inner diameter of the second thin tube 4 was 1.5 mmφ, and the inner diameter of the metal tube was 11.5 mmφ. The length L of the metal tube is 30cm
And As a solvent for containing the aggregated particles in the container 1, a fluorine-based inert liquid (for example, Fluorinert (trade name) or the like)
Was used. Fluorinert has a boiling point of 56 ° C., a latent heat of vaporization of 21 cal / g and a specific heat of 0.25 cal / g · ° C., and can be easily boiled since it has a lower boiling point and latent heat than water. Further, unlike ultrapure water, it is suitable as a solvent because it does not dissolve impurities and has little evaporation residue. Duct 5
The pressure of the air to be added was 2 atm. The temperature of the metal tube 8 is controlled in advance so as to be a constant temperature sufficiently higher than the boiling point 56 ° C. of the solvent, Fluorinert, for example, 300 ° C. The solvent is not limited to flourit, but is preferably a liquid having a low boiling point and being easily boiled. The heating temperature is selected to be sufficiently higher than the boiling point so that the mist droplets can be boiled and evaporated in a very short time.

【0016】さてこの実施例では微粒子として(1)単
分散球形ポリスチレンラテックス(以下、PSLとい
う)粒子、(2)α−Fe2 3 粒子、(3)α−Fe
OOH粒子、(4)カーボンブラック粒子を用いた。
(1)の粒子は表1に示すように対数をとったときの分
散σg が1.0、即ち単分散であり、その粒径は顕微鏡
計測によって0.35μmと確認されている。又(2)
〜(4)のα−Fe2 3、α−FeOOH粒子、カー
ボンブラック粒子については夫々個数基準の幾何平均系
pstg=0.22μm、0.08μm、0.26μmで
ある。
In this embodiment, fine particles (1) monodispersed spherical polystyrene latex (hereinafter referred to as PSL) particles, (2) α-Fe 2 O 3 particles, and (3) α-Fe
OOH particles and (4) carbon black particles were used.
As shown in Table 1, the particle (1) has a logarithmic dispersion σ g of 1.0, that is, a monodispersion, and its particle size is confirmed by microscopic measurement to be 0.35 μm. Also (2)
Regarding α-Fe 2 O 3 , α-FeOOH particles and carbon black particles of (4), the number-based geometric average system d pstg = 0.22 μm, 0.08 μm, and 0.26 μm, respectively.

【表1】 [Table 1]

【0017】これらの微粒子を分散させ、DMA20に
て分級した。DMA20は微粒子捕集部23の外筒の半
径を19.5mm、内筒の9.25mmとし、有効長を4
5.5cmとする。そして流入させるエアロゾルの流量を
0.95l/分、クリーンエアの流量を10l/分とし
た。尚PSL粒子に対しては20l/分とした。こうし
て分周した後、微粒子の個数を凝縮核カウンタ25にて
計数した結果を図4〜図7に示す。尚DMAにて測定さ
れる粒子径は流体抵抗力相当径dpdである。こうして得
られた微粒子の粒径dpdと分散σg の結果を表2に示
す。
These fine particles were dispersed and classified by DMA20. The DMA 20 has an outer cylinder radius of 19.5 mm, an inner cylinder of 9.25 mm, and an effective length of 4
5.5 cm. The flow rate of the aerosol to be flowed in was 0.95 l / min, and the flow rate of the clean air was 10 l / min. The amount was set to 20 l / min for PSL particles. After dividing the frequency in this manner, the results of counting the number of fine particles by the condensation nucleus counter 25 are shown in FIGS. The particle diameter measured by DMA is a fluid resistance force equivalent diameter d pd . Table 2 shows the results of the particle diameter d pd and the dispersion σ g of the fine particles thus obtained.

【表2】 [Table 2]

【0018】このように粒径が1μm以下の種々の微粒
子について、ほぼ理論値に近い粒径分布が得られた。こ
のため噴霧手段7により液滴として噴霧させ、これを急
速に加熱蒸発させることによって核となっている粒子
を、ほぼ1次粒子に近い形で分散させることができるこ
とが確認できた。このため種々の粒子を簡単に且つ連続
的に分散させることが可能となる。
As described above, with respect to various fine particles having a particle size of 1 μm or less, a particle size distribution almost close to the theoretical value was obtained. Therefore, it was confirmed that the droplets were sprayed by the spraying means 7 and rapidly heated to evaporate, whereby the core particles could be dispersed in a form substantially similar to the primary particles. For this reason, various particles can be easily and continuously dispersed.

【0019】[0019]

【発明の効果】以上詳細に説明したように本願の請求項
1〜3の発明によれば、凝縮し易い微粒子、特に1μm
以下の粒径を有する粒子を効果的に連続して分散させる
ことができる。従ってこの分散装置を用いて粉体を測定
対象とする種々の測定機器の構成が可能となる。又クリ
ーンルームに用いられるフィルタの効率試験をするため
には、フィルタの上流側と下流側で粒子濃度を測定する
必要があるが、上流側で高濃度で十分分散した1次粒子
を供給するためにこの微粒子分散装置が有効となる。そ
の他、微粒子を対象とする種々の測定装置にも本発明は
有効となる。又請求項4の発明では、この微粒子分散装
置を用いることによって1μm以下の微粒子についても
効果的にその粒径分布を測定することができるという効
果が得られる。
As described above in detail, according to the first to third aspects of the present invention, fine particles which are easily condensed, especially 1 μm
Particles having the following particle diameters can be effectively and continuously dispersed. Therefore, it is possible to configure various measuring instruments for measuring powder using this dispersing device. Also, in order to conduct an efficiency test of a filter used in a clean room, it is necessary to measure the particle concentration on the upstream and downstream sides of the filter, but in order to supply high concentration and sufficiently dispersed primary particles on the upstream side. This fine particle dispersion device is effective. In addition, the present invention is also effective for various measuring devices targeting fine particles. According to the fourth aspect of the present invention, by using this fine particle dispersing device, an effect is obtained that the particle size distribution of fine particles of 1 μm or less can be effectively measured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施の形態による微粒子分散装置の
構成を示す断面図である。
FIG. 1 is a cross-sectional view illustrating a configuration of a fine particle dispersion device according to an embodiment of the present invention.

【図2】この実施の形態による微粒子分散装置を用いた
粒径分布測定装置の全体構成を示す図である。
FIG. 2 is a diagram showing an overall configuration of a particle size distribution measuring device using the fine particle dispersion device according to this embodiment.

【図3】DMA分級装置の構成を示す概略図である。FIG. 3 is a schematic diagram illustrating a configuration of a DMA classification device.

【図4】PSL粒子の分散の実験結果を示すグラフであ
る。
FIG. 4 is a graph showing experimental results of dispersion of PSL particles.

【図5】Fe2 3 粒子の分散の実験結果を示すグラフ
である。
FIG. 5 is a graph showing experimental results of dispersion of Fe 2 O 3 particles.

【図6】α−FeOOHの粒子の分散の実験結果を示す
グラフである。
FIG. 6 is a graph showing experimental results of dispersion of α-FeOOH particles.

【図7】カーボンブラック粒子の分散の実験結果を示す
グラフである。
FIG. 7 is a graph showing an experimental result of dispersion of carbon black particles.

【符号の説明】[Explanation of symbols]

1 容器 2 超音波バス 3 キャピラリ 4 細管 5,11,24 ダクト 7 噴霧手段 8 金属管 9 ヒータ 10 温度制御装置 12 空冷部 13 フィン 14 ドレイン 20 DMA 21 上部円筒 22 放射線源 23 微粒子捕集部 25 凝縮核カウンタ 26 希釈部 DESCRIPTION OF SYMBOLS 1 Container 2 Ultrasonic bath 3 Capillary 4 Capillary tube 5, 11, 24 Duct 7 Spray means 8 Metal tube 9 Heater 10 Temperature control device 12 Air cooling unit 13 Fin 14 Drain 20 DMA 21 Upper cylinder 22 Radiation source 23 Particle collecting unit 25 Condensation Nuclear counter 26 dilution section

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 測定対象となる凝集した微粒子を液体中
に分散させ、 前記分散させた液体を第1の細管を介して噴霧手段に導
き、 前記噴霧手段に高圧空気を流入させることによって霧化
し、 前記霧化された液滴を前記液体の蒸発温度より高い温度
に加熱された加熱管に導くことにより霧化された液滴を
急激に沸騰蒸発させ、凝縮された微粒子を空気中に分散
させることを特徴とする微粒子分散方法。
1. A method for dispersing aggregated fine particles to be measured in a liquid, guiding the dispersed liquid to spraying means through a first thin tube, and atomizing by flowing high-pressure air into the spraying means. Guiding the atomized droplets to a heating tube heated to a temperature higher than the evaporation temperature of the liquid to rapidly evaporate the atomized droplets and disperse the condensed fine particles in the air. A method for dispersing fine particles, characterized in that:
【請求項2】 測定対象となる凝集した微粒子を含む液
体を第1の細管を介して供給する試料供給手段と、 前記第1の細管の端部が開放された第2の細管を有し、
該第2の細管内に高圧空気を流入させることによって噴
霧する噴霧手段と、 噴霧された液滴が導かれ、前記液体の蒸発温度より高い
温度に加熱された加熱管と、を有し、霧化された液滴を
急激に沸騰蒸発させることにより凝集した微粒子を気中
に分散させることを特徴とする微粒子分散装置。
2. A sample supply means for supplying a liquid containing aggregated fine particles to be measured via a first thin tube, and a second thin tube having an open end at the first thin tube,
Spraying means for spraying by causing high-pressure air to flow into the second thin tube; and a heating tube to which the sprayed liquid droplets are guided and heated to a temperature higher than the evaporation temperature of the liquid. A fine particle dispersing apparatus characterized in that agglomerated fine particles are dispersed in the air by rapidly boiling and evaporating formed droplets.
【請求項3】 前記試料供給手段の微粒子を分散させる
液体はフッ素系不活性液体であることを特徴とする請求
項2記載の微粒子分散装置。
3. The fine particle dispersion apparatus according to claim 2, wherein the liquid for dispersing the fine particles in the sample supply means is a fluorine-based inert liquid.
【請求項4】 請求項2又は3のいずれか1項記載の微
粒子分散装置と、 前記微粒子分散装置により気中に分散された微粒子を両
極に帯電させ、電圧を印加した二重円筒に導くと共に、
円筒の空隙より一部の微粒子を取り出す微分型電気移動
度分析装置と、 前記微分型電気移動度分析装置により捕集された微粒子
の個数を計数する凝縮核カウンタと、を有することを特
徴とする粒径分布測定装置。
4. The fine particle dispersing device according to claim 2, wherein the fine particles dispersed in the air by the fine particle dispersing device are charged to both poles and guided to a double cylinder to which a voltage is applied. ,
A differential electric mobility analyzer for extracting a part of the fine particles from the gap of the cylinder; and a condensation nucleus counter for counting the number of fine particles collected by the differential electric mobility analyzer. Particle size distribution measuring device.
JP00841197A 1997-01-21 1997-01-21 Fine particle dispersion method, fine particle dispersion device, and particle size distribution measuring device Expired - Fee Related JP3735430B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00841197A JP3735430B2 (en) 1997-01-21 1997-01-21 Fine particle dispersion method, fine particle dispersion device, and particle size distribution measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00841197A JP3735430B2 (en) 1997-01-21 1997-01-21 Fine particle dispersion method, fine particle dispersion device, and particle size distribution measuring device

Publications (2)

Publication Number Publication Date
JPH10206302A true JPH10206302A (en) 1998-08-07
JP3735430B2 JP3735430B2 (en) 2006-01-18

Family

ID=11692413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00841197A Expired - Fee Related JP3735430B2 (en) 1997-01-21 1997-01-21 Fine particle dispersion method, fine particle dispersion device, and particle size distribution measuring device

Country Status (1)

Country Link
JP (1) JP3735430B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004023109A1 (en) * 2002-09-04 2004-03-18 National Institute Of Advanced Industrial Science And Technology Method and apparatus for measuring particle diameter distribution of powder
WO2005100954A1 (en) * 2004-04-12 2005-10-27 Rion Co., Ltd. Method for calibrating particle counter
JP2012037318A (en) * 2010-08-05 2012-02-23 Japan Organo Co Ltd Apparatus and method for measuring particle in liquid
WO2017129548A1 (en) * 2016-01-28 2017-08-03 Laboratoire National De Metrologie Et D'essais Calibration appliance of a particle analyser
CN111766184A (en) * 2020-06-30 2020-10-13 吉林大学 Method for measuring particle size distribution of titanium hydride powder compact
CN115362024A (en) * 2020-04-02 2022-11-18 吉田工业株式会社 Wet-type micronizing device and method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004023109A1 (en) * 2002-09-04 2004-03-18 National Institute Of Advanced Industrial Science And Technology Method and apparatus for measuring particle diameter distribution of powder
WO2005100954A1 (en) * 2004-04-12 2005-10-27 Rion Co., Ltd. Method for calibrating particle counter
JP2012037318A (en) * 2010-08-05 2012-02-23 Japan Organo Co Ltd Apparatus and method for measuring particle in liquid
WO2017129548A1 (en) * 2016-01-28 2017-08-03 Laboratoire National De Metrologie Et D'essais Calibration appliance of a particle analyser
FR3047312A1 (en) * 2016-01-28 2017-08-04 Laboratoire Nat De Metrologie Et Dessais APPARATUS FOR CALIBRATING A PARTICULATE ANALYZER
CN115362024A (en) * 2020-04-02 2022-11-18 吉田工业株式会社 Wet-type micronizing device and method
CN111766184A (en) * 2020-06-30 2020-10-13 吉林大学 Method for measuring particle size distribution of titanium hydride powder compact

Also Published As

Publication number Publication date
JP3735430B2 (en) 2006-01-18

Similar Documents

Publication Publication Date Title
Ardon-Dryer et al. Laboratory studies of collection efficiency of sub-micrometer aerosol particles by cloud droplets on a single-droplet basis
CN103487494B (en) A kind of environmental aerosols direct sample enrichment sampling device and quantitative analysis method
Wang et al. Toward standardized test methods to determine the effectiveness of filtration media against airborne nanoparticles
US8459572B2 (en) Focusing particle concentrator with application to ultrafine particles
Stabile et al. Ultrafine particle generation through atomization technique: the influence of the solution
JPS62222145A (en) Method and apparatus for measuring impurity in liquid
Wang et al. Measurement of multi-wall carbon nanotube penetration through a screen filter and single-fiber analysis
US20080011876A1 (en) Particle generator
Li et al. Performance study of a DC-corona-based particle charger for charge conditioning
Chen et al. Enhancement of filtration efficiency by electrical charges on nebulized particles
JP3735430B2 (en) Fine particle dispersion method, fine particle dispersion device, and particle size distribution measuring device
Azong-Wara et al. Design and experimental evaluation of a new nanoparticle thermophoretic personal sampler
Chen et al. A study of density effect and droplet deformation in the TSI aerodynamic particle sizer
He et al. A comparison study of the filtration behavior of air filtering materials of masks against inert and biological particles
Lenggoro et al. Colloidal nanoparticle analysis by nanoelectrospray size spectrometry with a heated flow
Li et al. Sulfur dioxide absorption by charged droplets in electrohydrodynamic atomization
Lore et al. Inter-laboratory performance between two nanoparticle air filtration systems using scanning mobility particle analyzers
Tang et al. An improved atomizer with high output of nanoparticles
Ichihara et al. Aerosolization of colloidal nanoparticles by a residual-free atomizer
Tsai et al. Electrostatic charge measurement and charge neutralization of fine aerosol particles during the generation process
Pyo et al. Development of filter-free particle filtration unit utilizing condensational growth: With special emphasis on high-concentration of ultrafine particles
de Oliveira et al. Efficiency of electrostatic precipitation of NiO nanoparticles dispersed by atomization
JP5427141B2 (en) Apparatus and method for measuring particles in liquid
Morcelli et al. Analysis of Electro-static Assisted Air Dehumidification Processes
Kidd et al. Surfactant-free latex spheres for size calibration of mobility particle sizers in atmospheric aerosol applications

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050922

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051024

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091028

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091028

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101028

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101028

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111028

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121028

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121028

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131028

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees