WO2005100954A1 - Method for calibrating particle counter - Google Patents

Method for calibrating particle counter Download PDF

Info

Publication number
WO2005100954A1
WO2005100954A1 PCT/JP2004/005196 JP2004005196W WO2005100954A1 WO 2005100954 A1 WO2005100954 A1 WO 2005100954A1 JP 2004005196 W JP2004005196 W JP 2004005196W WO 2005100954 A1 WO2005100954 A1 WO 2005100954A1
Authority
WO
WIPO (PCT)
Prior art keywords
particle
particles
particle size
calibration
calibrating
Prior art date
Application number
PCT/JP2004/005196
Other languages
French (fr)
Japanese (ja)
Inventor
Takashi Minakami
Tomonobu Matsuda
Chiryo Tsunoda
Kazuo Ichijo
Original Assignee
Rion Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rion Co., Ltd. filed Critical Rion Co., Ltd.
Priority to PCT/JP2004/005196 priority Critical patent/WO2005100954A1/en
Publication of WO2005100954A1 publication Critical patent/WO2005100954A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/1012Calibrating particle analysers; References therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N2001/2893Preparing calibration standards

Definitions

  • the present invention relates to a method for calibrating a particle counter, for example, a light scattering type automatic particle counter, using calibration particles.
  • the calibration method for the particle size classification function specified in JISB 9921 is to calibrate test air containing a large number of PSL particles as standard particles generated by the particle generator 1.
  • a light scattering type automatic particle counter (LPC) 3 is used to analyze the response voltage of each of a large number of particles output by the light scattering type automatic particle counter 3 with the wave height analyzer 4 and a response voltage histogram.
  • a calibration method is known in which a median value is obtained and the median value is set to a threshold voltage of a channel for setting a particle size classification.
  • the average particle size of the group of standard particles generated by the particle generator 1 does not match the particle size setting channel of the light scattering type automatic particle counter 3.
  • the particle size classification setting channel can be set continuously, but this particle size classification setting channel is usually a good value, for example, 0.1 l xm, 0.2 rn, 0. It is set as 3 m.
  • the standard particle group having an average particle size of 0.294 m is led to the light scattering type automatic particle counter 3, and a median value corresponding to the standard particle group having an average particle size of 0.294 xm is obtained.
  • the test air may contain incompletely dried PSL particles and water residues (such as microscopic debris in the water).
  • Fig. 4 shows the particle size distribution of the particles in the test air.
  • the force line indicated by the dotted line in Fig. 4 is a histogram of particles in the test air that include incompletely dried particles and water residues in addition to the PSL particles. Normally, it should be a normal distribution curve shown by a solid line, but the left side of the peak is far from the normal distribution curve due to the effect of water residue. Similarly, the right side of the peak deviates from the normal distribution force due to the effect of incompletely dried particles.
  • the PSL particle group with a large CV value (coefficient of variation: indicates the degree of variation in particle diameter, and the larger the CV value is, the larger the variation in particle size) is used for calibrating the minimum measurable particle size, noise and noise Separation of the response voltage is difficult, making calibration difficult.
  • the present invention has been made in view of the above-mentioned problems of the conventional technology, and has an object to solve the problem even when the average particle diameter of the particle group is a poor value.
  • An object of the present invention is to provide a method for calibrating a particle counter that can easily, quickly and accurately perform calibration even when the average particle diameter of the particle group is about 0.1 im or less. Disclosure of the invention
  • the invention according to claim 1 for solving the above problem is a method for calibrating a particle counter, which classifies a test gas containing a large number of particles generated by a particle generator by a classifier.
  • a particle group with the particle size to be calibrated is taken out, this particle group is guided to a particle counter, the response voltage is measured for each particle, and calibration is performed based on the median of a large number of response voltages and the particle size described above. It is.
  • the invention according to claim 2 is the method for calibrating a particle counter according to claim 1, wherein the classifier is an electric mobility classifier.
  • the electric mobility classifier By using the electric mobility classifier, even the PSL particles having a large CV value can be extracted from the PSL particles having a small CV value. As a result, noise and response voltage can be separated, and calibration can be performed easily.
  • the invention according to claim 3 is the method for calibrating a particle counter according to claim 1, wherein the particles generated by the particle generator are polystyrene latex (PSL) particles.
  • PSL polystyrene latex
  • Polystyrene latex (PSL) particles have uniform optical characteristics and have a shape close to a true sphere, so that the accuracy of calibration can be further improved.
  • the invention according to claim 4 is the method for calibrating a particle counter according to claim 1, wherein the particle group generated by the particle generator is a polydisperse particle group having a widely distributed particle diameter. It is.
  • FIG. 1 is a block diagram of a system for implementing a method of calibrating a particle counter according to the present invention.
  • FIG. 2 is a flowchart showing an operation procedure by a method for calibrating a particle counter according to the present invention.
  • FIG. 3 is an explanatory view of a method for calibrating a particle counter according to the present invention.
  • Fig. 4 is an example of the particle size distribution of the particles contained in the test air generated by the particle generator.
  • FIG. 5 is an explanatory diagram of a calibration method of a conventional light scattering type automatic particle counter.
  • the system for performing the calibration method of the particle counter includes a particle generator 1, an electric mobility classifier (DMA) 2, a light scattering object to be calibrated. It consists of an automatic particle counter 3 and a wave height analyzer 4. Note that the light-blocking particle counter may be used as a calibration target.
  • DMA electric mobility classifier
  • the light-blocking particle counter may be used as a calibration target.
  • the particle generator 1 includes a clean air supply unit 11, a sprayer 12, a dryer 13, and the like.
  • a dispersion liquid in which PSL particles having a predetermined particle size are dispersed in pure water is stored in the sprayer 12 in advance.
  • the dispersion liquid is sprayed from the sprayer 12 with the clean air supplied by the clean air supply unit 11, the dispersion liquid sprayed by the dryer 13 is dried to remove moisture, and the PSL particles are suspended in the air.
  • Generate test air for the condition Note that a clean gas such as carbon dioxide may be used instead of the clean air. Also, NaCl particles or the like may be used instead of the PSL particles.
  • the electric mobility classifier 2 charges the particles in the test air generated by the particle generator 1 with a radioactive substance or the like, guides the test air into a uniform flow without turbulence, and guides the test air to an electrostatic field. Classification is performed using the fact that the electric mobility of the PSL particles depends on the particle size and the amount of charge of the PSL particles. In order to obtain PSL particles having a desired particle size, the classification set value of the electric mobility classifier 2, which can be arbitrarily set, may be set to a value of a desired particle size.
  • the light scattering type automatic particle counter 3 introduces the test air containing the PSL particles classified by the electric mobility classifier 2 into a region of the particle detection section irradiated with laser light or the like, and the PSL particles Each time the light passes through, the scattered light emitted from the PSL particles is photoelectrically converted to obtain a response voltage, and the obtained multiple response voltages are output to the wave height analyzer 4.
  • the wave height analyzer 4 statistically processes a large number of response voltages and outputs a median value or the like.
  • the standard particles for example, when the average particle size is 0.000 urn
  • a particle size average value as close as possible to the channel for setting the particle size classification for example, 076 P PSL particles
  • the standard particles provided as a sample do not always have a particle size average value that matches each particle size setting channel of the light scattering automatic particle counter 3. Since standard particles are distributed with a certain CV value around the average particle size, there are a considerable number of PSL particles with a particle size that exactly matches the particle size setting channel. To do.
  • step SP1 the channel (for example, 0.080 zm) for setting the particle size classification of the light scattering automatic particle counter 3 to be calibrated is determined. Then, a standard particle group having an average particle size as close as possible to the determined particle size setting channel (for example,? 31 particles with an average particle size of 0.076 ⁇ 111) is supplied to the pure water in the atomizer 12. Disperse inside. The particle generator is activated to generate test air.
  • step SP2 the test air generated by the particle generator 1 is guided to the electric mobility classifier 2, and the PSL particles having a particle size (for example, 0.080 ⁇ m) to be calibrated are classified. And take it out.
  • the PSL particles having a particle size for example, 0.080 ⁇ m
  • the particle size (for example, 0.080 ⁇ m) set as the classification value is averaged. PSL particles with a small CV value can be obtained.
  • step SP3 the PSL particle group classified by the electric mobility classifier 2 was led to the particle detection unit of the light scattering type automatic particle counter 3, and the response voltage was obtained for each PSL particle.
  • a large number of response voltages are processed by the peak analyzer 4 to obtain a median value.
  • calibration is performed from the median value obtained here and the set particle size (for example, 0.080 zm) of the electric mobility classifier 2 in step SP2.
  • the center of the desired particle size is determined.
  • the value can be determined directly. That is, even if the average particle diameter of the PSL particle group used for calibration is a poorly cut value, there is no need to convert it to a well cut value.
  • the test air generated by the particle generator 1 is previously classified by the electric mobility classifier 2, so that water having a particle size smaller than the classification setting value, water classification, etc. Incompletely dried PSL particles with a particle size larger than the set value can also be removed.
  • the PSL particle group whose particle size distribution is almost It can be introduced into the scattering type automatic particle counter 3, and the calibration accuracy can be improved accordingly.
  • This calibration method which removes water residues and incompletely dried PSL particles in advance, can improve the calibration accuracy especially when calibrating a particle counter with a particle size of 0.1 m or less.
  • the accuracy of the calibration can be improved.
  • Both the light scattering type automatic particle counter 3 and the light blocking type particle counter optically measure the particle size, so the variation in the optical characteristics and shape of the particles affects the detection sensitivity of the particle detector. give. Since the PSL particles have uniform optical characteristics and a shape close to a true sphere, the use of these particles can reduce the effect on detection sensitivity. Therefore, the accuracy of the calibration can be improved.
  • the electric mobility classifier 2 is also used in the counting efficiency test for measuring the PSL particles simultaneously with the reference device and the UUT and calculating the counting ratio.
  • the test can be performed using a PSL particle group having a desired particle size. Therefore, in the counting efficiency test for the smallest measurable particle size, erroneous counts for fine particles during spraying that occur below approximately 0.050 / m, erroneous counts due to the generation of doublets (particles connected), etc. An error factor that occurs when the electric mobility classifier 2 is not used can be eliminated.
  • the case where monodisperse particles are used as the calibration particles has been described.
  • polydisperse particles having widely distributed particle diameters can also be used.
  • the electric mobility classifier 2 is used as a classifier.
  • a virtual impact classifier that classifies particles using the inertia of particles is used. Irapactor) can also be used.
  • a particle group having a desired particle size can be guided to the particle counter by the classifier, so that calibration using a particle size suitable for the particle size classification setting channel of the particle counter becomes possible and easy. Quick and accurate calibration can be performed.
  • particles having a particle size to be calibrated can be accurately extracted, so that the median value of a group of particles to be calibrated can be reliably measured.
  • the particle group of the particle size to be calibrated is extracted, separation from noise is easy, calibration with the smallest measurable particle size can be reliably performed, and calibration of the particle size classification function is performed. And it is effective for counting efficiency test.

Abstract

A method for calibrating a particle counter in which calibration can be carried out easily and quickly even if the mean particle size of a particle group is not in round numbers or not larger than about 0.1 μm. Test air containing a large number of particles being generated from a particle generator (1) is classified by means of an electric mobility classifier (2) and a particle group of a particle size to be calibrated is taken out. That particle group is introduced to the particle counter (3) where a response voltage is measured for each particle and calibration is carried out based on the central value of a large number of response voltages and the particle size.

Description

明細書 粒子計数器の校正方法 技術分野  Description Calibration method of particle counter Technical field
本発明は、 校正用粒子を用いて行う粒子計数器、 例えば光散乱式自動粒子計数 器の校正方法に関する。 背景技術  The present invention relates to a method for calibrating a particle counter, for example, a light scattering type automatic particle counter, using calibration particles. Background art
従来、 光散乱式自動粒子計数器の粒径区分機能の校正方法としては J I SB 9 921に規定された方法がある。 J I S B 9921に規定された粒径区分機能の 校正方法は、 第 5図に示すように、 粒子発生器 1により発生させた標準粒子とし ての多数の P S L粒子を含む試験用空気を校正の対象となる光散乱式自動粒子計 数器 (LPC) 3に導き、 光散乱式自動粒子計数器 3が出力する多数の粒子それ ぞれについての応答電圧を波高分析器 4で分析して応答電圧のヒストグラムの中 央値を得、 この中央値を粒径区分設定チャネルのしきい値電圧に設定する校正方 法が知られている。  Conventionally, as a calibration method of the particle size classification function of the light scattering type automatic particle counter, there is a method specified in JIS B 9921. As shown in Fig. 5, the calibration method for the particle size classification function specified in JISB 9921 is to calibrate test air containing a large number of PSL particles as standard particles generated by the particle generator 1. A light scattering type automatic particle counter (LPC) 3 is used to analyze the response voltage of each of a large number of particles output by the light scattering type automatic particle counter 3 with the wave height analyzer 4 and a response voltage histogram. A calibration method is known in which a median value is obtained and the median value is set to a threshold voltage of a channel for setting a particle size classification.
しかし、 粒子発生器 1により発生させた標準粒子群の平均粒径が光散乱式自動 粒子計数器 3の粒径区分設定チャネルと一致しない楊合がままある。 例えば、 所 望するのは平均粒径 0. 3 mの標準粒子群であるが、 平均粒径 0. 294 zm のものしか入手できないことがある。 粒径区分設定チャネルが連続的に設定でき るものであれば問題は無いが、 この粒径区分設定チャネルは、 通常、 切りのよい 値、 例えば、 0. l xm、 0. 2 rn, 0. 3 mのように設定されている。 従って、 このような場合、 平均粒径 0. 294 mの標準粒子群を光散乱式自 動粒子計数器 3に導き、 平均粒径 0. 294 xmの標準粒子群に対応する中央値 を得ておき、 この中央値と光散乱式自動粒子計数器 3特有の粒径一応答電圧特性 に基づいて 0. 3 mの粒子に対応する中央値を得なければならないという煩雑 さがある。  However, the average particle size of the group of standard particles generated by the particle generator 1 does not match the particle size setting channel of the light scattering type automatic particle counter 3. For example, what we want is a group of standard particles with an average particle size of 0.3 m, but only particles with an average particle size of 0.394 zm may be available. There is no problem as long as the particle size classification setting channel can be set continuously, but this particle size classification setting channel is usually a good value, for example, 0.1 l xm, 0.2 rn, 0. It is set as 3 m. Therefore, in such a case, the standard particle group having an average particle size of 0.294 m is led to the light scattering type automatic particle counter 3, and a median value corresponding to the standard particle group having an average particle size of 0.294 xm is obtained. In addition, it is complicated to obtain a median value corresponding to 0.3 m particles based on this median value and the particle size-response voltage characteristic peculiar to the light scattering automatic particle counter 3.
また、 粒径が約 0. 以下の PSL粒子群を粒子発生器 1により発生させ る場合、 試験用空気の中には乾燥が不完全な P S L粒子や水の残さ (水に含まれ ている微小なゴミ等) などが含まれることがある。 このような試験用空気中の粒 子群の粒径分布を第 4図に示す。 第 4図の点線で示す力一ブは、 P S L粒子以外 に乾燥が不完全な粒子や水の残さなどを含む試験用空気中の粒子群のヒストグラ ムである。 本来ならば実線で示す正規分布カーブであるべきであるが、 ピーク左 側は水の残さの影響で正規分布カーブから大きく外れている。 同様にピーク右側 は乾燥が不完全な粒子の影響等で正規分布力一ブから外れている。 In addition, a PSL particle group having a particle size of about 0. In some cases, the test air may contain incompletely dried PSL particles and water residues (such as microscopic debris in the water). Fig. 4 shows the particle size distribution of the particles in the test air. The force line indicated by the dotted line in Fig. 4 is a histogram of particles in the test air that include incompletely dried particles and water residues in addition to the PSL particles. Normally, it should be a normal distribution curve shown by a solid line, but the left side of the peak is far from the normal distribution curve due to the effect of water residue. Similarly, the right side of the peak deviates from the normal distribution force due to the effect of incompletely dried particles.
このような試験用空気中の粒子群を光散乱式自動粒子計数器 3に導き、 この粒 子群に対応する中央値を得たとしても、 本来求めるべきである P S L粒子群のみ に対応する中央値とは大きく異なることになる。 そして、 この傾向は P S L粒子 群の平均粒径が小さくなるにつれて著しくなる。  Even if such a particle group in the test air is led to the light scattering type automatic particle counter 3 and the median value corresponding to this particle group is obtained, the central value corresponding to only the PSL particle group that should be originally obtained is obtained. It will be very different from the value. This tendency becomes remarkable as the average particle size of the PSL particles decreases.
更には, C V値 (変動係数:粒子径のばらつきの程度を示し、 C V値が大きい と粒子径のばらつきが大きい) が大きい P S L粒子群を最小可測粒径の校正に用 いると、 ノイズと応答電圧の分離が難しく, 校正が困難になる。 一般的に粒径が 小さいほど C V値は大きくなる傾向がある。  Furthermore, if the PSL particle group with a large CV value (coefficient of variation: indicates the degree of variation in particle diameter, and the larger the CV value is, the larger the variation in particle size) is used for calibrating the minimum measurable particle size, noise and noise Separation of the response voltage is difficult, making calibration difficult. Generally, the smaller the particle size, the higher the CV value tends to be.
本発明は、 従来の技術が有するこのような問題点に鑑みてなされたものであり、 その目的とするところは、 粒子群の平均粒径が切りの悪い値である場合であって も、 また粒子群の平均粒径が約 0 . 1 i m以下であっても、 容易、 迅速で正確な 校正が行える粒子計数器の校正方法を提供しょうとするものである。 発明の開示  The present invention has been made in view of the above-mentioned problems of the conventional technology, and has an object to solve the problem even when the average particle diameter of the particle group is a poor value. An object of the present invention is to provide a method for calibrating a particle counter that can easily, quickly and accurately perform calibration even when the average particle diameter of the particle group is about 0.1 im or less. Disclosure of the invention
上記課題を解決すべく請求の範囲第 1項に係る発明は、 粒子計数器の校正方法 であって、 粒子発生器により発生する多数の粒子を含む試験用気体を分級器によ り分級して校正の対象とする粒径の粒子群を取り出し、 この粒子群を粒子計数器 に導いて粒子それぞれについて応答電圧を測定し、 多数の応答電圧の中央値と前 記粒径とから校正を行うものである。  The invention according to claim 1 for solving the above problem is a method for calibrating a particle counter, which classifies a test gas containing a large number of particles generated by a particle generator by a classifier. A particle group with the particle size to be calibrated is taken out, this particle group is guided to a particle counter, the response voltage is measured for each particle, and calibration is performed based on the median of a large number of response voltages and the particle size described above. It is.
これにより、 校正の対象とする粒径の粒子群を粒子計数器に導くことができる ので、 粒子計数器の粒径区分設定チャネルに合った粒径による校正が可能になり、 粒径と中央値から校正を容易、 迅速且つ正確に行うことができる。 請求の範囲第 2項に係る発明は、 請求の範囲第 1項に記載の粒子計数器の校正 方法において、 前記分級器が、 電気移動度分級器である。 As a result, the particle group having the particle size to be calibrated can be guided to the particle counter. Calibration can be performed easily, quickly and accurately. The invention according to claim 2 is the method for calibrating a particle counter according to claim 1, wherein the classifier is an electric mobility classifier.
電気移動度分級器を用いることよって C V値が大きい P S L粒子群であっても その中から C V値が小さい P S L粒子群を取り出すことができる。 これにより, ノイズと応答電圧を分離することができ, 校正が容易に行える。  By using the electric mobility classifier, even the PSL particles having a large CV value can be extracted from the PSL particles having a small CV value. As a result, noise and response voltage can be separated, and calibration can be performed easily.
請求の範囲第 3項に係る発明は、 請求の範囲第 1項に記載の粒子計数器の校正 方法において、 前記粒子発生器により発生する粒子がポリスチレンラテックス ( P S L ) 粒子である。  The invention according to claim 3 is the method for calibrating a particle counter according to claim 1, wherein the particles generated by the particle generator are polystyrene latex (PSL) particles.
ポリスチレンラテックス (P S L ) 粒子は、 光学的特性が均一であり、 真球に 近い形状を有しているので、 校正の精度をより高めることができる。  Polystyrene latex (PSL) particles have uniform optical characteristics and have a shape close to a true sphere, so that the accuracy of calibration can be further improved.
請求の範囲第 4項に係る発明は、 請求の範囲第 1項に記載の粒子計数器の校正 方法において、 前記粒子発生器により発生する前記粒子群を粒径が広く分布した 多分散の粒子群である。  The invention according to claim 4 is the method for calibrating a particle counter according to claim 1, wherein the particle group generated by the particle generator is a polydisperse particle group having a widely distributed particle diameter. It is.
単分散粒子群を用いて校正する場合には、 校正する粒径毎に噴霧器の粒子を入 れ替える必要があるが、 多分散粒子群を用いて校正する場合には噴霧器の粒子を 入れ替えることなく複数の粒径の校正が可能となる。 図面の簡単な説明  When calibrating using monodisperse particles, it is necessary to replace the atomizer particles for each particle size to be calibrated. Calibration of a plurality of particle sizes becomes possible. Brief Description of Drawings
第 1図は、 本発明に係る粒子計数器の校正方法を実施するシステムのブロック 構成図である。  FIG. 1 is a block diagram of a system for implementing a method of calibrating a particle counter according to the present invention.
第 2図は、 本発明に係る粒子計数器の校正方法による作業手順を示すフローチ ャ一卜である。  FIG. 2 is a flowchart showing an operation procedure by a method for calibrating a particle counter according to the present invention.
第 3図は、 本発明に係る粒子計数器の校正方法の説明図である。  FIG. 3 is an explanatory view of a method for calibrating a particle counter according to the present invention.
第 4図は、 粒子発生器が発生する試験用空気に含まれる粒子の粒径分布の一例 である。  Fig. 4 is an example of the particle size distribution of the particles contained in the test air generated by the particle generator.
第 5図は、 従来の光散乱式自動粒子計数器の校正方法の説明図である。 発明を実施するための最良の形態  FIG. 5 is an explanatory diagram of a calibration method of a conventional light scattering type automatic particle counter. BEST MODE FOR CARRYING OUT THE INVENTION
以下に本発明の実施の形態を添付図面 (第 1図〜第 3図) に基づいて説明する。 本発明に係る粒子計数器の校正方法を実施するシステムは、 第 1図に示すよう に、 粒子発生器 1、 電気移動度分級器 (DMA: Differential Mobility Analyzer) 2、 校正の対象である光散乱式自動粒子計数器 3及び波高分析器 4か らなる。 なお、 光遮断式粒子計数器を校正対象にしてもよい。 An embodiment of the present invention will be described below with reference to the accompanying drawings (FIGS. 1 to 3). As shown in Fig. 1, the system for performing the calibration method of the particle counter according to the present invention includes a particle generator 1, an electric mobility classifier (DMA) 2, a light scattering object to be calibrated. It consists of an automatic particle counter 3 and a wave height analyzer 4. Note that the light-blocking particle counter may be used as a calibration target.
粒子発生器 1は、 清浄空気供給器 11と噴霧器 12と乾燥器 13などからなり、 予め噴霧器 12内に所定の粒径を有する P S L粒子を純水中に分散させた分散液 を貯留しておき、 清浄空気供給器 11が供給する清浄空気により噴霧器 12から 分散液を噴霧し、 乾燥器 13によって噴霧された分散液を乾燥させて水分を除去 し、 PSL粒子が空気中に浮遊して存在する状態の試験用空気を発生する。 なお、 清浄空気に代えて清浄な二酸化炭素等の気体を用いてもよい。 また PSL粒子に 代えて N a C 1粒子等を用いても良い。  The particle generator 1 includes a clean air supply unit 11, a sprayer 12, a dryer 13, and the like.A dispersion liquid in which PSL particles having a predetermined particle size are dispersed in pure water is stored in the sprayer 12 in advance. The dispersion liquid is sprayed from the sprayer 12 with the clean air supplied by the clean air supply unit 11, the dispersion liquid sprayed by the dryer 13 is dried to remove moisture, and the PSL particles are suspended in the air. Generate test air for the condition. Note that a clean gas such as carbon dioxide may be used instead of the clean air. Also, NaCl particles or the like may be used instead of the PSL particles.
電気移動度分級器 2は、 粒子発生器 1が発生した試験用空気中の粒子を放射性 物質等により帯電させて、 この試験用空気を乱れのない一様な流れにして静電場 に導き、 荷電した P S L粒子の電気移動度が P S L粒子の粒径と荷電量とに依存 することを利用して分級する。 所望な粒径の PSL粒子を得るには、 任意に設定 することができる電気移動度分級器 2の分級設定値を所望な粒径の値にすればよ い。  The electric mobility classifier 2 charges the particles in the test air generated by the particle generator 1 with a radioactive substance or the like, guides the test air into a uniform flow without turbulence, and guides the test air to an electrostatic field. Classification is performed using the fact that the electric mobility of the PSL particles depends on the particle size and the amount of charge of the PSL particles. In order to obtain PSL particles having a desired particle size, the classification set value of the electric mobility classifier 2, which can be arbitrarily set, may be set to a value of a desired particle size.
光散乱式自動粒子計数器 3は、 電気移動度分級器 2で分級された P S L粒子を 含む試験用空気を、 粒子検出部のレーザ光等が照射された領域に導入し、 PSL 粒子がこの領域を通過する度に、 PSL粒子が発する散乱光を光電変換して応答 電圧を得、 得られた多数の応答電圧を波高分析器 4に出力する。 波高分析器 4は、 多数の応答電圧を統計処理して中央値等を出力する。  The light scattering type automatic particle counter 3 introduces the test air containing the PSL particles classified by the electric mobility classifier 2 into a region of the particle detection section irradiated with laser light or the like, and the PSL particles Each time the light passes through, the scattered light emitted from the PSL particles is photoelectrically converted to obtain a response voltage, and the obtained multiple response voltages are output to the wave height analyzer 4. The wave height analyzer 4 statistically processes a large number of response voltages and outputs a median value or the like.
校正に際しては、 光散乱式自動粒子計数器 3の粒径区分設定チャネル (例えば、 0. 080 urn) に限りなく近い粒径平均値を持った標準粒子 (例えば、 粒径平 均値が 0. 076 ΠΙの PSL粒子) を選択して粒子発生器 1から発生させる。 これは、 試料として提供される標準粒子に光散乱式自動粒子計数器 3の各粒径区 分設定チャネルにびつたり一致する粒径平均値が存在するとは限らないからであ る。 標準粒子は粒径平均値を中心に、 ある CV値を持って分布しているので、 そ の中に粒径区分設定チャネルにぴったり一致する粒径の P S L粒子が相当数存在 する。 At the time of calibration, the standard particles (for example, when the average particle size is 0.000 urn) having a particle size average value as close as possible to the channel for setting the particle size classification (for example, 076 P PSL particles) and generate them from the particle generator 1. This is because the standard particles provided as a sample do not always have a particle size average value that matches each particle size setting channel of the light scattering automatic particle counter 3. Since standard particles are distributed with a certain CV value around the average particle size, there are a considerable number of PSL particles with a particle size that exactly matches the particle size setting channel. To do.
以上のように構成したシステムによる光散乱式自動粒子計数器 3の校正方法に ついて、 第 2図に示す校正手順のフローチャートにより説明する。 ここで、 本発 明を実施するシステムは、 第 1図に示す構成である。  A method of calibrating the light scattering type automatic particle counter 3 by the system configured as described above will be described with reference to a flowchart of a calibration procedure shown in FIG. Here, the system for implementing the present invention has the configuration shown in FIG.
先ず、 ステップ SP 1において、 第 3図に示すように、 校正の対象となる光散 乱式自動粒子計数器 3の粒径区分設定チャネル (例えば、 0. 080 zm) を決 定しておく。 そして、 決定した粒径区分設定チャネルに限りなく近い粒径平均値 を持った標準粒子群 (例えば、 粒径平均値が 0. 076 ^111の?31粒子) を噴 霧器 12内の純水中に分散させておく。 そして粒子発生器を作動させて、 試験用 空気を発生させる。  First, in step SP1, as shown in FIG. 3, the channel (for example, 0.080 zm) for setting the particle size classification of the light scattering automatic particle counter 3 to be calibrated is determined. Then, a standard particle group having an average particle size as close as possible to the determined particle size setting channel (for example,? 31 particles with an average particle size of 0.076 ^ 111) is supplied to the pure water in the atomizer 12. Disperse inside. The particle generator is activated to generate test air.
次いで、 ステップ SP 2において、 粒子発生器 1が発生した試験用空気を電気 移動度分級器 2に導き、 校正の対象となる粒径 (例えば、 0. 080 ^m) の P SL粒子群を分級して取り出す。  Next, in step SP2, the test air generated by the particle generator 1 is guided to the electric mobility classifier 2, and the PSL particles having a particle size (for example, 0.080 ^ m) to be calibrated are classified. And take it out.
粒子発生器 1が発生した試験用空気が電気移動度分級器 2を通ることによって、 第 3図に示すように、 分級設定値とした粒径 (例えば、 0. 080 ^m) を粒径 平均値とした CV値が小さい P SL粒子群を得ることができる。  By passing the test air generated by the particle generator 1 through the electric mobility classifier 2, as shown in FIG. 3, the particle size (for example, 0.080 ^ m) set as the classification value is averaged. PSL particles with a small CV value can be obtained.
次いで、 ステップ SP 3において、 電気移動度分級器 2により分級された PS L粒子群を光散乱式自動粒子計数器 3の粒子検出部に導き、 P S L粒子それぞれ について応答電圧を得て、 得られた多数の応答電圧を波高分析器 4によつて処理 して中央値を得る。 そして、 ここで得た中央値とステップ S P 2での電気移動度 分級器 2の設定粒径 (例えば、 0. 080 zm) とから校正を行う。  Next, in step SP3, the PSL particle group classified by the electric mobility classifier 2 was led to the particle detection unit of the light scattering type automatic particle counter 3, and the response voltage was obtained for each PSL particle. A large number of response voltages are processed by the peak analyzer 4 to obtain a median value. Then, calibration is performed from the median value obtained here and the set particle size (for example, 0.080 zm) of the electric mobility classifier 2 in step SP2.
上記した校正方法では、 電気移動度分級器 2で設定した粒径と光散乱式自動粒 子計数器 3の粒径区分設定チャネルの値が完全に一致しているので、 所望する粒 径について中央値を直接求めることができる。 即ち、 校正に使用する PSL粒子 群の平均粒径が切りの悪い値であっても、 切りの良い値に換算する必要が無い。 また、 上記した校正方法では、 粒子発生器 1が発生した試験用空気を、 予め電 気移動度分級器 2で分級しているので、 分級設定値より小さな粒径を持つ水の残 さ、 分級設定値より大きな粒径を持つ乾燥が不完全な P S L粒子等も取り除くこ とができる。 これにより、 粒径分布が限りなく正規分布に近い PSL粒子群を光 散乱式自動粒子計数器 3に導入させることができ、 この分、 校正精度を向上させ ることができる。 水の残さ、 乾燥が不完全な P S L粒子を予め取り除くこの校正 方法は、 粒径が 0 . 1 m以下の粒子計数器の校正をする場合に特に校正精度を 向上させることができる。 In the above-mentioned calibration method, since the particle size set by the electric mobility classifier 2 completely matches the value of the particle size setting channel of the light scattering type automatic particle counter 3, the center of the desired particle size is determined. The value can be determined directly. That is, even if the average particle diameter of the PSL particle group used for calibration is a poorly cut value, there is no need to convert it to a well cut value. Also, in the above-mentioned calibration method, the test air generated by the particle generator 1 is previously classified by the electric mobility classifier 2, so that water having a particle size smaller than the classification setting value, water classification, etc. Incompletely dried PSL particles with a particle size larger than the set value can also be removed. As a result, the PSL particle group whose particle size distribution is almost It can be introduced into the scattering type automatic particle counter 3, and the calibration accuracy can be improved accordingly. This calibration method, which removes water residues and incompletely dried PSL particles in advance, can improve the calibration accuracy especially when calibrating a particle counter with a particle size of 0.1 m or less.
また、 上述した校正方法では、 校正用の粒子として P S L粒子を用いているの で校正の精度を高めることができる。 光散乱式自動粒子計数器 3、 光遮断式粒子 計数器は、 共に光学的に粒子の大きさを測定しているので、 粒子の光学特性や形 状のばらつきが粒子検出部の検出感度に影響を与える。 P S L粒子は光学的特性 が均一であり、 しかも真球に近い形状を有しているので、 この粒子を用いれば検 出感度に与える影響を低減できる。 従って校正の精度を高めることができる。 更には、 上述した粒径区分機能の校正だけではなく、 P S L粒子を基準器と被 試験器で同時に測定し、 計数比を求める計数効率試験においても、 電気移動度分 級器 2を用いることにより、 所望な粒径の P S L粒子群を用いて試験を行うこと ができる。 従って、 最小可測粒子径の計数効率試験において約 0 . 0 5 0 / m以 下に発生する噴霧時の微小粒子に対する誤カウントや、 ダブレット (粒子が連結 したもの) の発生による誤カウントなど、 電気移動度分級器 2を用いない場合に 生じる誤差要因を排除することができる。  Further, in the above-described calibration method, since the PSL particles are used as the particles for calibration, the accuracy of the calibration can be improved. Both the light scattering type automatic particle counter 3 and the light blocking type particle counter optically measure the particle size, so the variation in the optical characteristics and shape of the particles affects the detection sensitivity of the particle detector. give. Since the PSL particles have uniform optical characteristics and a shape close to a true sphere, the use of these particles can reduce the effect on detection sensitivity. Therefore, the accuracy of the calibration can be improved. Furthermore, in addition to the above-mentioned calibration of the particle size classification function, the electric mobility classifier 2 is also used in the counting efficiency test for measuring the PSL particles simultaneously with the reference device and the UUT and calculating the counting ratio. The test can be performed using a PSL particle group having a desired particle size. Therefore, in the counting efficiency test for the smallest measurable particle size, erroneous counts for fine particles during spraying that occur below approximately 0.050 / m, erroneous counts due to the generation of doublets (particles connected), etc. An error factor that occurs when the electric mobility classifier 2 is not used can be eliminated.
このように、 粒子発生器 1が発生した試験用空気中の粒子群を電気移動度分級 器 2で分級することにより、 粒径の異なる異物粒子を除去すると共に、 P S L粒 子の分布状態の影響を少なくすることができる。 その結果として、 光散乱式自動 粒子計数器 3の粒子検出部の応答電圧の分布が鋭くなり、 光散乱式自動粒子計数 器 3の校正の確度を高めることができる。  Thus, by classifying the particles in the test air generated by the particle generator 1 in the electric mobility classifier 2, foreign particles having different particle diameters are removed, and the influence of the distribution state of the PSL particles. Can be reduced. As a result, the distribution of the response voltage of the particle detector of the light scattering automatic particle counter 3 becomes sharp, and the accuracy of the calibration of the light scattering automatic particle counter 3 can be increased.
なお、 本発明の実施の形態では、 校正用粒子として単分散粒子を用いた場合に ついて説明したが、 粒径が広く分布している多分散粒子を用いることもできる。 単分散粒子を用いる場合には、 校正する粒径毎に噴霧器 1 2の粒子を入れ替える 必要があるが、 多分散粒子を用いて場合には、 入れ替えることなく、 複数の粒径 の校正ができる。 従って、 多くの粒径について校正する場合に作業が容易になる。 また、 本発明の実施の形態では、 分級器として電気移動度分級器 2を用いたが、 粒子の慣性を利用して粒子を分級するバーチャルインパク夕 (Virtual Irapac tor) を用いることもできる。 産業上の利用可能性 In the embodiment of the present invention, the case where monodisperse particles are used as the calibration particles has been described. However, polydisperse particles having widely distributed particle diameters can also be used. When monodispersed particles are used, it is necessary to replace the particles of the atomizer 12 for each particle size to be calibrated, but when using polydispersed particles, calibration of a plurality of particle sizes can be performed without replacement. Therefore, the work becomes easier when calibrating for many particle sizes. In the embodiment of the present invention, the electric mobility classifier 2 is used as a classifier. However, a virtual impact classifier that classifies particles using the inertia of particles is used. Irapactor) can also be used. Industrial applicability
本発明によれば、 分級器により所望な粒径を有する粒子群を粒子計数器に導く ことができるので、 粒子計数器の粒径区分設定チャネルに合った粒径による校正 が可能になり、 容易、 迅速且つ正確な校正を行うことができる。  According to the present invention, a particle group having a desired particle size can be guided to the particle counter by the classifier, so that calibration using a particle size suitable for the particle size classification setting channel of the particle counter becomes possible and easy. Quick and accurate calibration can be performed.
また、 電気移動度分級器を用いることにより、 校正の対象とする粒径の粒子を 精度よく抽出することができるので、 校正の対象とする粒子群の中央値を確実に 測定することができる。  In addition, by using an electric mobility classifier, particles having a particle size to be calibrated can be accurately extracted, so that the median value of a group of particles to be calibrated can be reliably measured.
更に、 校正の対象とする粒径の粒子群を抽出しているので、 ノイズとの分離が 容易となり、 最小可測粒径での校正を確実に行うことができ、 粒径区分機能の校 正及び計数効率試験に有効である。  Furthermore, since the particle group of the particle size to be calibrated is extracted, separation from noise is easy, calibration with the smallest measurable particle size can be reliably performed, and calibration of the particle size classification function is performed. And it is effective for counting efficiency test.

Claims

請求の範囲 The scope of the claims
1 . 粒子計数器の校正方法であって、 粒子発生器により発生する多数の粒子を 含む試験用気体を分級器により分級して校正の対象とする粒径の粒子群を取り出 し、 この粒子群を粒子計数器に導いて粒子それぞれについて応答電圧を測定し、 多数の応答電圧の中央値と前記粒径とから校正を行うことを特徴とする粒子計数 器の校正方法。 1. A method for calibrating a particle counter, in which a test gas containing a large number of particles generated by a particle generator is classified by a classifier to extract a group of particles having a particle size to be calibrated, A method for calibrating a particle counter, comprising: introducing a group to a particle counter, measuring a response voltage for each particle, and performing calibration from a median of a large number of response voltages and the particle diameter.
2 . 請求の範囲第 1項に記載の粒子計数器の校正方法において、 前記分級器が、 電気移動度分級器であることを特徴とする粒子計数器の校正方法。 2. The method for calibrating a particle counter according to claim 1, wherein the classifier is an electric mobility classifier.
3 . 請求の範囲第 1項に記載の粒子計数器の校正方法において、 前記粒子発生 器により発生する粒子がポリスチレンラテックス (P S L ) 粒子であることを特 徵とする粒子計数器の校正方法。 3. The method for calibrating a particle counter according to claim 1, wherein the particles generated by the particle generator are polystyrene latex (PSL) particles.
4 . 請求の範囲第 1項に記載の粒子計数器の校正方法において、 前記粒子発生 器により発生する前記粒子群は粒径が広く分布した多分散の粒子群であることを 特徴とする粒子計数器の校正方法。 4. The method for calibrating a particle counter according to claim 1, wherein the particle group generated by the particle generator is a polydisperse particle group having a widely distributed particle size. Instrument calibration method.
PCT/JP2004/005196 2004-04-12 2004-04-12 Method for calibrating particle counter WO2005100954A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2004/005196 WO2005100954A1 (en) 2004-04-12 2004-04-12 Method for calibrating particle counter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2004/005196 WO2005100954A1 (en) 2004-04-12 2004-04-12 Method for calibrating particle counter

Publications (1)

Publication Number Publication Date
WO2005100954A1 true WO2005100954A1 (en) 2005-10-27

Family

ID=35150108

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/005196 WO2005100954A1 (en) 2004-04-12 2004-04-12 Method for calibrating particle counter

Country Status (1)

Country Link
WO (1) WO2005100954A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009098215A1 (en) * 2008-02-06 2009-08-13 Basf Se Measurement system for the multidimensional aerosol characterization
WO2017129548A1 (en) * 2016-01-28 2017-08-03 Laboratoire National De Metrologie Et D'essais Calibration appliance of a particle analyser
EP2220629A4 (en) * 2007-11-16 2017-11-15 Particle Measuring Systems, Inc. System and method for calibration verification of an optical particle counter

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10206302A (en) * 1997-01-21 1998-08-07 Nippon Kagaku Kogyo Kk Particulate dispersing method, particulate dispersing device and particle size distribution measuring device
JPH10288601A (en) * 1997-04-15 1998-10-27 Rikagaku Kenkyusho Device and method for analyzing fine grain
JP2000266660A (en) * 1999-03-19 2000-09-29 Daikin Ind Ltd Particle for inspecting air filter and method for inspecting air filter
JP2002301360A (en) * 2001-04-09 2002-10-15 Nippon Sanso Corp Method and device for manufacturing gas containing metal particles, and method and device for evaluating particle measuring instrument and particle collector

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10206302A (en) * 1997-01-21 1998-08-07 Nippon Kagaku Kogyo Kk Particulate dispersing method, particulate dispersing device and particle size distribution measuring device
JPH10288601A (en) * 1997-04-15 1998-10-27 Rikagaku Kenkyusho Device and method for analyzing fine grain
JP2000266660A (en) * 1999-03-19 2000-09-29 Daikin Ind Ltd Particle for inspecting air filter and method for inspecting air filter
JP2002301360A (en) * 2001-04-09 2002-10-15 Nippon Sanso Corp Method and device for manufacturing gas containing metal particles, and method and device for evaluating particle measuring instrument and particle collector

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Light scattering automatic particle counter", JAPANESE INDUSTRIAL STANDARD (JIS B 9921), 1 October 1997 (1997-10-01), pages 1 - 20, XP002995826 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2220629A4 (en) * 2007-11-16 2017-11-15 Particle Measuring Systems, Inc. System and method for calibration verification of an optical particle counter
WO2009098215A1 (en) * 2008-02-06 2009-08-13 Basf Se Measurement system for the multidimensional aerosol characterization
JP2011511293A (en) * 2008-02-06 2011-04-07 ビーエーエスエフ ソシエタス・ヨーロピア Measurement system for multi-dimensional aerosol characterization
US8181505B2 (en) 2008-02-06 2012-05-22 Basf Se Measurement system for the multidimensional aerosol characterization
WO2017129548A1 (en) * 2016-01-28 2017-08-03 Laboratoire National De Metrologie Et D'essais Calibration appliance of a particle analyser
FR3047312A1 (en) * 2016-01-28 2017-08-04 Laboratoire Nat De Metrologie Et Dessais APPARATUS FOR CALIBRATING A PARTICULATE ANALYZER

Similar Documents

Publication Publication Date Title
US9891154B2 (en) System and method for converting optical diameters of aerosol particles to mobility and aerodynamic diameters
US11435275B2 (en) Particle characterisation
CN108426808B (en) Particulate matter measuring apparatus and method for determining mass concentration of particulate matter in aerosol
JP2005502044A (en) Measuring method of particle distribution characteristics
Lieberherr et al. Assessment of real-time bioaerosol particle counters using reference chamber experiments
US20130060509A1 (en) System and method for detecting aerosol particles in atmosphere and counting aerosol particles with respect to each particle size
GB2429058A (en) Methods and apparatus for determining the size and shape of particles
CN110132802B (en) Online detection device and online detection method for particle size and particle concentration
US7379577B2 (en) Method and apparatus for particle measurement employing optical imaging
TWI785253B (en) Embedded particle depth binning based on multiple scattering signals
JP5450161B2 (en) Defect inspection apparatus and defect inspection method
Kuhn et al. Evaluation of different techniques for particle size distribution measurements on laser-generated aerosols
Stein et al. An evaluation of mass-weighted size distribution measurements with the model 3320 aerodynamic particle sizer
Wu et al. A bilateral comparison of particle number concentration standards via calibration of an optical particle counter for number concentration up to∼ 1000 cm− 3
WO2005100954A1 (en) Method for calibrating particle counter
Friehmelt et al. Calibration of a white-light/90° optical particle counter for “aerodynamic” size measurements—experiments and calculations for spherical particles and quartz dust
CN113874707A (en) Method for determining the particle size distribution of an aerosol and aerosol measuring device
TW202041852A (en) Die screening using inline defect information
CN110312922B (en) Particle characterization apparatus and method
CN115427781A (en) Method for determining particle velocity of aerosol and aerosol measuring device
JP5717136B2 (en) Particle measuring device
CN111272622A (en) Aerosol mass concentration determination method, device and system
WO2019057379A1 (en) Device for real-time detection and chemical identification of particles contained in aerosols, in particular in atmospheric aerosols
JP4079374B2 (en) Method for evaluating the number concentration of suspended particles with a specific particle size
Huněk et al. The Comparison of Laser Diffraction, PDA and Photogrammetry for Aerosol Measurement

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase