JPH10205486A - Vacuum pump - Google Patents

Vacuum pump

Info

Publication number
JPH10205486A
JPH10205486A JP9350533A JP35053397A JPH10205486A JP H10205486 A JPH10205486 A JP H10205486A JP 9350533 A JP9350533 A JP 9350533A JP 35053397 A JP35053397 A JP 35053397A JP H10205486 A JPH10205486 A JP H10205486A
Authority
JP
Japan
Prior art keywords
vacuum pump
back pressure
side mechanism
pressure side
pump according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9350533A
Other languages
Japanese (ja)
Other versions
JP4235273B2 (en
Inventor
Hersch Kurt
クルト・ヘルシュ
Lotz Heinrich
ハインリヒ・ロッツ
Mettler Matthias
マティアス・メートラー
Reichardt Heinz
ハインツ・ライヒハルト
Stanzell Joerg
イェルク・シュタンツェル
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pfeiffer Vacuum GmbH
Original Assignee
Pfeiffer Vacuum GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=7818235&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH10205486(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Pfeiffer Vacuum GmbH filed Critical Pfeiffer Vacuum GmbH
Publication of JPH10205486A publication Critical patent/JPH10205486A/en
Application granted granted Critical
Publication of JP4235273B2 publication Critical patent/JP4235273B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/06Units comprising pumps and their driving means the pump being electrically driven
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/5806Cooling the drive system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/582Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps
    • F04D29/584Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps cooling or heating the machine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/582Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps
    • F04D29/5853Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps heat insulation or conduction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/05Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
    • F04D29/056Bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/60Fluid transfer
    • F05D2260/607Preventing clogging or obstruction of flow paths by dirt, dust, or foreign particles

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Non-Positive Displacement Air Blowers (AREA)
  • Electrophonic Musical Instruments (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent accumulation of condensed liquid and a solidified solid in a pump and to prevent overheating of a constitution member on which an adverse influence is exercised by a high temperature. SOLUTION: The whole of a vacuum pump is divided into three mechanism parts of a mechanism part 1 on the high vacuum side; a mechanism part 2 on the back pressure side; and a drive/bearing mechanism part 3. The three mechanism parts are heat-insulated from each other. The heat insulation is achieved in a way that the area of a contact surface between the adjoining mechanism part is decreased by excess lump removing parts 15, 16, and 17 in a radial direction and an axial direction formed by turning. Further, a contact surface incapable of being structurally eliminated is formed of a heat insulation material. Since a heating element, a cooling device, and a temperature sensor are arranged, a desired temperature condition is satisfied throughout the whole area of the internal parts of the mechanism on the high vacuum side and the mechanism on the back pressure side.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、真空ポンプに関す
るものであり、真空ポンプには例えば、ターボ分子ポン
プ、分子ポンプ、ないしはそれらを組み合わせたものが
ある。より詳しくは、本発明は、互いに協働してポンプ
作用を発生する回転側部材と固定側部材とを有する高真
空側機構部及び背圧側機構部を備え、更に駆動/軸受機
構部を備えた真空ポンプに関する。尚、以下の説明にお
いては、真空ポンプのことをときに摩擦ポンプと呼ぶこ
とがある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vacuum pump, and examples of the vacuum pump include a turbo molecular pump, a molecular pump, and a combination thereof. More specifically, the present invention includes a high vacuum side mechanism and a back pressure side mechanism having a rotating side member and a fixed side member that cooperate with each other to generate a pump action, and further includes a drive / bearing mechanism. It relates to a vacuum pump. In the following description, the vacuum pump is sometimes called a friction pump.

【0002】[0002]

【従来の技術】この種の真空ポンプは、多くの場合、複
数のポンプ段を有する多段ポンプとして構成されてお
り、異なった種類のポンプ段が組み合わされていること
もある。また、各ポンプ段は、ロータ部材とそれに対応
したステータ部材とで構成されている。ポンプ作用を発
生するロータ部材及びステータ部材は、ポンプ作用によ
って輸送する気体の流動方向である軸心方向に列設され
ている。気体流量を最大にしたり、圧縮比を最大にした
りすることのできる、最適ポンプ性能を発揮させるに
は、回転側部材を高速で回転させねばならない。この高
速回転に要する駆動エネルギのうち、気体の運動エネル
ギに変換されるのはほんの一部に過ぎない。駆動エネル
ギの大部分は、損失熱として放散されることになる。更
に、それ以外にも不都合な熱の発生があり、そのような
熱は、軸受からも発生し(ボールベアリングの場合には
摩擦による機械損失熱として発生し磁気軸受の場合には
電気損失熱として発生する)、また、気体が圧縮される
ことによっても発生する。これら熱発生源によって、駆
動/軸受機構部と、ポンプ作用を発生する構成部材を備
えた機構部とに、不都合な温度上昇が発生し、そのよう
な温度上昇がそれら機構部に悪影響を及ぼすことがあ
る。極端な場合には、ロータの回転が停止することもあ
り、更にはポンプが損傷することすらある。そのため、
高い精度を要求される構成部材が過熱するのを防止する
ために、この種のポンプには冷却装置が備えられてい
る。
2. Description of the Related Art Vacuum pumps of this type are often configured as multi-stage pumps having a plurality of pump stages, and different types of pump stages may be combined. Each pump stage is composed of a rotor member and a corresponding stator member. The rotor member and the stator member that generate the pumping action are arranged in an axial direction, which is the flow direction of the gas transported by the pumping action. In order to achieve the optimum pump performance that can maximize the gas flow rate and the compression ratio, the rotating member must be rotated at high speed. Of the drive energy required for this high-speed rotation, only a small part is converted into kinetic energy of gas. Most of the driving energy will be dissipated as lost heat. In addition, there is other undesired heat generation, such heat is also generated from bearings (in the case of ball bearings, it is generated as mechanical loss heat due to friction, and in the case of magnetic bearings, it is generated as electric loss heat). Occurs), and also occurs when the gas is compressed. These heat sources cause undesired temperature rises in the drive / bearing mechanism and the mechanism provided with the components generating the pumping action, and such a temperature rise adversely affects these mechanisms. There is. In extreme cases, the rotation of the rotor may stop and even the pump may be damaged. for that reason,
In order to prevent components that require high precision from being overheated, this type of pump is provided with a cooling device.

【0003】[0003]

【発明が解決しようとする課題】以上に説明した種類の
摩擦ポンプは、例えば化学プロセスの工程や半導体製造
の工程などにますます多用されるようになってきてお
り、そのような用途においては、凝縮しやすい気体がポ
ンプに大量に流入してくることがある。更に、そのよう
な用途においては、真空容器を超高真空にまで排気しな
ければならないことがある。そのような場合に、ポンプ
機構部が輸送している気体が、そのポンプ機構部におい
て、層流が支配的になるほどの圧力にまで圧縮されるこ
とがある。この場合、そのポンプ機構部においては、比
較的高い圧力の気体が比較的大量に輸送されることにな
る。その気体が凝縮しやすい気体であった場合には、ま
た特にその気体の温度が低温であった場合には、その気
体のかなりの部分が凝縮して液体になり或いは凝固して
固体になる。これによって侵蝕作用や腐蝕作用が生じる
ため、個々の構成部材が損傷することがあり、更にはポ
ンプ全体が破損することもある。凝固した固体物質が堆
積することによって、特に分子ポンプ機構部においては
元々非常に狭い隙間が更に狭まり、それによって出力低
下が発生し、また最悪の場合には、ポンプの破損にまで
つながることがある。
SUMMARY OF THE INVENTION Friction pumps of the type described above are becoming more and more used, for example, in the process of chemical processing and in the production of semiconductors. A large amount of gas that easily condenses may flow into the pump. Further, in such applications, the vacuum vessel may have to be evacuated to an ultra-high vacuum. In such a case, the gas transported by the pump mechanism may be compressed in the pump mechanism to a pressure at which laminar flow becomes dominant. In this case, a relatively high pressure gas is transported in a relatively large amount in the pump mechanism. If the gas is a condensable gas, and particularly if the temperature of the gas is low, a significant portion of the gas will condense to a liquid or solidify to a solid. This causes erosion and corrosion, which can damage individual components and even the entire pump. The accumulation of solidified solids, particularly in the molecular pumping mechanism, narrows the gap that was originally very narrow, which can lead to reduced output and, in the worst case, even to pump failure. .

【0004】先に述べたように、ここに説明している種
類の真空ポンプは、高い精度を要求される構成部材が過
熱するのを防止するために冷却装置を装備する必要があ
る。ところが一方では、その冷却装置の作用によって、
凝縮した液体や凝固した固体の堆積が助長されてしまう
ということがあり、それによっても、以上に説明したよ
うな、この種のポンプの動作に付随する問題が発生する
ことがある。
As mentioned earlier, vacuum pumps of the type described here need to be equipped with a cooling device in order to prevent components requiring high precision from overheating. However, on the other hand, by the action of the cooling device,
The accumulation of condensed liquids and solidified solids can be promoted, which can also cause problems associated with the operation of such pumps, as described above.

【0005】そのため、上述の種類の真空ポンプを、例
えば化学プロセスや半導体製造等の用途に使用する場合
であって、しかもその用途において、その真空ポンプが
広い圧力範囲に亙って機能しなければならない場合に
は、その真空ポンプの構造は、両立が完全に不可能では
ないまでも、本質的に相反する2つの条件を満たさねば
ならないことになる。
Therefore, a vacuum pump of the type described above is used for applications such as chemical processes and semiconductor manufacturing, and if the vacuum pump does not function over a wide pressure range in such applications. If not, the construction of the vacuum pump would have to fulfill two essentially conflicting, if not completely impossible, conditions.

【0006】ヨーロッパ特許公報EP−O−35268
8号には、高温の構成部材から低温の構成部材への熱伝
達を防止するために、それら高温の構成部材と低温の構
成部材との間に付加部材として熱抵抗の大きな部材を配
設した構造が示されている。しかしながら、このような
構造には、外形寸法が大きくなるという欠点がある。こ
れに加えて、パッキングや連結部材も付加する必要があ
る。それら付加部材はいずれも高い精度を要求される構
成部材であり、また、それら付加部材のために全体の構
造が複雑化している。更に、以上の欠点は、ポンプの多
数の機構部を互いに熱的に分離しようとするときには倍
加することになる。
[0006] European Patent Publication EP-O-35268.
In No. 8, a member having a large thermal resistance is provided as an additional member between the high-temperature component and the low-temperature component in order to prevent heat transfer from the high-temperature component to the low-temperature component. The structure is shown. However, such a structure has the disadvantage that the external dimensions are large. In addition, it is necessary to add a packing and a connecting member. All of these additional members are components that require high accuracy, and the additional members complicate the overall structure. Furthermore, the above disadvantages are compounded when the multiple mechanical parts of the pump are to be thermally separated from one another.

【0007】従って本発明の目的は、広い圧力範囲に亙
って動作可能な摩擦ポンプ形の真空ポンプであって、凝
縮した液体ないし凝固した固体の堆積を高度に防止し得
ると共に、高温によって悪影響を受ける構成部材の過熱
を防止し得る真空ポンプを提供することにある。また、
これらを可能にする上で、真空ポンプの外形寸法が増大
したり、高い精度を要求される構成部品を余分に必要と
したりすることがないようにすることも重要である。
Accordingly, it is an object of the present invention to provide a vacuum pump of the friction pump type operable over a wide pressure range, which can highly prevent the accumulation of condensed liquids or solidified solids and which is adversely affected by high temperatures. It is an object of the present invention to provide a vacuum pump capable of preventing overheating of components receiving the vacuum pump. Also,
In order to make these possible, it is also important that the external dimensions of the vacuum pump do not increase and that no extra components requiring high precision are required.

【0008】[0008]

【課題を解決するための手段】上記目的は、請求項1の
特徴部分に記載した構成要件によって達成される。ま
た、請求項2乃至10は、本発明の実施の形態にかかる
具体的な構成を記載したものである。
The above object is achieved by the features described in the characterizing part of claim 1. Claims 2 to 10 describe specific configurations according to the embodiments of the present invention.

【0009】請求項1の特徴部分に記載した構成要件を
備えた真空ポンプの構成によれば、また、請求項1に従
属する夫々の従属請求項に記載した真空ポンプの構成に
よれば、この種のポンプの構造に関する基本的条件であ
る互いに相反する2つの条件が共に満足される。真空ポ
ンプ3つの機構部である高真空側機構部、背圧側機構
部、及び駆動/軸受機構部は、旋削によって形成した径
方向及び軸心方向の逃げ部、即ち肉抜き部によってそれ
ら機構部どうしの間の接触面の面積を減少させること
で、互いに熱的に分離されている。更に、構造的に省略
不可能な接触面は、断熱材料で構成するようにした。高
真空側機構部に対しては、背圧側機構部からも、また駆
動/軸受機構部からも独立して、温度調節操作を加える
ことができ、即ち、個々の用途において必要とされる、
或いは、その用途プロセスの各段階において必要とされ
る、冷却や加熱の制御を行うことができる。このこと
は、背圧側機構部についても同様である。例えば、圧力
が上昇するために凝縮した液体や凝固した固体が盛んに
堆積するという事態は、温度を意図的に上昇させること
で防止することができる。更に、駆動/軸受機構部にお
いて動作中に発生する熱は冷却によって除去されるた
め、この駆動/軸受機構部からその他の機構部への無規
制な或いは不都合な熱伝導が防止される。
According to the structure of the vacuum pump having the constituent features described in the characterizing part of claim 1, and according to the structure of the vacuum pump described in each dependent claim dependent on claim 1, Two mutually contradictory conditions, which are basic conditions for the structure of a kind of pump, are both satisfied. The high vacuum side mechanism, the back pressure side mechanism, and the drive / bearing mechanism, which are the three mechanism parts of the vacuum pump, are separated from each other by a relief part in the radial and axial directions formed by turning, that is, a lightening part. By reducing the area of the contact surfaces between them, they are thermally separated from each other. Further, the contact surface which cannot be omitted structurally is made of a heat insulating material. For the high vacuum side mechanism, a temperature control operation can be applied independently from the back pressure side mechanism and also from the drive / bearing mechanism, that is, required for individual applications,
Alternatively, control of cooling and heating required at each stage of the application process can be performed. The same applies to the back pressure side mechanism. For example, a situation in which condensed liquid or solidified solid accumulates actively due to an increase in pressure can be prevented by intentionally increasing the temperature. Further, since heat generated during operation of the drive / bearing mechanism is removed by cooling, unregulated or inconvenient heat conduction from the drive / bearing mechanism to other mechanisms is prevented.

【0010】[0010]

【発明の実施の形態】以下に図面を参照しつつ、本発明
を、その実施の形態に即して更に詳細に説明して行く。
図示した真空ポンプは3つの機構部を連結した構造を有
するものであり、それら3つの機構部とは、高真空側機
構部1、背圧側機構部2、それに駆動/軸受機構部3で
ある。高真空側機構部1は、図示した実施の形態では、
ターボ分子ポンプとして構成されており、複数のロータ
側羽根車9と、複数のステータ側羽根車10とを有し、
吸気口13を備えている。背圧側機構部2は、図示した
実施の形態では、ホルベックポンプ形の分子ポンプとし
て構成されている。この分子ポンプは、回転する円筒部
材11と、螺旋溝を形成したステータ側部材12とを備
えている。尚、参照番号14は排気口である。駆動/軸
受機構部3は、実質的に一体化されて駆動モータ4とし
て構成されており、この駆動モータ4は軸8を回転駆動
する。軸8には、高真空側機構部1及び背圧側機構部2
の夫々の回転側構成部材が取り付けられており、また、
この軸8を軸支するための軸受機構も取り付けられてい
る。この軸受機構は、図示した実施の形態では、アキシ
ャル磁気軸受5とラジアル機器軸受6とで構成されてい
る。また更に、パッシブ形のラジアル磁気軸受7が、高
真空側機構部1に配設されている。ただし、これら磁気
軸受の一部または全てを、例えばボールベアリング等の
その他の種類の軸受に替えてもよく、そのように変更し
ても、本発明の本質は変わることはない。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in more detail with reference to the drawings according to an embodiment.
The illustrated vacuum pump has a structure in which three mechanism parts are connected, and these three mechanism parts are a high vacuum side mechanism part 1, a back pressure side mechanism part 2, and a drive / bearing mechanism part 3. The high vacuum side mechanism 1 is, in the illustrated embodiment,
It is configured as a turbo molecular pump, and has a plurality of rotor-side impellers 9 and a plurality of stator-side impellers 10,
An intake port 13 is provided. In the illustrated embodiment, the back pressure side mechanism 2 is configured as a Holbek pump type molecular pump. This molecular pump includes a rotating cylindrical member 11 and a stator-side member 12 having a spiral groove. Reference numeral 14 denotes an exhaust port. The drive / bearing mechanism 3 is substantially integrated into a drive motor 4, which drives a shaft 8. The shaft 8 has a high vacuum side mechanism 1 and a back pressure side mechanism 2
Each rotation side component member is attached, and
A bearing mechanism for supporting the shaft 8 is also mounted. In the illustrated embodiment, this bearing mechanism comprises an axial magnetic bearing 5 and a radial equipment bearing 6. Further, a passive type radial magnetic bearing 7 is provided in the high vacuum side mechanism 1. However, some or all of these magnetic bearings may be replaced with other types of bearings, such as ball bearings, for example, and such modifications do not change the essence of the present invention.

【0011】高真空側機構部1と背圧側機構部2との間
には、それら機構部を互いに断熱することを目的とし
て、旋削によって形成した径方向及び軸心方向の逃げ
部、即ち肉抜き部15を設けてある。同様に、背圧側機
構部2と駆動/軸受機構部3との間にも、旋削によって
形成した径方向及び軸心方向の逃げ部、即ち肉抜き部1
6を設けてある。また、高真空側機構部1を駆動/軸受
機構部3から断熱するために、図示の実施の形態では、
軸8に、旋削によって切欠き部、即ち肉抜き部17を形
成している。更に、構造的に肉抜き部を形成することが
できない部位や、構造的に接触面をなくすことができな
い部位においては、熱伝導率の小さな材料、即ち熱不良
導体材料で、その接触面を構成するようにすればよい。
そのために、例えば高真空側機構部1と背圧側機構部2
との間の番号18で示した部位には、その種の材料で形
成した装着部材を介装してあり、また、背圧側機構部2
と駆動/軸受機構部3との間の番号19で示した部位に
も、同様の装着部材を介装してある。高真空側機構部1
と駆動/軸受機構部3とは、例えば軸8の番号20で示
した部位に、熱不良導体材料で形成した装着部材を介装
することで、互いに熱的に分離することができる。
Between the high vacuum side mechanism section 1 and the back pressure side mechanism section 2, radial and axial relief sections formed by turning, ie, lightening, are provided for the purpose of insulating the mechanisms from each other. A part 15 is provided. Similarly, between the back pressure side mechanism unit 2 and the drive / bearing mechanism unit 3, a relief part in the radial direction and the axial center direction formed by turning, that is, a lightening part 1 is also provided.
6 is provided. In order to insulate the high vacuum side mechanism 1 from the drive / bearing mechanism 3, in the illustrated embodiment,
A notch, that is, a lightened portion 17 is formed on the shaft 8 by turning. Further, in a portion where a hollow portion cannot be formed structurally or a portion where a contact surface cannot be eliminated structurally, the contact surface is formed of a material having a low thermal conductivity, that is, a thermally defective conductor material. What should I do?
For this purpose, for example, the high vacuum side mechanism 1 and the back pressure side mechanism 2
A mounting member made of such a material is interposed in a portion indicated by reference numeral 18 between the back pressure side mechanism 2
A similar mounting member is also interposed at a portion indicated by reference numeral 19 between the motor and the drive / bearing mechanism 3. High vacuum side mechanism 1
The drive / bearing mechanism 3 can be thermally separated from each other, for example, by interposing a mounting member made of a heat-defective conductor material at a portion indicated by reference numeral 20 of the shaft 8.

【0012】高真空側機構部1の温度調節即ち温度制御
を行うために、冷却装置21と加熱装置23とを備えて
いる。更に、温度センサ25を使用して、高真空側機構
部1の温度をモニタして加熱動作ないし冷却動作を制御
できるようにしている。また背圧側機構部2を加熱する
ために、複数の棒状の加熱エレメント24を備えてお
り、それら加熱エレメント24は、ハウジングの外部か
らハウジングを貫通して内部へ径方向に突出している。
更に、温度センサ26を使用して、背圧側機構部2の温
度をモニタして加熱エレメント24を制御できるように
している。駆動/軸受機構部3は、その内部で発生した
熱を排除するための冷却装置22を備えている。
A cooling device 21 and a heating device 23 are provided to control the temperature of the high vacuum side mechanism 1, that is, to control the temperature. Further, the temperature sensor 25 is used to monitor the temperature of the high vacuum side mechanism 1 to control the heating operation or the cooling operation. Further, in order to heat the back pressure side mechanism 2, a plurality of rod-shaped heating elements 24 are provided, and the heating elements 24 radially project from the outside of the housing to the inside through the housing.
Further, the heating element 24 can be controlled by monitoring the temperature of the back pressure side mechanism 2 using the temperature sensor 26. The drive / bearing mechanism 3 is provided with a cooling device 22 for removing heat generated therein.

【0013】[0013]

【発明の効果】以上の説明から明らかなように、本発明
によれば、真空ポンプが取り扱う気体が凝縮して液体と
なったり、更に凝固して固体となって真空ポンプ内に堆
積することを効果的に防止し得ると共に、真空ポンプの
構成部材のうち高温によって悪影響を受ける構成部材の
過熱を防止し得るという利点が得られる。
As is apparent from the above description, according to the present invention, the gas handled by the vacuum pump is condensed to become a liquid, or solidified to be solidified and deposited in the vacuum pump. This has the advantage that it is possible to prevent it effectively and to prevent overheating of the components of the vacuum pump that are adversely affected by high temperatures.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態にかかる真空ポンプの縦断
面図である。
FIG. 1 is a longitudinal sectional view of a vacuum pump according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 高真空側機構部 2 背圧側機構部 3 駆動/軸受機構部 15、16、17 肉抜き部 18、19、20 装着部材(断熱部材) DESCRIPTION OF SYMBOLS 1 High vacuum side mechanism part 2 Back pressure side mechanism part 3 Drive / bearing mechanism part 15, 16, 17 Lightening part 18, 19, 20 Mounting member (heat insulation member)

フロントページの続き (72)発明者 マティアス・メートラー ドイツ連邦共和国デー−35759 ドリード ルフ,ヘルボルナー・シュトラーセ 19 (72)発明者 ハインツ・ライヒハルト ドイツ連邦共和国デー−35614 アスラー, シュールシュトラーセ 19 (72)発明者 イェルク・シュタンツェル ドイツ連邦共和国デー−35583 ヴェッツ ラー,ベルクシュトラーセ 4Continued on the front page (72) Inventor Matthias Mettler Federal Republic of Germany Day-35759 Dried Luf, Herborner Straße 19 (72) Inventor Heinz Reichhard Federal Republic of Germany Day-35614 Asler, Schurstraße 19 (72) Inventor Jörg Stanzell Germany Day-35583 Wetzlar, Bergstrasse 4

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 互いに協働してポンプ作用を発生する回
転側部材と固定側部材とを有する高真空側機構部(1)
及び背圧側機構部(2)を備え、更に駆動/軸受機構部
(3)を備えた真空ポンプにおいて、 前記3つの機構部を、それら機構部に対して個別に温度
調節操作を加え得るように構成すると共に、前記3つの
機構部のうちの少なくとも2つの機構部の間を適宜な手
段により互いに断熱したことを特徴とする真空ポンプ。
A high vacuum side mechanism (1) having a rotating side member and a fixed side member that generate a pump action in cooperation with each other.
And a back pressure side mechanism (2), and further comprising a drive / bearing mechanism (3), wherein the three mechanisms can be individually subjected to a temperature control operation with respect to the mechanisms. A vacuum pump, wherein at least two of the three mechanisms are insulated from each other by appropriate means.
【請求項2】 前記機構部どうしが、それら機構部の構
成部材の間に形成されてそれら機構部の構成部材の間の
接触面の面積を減少させる肉抜き部(15、16、1
7)によって、互いに断熱されていることを特徴とする
請求項1記載の真空ポンプ。
2. The lightening portions (15, 16, 1 and 2) formed between the components of the mechanism portions to reduce the area of the contact surface between the components of the mechanism portions.
The vacuum pump according to claim 1, wherein the vacuum pumps are insulated from each other by (7).
【請求項3】 前記機構部どうしが、構造的に省略不可
能な接触面の全体または一部を構成する熱不良導体材料
で形成した部材(18、19、20)によって、互いに
断熱されていることを特徴とする請求項1または2記載
の真空ポンプ。
3. The mechanism parts are insulated from each other by members (18, 19, 20) formed of a poorly-heated conductive material constituting all or a part of a contact surface that cannot be omitted structurally. The vacuum pump according to claim 1 or 2, wherein:
【請求項4】 前記高真空側機構部(1)に冷却装置
(21)を備えたことを特徴とする請求項1乃至3の何
れか1項記載の真空ポンプ。
4. The vacuum pump according to claim 1, wherein a cooling device (21) is provided in the high vacuum side mechanism (1).
【請求項5】 前記高真空側機構部(1)に加熱装置
(23)を備えたことを特徴とする請求項1乃至4の何
れか1項記載の真空ポンプ。
5. The vacuum pump according to claim 1, wherein the high vacuum side mechanism (1) is provided with a heating device (23).
【請求項6】 前記駆動/軸受機構部(3)に冷却装置
(22)を備えたことを特徴とする請求項1乃至5の何
れか1項記載の真空ポンプ。
6. The vacuum pump according to claim 1, wherein the drive / bearing mechanism (3) is provided with a cooling device (22).
【請求項7】 前記背圧側機構部(2)に加熱装置(2
4)を備えたことを特徴とする請求項1乃至6の何れか
1項記載の真空ポンプ。
7. A heating device (2) is provided in the back pressure side mechanism (2).
The vacuum pump according to any one of claims 1 to 6, further comprising (4).
【請求項8】 前記加熱装置(24)が、前記背圧側機
構部(2)のハウジングの内部へ径方向または軸心方向
に突出した棒状の加熱エレメントで構成されていること
を特徴とする請求項7記載の真空ポンプ。
8. The heating device (24) is constituted by a rod-shaped heating element projecting radially or axially into the housing of the back pressure side mechanism (2). Item 7. A vacuum pump according to Item 7.
【請求項9】 前記高真空側機構部(1)に、該高真空
側機構部の温度をモニタして前記加熱装置(23)ない
し前記冷却装置(21)を制御するための温度センサ
(25)を配設したことを特徴とする請求項4または5
記載の真空ポンプ。
9. A temperature sensor (25) for monitoring the temperature of the high vacuum side mechanism and controlling the heating device (23) to the cooling device (21) by the high vacuum side mechanism (1). 6. The method according to claim 5, further comprising:
The described vacuum pump.
【請求項10】 前記背圧側機構部(2)に、該背圧側
機構部の温度をモニタして前記加熱装置(24)を制御
するための温度センサ(26)を配設したことを特徴と
する請求項7または8記載の真空ポンプ。
10. A temperature sensor (26) for monitoring the temperature of the back pressure side mechanism and controlling the heating device (24) is provided in the back pressure side mechanism (2). The vacuum pump according to claim 7 or 8, wherein
JP35053397A 1997-01-24 1997-12-19 Vacuum pump Expired - Fee Related JP4235273B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19702456.4 1997-01-24
DE19702456A DE19702456B4 (en) 1997-01-24 1997-01-24 vacuum pump

Publications (2)

Publication Number Publication Date
JPH10205486A true JPH10205486A (en) 1998-08-04
JP4235273B2 JP4235273B2 (en) 2009-03-11

Family

ID=7818235

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35053397A Expired - Fee Related JP4235273B2 (en) 1997-01-24 1997-12-19 Vacuum pump

Country Status (4)

Country Link
EP (1) EP0855517B1 (en)
JP (1) JP4235273B2 (en)
AT (1) ATE251722T1 (en)
DE (2) DE19702456B4 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002115692A (en) * 2000-10-04 2002-04-19 Osaka Vacuum Ltd Compound vacuum pump
JP2004270692A (en) * 2003-02-18 2004-09-30 Osaka Vacuum Ltd Heat insulation structure of molecular pump
JP2006144590A (en) * 2004-11-17 2006-06-08 Mitsubishi Heavy Ind Ltd Vacuum pump
JP2009047178A (en) * 2003-08-21 2009-03-05 Ebara Corp Turbo vacuum pump and semiconductor manufacturing device provided with turbo vacuum pump
JP2009156096A (en) * 2007-12-25 2009-07-16 Fujitsu Microelectronics Ltd Vacuum pump, and device and method for manufacturing semiconductor device
JP2010025122A (en) * 2003-02-18 2010-02-04 Osaka Vacuum Ltd Heat insulation structure of molecular pump
JP2010138741A (en) * 2008-12-10 2010-06-24 Edwards Kk Vacuum pump
JP2014029129A (en) * 2012-07-31 2014-02-13 Edwards Kk Vacuum pump
WO2014045438A1 (en) * 2012-09-24 2014-03-27 株式会社島津製作所 Turbomolecular pump
JP2015031153A (en) * 2013-07-31 2015-02-16 エドワーズ株式会社 Vacuum pump
CN104454569A (en) * 2013-09-24 2015-03-25 株式会社岛津制作所 Turbo-molecular pump
CN104819158A (en) * 2014-02-05 2015-08-05 株式会社岛津制作所 Turbo-molecular pump
CN104948475A (en) * 2014-03-28 2015-09-30 株式会社岛津制作所 Vacuum pump
JP2018162725A (en) * 2017-03-27 2018-10-18 株式会社島津製作所 Vacuum pump and pump-integrated power supply device
WO2019188732A1 (en) 2018-03-30 2019-10-03 エドワーズ株式会社 Vacuum pump
JP2020534478A (en) * 2017-09-20 2020-11-26 エドワーズ リミテッド A set of vacuum pumps including drag pumps and drag pumps
WO2022054717A1 (en) 2020-09-10 2022-03-17 エドワーズ株式会社 Vacuum pump

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002048088A (en) 2000-07-31 2002-02-15 Seiko Instruments Inc Vacuum pump
DE10107341A1 (en) * 2001-02-16 2002-08-29 Pfeiffer Vacuum Gmbh vacuum pump
DE10142567A1 (en) 2001-08-30 2003-03-20 Pfeiffer Vacuum Gmbh Turbo molecular pump
JP2003269369A (en) * 2002-03-13 2003-09-25 Boc Edwards Technologies Ltd Vacuum pump
EP2589814B3 (en) 2010-07-02 2024-01-24 Edwards Japan Limited Vacuum pump
DE102013109637A1 (en) * 2013-09-04 2015-03-05 Pfeiffer Vacuum Gmbh Vacuum pump and arrangement with a vacuum pump
DE202013008470U1 (en) 2013-09-24 2015-01-08 Oerlikon Leybold Vacuum Gmbh vacuum pump

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE619944A (en) * 1961-08-04 1963-01-09 Snecma Advanced Turbomolecular Vacuum Pump
DE2757599A1 (en) * 1977-12-23 1979-06-28 Kernforschungsz Karlsruhe Rotary molecular pump with bladed rotor and stator - reduces rotor and=or stator temp. to improve compression ratio and=or suction
DE3508483A1 (en) * 1985-03-09 1986-10-23 Leybold-Heraeus GmbH, 5000 Köln HOUSING FOR A TURBOMOLECULAR VACUUM PUMP
JPS6419198A (en) * 1987-07-15 1989-01-23 Hitachi Ltd Vacuum pump
FR2634829B1 (en) * 1988-07-27 1990-09-14 Cit Alcatel VACUUM PUMP
KR950007378B1 (en) * 1990-04-06 1995-07-10 가부시끼 가이샤 히다찌 세이사꾸쇼 Vacuum pump
WO1994000694A1 (en) * 1992-06-19 1994-01-06 Leybold Aktiengesellschaft Gas friction vacuum pump
DE4410903A1 (en) * 1994-03-29 1995-10-05 Leybold Ag System with vacuum pump, measuring device as well as supply, control, operating and display devices

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002115692A (en) * 2000-10-04 2002-04-19 Osaka Vacuum Ltd Compound vacuum pump
JP2004270692A (en) * 2003-02-18 2004-09-30 Osaka Vacuum Ltd Heat insulation structure of molecular pump
JP2010025122A (en) * 2003-02-18 2010-02-04 Osaka Vacuum Ltd Heat insulation structure of molecular pump
JP2009047178A (en) * 2003-08-21 2009-03-05 Ebara Corp Turbo vacuum pump and semiconductor manufacturing device provided with turbo vacuum pump
JP2006144590A (en) * 2004-11-17 2006-06-08 Mitsubishi Heavy Ind Ltd Vacuum pump
JP2009156096A (en) * 2007-12-25 2009-07-16 Fujitsu Microelectronics Ltd Vacuum pump, and device and method for manufacturing semiconductor device
JP2010138741A (en) * 2008-12-10 2010-06-24 Edwards Kk Vacuum pump
JP2014029129A (en) * 2012-07-31 2014-02-13 Edwards Kk Vacuum pump
WO2014045438A1 (en) * 2012-09-24 2014-03-27 株式会社島津製作所 Turbomolecular pump
CN104350283A (en) * 2012-09-24 2015-02-11 株式会社岛津制作所 Turbomolecular pump
US9745989B2 (en) 2012-09-24 2017-08-29 Shimadzu Corporation Turbo-molecular pump
JPWO2014045438A1 (en) * 2012-09-24 2016-08-18 株式会社島津製作所 Turbo molecular pump
JP5924414B2 (en) * 2012-09-24 2016-05-25 株式会社島津製作所 Turbo molecular pump
KR20160037837A (en) * 2013-07-31 2016-04-06 에드워즈 가부시키가이샤 Vacuum pump
US10954962B2 (en) 2013-07-31 2021-03-23 Edwards Japan Limited Vacuum pump
JP2015031153A (en) * 2013-07-31 2015-02-16 エドワーズ株式会社 Vacuum pump
CN104454569A (en) * 2013-09-24 2015-03-25 株式会社岛津制作所 Turbo-molecular pump
CN104819158A (en) * 2014-02-05 2015-08-05 株式会社岛津制作所 Turbo-molecular pump
CN104819158B (en) * 2014-02-05 2017-04-12 株式会社岛津制作所 Turbo-molecular pump
CN104948475B (en) * 2014-03-28 2017-09-12 株式会社岛津制作所 Vavuum pump
CN104948475A (en) * 2014-03-28 2015-09-30 株式会社岛津制作所 Vacuum pump
JP2018162725A (en) * 2017-03-27 2018-10-18 株式会社島津製作所 Vacuum pump and pump-integrated power supply device
US10917940B2 (en) 2017-03-27 2021-02-09 Shimadzu Corporation Vacuum pump and pump-integrated power source device
JP2020534478A (en) * 2017-09-20 2020-11-26 エドワーズ リミテッド A set of vacuum pumps including drag pumps and drag pumps
KR20200138175A (en) 2018-03-30 2020-12-09 에드워즈 가부시키가이샤 Vacuum pump
WO2019188732A1 (en) 2018-03-30 2019-10-03 エドワーズ株式会社 Vacuum pump
US11542950B2 (en) 2018-03-30 2023-01-03 Edwards Japan Limited Vacuum pump
WO2022054717A1 (en) 2020-09-10 2022-03-17 エドワーズ株式会社 Vacuum pump
KR20230062812A (en) 2020-09-10 2023-05-09 에드워즈 가부시키가이샤 vacuum pump

Also Published As

Publication number Publication date
ATE251722T1 (en) 2003-10-15
DE59809829D1 (en) 2003-11-13
EP0855517A2 (en) 1998-07-29
EP0855517B1 (en) 2003-10-08
EP0855517A3 (en) 1999-07-07
DE19702456B4 (en) 2006-01-19
DE19702456A1 (en) 1998-07-30
JP4235273B2 (en) 2009-03-11

Similar Documents

Publication Publication Date Title
JPH10205486A (en) Vacuum pump
JP7048391B2 (en) Vacuum pump
US5707213A (en) Molecular vacuum pump with a gas-cooled rotor
WO2017086135A1 (en) Vacuum pump
US10704555B2 (en) Stator-side member and vacuum pump
JP2006090251A (en) Vacuum pump
CN108506225B (en) Power supply integrated vacuum pump
US10941787B2 (en) Power source integrated vacuum pump having a power source with a substrate in contact with and covering a portion of a cooling surface which is also covered by a heat insulating plate
US10221863B2 (en) Vacuum pump
US20030175131A1 (en) Vacuum pump
US20180279415A1 (en) Vacuum pump and pump-integrated power source device
JP2002303293A (en) Turbo-molecular pump
US20060176720A1 (en) Rotating rectifier with strap and diode assembly
US11629730B2 (en) Vacuum pump
EP3808983B1 (en) Vacuum pump with heater in the side cover
JP2005083271A (en) Vacuum pump
JP4673538B2 (en) Vacuum pump
JP4262457B2 (en) Turbo molecular pump
EP0979947A2 (en) Turbomolecular pump
CN112524059A (en) Method for manufacturing vacuum pump
JP3794775B2 (en) Molecular pump
JPWO2012165105A1 (en) Vacuum pump
CN110863997A (en) Magnetic suspension molecular pump with internal heating device
JP2004270692A (en) Heat insulation structure of molecular pump
US10221864B2 (en) Vacuum pump

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070604

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20070903

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20070906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080321

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20080620

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20080625

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080904

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081204

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081215

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121219

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131219

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees