JP4235273B2 - Vacuum pump - Google Patents

Vacuum pump Download PDF

Info

Publication number
JP4235273B2
JP4235273B2 JP35053397A JP35053397A JP4235273B2 JP 4235273 B2 JP4235273 B2 JP 4235273B2 JP 35053397 A JP35053397 A JP 35053397A JP 35053397 A JP35053397 A JP 35053397A JP 4235273 B2 JP4235273 B2 JP 4235273B2
Authority
JP
Japan
Prior art keywords
vacuum pump
back pressure
side mechanism
high vacuum
pressure side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP35053397A
Other languages
Japanese (ja)
Other versions
JPH10205486A (en
Inventor
クルト・ヘルシュ
ハインリヒ・ロッツ
マティアス・メートラー
ハインツ・ライヒハルト
イェルク・シュタンツェル
Original Assignee
プファイファー・ヴァキューム・ゲーエムベーハー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=7818235&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP4235273(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by プファイファー・ヴァキューム・ゲーエムベーハー filed Critical プファイファー・ヴァキューム・ゲーエムベーハー
Publication of JPH10205486A publication Critical patent/JPH10205486A/en
Application granted granted Critical
Publication of JP4235273B2 publication Critical patent/JP4235273B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/06Units comprising pumps and their driving means the pump being electrically driven
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/5806Cooling the drive system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/582Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps
    • F04D29/584Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps cooling or heating the machine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/582Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps
    • F04D29/5853Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps heat insulation or conduction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/05Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
    • F04D29/056Bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/60Fluid transfer
    • F05D2260/607Preventing clogging or obstruction of flow paths by dirt, dust, or foreign particles

Abstract

The pump has a high vacuum section (1), a pre-vacuum section (2), and a drive and bearing section (3). The three sections are formed and positioned relative to each other, so that they can be subjected to different thermal loads. At least two of the sections are thermally isolated from each other. Isolation is achieved by free turnings (15,16,17) between components, so that contact between them is reduced to a minimum, or by parts (18,19,20) of low heat-conductivity, which form the required contact faces. The high vacuum section has a cooler (21) or heater (23), and the drive and bearing section has a cooler (22) or a heater (24).

Description

【0001】
【発明の属する技術分野】
本発明は、真空ポンプに関するものであり、真空ポンプには例えば、ターボ分子ポンプ、分子ポンプ、ないしはそれらを組み合わせたものがある。より詳しくは、本発明は、互いに協働してポンプ作用を発生する回転側部材と固定側部材とを有する高真空側機構部及び背圧側機構部を備え、更に駆動/軸受機構部を備えた真空ポンプに関する。尚、以下の説明においては、真空ポンプのことをときに摩擦ポンプと呼ぶことがある。
【0002】
【従来の技術】
この種の真空ポンプは、多くの場合、複数のポンプ段を有する多段ポンプとして構成されており、異なった種類のポンプ段が組み合わされていることもある。また、各ポンプ段は、ロータ部材とそれに対応したステータ部材とで構成されている。ポンプ作用を発生するロータ部材及びステータ部材は、ポンプ作用によって輸送する気体の流動方向である軸心方向に列設されている。気体流量を最大にしたり、圧縮比を最大にしたりすることのできる、最適ポンプ性能を発揮させるには、回転側部材を高速で回転させねばならない。この高速回転に要する駆動エネルギのうち、気体の運動エネルギに変換されるのはほんの一部に過ぎない。駆動エネルギの大部分は、損失熱として放散されることになる。更に、それ以外にも不都合な熱の発生があり、そのような熱は、軸受からも発生し(ボールベアリングの場合には摩擦による機械損失熱として発生し磁気軸受の場合には電気損失熱として発生する)、また、気体が圧縮されることによっても発生する。これら熱発生源によって、駆動/軸受機構部と、ポンプ作用を発生する構成部材を備えた機構部とに、不都合な温度上昇が発生し、そのような温度上昇がそれら機構部に悪影響を及ぼすことがある。極端な場合には、ロータの回転が停止することもあり、更にはポンプが損傷することすらある。そのため、高い精度を要求される構成部材が過熱するのを防止するために、この種のポンプには冷却装置が備えられている。
【0003】
【発明が解決しようとする課題】
以上に説明した種類の摩擦ポンプは、例えば化学プロセスの工程や半導体製造の工程などにますます多用されるようになってきており、そのような用途においては、凝縮しやすい気体がポンプに大量に流入してくることがある。更に、そのような用途においては、真空容器を超高真空にまで排気しなければならないことがある。そのような場合に、ポンプ機構部が輸送している気体が、そのポンプ機構部において、層流が支配的になるほどの圧力にまで圧縮されることがある。この場合、そのポンプ機構部においては、比較的高い圧力の気体が比較的大量に輸送されることになる。その気体が凝縮しやすい気体であった場合には、また特にその気体の温度が低温であった場合には、その気体のかなりの部分が凝縮して液体になり或いは凝固して固体になる。これによって侵蝕作用や腐蝕作用が生じるため、個々の構成部材が損傷することがあり、更にはポンプ全体が破損することもある。凝固した固体物質が堆積することによって、特に分子ポンプ機構部においては元々非常に狭い隙間が更に狭まり、それによって出力低下が発生し、また最悪の場合には、ポンプの破損にまでつながることがある。
【0004】
先に述べたように、ここに説明している種類の真空ポンプは、高い精度を要求される構成部材が過熱するのを防止するために冷却装置を装備する必要がある。ところが一方では、その冷却装置の作用によって、凝縮した液体や凝固した固体の堆積が助長されてしまうということがあり、それによっても、以上に説明したような、この種のポンプの動作に付随する問題が発生することがある。
【0005】
そのため、上述の種類の真空ポンプを、例えば化学プロセスや半導体製造等の用途に使用する場合であって、しかもその用途において、その真空ポンプが広い圧力範囲に亙って機能しなければならない場合には、その真空ポンプの構造は、両立が完全に不可能ではないまでも、本質的に相反する2つの条件を満たさねばならないことになる。
【0006】
ヨーロッパ特許公報EP−O−352688号には、高温の構成部材から低温の構成部材への熱伝達を防止するために、それら高温の構成部材と低温の構成部材との間に付加部材として熱抵抗の大きな部材を配設した構造が示されている。しかしながら、このような構造には、外形寸法が大きくなるという欠点がある。これに加えて、パッキングや連結部材も付加する必要がある。それら付加部材はいずれも高い精度を要求される構成部材であり、また、それら付加部材のために全体の構造が複雑化している。更に、以上の欠点は、ポンプの多数の機構部を互いに熱的に分離しようとするときには倍加することになる。
【0007】
従って本発明の目的は、広い圧力範囲に亙って動作可能な摩擦ポンプ形の真空ポンプであって、凝縮した液体ないし凝固した固体の堆積を高度に防止し得ると共に、高温によって悪影響を受ける構成部材の過熱を防止し得る真空ポンプを提供することにある。また、これらを可能にする上で、真空ポンプの外形寸法が増大したり、高い精度を要求される構成部品を余分に必要としたりすることがないようにすることも重要である。
【0008】
【課題を解決するための手段】
上記目的は、請求項1の特徴部分に記載した構成要件によって達成される。また、請求項2乃至10は、本発明の実施の形態にかかる具体的な構成を記載したものである。
【0009】
請求項1の特徴部分に記載した構成要件を備えた真空ポンプの構成によれば、また、請求項1に従属する夫々の従属請求項に記載した真空ポンプの構成によれば、この種のポンプの構造に関する基本的条件である互いに相反する2つの条件が共に満足される。真空ポンプ3つの機構部である高真空側機構部、背圧側機構部、及び駆動/軸受機構部は、旋削によって形成した径方向及び軸心方向の逃げ部、即ち肉抜き部によってそれら機構部どうしの間の接触面の面積を減少させることで、互いに熱的に分離されている。更に、構造的に省略不可能な接触面は、断熱材料で構成するようにした。高真空側機構部に対しては、背圧側機構部からも、また駆動/軸受機構部からも独立して、温度調節操作を加えることができ、即ち、個々の用途において必要とされる、或いは、その用途プロセスの各段階において必要とされる、冷却や加熱の制御を行うことができる。このことは、背圧側機構部についても同様である。例えば、圧力が上昇するために凝縮した液体や凝固した固体が盛んに堆積するという事態は、温度を意図的に上昇させることで防止することができる。更に、駆動/軸受機構部において動作中に発生する熱は冷却によって除去されるため、この駆動/軸受機構部からその他の機構部への無規制な或いは不都合な熱伝導が防止される。
【0010】
【発明の実施の形態】
以下に図面を参照しつつ、本発明を、その実施の形態に即して更に詳細に説明して行く。
図示した真空ポンプは3つの機構部を連結した構造を有するものであり、それら3つの機構部とは、高真空側機構部1、背圧側機構部2、それに駆動/軸受機構部3である。高真空側機構部1は、図示した実施の形態では、ターボ分子ポンプとして構成されており、複数のロータ側羽根車9と、複数のステータ側羽根車10とを有し、吸気口13を備えている。背圧側機構部2は、図示した実施の形態では、ホルベックポンプ形の分子ポンプとして構成されている。この分子ポンプは、回転する円筒部材11と、螺旋溝を形成したステータ側部材12とを備えている。尚、参照番号14は排気口である。駆動/軸受機構部3は、実質的に一体化されて駆動モータ4として構成されており、この駆動モータ4は軸8を回転駆動する。軸8には、高真空側機構部1及び背圧側機構部2の夫々の回転側構成部材が取り付けられており、また、この軸8を軸支するための軸受機構も取り付けられている。この軸受機構は、図示した実施の形態では、アキシャル磁気軸受5とラジアル機器軸受6とで構成されている。また更に、パッシブ形のラジアル磁気軸受7が、高真空側機構部1に配設されている。ただし、これら磁気軸受の一部または全てを、例えばボールベアリング等のその他の種類の軸受に替えてもよく、そのように変更しても、本発明の本質は変わることはない。
【0011】
高真空側機構部1と背圧側機構部2との間には、それら機構部を互いに断熱することを目的として、旋削によって形成した径方向及び軸心方向の逃げ部、即ち肉抜き部15を設けてある。同様に、背圧側機構部2と駆動/軸受機構部3との間にも、旋削によって形成した径方向及び軸心方向の逃げ部、即ち肉抜き部16を設けてある。また、高真空側機構部1を駆動/軸受機構部3から断熱するために、図示の実施の形態では、軸8に、旋削によって切欠き部、即ち肉抜き部17を形成している。更に、構造的に肉抜き部を形成することができない部位や、構造的に接触面をなくすことができない部位においては、熱伝導率の小さな材料、即ち熱不良導体材料で、その接触面を構成するようにすればよい。そのために、例えば高真空側機構部1と背圧側機構部2との間の番号18で示した部位には、その種の材料で形成した装着部材を介装してあり、また、背圧側機構部2と駆動/軸受機構部3との間の番号19で示した部位にも、同様の装着部材を介装してある。高真空側機構部1と駆動/軸受機構部3とは、例えば軸8の番号20で示した部位に、熱不良導体材料で形成した装着部材を介装することで、互いに熱的に分離することができる。
【0012】
高真空側機構部1の温度調節即ち温度制御を行うために、冷却装置21と加熱装置23とを備えている。更に、温度センサ25を使用して、高真空側機構部1の温度をモニタして加熱動作ないし冷却動作を制御できるようにしている。また背圧側機構部2を加熱するために、複数の棒状の加熱エレメント24を備えており、それら加熱エレメント24は、ハウジングの外部からハウジングを通して内部へ径方向に突出している。更に、温度センサ26を使用して、背圧側機構部2の温度をモニタして加熱エレメント24を制御できるようにしている。駆動/軸受機構部3は、その内部で発生した熱を排除するための冷却装置22を備えている。
【0013】
【発明の効果】
以上の説明から明らかなように、本発明によれば、真空ポンプが取り扱う気体が凝縮して液体となったり、更に凝固して固体となって真空ポンプ内に堆積することを効果的に防止し得ると共に、真空ポンプの構成部材のうち高温によって悪影響を受ける構成部材の過熱を防止し得るという利点が得られる。
【図面の簡単な説明】
【図1】本発明の実施の形態にかかる真空ポンプの縦断面図である。
【符号の説明】
1 高真空側機構部
2 背圧側機構部
3 駆動/軸受機構部
15、16、17 肉抜き部
18、19、20 装着部材(断熱部材)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a vacuum pump, and examples of the vacuum pump include a turbo molecular pump, a molecular pump, and a combination thereof. More specifically, the present invention includes a high vacuum side mechanism portion and a back pressure side mechanism portion having a rotation side member and a stationary side member that generate a pump action in cooperation with each other, and further includes a drive / bearing mechanism portion. It relates to a vacuum pump. In the following description, the vacuum pump is sometimes called a friction pump.
[0002]
[Prior art]
This type of vacuum pump is often configured as a multi-stage pump having a plurality of pump stages, and different types of pump stages may be combined. Each pump stage includes a rotor member and a stator member corresponding to the rotor member. The rotor member and the stator member that generate the pumping action are arranged in an axial direction that is the flow direction of the gas transported by the pumping action. In order to achieve optimum pump performance that can maximize the gas flow rate or maximize the compression ratio, the rotating side member must be rotated at high speed. Of the driving energy required for this high-speed rotation, only a part is converted to gas kinetic energy. Most of the drive energy will be dissipated as lost heat. In addition, there is other inconvenient heat generation. Such heat is also generated from the bearings (in the case of ball bearings, it is generated as mechanical loss heat due to friction, and in the case of magnetic bearings, it is generated as electric loss heat). It is also generated when the gas is compressed. Due to these heat generation sources, an undesired temperature rise occurs in the drive / bearing mechanism and the mechanism provided with the component member that generates the pump action, and such a temperature rise has an adverse effect on the mechanism. There is. In extreme cases, the rotation of the rotor may stop, and even the pump may be damaged. Therefore, this type of pump is provided with a cooling device in order to prevent overheating of components that require high accuracy.
[0003]
[Problems to be solved by the invention]
The types of friction pumps described above are increasingly used, for example, in chemical process steps and semiconductor manufacturing steps. In such applications, a large amount of condensable gas is present in the pump. May flow in. Furthermore, in such applications, the vacuum vessel may have to be evacuated to ultra-high vacuum. In such a case, the gas transported by the pump mechanism may be compressed to such a pressure that the laminar flow becomes dominant in the pump mechanism. In this case, a relatively high pressure gas is transported in a relatively large amount in the pump mechanism. If the gas is a condensable gas, and especially if the temperature of the gas is low, a significant portion of the gas condenses into a liquid or solidifies into a solid. As a result, an erosion action and a corrosive action are caused, so that individual components may be damaged, and the entire pump may be damaged. Accumulation of solidified solid material further narrows the gap that was originally very narrow, especially in the molecular pump mechanism, which can lead to reduced output and, in the worst case, can lead to pump failure. .
[0004]
As mentioned above, the type of vacuum pump described here needs to be equipped with a cooling device to prevent overheating of components that require high accuracy. However, on the other hand, the action of the cooling device may encourage the accumulation of condensed liquid or solidified solids, which is also associated with the operation of this type of pump as described above. Problems can occur.
[0005]
Therefore, when the above-mentioned type of vacuum pump is used in applications such as chemical processes and semiconductor manufacturing, and in that application, the vacuum pump must function over a wide pressure range. The structure of the vacuum pump must satisfy two essentially contradictory conditions, if not compatible with each other.
[0006]
In European Patent Publication EP-O-352688, in order to prevent heat transfer from a high temperature component to a low temperature component, thermal resistance is added as an additional member between the high temperature component and the low temperature component. A structure in which large members are arranged is shown. However, such a structure has the disadvantage that the outer dimensions are increased. In addition, it is necessary to add a packing and a connecting member. Each of these additional members is a structural member that requires high accuracy, and the entire structure is complicated due to these additional members. Furthermore, the above disadvantages are doubled when trying to thermally isolate the multiple mechanical parts of the pump from each other.
[0007]
Accordingly, an object of the present invention is a friction pump type vacuum pump operable over a wide pressure range, which can highly prevent the accumulation of condensed liquid or solidified solid and is adversely affected by high temperatures. An object of the present invention is to provide a vacuum pump that can prevent overheating of members. Further, in order to enable these, it is also important that the external dimensions of the vacuum pump are not increased and that no extra components requiring high accuracy are required.
[0008]
[Means for Solving the Problems]
The above object is achieved by the constituent features described in the characterizing part of claim 1. Claims 2 to 10 describe specific configurations according to the embodiment of the present invention.
[0009]
According to the construction of the vacuum pump with the constituent features described in the characterizing part of claim 1 and according to the construction of the vacuum pump according to the respective dependent claims subordinate to claim 1, such a pump Both of the two mutually contradictory conditions, which are basic conditions regarding the structure, are satisfied. The high vacuum side mechanism part, the back pressure side mechanism part, and the drive / bearing mechanism part, which are three mechanism parts of the vacuum pump, are separated from each other by the radial and axial relief parts formed by turning, that is, the hollow parts. By reducing the area of the contact surface between them, they are thermally isolated from each other. Furthermore, the contact surface that cannot be omitted structurally is made of a heat insulating material. For the high vacuum side mechanism part, the temperature control operation can be applied independently from the back pressure side mechanism part and also from the drive / bearing mechanism part, i.e. as required in individual applications, or The cooling and heating control required at each stage of the application process can be performed. The same applies to the back pressure side mechanism. For example, a situation in which a condensed liquid or a solidified solid is actively accumulated due to an increase in pressure can be prevented by intentionally increasing the temperature. Further, since heat generated during operation in the drive / bearing mechanism is removed by cooling, unregulated or inconvenient heat conduction from the drive / bearing mechanism to other mechanisms is prevented.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in more detail with reference to the drawings in accordance with the embodiment.
The illustrated vacuum pump has a structure in which three mechanism parts are connected. The three mechanism parts are a high vacuum side mechanism part 1, a back pressure side mechanism part 2, and a drive / bearing mechanism part 3. In the illustrated embodiment, the high vacuum side mechanism unit 1 is configured as a turbo molecular pump, and includes a plurality of rotor side impellers 9 and a plurality of stator side impellers 10, and includes an intake port 13. ing. In the illustrated embodiment, the back pressure side mechanism unit 2 is configured as a molecular pump of the Holbeck pump type. The molecular pump includes a rotating cylindrical member 11 and a stator side member 12 having a spiral groove. Reference numeral 14 is an exhaust port. The drive / bearing mechanism section 3 is substantially integrated and configured as a drive motor 4, and the drive motor 4 rotates the shaft 8. The shaft 8 is provided with the rotation-side constituent members of the high vacuum side mechanism portion 1 and the back pressure side mechanism portion 2, and a bearing mechanism for supporting the shaft 8 is also attached. In the illustrated embodiment, the bearing mechanism includes an axial magnetic bearing 5 and a radial device bearing 6. Furthermore, a passive radial magnetic bearing 7 is disposed in the high vacuum side mechanism unit 1. However, some or all of these magnetic bearings may be replaced with other types of bearings such as ball bearings, and even if such changes are made, the essence of the present invention does not change.
[0011]
Between the high vacuum side mechanism part 1 and the back pressure side mechanism part 2, a radial and axial relief part formed by turning, that is, a hollow part 15 is formed for the purpose of insulating the mechanism parts from each other. It is provided. Similarly, between the back pressure side mechanism portion 2 and the drive / bearing mechanism portion 3, radial and axial relief portions formed by turning, that is, a hollow portion 16 are provided. Further, in order to insulate the high vacuum side mechanism 1 from the drive / bearing mechanism 3, in the illustrated embodiment, the shaft 8 is formed with a notch, ie, a cutout 17, by turning. Furthermore, in areas where it is not possible to structurally form a hollowed-out part or where the contact surface cannot be eliminated structurally, the contact surface is made of a material having a low thermal conductivity, that is, a poor heat conductor material. You just have to do it. For this purpose, for example, an attachment member formed of such a material is interposed in a portion indicated by a number 18 between the high vacuum side mechanism portion 1 and the back pressure side mechanism portion 2, and the back pressure side mechanism A similar mounting member is also interposed in a portion indicated by reference numeral 19 between the portion 2 and the drive / bearing mechanism portion 3. The high vacuum side mechanism unit 1 and the drive / bearing mechanism unit 3 are thermally separated from each other by interposing a mounting member formed of a poor heat conductor material, for example, at a portion indicated by the number 20 of the shaft 8. be able to.
[0012]
A cooling device 21 and a heating device 23 are provided to adjust the temperature of the high vacuum side mechanism unit 1, that is, to control the temperature. Furthermore, the temperature sensor 25 is used to monitor the temperature of the high vacuum side mechanism unit 1 so that the heating operation or the cooling operation can be controlled. Further, in order to heat the back pressure side mechanism unit 2, a plurality of rod-shaped heating elements 24 are provided, and these heating elements 24 project radially from the outside of the housing to the inside through the housing. Further, the temperature sensor 26 is used to monitor the temperature of the back pressure side mechanism unit 2 so that the heating element 24 can be controlled. The drive / bearing mechanism section 3 includes a cooling device 22 for removing heat generated inside.
[0013]
【The invention's effect】
As is apparent from the above description, according to the present invention, it is possible to effectively prevent the gas handled by the vacuum pump from condensing into a liquid or further solidifying into a solid to be deposited in the vacuum pump. In addition, there is an advantage that overheating of the components of the vacuum pump that are adversely affected by high temperatures can be prevented.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of a vacuum pump according to an embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 High vacuum side mechanism part 2 Back pressure side mechanism part 3 Drive / bearing mechanism part 15, 16, 17 Meat removal part 18, 19, 20 Mounting member (heat insulation member)

Claims (9)

互いに協働してポンプ作用を発生する回転側部材と固定側部材とを有する高真空側機構部(1)及び背圧側機構部(2)を備え、更に駆動/軸受機構部(3)を備えた真空ポンプにおいて、
前記3つの機構部を、それら機構部に対して個別に温度調節操作を加え得るように構成すると共に、前記3つの機構部のそれぞれの間をそれら機構部の構成部材の間に形成されてそれら機構部の構成部材の間の接触面の面積を減少させる肉抜き部(15、16、17)によって、互いに断熱されていることを特徴とする真空ポンプ。
A high vacuum side mechanism part (1) and a back pressure side mechanism part (2) having a rotating side member and a fixed side member that generate a pump action in cooperation with each other are provided, and further a drive / bearing mechanism part (3) is provided. Vacuum pump
The three mechanism parts are configured so that a temperature adjustment operation can be individually applied to the mechanism parts, and between the three mechanism parts are formed between the structural members of the mechanism parts. A vacuum pump characterized in that it is insulated from each other by a lightening portion (15, 16, 17) that reduces the area of the contact surface between the structural members of the mechanism portion.
互いに協働してポンプ作用を発生する回転側部材と固定側部材とを有する高真空側機構部(1)及び背圧側機構部(2)を備え、更に駆動/軸受機構部(3)を備えた真空ポンプにおいて、
前記3つの機構部を、それら機構部に対して個別に温度調節操作を加え得るように構成すると共に、前記3つの機構部のそれぞれの間を熱不良導体材料で形成した部材(18,19,20)によって互いに断熱し、
これにより、構造的理由によって接触が必要な面の全体または一部を該熱不良導体材料で形成した部材によって、形成したことを特徴とする真空ポンプ。
A high vacuum side mechanism part (1) and a back pressure side mechanism part (2) having a rotating side member and a fixed side member that generate a pump action in cooperation with each other are provided, and further a drive / bearing mechanism part (3) is provided. Vacuum pump
The three mechanisms, as well as configured to be added separately temperature control operation on their mechanism, members between each of the three mechanisms is formed by thermally poor conductor material (18, 19, 20) insulate each other by
Thus, a vacuum pump characterized in that the entire surface or part of the surface that needs to be contacted for structural reasons is formed by a member formed of the poor heat conductor material.
前記高真空側機構部(1)に冷却装置(21)を備えたことを特徴とする請求項1又は2記載の真空ポンプ。  The vacuum pump according to claim 1 or 2, wherein the high vacuum side mechanism (1) is provided with a cooling device (21). 前記高真空側機構部(1)に加熱装置(23)を備えたことを特徴とする請求項1乃至3の何れか1項記載の真空ポンプ。  The vacuum pump according to any one of claims 1 to 3, wherein the high vacuum side mechanism (1) includes a heating device (23). 前記駆動/軸受機構部(3)に冷却装置(22)を備えたことを特徴とする請求項1乃至4の何れか1項記載の真空ポンプ。  The vacuum pump according to any one of claims 1 to 4, wherein the drive / bearing mechanism (3) is provided with a cooling device (22). 前記背圧側機構部(2)に加熱装置(24)を備えたことを特徴とする請求項1乃至5の何れか1項記載の真空ポンプ。  The vacuum pump according to any one of claims 1 to 5, wherein the back pressure side mechanism (2) is provided with a heating device (24). 前記加熱装置(24)が、前記背圧側機構部(2)のハウジングの内部へ径方向に突出した棒状の加熱エレメントで構成されていることを特徴とする請求項6記載の真空ポンプ。  The vacuum pump according to claim 6, wherein the heating device (24) is constituted by a rod-shaped heating element projecting radially into the housing of the back pressure side mechanism (2). 前記高真空側機構部(1)に、該高真空側機構部の温度をモニタして
前記加熱装置(23)ないし前記冷却装置(21)を制御するための温度センサ(25)を配設したことを特徴とする請求項3または4記載の真空ポンプ。
The high vacuum side mechanism (1) is provided with a temperature sensor (25) for monitoring the temperature of the high vacuum side mechanism and controlling the heating device (23) to the cooling device (21). The vacuum pump according to claim 3 or 4, characterized in that.
前記背圧側機構部(2)に、該背圧側機構部の温度をモニタして前記加熱装置(24)を制御するための温度センサ(26)を配設したことを特徴とする請求項6または7記載の真空ポンプ。  The temperature sensor (26) for monitoring the temperature of the back pressure side mechanism section and controlling the heating device (24) is disposed in the back pressure side mechanism section (2). 7. The vacuum pump according to 7.
JP35053397A 1997-01-24 1997-12-19 Vacuum pump Expired - Fee Related JP4235273B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19702456.4 1997-01-24
DE19702456A DE19702456B4 (en) 1997-01-24 1997-01-24 vacuum pump

Publications (2)

Publication Number Publication Date
JPH10205486A JPH10205486A (en) 1998-08-04
JP4235273B2 true JP4235273B2 (en) 2009-03-11

Family

ID=7818235

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35053397A Expired - Fee Related JP4235273B2 (en) 1997-01-24 1997-12-19 Vacuum pump

Country Status (4)

Country Link
EP (1) EP0855517B1 (en)
JP (1) JP4235273B2 (en)
AT (1) ATE251722T1 (en)
DE (2) DE19702456B4 (en)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002048088A (en) 2000-07-31 2002-02-15 Seiko Instruments Inc Vacuum pump
JP2002115692A (en) * 2000-10-04 2002-04-19 Osaka Vacuum Ltd Compound vacuum pump
DE10107341A1 (en) * 2001-02-16 2002-08-29 Pfeiffer Vacuum Gmbh vacuum pump
DE10142567A1 (en) 2001-08-30 2003-03-20 Pfeiffer Vacuum Gmbh Turbo molecular pump
JP2003269369A (en) * 2002-03-13 2003-09-25 Boc Edwards Technologies Ltd Vacuum pump
JP2004270692A (en) * 2003-02-18 2004-09-30 Osaka Vacuum Ltd Heat insulation structure of molecular pump
JP2010025122A (en) * 2003-02-18 2010-02-04 Osaka Vacuum Ltd Heat insulation structure of molecular pump
JP4243996B2 (en) * 2003-08-21 2009-03-25 株式会社荏原製作所 Turbo vacuum pump and semiconductor manufacturing apparatus equipped with the turbo vacuum pump
JP4916655B2 (en) * 2004-11-17 2012-04-18 株式会社島津製作所 Vacuum pump
JP5104288B2 (en) * 2007-12-25 2012-12-19 富士通セミコンダクター株式会社 Vacuum pump, semiconductor device manufacturing apparatus, and semiconductor device manufacturing method
JP5486184B2 (en) * 2008-12-10 2014-05-07 エドワーズ株式会社 Vacuum pump
US9217439B2 (en) 2010-07-02 2015-12-22 Edwards Japan Limited Vacuum pump
JP2014029129A (en) * 2012-07-31 2014-02-13 Edwards Kk Vacuum pump
US9745989B2 (en) 2012-09-24 2017-08-29 Shimadzu Corporation Turbo-molecular pump
JP6735058B2 (en) 2013-07-31 2020-08-05 エドワーズ株式会社 Vacuum pump
DE102013109637A1 (en) * 2013-09-04 2015-03-05 Pfeiffer Vacuum Gmbh Vacuum pump and arrangement with a vacuum pump
JP6484919B2 (en) * 2013-09-24 2019-03-20 株式会社島津製作所 Turbo molecular pump
DE202013008470U1 (en) * 2013-09-24 2015-01-08 Oerlikon Leybold Vacuum Gmbh vacuum pump
JP6375631B2 (en) * 2014-02-05 2018-08-22 株式会社島津製作所 Turbo molecular pump
JP6287475B2 (en) * 2014-03-28 2018-03-07 株式会社島津製作所 Vacuum pump
JP6776971B2 (en) * 2017-03-27 2020-10-28 株式会社島津製作所 Vacuum pump and pump-integrated power supply
GB201715151D0 (en) * 2017-09-20 2017-11-01 Edwards Ltd A drag pump and a set of vacuum pumps including a drag pump
JP7048391B2 (en) 2018-03-30 2022-04-05 エドワーズ株式会社 Vacuum pump
JP2022046347A (en) 2020-09-10 2022-03-23 エドワーズ株式会社 Vacuum pump

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE619944A (en) * 1961-08-04 1963-01-09 Snecma Advanced Turbomolecular Vacuum Pump
DE2757599A1 (en) * 1977-12-23 1979-06-28 Kernforschungsz Karlsruhe Rotary molecular pump with bladed rotor and stator - reduces rotor and=or stator temp. to improve compression ratio and=or suction
DE3508483A1 (en) * 1985-03-09 1986-10-23 Leybold-Heraeus GmbH, 5000 Köln HOUSING FOR A TURBOMOLECULAR VACUUM PUMP
JPS6419198A (en) * 1987-07-15 1989-01-23 Hitachi Ltd Vacuum pump
FR2634829B1 (en) * 1988-07-27 1990-09-14 Cit Alcatel VACUUM PUMP
KR950007378B1 (en) * 1990-04-06 1995-07-10 가부시끼 가이샤 히다찌 세이사꾸쇼 Vacuum pump
US5577883A (en) * 1992-06-19 1996-11-26 Leybold Aktiengesellschaft Gas friction vacuum pump having a cooling system
DE4410903A1 (en) * 1994-03-29 1995-10-05 Leybold Ag System with vacuum pump, measuring device as well as supply, control, operating and display devices

Also Published As

Publication number Publication date
EP0855517A2 (en) 1998-07-29
DE59809829D1 (en) 2003-11-13
EP0855517B1 (en) 2003-10-08
EP0855517A3 (en) 1999-07-07
DE19702456B4 (en) 2006-01-19
JPH10205486A (en) 1998-08-04
ATE251722T1 (en) 2003-10-15
DE19702456A1 (en) 1998-07-30

Similar Documents

Publication Publication Date Title
JP4235273B2 (en) Vacuum pump
JP7048391B2 (en) Vacuum pump
US6793466B2 (en) Vacuum pump
JP5924414B2 (en) Turbo molecular pump
JP6666696B2 (en) Vacuum pump
US10704555B2 (en) Stator-side member and vacuum pump
KR100948988B1 (en) Two-shaft vacuum pump
US10941787B2 (en) Power source integrated vacuum pump having a power source with a substrate in contact with and covering a portion of a cooling surface which is also covered by a heat insulating plate
CN108506225B (en) Power supply integrated vacuum pump
US20160273552A1 (en) Vacuum pump
JP2002303293A (en) Turbo-molecular pump
JP4262457B2 (en) Turbo molecular pump
JP3098140B2 (en) Compound molecular pump
JP3794775B2 (en) Molecular pump
JP3201348B2 (en) Turbo molecular pump
JP4673538B2 (en) Vacuum pump
CN112524059A (en) Method for manufacturing vacuum pump
JP2005083271A (en) Vacuum pump
JP2007278192A (en) Turbo-molecular pump
US20220049705A1 (en) Multi-stage turbomolecular pump
JP2564038B2 (en) Turbo molecular pump
JP7378447B2 (en) Vacuum pumps and fixed parts
WO2024043276A1 (en) Vacuum pump and fixed component
JP2023083773A (en) Vacuum pump and good heat conductive component
JP2002115692A (en) Compound vacuum pump

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070604

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20070903

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20070906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080321

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20080620

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20080625

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080904

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081204

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081215

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121219

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131219

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees