JPH10204589A - High temperature regenerator for air cooled absorption type cooling and warming machine for water - Google Patents

High temperature regenerator for air cooled absorption type cooling and warming machine for water

Info

Publication number
JPH10204589A
JPH10204589A JP1082097A JP1082097A JPH10204589A JP H10204589 A JPH10204589 A JP H10204589A JP 1082097 A JP1082097 A JP 1082097A JP 1082097 A JP1082097 A JP 1082097A JP H10204589 A JPH10204589 A JP H10204589A
Authority
JP
Japan
Prior art keywords
mass
less
stainless steel
concentration
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1082097A
Other languages
Japanese (ja)
Other versions
JP3655036B2 (en
Inventor
Toshiro Nagoshi
敏郎 名越
Toshiro Adachi
俊郎 足立
Yukihiro Kawabata
幸寛 川畑
Akinori Nagamatsuya
晃徳 長松谷
Jun Kuroda
純 黒田
Toru Matsumoto
徹 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Yazaki Corp
Original Assignee
Yazaki Corp
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp, Nisshin Steel Co Ltd filed Critical Yazaki Corp
Priority to JP01082097A priority Critical patent/JP3655036B2/en
Publication of JPH10204589A publication Critical patent/JPH10204589A/en
Application granted granted Critical
Publication of JP3655036B2 publication Critical patent/JP3655036B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a regenerator causing neither pitting corrosion nor stress corrosion cracking even under an environment of a liquid absorbent in the neighborhood of 200 deg.C and suitable for an absorption type cooling and warming machine for water for general domestic use, requiring size reduction and high efficiency. SOLUTION: In the high temp. regenerator for an air cooled absorption type cooling and warming machine for water, water is used as a refrigerant and a liquid absorbent containing LiBr, LiI, LiCl, and LiNO3 as essential components and having <=50 mass % LiBr concentration is used. In this case, an austenitic stainless steel, which has a composition consisting of <=0.08% C, 1.0%-5.0% Si, <=1.0% Mn, <=0.045% P, <=0.005% S, 16.0-25.0% Cr, 6.0-20.0% Ni, <=0.1% Al, 0.005-0.35% N, and the balance essentially Fe, containing, if necessary, 0.5-3.0% Cu and/or 0.5-3.0% Mo, and satisfying (Cr+0.5Ni+3Si+3 Mo-5Al)>=30 and is subjected to No.80-600 count polishing finish or to mixed- acid finishing in an aqueous solution of HF-HNO3 of 1-20% HF concentration, is used as a structural material.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、Niろう付けで製作さ
れ、主成分としてLiBr,LiI,LiCl,LiN
3 を含む吸収液を使用する空冷吸収式冷温水機の高温
再生器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is manufactured by Ni brazing and has LiBr, LiI, LiCl, and LiN as main components.
The present invention relates to a high-temperature regenerator for an air-cooled absorption type chiller / heater using an absorbent containing O 3 .

【0002】[0002]

【従来の技術】環境に有害なフロンを冷媒に使用しない
冷暖房システムとして、濃度50質量%以上の高濃度ア
ルカリ性LiBr水溶液を吸収剤に使用する吸収式冷温
水機が注目されている。吸収冷暖房システムでは、たと
えば図1に示すように、高温再生器2で加熱されたLi
Br水溶液6は、濃厚吸収液11と水蒸気冷媒5に分離
される。水蒸気冷媒5は凝縮器1に入り、冷却媒体7に
よって冷却され、凝縮して液冷媒8となり、蒸発器3に
入る。ここで発生した凝縮熱は、冷却媒体7を介してク
ーリングタワー等により外部に放出される。液冷媒8
は、蒸発器3で負荷媒体10から潜熱を奪い、水蒸気冷
媒5’となって吸収器4に入る。熱を奪われ冷却された
負荷媒体10は、冷房ルーム9内に循環され、室内の熱
を奪って冷房する。一方、高温再生器2で濃縮された濃
厚吸収液11は、溶液熱交換器20を介して吸収器4に
入り、熱交換器3から流入した水蒸気冷媒5’を吸収
し、希薄吸収液12となり、溶液熱交換器20を介して
高温再生器2に戻る。水蒸気冷媒5’の吸収により発生
した吸収熱は、冷却媒体7’を介して外部に放熱され
る。
2. Description of the Related Art As a cooling and heating system that does not use environmentally harmful CFCs as a refrigerant, an absorption type chiller / heater using an aqueous solution of high-concentration alkaline LiBr having a concentration of 50% by mass or more as an absorbent has attracted attention. In the absorption cooling and heating system, for example, as shown in FIG.
The Br aqueous solution 6 is separated into the rich absorbing liquid 11 and the steam refrigerant 5. The steam refrigerant 5 enters the condenser 1, is cooled by the cooling medium 7, condenses into a liquid refrigerant 8, and enters the evaporator 3. The heat of condensation generated here is released to the outside through a cooling medium 7 by a cooling tower or the like. Liquid refrigerant 8
Takes the latent heat from the load medium 10 in the evaporator 3 and enters the absorber 4 as a steam refrigerant 5 ′. The load medium 10, which has been deprived of heat and cooled, is circulated in the cooling room 9, and cools by depriving the indoor heat. On the other hand, the concentrated absorbent 11 concentrated in the high-temperature regenerator 2 enters the absorber 4 via the solution heat exchanger 20, absorbs the steam refrigerant 5 'flowing from the heat exchanger 3, and becomes the lean absorbent 12. , And returns to the high temperature regenerator 2 via the solution heat exchanger 20. The absorbed heat generated by the absorption of the steam refrigerant 5 'is radiated to the outside via the cooling medium 7'.

【0003】この吸収式冷暖房システムに使用される高
温再生器2は、たとえば図2に示すような構造をもって
いる。高温再生器2は、希薄吸収液流路及び燃焼排ガス
流路が交互に積層されたプレート型の熱交換器14で構
成されている。希薄吸収液12は、入り口16からプレ
ート型熱交換器14内に送り込まれ、熱源として送り込
まれた燃焼排ガスGによって加熱され、水蒸気冷媒と濃
厚吸収液に分離される。水蒸気冷媒は蒸気出口17から
凝縮器1に、濃厚吸収液は吸収液出口18から吸収器4
に送り出される。燃焼排ガスGは、排気口15から送り
出される。プレート型熱交換器14は、希薄吸収液の漏
洩,大気の混入等を防止するため、ろう付け構造となっ
ており、ろう付け部19でフレーム13にろう付けされ
ている。
[0003] The high-temperature regenerator 2 used in this absorption type cooling and heating system has, for example, a structure as shown in FIG. The high-temperature regenerator 2 includes a plate-type heat exchanger 14 in which a lean absorbent flow path and a combustion exhaust gas flow path are alternately stacked. The lean absorbing liquid 12 is sent into the plate heat exchanger 14 from the inlet 16 and is heated by the combustion exhaust gas G sent as a heat source to be separated into a steam refrigerant and a rich absorbing liquid. The vapor refrigerant flows from the vapor outlet 17 to the condenser 1, and the rich absorbent flows from the absorbent outlet 18 to the absorber 4.
Will be sent to The combustion exhaust gas G is sent out from the exhaust port 15. The plate-type heat exchanger 14 has a brazing structure in order to prevent the leakage of the dilute absorbing liquid and the intrusion of the atmosphere, and is brazed to the frame 13 at the brazing portion 19.

【0004】すでに実用化されている10冷凍トン以上
の業務用大型機や中型機では、炭素鋼やキュプロニッケ
ル等を構造材とする再生器が使用され、LiBrを主成
分とする高濃度のアルカリ性ハロゲン吸収液を約150
℃に加熱している。しかし、数冷凍トン級の一般家庭向
けの用途では、更なる小型化,高性能化が要求されるた
め、凝縮器や吸収器における水蒸気及び吸収液の冷却を
従来の水冷から空冷に切り替え、しかも運転効率を向上
させることが必要となる。そのため、小型空冷式の吸収
式冷暖房機を実用化するには、再生器の運転温度を最高
200℃程度まで上げる必要があり、従来の材料では十
分な耐食性が得られ難い。そこで、従来の材料に代え
て、耐食性及びコストの面からステンレス鋼の使用が検
討されている。
[0004] Commercial large-scale machines and medium-sized machines of 10 refrigeration tons or more, which have already been put into practical use, use regenerators made of carbon steel, cupronickel, or the like as a structural material, and use high-concentration alkaline water containing LiBr as a main component. Approximately 150
Heat to ° C. However, in applications for general households of several refrigeration tons, further miniaturization and higher performance are required, so the cooling of water vapor and absorbing liquid in the condenser and absorber is switched from conventional water cooling to air cooling, and It is necessary to improve operation efficiency. Therefore, in order to commercialize a small air-cooled absorption type air conditioner, it is necessary to raise the operating temperature of the regenerator to a maximum of about 200 ° C., and it is difficult to obtain sufficient corrosion resistance with conventional materials. Therefore, the use of stainless steel in consideration of corrosion resistance and cost has been studied instead of conventional materials.

【0005】吸収式冷温水機用のフェライト系ステンレ
ス鋼については、高濃度ハロゲン化物中での耐食性がA
l,Co,Cr,Ni,Mo,Cu等の添加により向上
することが特公平6−37692号公報,特公平5−3
4419号公報等で紹介されている。オーステナイト系
ステンレス鋼については、Cr,Ni,Mo,Cu,S
i等の添加が耐食性の改善に有効であることが特開平2
−298237号公報に紹介されている。特開平7−3
5433号公報は、フェライト系,オーステナイト系を
問わず、Si添加鋼が吸収式冷暖房機用材料として優れ
た耐食性を示すことを紹介している。
[0005] Ferritic stainless steel for absorption type water heaters has a corrosion resistance of A in high concentration halides.
Japanese Patent Publication No. 6-37692 and Japanese Patent Publication No. 5-3 describe that the improvement can be achieved by the addition of 1, Co, Cr, Ni, Mo, Cu and the like.
No. 4419, and the like. For austenitic stainless steel, Cr, Ni, Mo, Cu, S
It has been found that the addition of i or the like is effective in improving the corrosion resistance.
-298237. JP-A-7-3
No. 5,433, introduces that Si-added steels exhibit excellent corrosion resistance as materials for absorption type air conditioners, regardless of whether they are ferritic or austenitic.

【0006】[0006]

【発明が解決しようとする課題】吸収式冷暖房機を数冷
凍トン級の一般家庭向けの用途に適したものとするため
には、高温再生器の運転効率を向上させるために再生器
温度を約200℃程度まで上げることが必要である。ま
た、再生器の性能向上を図るため、熱交換部位を複雑な
形状にすることが好ましい。複雑形状の熱交換部位をも
つ熱交換器の組立て作業には、ろう付けが適している。
なかでも、吸収液環境での耐食性,接合強度を確保する
上から、BNi−5によるニッケルろう付けが最も適し
ている。吸収液に関しても、従来の約60%濃度のLi
Br吸収液を主成分とする場合には、200℃で運転す
ると室温冷却時に吸収液の晶析が生じる欠点がある。そ
のため、LiBr−LiI−LiCl−LiNO3 の四
成分系高濃度吸収液が要求されるようになった。
SUMMARY OF THE INVENTION In order to make an absorption type air conditioner suitable for general household use of several refrigeration tons, the regenerator temperature must be reduced to improve the operation efficiency of a high temperature regenerator. It is necessary to raise the temperature to about 200 ° C. In addition, in order to improve the performance of the regenerator, it is preferable that the heat exchange portion has a complicated shape. Brazing is suitable for assembling a heat exchanger having a heat exchange portion having a complicated shape.
Among them, nickel brazing with BNi-5 is most suitable from the viewpoint of ensuring corrosion resistance and joining strength in an absorbing liquid environment. As for the absorbing solution, about 60% concentration of Li
In the case of using a Br absorbing solution as a main component, there is a disadvantage that when the device is operated at 200 ° C., crystallization of the absorbing solution occurs at room temperature cooling. Therefore, a four-component high-concentration absorbing solution of LiBr—LiI—LiCl—LiNO 3 has been required.

【0007】このような一般家庭向けの吸収式冷暖房機
を製造する際、特公平6−37692号公報,特公平5
−34419号公報等のフェライト系ステンレス鋼は、
ニッケルろう付けによって結晶粒が粗大化するため使用
できない。他方、オーステナイト系ステンレス鋼は、通
常BNi−2,BNi−5等によるニッケルろう付けが
可能である。しかし、BNi−2は、LiBr−LiI
−LiCl−LiNO 3 の四成分系高濃度吸収液中での
耐食性が不十分である。また、BNi−5は、Si含有
量が1質量%以上のオーステナイト系ステンレス鋼に対
して十分な接合強度を示さない。更に、LiBr−Li
I−LiCl−LiNO3 の四成分系吸収液を使用する
場合、吸収液中に僅かに存在するI2 が高温再生器の気
相部に遊離するため、従来よりも過酷な腐食環境に高温
再生器が曝される。この点、一般家庭向け吸収式冷暖房
機の再生器構造材として使用されるステンレス鋼には、
従来開示されている鋼材を凌駕する耐食性をもつことが
要求される。
[0007] Such an absorption type air conditioner for general households.
Japanese Patent Publication No. 6-37692, Japanese Patent Publication No.
Ferritic stainless steels such as Japanese Patent No.
Used for coarsening of crystal grains by nickel brazing
Can not. On the other hand, austenitic stainless steel
Nickel brazing with BNi-2, BNi-5, etc.
It is possible. However, BNi-2 is LiBr-LiI
-LiCl-LiNO Three In a four-component high-concentration absorbent
Insufficient corrosion resistance. BNi-5 contains Si.
For austenitic stainless steels with an amount of 1% by mass or more
Does not show sufficient bonding strength. Further, LiBr-Li
I-LiCl-LiNOThree Use a four-component absorption solution
In the case, I present in the absorption liquidTwo But the high temperature regenerator
High temperature in harsher corrosive environment than before
The regenerator is exposed. In this regard, absorption air conditioning for general households
Stainless steel used as regenerator structural material for
Having corrosion resistance that surpasses conventionally disclosed steel materials
Required.

【0008】本発明は、このような問題を解消すべく案
出されたものであり、各合金成分の間に特定の相互関係
をもたせた合金設計を採用すると共に、特定の研磨仕上
げ又は混酸仕上げが施されたオーステナイト系ステンレ
ス鋼を再生器構造材として使用することにより、LiB
r−LiI−LiCl−LiNO3 の四成分系高濃度吸
収液中においても十分な耐食性を呈し、高温運転にも十
分耐える空冷吸収式冷温水機の高温再生器を提供するこ
とを目的とする。
[0008] The present invention has been devised to solve such a problem, and employs an alloy design having a specific correlation between the alloy components and a specific polishing finish or mixed acid finish. By using austenitic stainless steel treated with
An object of the present invention is to provide a high-temperature regenerator of an air-cooling absorption chiller / heater that exhibits sufficient corrosion resistance even in a quaternary high-concentration absorbing solution of r-LiI-LiCl-LiNO 3 and sufficiently withstands high-temperature operation.

【0009】[0009]

【課題を解決するための手段】本発明の高温再生器は、
その目的を達成するため、水を冷媒とし、主成分がLi
Br,LiI,LiCl,LiNO3 でありLiBr濃
度が50質量%以下の四成分系高濃度吸収液を使用する
空冷吸収式冷温水機の高温再生器であって、C:0.0
8質量%以下,Si:1.0〜5.0質量%,Mn:
1.0質量%以下,P:0.045質量%以下,S:
0.005質量%以下,Cr:16.0〜25.0質量
%,Ni:6.0〜20.0質量%,Al:0.1質量
%以下,N:0.005〜0.35質量%,残部が実質
的にFeで、(Cr+0.5Ni+3Si−5Al)≧
30を満足する組成をもち、80〜600番手で研磨仕
上げしたオーステナイト系ステンレス鋼を熱交換器部
材,フレーム等の構造材としていることを特徴とする。
The high-temperature regenerator according to the present invention comprises:
In order to achieve the object, water is used as a refrigerant, and the main component is Li.
A high-temperature regenerator of an air-cooled absorption-type chiller / heater using a quaternary high-concentration absorbing solution of Br, LiI, LiCl, LiNO 3 and a LiBr concentration of 50% by mass or less, wherein C: 0.0
8% by mass or less, Si: 1.0 to 5.0% by mass, Mn:
1.0 mass% or less, P: 0.045 mass% or less, S:
0.005% by mass or less, Cr: 16.0 to 25.0% by mass, Ni: 6.0 to 20.0% by mass, Al: 0.1% by mass or less, N: 0.005 to 0.35% by mass %, The balance being substantially Fe, (Cr + 0.5Ni + 3Si-5Al) ≧
An austenitic stainless steel having a composition satisfying 30 and being polished and finished with 80-600 count is used as a structural material such as a heat exchanger member and a frame.

【0010】本発明で使用するオーステナイト系ステン
レス鋼は、(Cr+0.5Ni+3Si+3Mo−5A
l)≧30を満足する条件下で更にCu:0.5〜3.
0質量%及び/又はMo:0.5〜3.0質量%を含む
こともできる。研磨仕上げに替え、HF濃度1〜20質
量%のHF−HNO3 水溶液中で混酸仕上げで鋼材表面
に酸化物として濃化するSiを除去しても良い。
The austenitic stainless steel used in the present invention is (Cr + 0.5Ni + 3Si + 3Mo-5A)
l) Under conditions that satisfy ≧ 30, Cu: 0.5-3.
0% by mass and / or Mo: 0.5 to 3.0% by mass. Instead of the polishing finish, Si which is concentrated as an oxide on the surface of the steel material by the mixed acid finishing in an HF-HNO 3 aqueous solution having an HF concentration of 1 to 20% by mass may be removed.

【0011】[0011]

【作用】吸収式冷暖房機の再生器では、高濃度LiBr
−LiI−LiCl−LiNO 3 を主成分とする濃度5
0質量%以上の吸収液が使用され、吸収液を約200℃
の高温に加熱する。このとき、冷凍機内は、真空吸引後
に密閉して運転が開始されるため、カソード反応を促進
させる酸素量が少ない。しかし、吸収液成分のうちI2
が気相部に遊離するため、従来の吸収液環境と比較する
と気相部がより厳しい腐食環境に曝される。本発明者等
は、Siの増量によって高濃度吸収液環境における気相
部の耐孔食性,耐応力腐食割れ性を改善すると共に、合
金成分間に特定の関係を成立させて孔食の成長を抑制す
ることにより、過酷な腐食環境においても優れた耐食性
を発揮するオーステナイト系ステンレス鋼が得られるこ
とを見い出した。更に、ステンレス鋼表面に酸化物とし
て濃化しているSi(以下、Si濃化層という)を機械
的又は化学的に除去すると、ニッケルろう付けによって
良好な接合強度をもつろう付け継手が得られ、吸収式冷
暖房機の再生器としての使用に十分耐えることを解明し
た。このように特定された組成をもつオーステナイト系
ステンレス冷延鋼板の表面にあるSi濃化層を除去した
鋼板を、熱交換器用のプレート,チューブ,フィン,フ
レーム等の高温再生器構成材料として使用するとき、最
高到達温度が約200℃に達する高濃度LiBr−Li
I−LiCl−LiNO3 系の過酷な腐食環境下におい
ても耐孔食性や耐応力腐食割れ性が改善され、一般家庭
向けの吸収式冷暖房機用再生器が得られる。
In the regenerator of the absorption type air conditioner, high concentration LiBr
-LiI-LiCl-LiNO Three Concentration 5 whose main component is
0% by mass or more of the absorbing solution is used.
Heat to high temperature. At this time, the inside of the refrigerator is
Starts operation in a sealed state, accelerating the cathode reaction
The amount of oxygen to be made is small. However, ITwo 
Is released into the gas phase, so that it can be compared with a conventional absorbent environment
And the gas phase is exposed to a more severe corrosive environment. Inventors
Is the gas phase in a highly absorbent environment due to the increase of Si.
Corrosion resistance and stress corrosion cracking resistance of the
Suppress pitting growth by establishing a specific relationship between gold components
Excellent corrosion resistance even in harsh corrosive environments
Austenitic stainless steel
And found. Furthermore, an oxide is formed on the stainless steel surface.
Concentrated Si (hereinafter referred to as Si concentrated layer)
Or chemical removal, nickel brazing
A brazed joint with good joining strength can be obtained,
Elucidating that it can withstand the use of a heater as a regenerator
Was. Austenitic system with the specified composition
Removal of the Si-enriched layer on the surface of cold-rolled stainless steel sheet
Plates, tubes, fins, and fins for heat exchangers
When used as a high temperature regenerator
High concentration LiBr-Li whose high temperature reaches about 200 ° C
I-LiCl-LiNOThree Severe corrosive environment
Pitting resistance and stress corrosion cracking resistance are improved
A regenerator for an absorption type air conditioner is obtained.

【0012】以下、本発明で使用するオーステナイト系
ステンレス鋼に含まれる合金成分,含有量等を説明す
る。 C:0.08質量%以下 オーステナイトを安定化する強力な合金成分であり、耐
応力腐食割れ性,耐孔食性には大きな影響を及ぼさな
い。しかし、溶接部の粒界腐食感受性を高めることか
ら、C含有量の上限を0.08質量%に設定した。
Hereinafter, alloy components, contents, and the like included in the austenitic stainless steel used in the present invention will be described. C: 0.08% by mass or less A strong alloy component that stabilizes austenite, and does not significantly affect stress corrosion cracking resistance and pitting corrosion resistance. However, the upper limit of the C content was set to 0.08% by mass in order to increase the intergranular corrosion susceptibility of the weld.

【0013】Si:1.0〜5.0質量% 鋼材表面に安定な皮膜を形成すると共に、高濃度のLi
Br−LiI−LiCl−LiNO3 四元系吸収液環境
における気相部の耐孔食性,耐応力腐食割れ性を向上さ
せる作用を呈する。このような作用は、1.0質量%以
上のSiで顕著になる。更に、Si添加で向上した耐応
力腐食割れ性は、一定量のMoを添加しても損なわれな
い。しかし、強力なフェライト生成元素であることか
ら、Si含有量の上昇に伴って多量のNiを添加してオ
ーステナイト相を安定化させる必要が大きくなり、鋼材
のコストを上昇させる。そこで、本発明においては、高
価なNiの添加量を最少限に抑えるため、Si含有量の
上限を5.0質量%に設定した。
Si: 1.0-5.0% by mass A stable film is formed on the surface of a steel material and a high concentration of Li
Pitting resistance of the gas phase portion in the Br-LiI-LiCl-LiNO 3 quaternary absorbing liquid environment, it exhibits a function of improving the stress corrosion cracking resistance. Such an effect becomes remarkable with 1.0% by mass or more of Si. Furthermore, the stress corrosion cracking resistance improved by the addition of Si is not impaired even when a certain amount of Mo is added. However, since it is a strong ferrite-forming element, it is necessary to add a large amount of Ni to stabilize the austenite phase with an increase in the Si content, thereby increasing the cost of the steel material. Therefore, in the present invention, the upper limit of the Si content is set to 5.0% by mass in order to minimize the amount of expensive Ni added.

【0014】Mn:1.0質量%以下 腐食の起点になり易い硫化物を形成し、耐孔食性,耐隙
間腐食性を劣化させるため、Mn含有量は少ないほど良
い。しかし、Mn含有量を過度に低減させると、配合原
料費が上昇し、製造コストを上昇させる。そこで、本発
明においては、経済性を考慮してMn含有量の上限を
1.0質量%に設定した。 P:0.045質量%以下 熱間加工性等の製造性や耐応力腐食割れ性等に悪影響を
及ぼす元素である。本発明においては、通常のステンレ
ス鋼に許容される0.045質量%をP含有量の上限に
定めた。 S:0.005質量%以下 鋼中のMnと反応し、耐孔食性に有害な硫化物を形成す
る。そのため、S含有量ができるだけ低い方が好まし
く、本発明ではS含有量の上限を0.005質量%に設
定した。
Mn: 1.0% by mass or less Sulfide, which is likely to be a starting point of corrosion, is formed and deteriorates pitting corrosion resistance and crevice corrosion resistance. Therefore, the smaller the Mn content, the better. However, if the Mn content is excessively reduced, the raw material cost increases, and the production cost increases. Therefore, in the present invention, the upper limit of the Mn content is set to 1.0% by mass in consideration of economy. P: 0.045% by mass or less An element that has an adverse effect on productivity such as hot workability and stress corrosion cracking resistance. In the present invention, the upper limit of the P content is set to 0.045% by mass, which is allowed for ordinary stainless steel. S: 0.005% by mass or less Reacts with Mn in steel to form a sulfide that is harmful to pitting corrosion resistance. Therefore, the S content is preferably as low as possible. In the present invention, the upper limit of the S content is set to 0.005% by mass.

【0015】Cr:16.0〜25.0質量% ステンレス鋼においては必要不可欠な合金成分であり、
特に高濃度のLiBr−LiI−LiCl−LiNO3
四元系吸収液環境で優れた耐食性を発揮させるために、
16.0質量%以上のCrが必要である。耐食性は、C
r含有量が多いほど向上する。しかし、多量のCr含有
に伴って、オーステナイト相の維持に必要なNi量が増
加し、製造性や加工性も劣化する。そこで、本発明にお
いては、Cr含有量の上限を25.0質量%に設定し
た。 Ni:6.0〜20.0質量% オーステナイト相を保持するために主要な合金成分であ
り、最低でも6質量%のNiが必要である。しかし、2
0質量%を超える含有量では、高価なNiを多量に消費
することから、鋼材コストが上昇する。そのため、本発
明においては、Ni含有量を6.0〜20.0質量%の
範囲に設定した。Niは、この範囲で耐孔食性の改善に
有効に作用する。特に耐孔食性が要求される部位では、
Ni含有量10質量%以上の鋼材を使用することが好ま
しい。
Cr: 16.0 to 25.0 mass% Cr is an indispensable alloy component in stainless steel.
Particularly high concentration LiBr-LiI-LiCl-LiNO 3
To demonstrate excellent corrosion resistance in a quaternary absorbent environment,
16.0% by mass or more of Cr is required. Corrosion resistance is C
The higher the r content, the better. However, with a large amount of Cr, the amount of Ni necessary for maintaining the austenite phase increases, and the manufacturability and workability also deteriorate. Therefore, in the present invention, the upper limit of the Cr content is set to 25.0% by mass. Ni: 6.0 to 20.0% by mass Ni is a main alloy component for maintaining the austenite phase, and at least 6% by mass of Ni is required. However, 2
If the content exceeds 0% by mass, a large amount of expensive Ni is consumed, so that the cost of steel material increases. Therefore, in the present invention, the Ni content is set in the range of 6.0 to 20.0% by mass. Ni effectively acts to improve the pitting corrosion resistance in this range. Particularly in areas where pitting corrosion resistance is required,
It is preferable to use a steel material having a Ni content of 10% by mass or more.

【0016】Al:0.1質量%以下 溶製時に脱酸剤として働くと共に、ステンレス鋼表面に
濃縮して不動態皮膜を強化し、中性塩化物中における耐
食性を向上させる作用を呈する。しかし、I2 を含む酸
性の凝縮水による腐食環境となる高温再生器の気相部で
は、Al皮膜が優先的に溶解し、孔食発生の起点とな
る。この点、Alの添加量は少ない程よく、本発明にお
いては0.1質量%に上限を設定した。 N:0.005〜0.35質量% 強力なオーステナイト形成元素であると共に、オーステ
ナイト系では耐食性の改善に有効な合金成分である。N
添加の効果は、0.005質量%以上で顕著になる。し
かし、0.35質量%を超える多量のNを添加すると、
製造性,加工性が劣化するばかりでなく、耐応力腐食割
れ性を低下させることにもなる。
Al: 0.1% by mass or less Al acts not only as a deoxidizing agent during smelting, but also has a function of concentrating on the surface of stainless steel to strengthen a passive film and improving corrosion resistance in neutral chloride. However, in the gas phase portion of the high-temperature regenerator, which is a corrosive environment due to acidic condensed water containing I 2 , the Al film is preferentially dissolved and becomes a starting point of pitting. In this regard, the smaller the amount of Al added, the better. In the present invention, the upper limit is set to 0.1% by mass. N: 0.005 to 0.35 mass% In addition to being a strong austenite-forming element, an austenitic alloy is an effective alloy component for improving corrosion resistance. N
The effect of addition becomes significant at 0.005% by mass or more. However, when a large amount of N exceeding 0.35% by mass is added,
Not only is the manufacturability and workability deteriorated, but also the stress corrosion cracking resistance is reduced.

【0017】Cu:0.5〜3.0質量% 必要に応じて添加される合金成分であり、ハロゲン化物
を含む水溶液中における耐応力腐食割れ性を改善する作
用を呈する。耐応力腐食割れ性の改善効果は、Cu含有
量0.5質量%以上で現れ、Cu量の増加に従って著し
く改善される。しかし、Cu含有量3.0質量%で改善
効果が飽和し、却って熱間加工性が低下する傾向がみら
れる。 Mo:0.5〜3.0質量% 必要に応じて添加される合金成分であり、不動態皮膜を
強化し、高濃度ハロゲン化物水溶液中における耐孔食性
を改善する作用を呈する。Mo添加の効果を十分発揮さ
せるためには、0.5質量%以上,好ましくは0.7質
量%以上のMo添加が効果的である。しかし、Moは高
価な元素であることから、本発明においてはMo含有量
の上限を3.0質量%に設定した。
Cu: 0.5 to 3.0% by mass An alloy component added as required, and has an effect of improving stress corrosion cracking resistance in an aqueous solution containing a halide. The effect of improving the stress corrosion cracking resistance appears at a Cu content of 0.5% by mass or more, and is remarkably improved as the Cu content increases. However, when the Cu content is 3.0% by mass, the improvement effect is saturated, and on the contrary, the hot workability tends to decrease. Mo: 0.5 to 3.0% by mass An alloy component added as necessary, and has an effect of strengthening a passive film and improving pitting corrosion resistance in a high-concentration halide aqueous solution. In order to sufficiently exhibit the effect of adding Mo, it is effective to add 0.5% by mass or more, preferably 0.7% by mass or more of Mo. However, since Mo is an expensive element, the upper limit of the Mo content was set to 3.0% by mass in the present invention.

【0018】 (Cr+0.5Ni+3Si+3Mo−5Al)≧30 LiBr−LiI−LiCl−LiNO3 の四成分系吸
収液を使用する高温再生器では、I2 が気相部に遊離
し、再生器の気相部に当るステンレス鋼に孔食が発生し
易い。本発明者等は、この孔食に及ぼす各合金成分の影
響を調査した結果、後述する実施例でも説明しているよ
うにX=Cr+0.5Ni+3Si+3Mo−5Alで
定義されるX値を30以上に維持することが有効である
ことを見い出した。なお、Moを含まない鋼種の場合、
前掲の条件式からMoの項が除外される。X値が耐孔食
性を改善する詳細な理由は明らかでないが、X値を30
以上に調整することによって孔食の自己触媒的な成長が
抑制されることに原因があるものと推察される。すなわ
ち、ステンレス鋼の孔食には、一般に臨界孔食深さとい
われている値があり、臨界値以下の孔食では再不動態化
により不動態皮膜が修復され、臨界値を超える孔食は自
己触媒的に成長する。この自己触媒的な孔食の成長は、
X値を30以上にすることにより抑えられる。他方、3
0未満のX値では、成長性の孔食が発生し、時間経過と
共に大きな孔食となる。
(Cr + 0.5Ni + 3Si + 3Mo-5Al) ≧ 30 In a high-temperature regenerator using a quaternary absorption solution of LiBr—LiI—LiCl—LiNO 3 , I 2 is separated into a gas phase and the gas phase of the regenerator Pitting is apt to occur in stainless steel hitting As a result of investigating the influence of each alloy component on the pitting corrosion, the present inventors have found that the X value defined by X = Cr + 0.5Ni + 3Si + 3Mo-5Al is maintained at 30 or more, as described in Examples described later. It has been found that it is effective to do so. In the case of a steel type not containing Mo,
The Mo term is excluded from the conditional expression described above. The detailed reason why the X value improves the pitting resistance is not clear,
It is presumed that the above adjustment causes the autocatalytic growth of pitting corrosion to be suppressed. In other words, pitting corrosion of stainless steel has a value generally called critical pitting depth. For pitting corrosion below the critical value, the passivation film is repaired by re-passivation, and pitting corrosion above the critical value is autocatalytic. Grow up. This self-catalytic pit growth
It can be suppressed by setting the X value to 30 or more. On the other hand, 3
When the X value is less than 0, growth pitting occurs, and the pitting becomes large with time.

【0019】研磨仕上げ:80〜600番手 前述した組成をもつステンレス冷延鋼板を再生器の構造
材として使用するとき、耐食性,鋼板製造性,加工性及
びコスト面で有利となる。しかし、冷延後のステンレス
鋼板をBNi−5でろう付けすると、1.0質量%以上
のSiを含む鋼の2B,2D製品材には表面にSi濃化
層が形成されているため、接合界面に脆弱なニッケル化
合物が形成される。そのため、十分な接合強度をもつろ
う付け継手が得られない。そこで、本発明者等は、ステ
ンレス鋼表面を研磨仕上げすることにより、鋼材表面の
Si濃化層を機械的に除去する方法に想い至った。表面
からSi濃化層が除去されたステンレス鋼をろう付けす
ると、Si濃化層に起因した脆弱なニッケル化合物の生
成がなく、熱交換器として使用するために十分な接合強
度をもつろう付け継手が得られる。研磨仕上げによるS
i濃化層の除去は、600番以下の研磨によって顕著に
なる。ろう付けの接合性は、研磨目が粗くなるほど向上
する。しかし、80番以下の番手では、十分な耐食性が
得られない。
Polishing finish: 80-600 When the cold-rolled stainless steel sheet having the above composition is used as a structural material of a regenerator, it is advantageous in terms of corrosion resistance, steel sheet productivity, workability and cost. However, when the cold-rolled stainless steel sheet is brazed with BNi-5, the 2B, 2D product material of steel containing 1.0% by mass or more of Si has a Si-enriched layer formed on the surface, so that the joining is performed. A brittle nickel compound is formed at the interface. Therefore, a brazed joint having sufficient joining strength cannot be obtained. Then, the present inventors came up with a method of mechanically removing the Si-concentrated layer on the surface of the steel material by polishing and finishing the surface of the stainless steel. When brazing stainless steel from which the Si-enriched layer has been removed from the surface, there is no generation of brittle nickel compounds due to the Si-enriched layer, and the brazing joint has sufficient joint strength to be used as a heat exchanger Is obtained. S by polishing finish
The removal of the i-concentrated layer becomes remarkable by polishing of No. 600 or less. The joining property of brazing improves as the polishing grain becomes coarser. However, if the number is less than 80, sufficient corrosion resistance cannot be obtained.

【0020】混酸仕上げ:HF濃度1〜20質量%のH
F−HNO3 水溶液 ステンレス鋼表面のSi濃化層は、HF−HNO3 水溶
液を使用した酸洗によっても除去される。HF−HNO
3 水溶液中のHFにはステンレス鋼表面のSi濃化層を
溶かす性質があり、HNO3 にはSi濃化層が溶かされ
たステンレス鋼の表面を不動態化し、皮膜を強化する働
きがある。なかでも、HF濃度1〜20質量%のHF−
HNO3 水溶液は、後述する実施例でも説明しているよ
うに、熱交換器として十分な接合強度を呈するレベルま
でステンレス鋼表面のSi濃化層を低減する。Si濃化
層の低減作用は、HF濃度3質量%以上で特に顕著とな
る。しかし、HF濃度の上昇に伴って設備の劣化,作業
環境の悪化,コスト面での問題等が生じるため、本発明
においてはHF濃度の上限を20質量%に設定した。
Mixed acid finishing: H having an HF concentration of 1 to 20% by mass
F-HNO 3 aqueous solution The Si-concentrated layer on the stainless steel surface is also removed by pickling using an HF-HNO 3 aqueous solution. HF-HNO
(3 ) HF in the aqueous solution has the property of dissolving the Si-concentrated layer on the stainless steel surface, and HNO 3 has the function of passivating the surface of the stainless steel in which the Si-concentrated layer is dissolved and strengthening the film. Among them, HF with an HF concentration of 1 to 20% by mass
The HNO 3 aqueous solution reduces the Si-concentrated layer on the stainless steel surface to a level that exhibits sufficient bonding strength as a heat exchanger, as described in Examples described later. The effect of reducing the Si-concentrated layer becomes particularly remarkable when the HF concentration is 3% by mass or more. However, since an increase in the HF concentration causes deterioration of equipment, deterioration of the working environment, problems in cost, and the like, the upper limit of the HF concentration is set to 20% by mass in the present invention.

【0021】吸収液のLiBr濃度:50質量%以下 従来から使用されている吸収液は、濃度50質量%以上
のLiBrを主成分とするものであった。しかし、高性
能化のため、吸収液濃度を高濃度にする必要があり、そ
の吸収液で溶液をサイクルした場合、濃厚吸収液が低温
部で晶析する。吸収液の晶析を防止するためには、吸収
液成分を多成分系にすることが望ましく、なかでも特に
LiBr−LiI−LiCl−LiNO3 の四成分系と
し、且つLiBr濃度を50質量%以下にすることが有
効であることを見い出した。
The LiBr concentration of the absorbing solution: not more than 50% by mass The absorbing solution conventionally used has a main component of LiBr having a concentration of not less than 50% by mass. However, in order to improve the performance, it is necessary to increase the concentration of the absorbing solution, and when the solution is cycled with the absorbing solution, the concentrated absorbing solution is crystallized in a low temperature part. In order to prevent crystallization of the absorbing solution, it is desirable to make the absorbing solution into a multi-component system, especially a four-component system of LiBr—LiI—LiCl—LiNO 3 and a LiBr concentration of 50% by mass or less. It was found that it was effective to

【0022】[0022]

【実施例】表1に示す成分をもつステンレス鋼を溶製
し、熱延,酸洗,冷延,中間焼鈍を経て板厚0.3mm
の冷延焼鈍板を製造した。表1において、Aグループは
フェライト系ステンレス鋼を、BグループはSi含有量
が少ないオーステナイト系ステンレス鋼を、Cグループ
は本発明で規定した条件を満足するオーステナイト系ス
テンレス鋼を示す。
EXAMPLE A stainless steel having the components shown in Table 1 was melted and subjected to hot rolling, pickling, cold rolling and intermediate annealing to obtain a sheet thickness of 0.3 mm.
Was produced. In Table 1, Group A indicates a ferritic stainless steel, Group B indicates an austenitic stainless steel having a low Si content, and Group C indicates an austenitic stainless steel satisfying the conditions specified in the present invention.

【0023】 [0023]

【0024】ステンレス鋼板B−1,B−2,C−1〜
5から10mm×75mmのサイズに切り出し、表面を
500番のエメリー紙で乾式研磨した後、曲げ半径8m
mのUベンド試験片を作製した。LiBr:LiI:L
iCl:LiNO3 =1:(0.5〜0.63):
(0.2〜0.25):(0.2〜0.25)の組成を
もつ濃度63質量%,アルカリ度0.3Nの四成分系吸
収液を入れたオートクレーブの気相部及び液相部に各試
験片をセットし、オートクレーブを密閉した。この状態
で吸収液を200℃に2000時間加熱保持することに
より、Si添加がステンレス鋼の耐応力腐食割れ性に及
ぼす影響を調査した。その結果、Si含有量が少ないス
テンレス鋼B−1,B−2では、1000時間が経過し
た時点で気相部に曝された試験片に応力腐食割れが発生
した。他方、本発明で規定した量のSiを含むステンレ
ス鋼C−1〜5では、何れの試験片も気相部及び液相部
に曝された何れの試験片においても応力腐食割れが観察
されなかった。この対比から明らかなように、1.0質
量%以上のSiを添加したステンレス鋼を構造材とする
ことにより、気相部,液相部共に耐応力腐食割れに優れ
た再生器となることが確認された。
Stainless steel plates B-1, B-2, C-1
Cut out to a size of 5 to 10 mm x 75 mm, dry-grind the surface with No. 500 emery paper, and bend radius 8 m
m U-bend test pieces were prepared. LiBr: LiI: L
iCl: LiNO 3 = 1: (0.5 to 0.63):
(0.2 to 0.25): gas phase and liquid phase of an autoclave containing a quaternary absorbent having a composition of (0.2 to 0.25) and a concentration of 63% by mass and an alkalinity of 0.3 N Each test piece was set in the section, and the autoclave was sealed. In this state, the effect of the addition of Si on the stress corrosion cracking resistance of stainless steel was investigated by holding the absorbing solution at 200 ° C. for 2000 hours. As a result, in the stainless steels B-1 and B-2 having a small Si content, stress corrosion cracking occurred in the test piece exposed to the gas phase after 1000 hours. On the other hand, in the stainless steels C-1 to C-5 containing the amount of Si specified in the present invention, no stress corrosion cracking was observed in any of the test pieces exposed to the gas phase part and the liquid phase part. Was. As is clear from this comparison, by using a stainless steel to which 1.0% by mass or more of Si is added as a structural material, a regenerator excellent in stress corrosion cracking resistance in both the gas phase and the liquid phase can be obtained. confirmed.

【0025】また、次の試験により各ステンレス鋼の耐
食性を調査した。各ステンレス鋼から150mm×30
mmの試験片を切り出し、500番のエメリー紙で乾式
研磨し、MgO水溶液で脱脂した後、一晩以上にわたっ
て乾燥させた。応力腐食割れ試験と同じ吸収液を収容し
たオートクレーブに乾燥処理後の各試験片を入れ、浸漬
部深さが約30mmとなるように各試験片を吸収液に半
浸漬した。オートクレーブを1.5mmHgに減圧して
密閉し、吸収液を150℃に480時間加熱保持した。
加熱保持後、オートクレーブから試験片を取り出し、8
0℃に保持した30%HNO3 水溶液中に各試験片を浸
漬して腐食生成物を除去し、最大孔食深さを測定した。
測定結果を示す図3にみられるように、X=Cr+0.
5Ni+3Si+3Mo−5Alで定義されるX値と最
大孔食深さとの間に密接な関係があることが判った。す
なわち、X値を30以上に調整するとき、最大孔食深さ
が0.02mm以下となり、再不動態化によって孔食部
分が修復された。他方、30未満のX値では、最大孔食
深さが0.02mmを超える成長性の孔食部となってい
た。
Further, the corrosion resistance of each stainless steel was examined by the following test. 150mm x 30 from each stainless steel
A mm test piece was cut out, dry polished with No. 500 emery paper, degreased with an aqueous solution of MgO, and dried overnight. Each test piece after the drying treatment was placed in an autoclave containing the same absorbent as in the stress corrosion cracking test, and each test piece was half-immersed in the absorbent so that the immersion part depth was about 30 mm. The autoclave was closed under reduced pressure of 1.5 mmHg, and the absorbing solution was heated and maintained at 150 ° C. for 480 hours.
After heating and holding, remove the test specimen from the autoclave,
Each test piece was immersed in a 30% HNO 3 aqueous solution maintained at 0 ° C. to remove corrosion products, and the maximum pit depth was measured.
As shown in FIG. 3 showing the measurement results, X = Cr + 0.
It was found that there was a close relationship between the X value defined by 5Ni + 3Si + 3Mo-5Al and the maximum pit depth. That is, when the X value was adjusted to 30 or more, the maximum pit depth was 0.02 mm or less, and the pit portion was repaired by re-passivation. On the other hand, when the X value is less than 30, the pit has a growth pit having a maximum pit depth exceeding 0.02 mm.

【0026】次いで、混酸仕上げがろう付け性に及ぼす
影響を次のように調査した。C−4の組成をもつ板厚1
mmのステンレス冷延鋼管を55℃に保持したX質量%
HF+9質量%HNO3 (X:0.5質量%,2.5質
量%,5質量%,10質量%)水溶液に30秒間浸漬
し、JIS Z3192に準拠してBNi−5によりろ
う付けした引張試験片を作製した。HF濃度が異なる各
混酸についてn=10で引張試験し、引張試験で得られ
た破断応力の最低値とHF濃度との関係を求めた。図4
の調査結果にみられるように、混酸のHF濃度が高くな
るほど大きな破断応力が示された。再生器の熱交換部に
要求される破断応力は200MPa以上であり、この要
求を満足させるためにHF濃度1質量%以上で混酸仕上
げする必要があることが判る。なかでも、HF濃度が3
質量%以上になると、破断応力は大きく改善されてい
た。
Next, the effect of the mixed acid finish on the brazing properties was investigated as follows. Sheet thickness 1 with composition C-4
mm of stainless steel cold-rolled steel tube at 55 ° C
Tensile test immersed in an aqueous solution of HF + 9% by mass HNO 3 (X: 0.5% by mass, 2.5% by mass, 5% by mass, 10% by mass) for 30 seconds and brazed with BNi-5 in accordance with JIS Z3192 Pieces were made. Tensile tests were performed for each mixed acid having a different HF concentration at n = 10, and the relationship between the minimum value of the breaking stress obtained in the tensile test and the HF concentration was determined. FIG.
As can be seen from the investigation results, the higher the HF concentration of the mixed acid, the higher the breaking stress. The breaking stress required for the heat exchange part of the regenerator is 200 MPa or more, and it can be seen that it is necessary to perform mixed acid finishing with an HF concentration of 1% by mass or more to satisfy this requirement. Above all, HF concentration of 3
When the content was equal to or more than the mass%, the breaking stress was greatly improved.

【0027】更に、ステンレス鋼板B−1,B−2,C
−4のそれぞれに表2に示す仕上げを施した後、プレー
ト型熱交換器14を作製した。そして、BNi−5を用
いて熱交換器14をフレーム13にろう付けすることに
より、高温再生器を組み立てた。得られた高温再生器を
最高圧力10気圧の耐圧試験に供した。表2の試験結果
にみられるように、Si含有量が1質量%以下のステン
レス鋼C−4で作製した再生器では、0.5質量%HF
+9質量%HNO3 水溶液で混酸仕上げした試験番号4
の再生器はろう付け箇所で剥離が観察された。しかし、
C−4でも400番研磨仕上げの試験番号3,2.5質
量%HF+9質量%HNO3 で混酸仕上げした試験番号
5、或いはSi含有量が1質量%未満のB−1,B−2
で作製した他の再生器の耐圧試験結果では、何れもろう
付け継手に破断や剥離等の異常が検出されず、良好な接
合強度で熱交換器14がフレーム13に接合されてい
た。
Further, stainless steel sheets B-1, B-2, C
After applying the finishing shown in Table 2 to each of No. -4, a plate heat exchanger 14 was produced. Then, the high temperature regenerator was assembled by brazing the heat exchanger 14 to the frame 13 using BNi-5. The obtained high-temperature regenerator was subjected to a pressure test at a maximum pressure of 10 atm. As can be seen from the test results in Table 2, in the regenerator made of stainless steel C-4 having a Si content of 1% by mass or less, 0.5% by mass HF was used.
Test No. 4 finished with mixed acid with +9 mass% HNO 3 aqueous solution
In the regenerator, peeling was observed at the brazing point. But,
Test No. 3 of 400th polishing finish in C-4, Test No. 5 of mixed acid finish with 2.5% by mass HF + 9% by mass HNO 3 , or B-1, B-2 with Si content of less than 1% by mass
In the results of the pressure tests of the other regenerators manufactured in the above, no abnormality such as breakage or peeling was detected in any of the brazed joints, and the heat exchanger 14 was joined to the frame 13 with good joining strength.

【0028】 [0028]

【0029】耐圧試験結果が良好な試験番号1〜3,5
の再生器について、耐応力腐食割れ試験と同じ吸収液を
用い、最高温度190℃で2000時間の耐久性試験を
行った(試験番号6〜9)。試験結果を示す表3にみら
れるように、X値が30未満のステンレス鋼B−1で作
製した再生器では、熱交換器の気相部に孔食が発生して
いた。他方、その他の鋼種で作製した再生器は、孔食の
発生が観察されなかった。また、ステンレス鋼B−1,
B−2で作製した再生器では熱交換器の気相部に応力腐
食割れが発生したが、Si含有量が1質量%以上のステ
ンレス鋼C−4で作製した再生器は良好な耐応力腐食割
れ性を呈した。この対比から明らかなように、本発明に
従ったステンレス鋼で作製した再生器は、高温に加熱さ
れた四成分系の吸収剤に曝される過酷な腐食環境で運転
してもトラブルを発生させることなく、長時間の運転に
耐えることが判る。
Test Nos. 1-3, 5 with good withstand voltage test results
The regenerator was subjected to a durability test at the maximum temperature of 190 ° C. for 2,000 hours using the same absorbent as in the stress corrosion cracking test (test numbers 6 to 9). As shown in Table 3 showing the test results, in the regenerator made of stainless steel B-1 having an X value of less than 30, pitting occurred in the gas phase of the heat exchanger. On the other hand, in the regenerator made of other steel types, generation of pitting corrosion was not observed. In addition, stainless steel B-1,
In the regenerator made of B-2, stress corrosion cracking occurred in the gas phase of the heat exchanger, but the regenerator made of stainless steel C-4 having a Si content of 1% by mass or more had good stress corrosion resistance. It exhibited cracking properties. As is evident from this contrast, regenerators made of stainless steel according to the present invention cause troubles even when operated in severe corrosive environments exposed to quaternary absorbents heated to high temperatures. It can be seen that they can withstand long driving without any problem.

【0030】 [0030]

【0031】[0031]

【発明の効果】以上に説明したように、本発明の吸収式
冷暖房機の再生器は、特定量のCr,Ni,Si及び必
要に応じMo,Cuを含み、X=Cr+0.5Ni+3
Si+3Mo−5Alで定義されるX値が30以上とな
るように成分設計した組成を持ち、研磨仕上げ又は混酸
仕上げで表層のSi濃化層を除去したオーステナイト系
ステンレス鋼を構造材として使用している。このように
特定された構造材の使用により、吸収式冷温水機を小型
化,高性能化する際に問題となっていた再生器の製造性
や耐食性,耐応力腐食割れ性が改善され、ニッケルろう
付けによって良好な接合強度をもつろう付け継手が形成
される。その結果、一般家庭向けに吸収式冷温水機を数
冷凍トン程度の規模まで小型化,高性能化できる。
As described above, the regenerator of the absorption type air conditioner of the present invention contains a specific amount of Cr, Ni, Si and, if necessary, Mo, Cu, and X = Cr + 0.5Ni + 3.
An austenitic stainless steel having a composition designed so that the X value defined by Si + 3Mo-5Al is 30 or more and having a surface-enriched layer removed by polishing or mixed acid finishing is used as a structural material. . The use of the structural materials specified in this way has improved the reproducer's manufacturability, corrosion resistance, and stress corrosion cracking resistance, which have been problems in downsizing and improving the performance of absorption-type water heaters and cold water heaters. Brazing forms a brazed joint with good joint strength. As a result, it is possible to reduce the size and performance of the absorption chiller / heater to the order of several refrigeration tons for ordinary households.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 吸収式冷暖房システムの概念図Fig. 1 Conceptual diagram of absorption type air conditioning system

【図2】 吸収式冷暖房システムに使用される再生器の
内部構造を示す図
FIG. 2 is a diagram showing the internal structure of a regenerator used in an absorption type air conditioning system.

【図3】 X=Cr+0.5Ni+3Si+3Mo−5
Alで定義されるX値と最大孔食深さとの間に密接な関
係があることを示すグラフ
FIG. 3 X = Cr + 0.5Ni + 3Si + 3Mo-5
Graph showing that there is a close relationship between the X value defined by Al and the maximum pit depth

【図4】 酸洗仕上げに用いたHF濃度がろう付け部の
破断応力最低値に及ぼす影響を示したグラフ
FIG. 4 is a graph showing the effect of the HF concentration used in the pickling finish on the minimum value of the breaking stress of the brazed part.

【符号の説明】[Explanation of symbols]

1:凝縮器 2:高温再生器 3:蒸発器 4:
吸収器 5,5’:水蒸気冷媒 6:LiBr水溶
液 7,7’:冷却媒体 8:液冷媒 9:冷房ルーム 10:負荷媒体 11:濃厚吸収
液 12:希薄吸収液 13:フレーム 14:熱交換器 15:排気口
16:吸収液入口 17:蒸気出口 18:吸収液出口 19:ろう付
け部 20:溶液熱交換器 G:燃焼排ガス
1: Condenser 2: High temperature regenerator 3: Evaporator 4:
Absorber 5, 5 ': Steam refrigerant 6: LiBr aqueous solution 7, 7': Cooling medium 8: Liquid refrigerant 9: Cooling room 10: Load medium 11: Rich absorption liquid 12: Dilute absorption liquid 13: Frame 14: Heat exchanger 15: Exhaust port
16: Absorbent inlet 17: Vapor outlet 18: Absorbent outlet 19: Brazing part 20: Solution heat exchanger G: Combustion exhaust gas

───────────────────────────────────────────────────── フロントページの続き (72)発明者 川畑 幸寛 山口県新南陽市野村南町4976番地 日新製 鋼株式会社技術研究所内 (72)発明者 長松谷 晃徳 静岡県浜松市子安町1370 矢崎総業株式会 社内 (72)発明者 黒田 純 静岡県浜松市子安町1370 矢崎総業株式会 社内 (72)発明者 松本 徹 静岡県浜松市子安町1370 矢崎総業株式会 社内 ──────────────────────────────────────────────────の Continuing on the front page (72) Inventor Yukihiro Kawabata 4976 Nomura Minami-cho, Shinnanyo-shi, Yamaguchi Nisshin Steel Technical Research Institute (72) Inventor Akinori Nagamatsutani 1370 Koyasucho, Hamamatsu-shi, Shizuoka Stock Association In-house (72) Inventor Jun Kuroda 1370 Koyasu-cho, Hamamatsu-shi, Shizuoka Pref. Yazaki Sogo Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 水を冷媒とし、主成分がLiBr,Li
I,LiCl,LiNO3 でありLiBr濃度が50質
量%以下の吸収液を使用する空冷吸収式冷温水機の高温
再生器であって、C:0.08質量%以下,Si:1.
0〜5.0質量%,Mn:1.0質量%以下,P:0.
045質量%以下,S:0.005質量%以下,Cr:
16.0〜25.0質量%,Ni:6.0〜20.0質
量%,Al:0.1質量%以下,N:0.005〜0.
35質量%,残部が実質的にFeで、(Cr+0.5N
i+3Si−5Al)≧30を満足する組成をもち、8
0〜600番手で研磨仕上げしたオーステナイト系ステ
ンレス鋼を構造材とする空冷吸収式冷温水機の高温再生
器。
1. A method according to claim 1, wherein water is used as a refrigerant, and the main components are LiBr and Li.
A high-temperature regenerator of an air-cooled absorption-type water-cooled water heater using an absorbing solution of I, LiCl, LiNO 3 and a LiBr concentration of 50% by mass or less, wherein C: 0.08% by mass or less, Si: 1.
0 to 5.0% by mass, Mn: 1.0% by mass or less, P: 0.
045 mass% or less, S: 0.005 mass% or less, Cr:
16.0-25.0% by mass, Ni: 6.0-20.0% by mass, Al: 0.1% by mass or less, N: 0.005-0.
35 mass%, the balance being substantially Fe, (Cr + 0.5N
i + 3Si-5Al) ≧ 30, and 8
A high-temperature regenerator for an air-cooling absorption chiller / heater using austenitic stainless steel polished and finished with a count of 0 to 600.
【請求項2】 水を冷媒とし、主成分がLiBr,Li
I,LiCl,LiNO3 でありLiBr濃度が50質
量%以下の吸収液を使用する空冷吸収式冷温水機の高温
再生器であって、C:0.08質量%以下,Si:1.
0〜5.0質量%,Mn:1.0質量%以下,P:0.
045質量%以下,S:0.005質量%以下,Cr:
16.0〜25.0質量%,Ni:6.0〜20.0質
量%,Al:0.1質量%以下,N:0.005〜0.
35質量%,残部が実質的にFeで、(Cr+0.5N
i+3Si−5Al)≧30を満足する組成をもち、H
F濃度1〜20質量%のHF−HNO3 水溶液中で混酸
仕上げを施したオーステナイト系ステンレス鋼を構造材
とする空冷吸収式冷温水機の高温再生器。
2. The method according to claim 1, wherein water is used as a refrigerant and the main components are LiBr and Li.
A high-temperature regenerator of an air-cooled absorption-type water-cooled water heater using an absorbing solution of I, LiCl, LiNO 3 and a LiBr concentration of 50% by mass or less, wherein C: 0.08% by mass or less, Si: 1.
0 to 5.0% by mass, Mn: 1.0% by mass or less, P: 0.
045 mass% or less, S: 0.005 mass% or less, Cr:
16.0-25.0% by mass, Ni: 6.0-20.0% by mass, Al: 0.1% by mass or less, N: 0.005-0.
35 mass%, the balance being substantially Fe, (Cr + 0.5N
i + 3Si-5Al) ≧ 30.
A high-temperature regenerator for an air-cooling absorption type chiller / heater using austenitic stainless steel as a structural material which has been subjected to a mixed acid finish in an aqueous HF-HNO 3 solution having an F concentration of 1 to 20% by mass.
【請求項3】 (Cr+0.5Ni+3Si+3Mo−
5Al)≧30を満足する条件下で更にCu:0.5〜
3.0質量%及び/又はMo:0.5〜3.0質量%を
含むオーステナイト系ステンレス鋼を構造材とする請求
項1又は2記載の空冷吸収式冷温水機の高温再生器。
3. (Cr + 0.5Ni + 3Si + 3Mo−)
5Al) Under conditions satisfying ≧ 30, Cu: 0.5 to
The high-temperature regenerator for an air-cooling absorption chiller / heater according to claim 1 or 2, wherein the structural material is an austenitic stainless steel containing 3.0% by mass and / or Mo: 0.5 to 3.0% by mass.
JP01082097A 1997-01-24 1997-01-24 High-temperature regenerator of air-cooled absorption chiller / heater Expired - Fee Related JP3655036B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01082097A JP3655036B2 (en) 1997-01-24 1997-01-24 High-temperature regenerator of air-cooled absorption chiller / heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01082097A JP3655036B2 (en) 1997-01-24 1997-01-24 High-temperature regenerator of air-cooled absorption chiller / heater

Publications (2)

Publication Number Publication Date
JPH10204589A true JPH10204589A (en) 1998-08-04
JP3655036B2 JP3655036B2 (en) 2005-06-02

Family

ID=11761003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01082097A Expired - Fee Related JP3655036B2 (en) 1997-01-24 1997-01-24 High-temperature regenerator of air-cooled absorption chiller / heater

Country Status (1)

Country Link
JP (1) JP3655036B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001065838A (en) * 1999-08-26 2001-03-16 Nisshin Steel Co Ltd Incinerator excellent in high temperature corrosion resistance and equipment annexed to incinerator
US6399216B1 (en) * 1997-09-17 2002-06-04 Gas Research Institute Corrosion-resistant coatings for steels used in bromide-based absorption cycles
US6725911B2 (en) 2001-09-28 2004-04-27 Gas Research Institute Corrosion resistance treatment of condensing heat exchanger steel structures exposed to a combustion environment
KR100981977B1 (en) 2008-03-26 2010-09-13 산요덴키가부시키가이샤 Absorption water chiller-heater
CN103154292A (en) * 2010-10-08 2013-06-12 杰富意钢铁株式会社 Ferritic stainless steel having excellent corrosion resistance and conductivity and method of the same, separator of proton-exchange membrane fuel cell and proton-exchange membrane fuel cell

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6399216B1 (en) * 1997-09-17 2002-06-04 Gas Research Institute Corrosion-resistant coatings for steels used in bromide-based absorption cycles
JP2001065838A (en) * 1999-08-26 2001-03-16 Nisshin Steel Co Ltd Incinerator excellent in high temperature corrosion resistance and equipment annexed to incinerator
US6725911B2 (en) 2001-09-28 2004-04-27 Gas Research Institute Corrosion resistance treatment of condensing heat exchanger steel structures exposed to a combustion environment
KR100981977B1 (en) 2008-03-26 2010-09-13 산요덴키가부시키가이샤 Absorption water chiller-heater
CN103154292A (en) * 2010-10-08 2013-06-12 杰富意钢铁株式会社 Ferritic stainless steel having excellent corrosion resistance and conductivity and method of the same, separator of proton-exchange membrane fuel cell and proton-exchange membrane fuel cell
CN103154292B (en) * 2010-10-08 2016-01-20 杰富意钢铁株式会社 The ferrite-group stainless steel of erosion resistance and excellent electric conductivity and manufacture method, polymer electrolyte fuel cell dividing plate and polymer electrolyte fuel cell

Also Published As

Publication number Publication date
JP3655036B2 (en) 2005-06-02

Similar Documents

Publication Publication Date Title
CA2762899C (en) Ferritic stainless steel material for brazing and heat exchanger member
JP5264199B2 (en) EGR cooler using ferritic stainless steel
US9249475B2 (en) Ferritic stainless steel
JP6379283B2 (en) Stainless steel with excellent brazeability
TWI637068B (en) Ferrous iron-based stainless steel
JP2642056B2 (en) Ferritic stainless steel for heat exchanger
WO2016013482A1 (en) Ferritic stainless steel and method for producing same, and heat exchanger equipped with ferritic stainless steel as member
WO2011013193A1 (en) Ferritic stainless steel for egr cooler and egr cooler
AU661865B2 (en) Method of producing aluminum alloy heat-exchanger
JP2018172709A (en) Austenitic stainless steel, soldered structure, soldered structure component and exhaust gas heat exchange component
JP2012214880A (en) Ferritic stainless steel for exhaust heat recovery unit, and exhaust heat recovery unit
JP3655036B2 (en) High-temperature regenerator of air-cooled absorption chiller / heater
CN1093246C (en) Absorption refrigerator and prodn. method thereof
JP2006134662A (en) Heat exchanger for fuel cell system of automobile
JP2000303150A (en) Stainless steel for direct diffusion joining
JPH11236654A (en) Stainless steel for ammonia-water base absorption type cycle heat exchanger excellent in brazing property
JP3869906B2 (en) Stainless steel for ammonia-water absorption cycle heat exchanger
JPH0941097A (en) Austenitic stainless steel for absorption-type air cooling and heating apparatus
JP3546113B2 (en) Stainless steel for ammonia-water absorption cycle heat exchanger
JP7548193B2 (en) Ferritic Stainless Steel
JPH02298237A (en) Absorptive refrigerator
JP2004107720A (en) Heat transfer tube for absorption refrigerating apparatus
CN111727268B (en) Ferritic stainless steel
JPS5971998A (en) Aluminum heat exchanger
JPH06136488A (en) Ferritic stainless steel excellent in workability, high temperature salt damage resistance, and high temperature strength

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040603

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050302

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080311

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090311

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090311

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100311

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100311

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110311

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110311

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120311

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120311

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130311

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130311

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130311

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130311

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140311

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees