JPH0941097A - Austenitic stainless steel for absorption-type air cooling and heating apparatus - Google Patents

Austenitic stainless steel for absorption-type air cooling and heating apparatus

Info

Publication number
JPH0941097A
JPH0941097A JP7212387A JP21238795A JPH0941097A JP H0941097 A JPH0941097 A JP H0941097A JP 7212387 A JP7212387 A JP 7212387A JP 21238795 A JP21238795 A JP 21238795A JP H0941097 A JPH0941097 A JP H0941097A
Authority
JP
Japan
Prior art keywords
stainless steel
weight
austenitic stainless
absorption
regenerator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP7212387A
Other languages
Japanese (ja)
Inventor
Yoshihiro Uematsu
美博 植松
Toshiro Adachi
俊郎 足立
Yukihiro Kawabata
幸寛 川畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP7212387A priority Critical patent/JPH0941097A/en
Publication of JPH0941097A publication Critical patent/JPH0941097A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress the generation of gaseous hydrogen during operation by applying polishing finishing to an austenitic stainless steel as a structural material for a regenerator in an absorption-type air cooling and heating apparatus using an absorbing solution composed essentially of LiBr. SOLUTION: As a structural material for a regenerator in an absorption-type air cooling and heating apparatus using water as refrigerant in a high concentration halide atmosphere and also using an absorbing solution containing LiBr as essential component, an austenitic stainless steel which has a composition containing, by weight, <0.08% C, 1.0-5.0% Si, <1.0% Mn, <0.045% P, <0.005% S, 16.0-25.0% Cr, 6.0-20.0% Ni, 0.5-3.0% Mo, and 0.005-0.35% N or further containing 0.5-3.0% Cu is used. A passivating film on the surface of this stainless steel is subjected to finish polishing at a gauge of >=No.80 at the minimum. By this method, the generation of gaseous hydrogen from a regenerator during operation can be suppressed, and the increase in cost due to the degassing operation for gaseous hydrogen during operation can be prevented.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、LiBrを主成分とす
る吸収液を使用する吸収式冷暖房機器における再生器等
の構造材として使用されるオーステナイト系ステンレス
鋼に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an austenitic stainless steel used as a structural material for a regenerator or the like in an absorption type cooling / heating equipment which uses an absorption liquid containing LiBr as a main component.

【0002】[0002]

【従来の技術】環境問題から冷媒にフロンを使用しない
冷暖房システムとして、濃度50%以上の高濃度のアル
カリ性LiBr水溶液を吸収材として使用する吸収式冷
暖房機器が注目されている。吸収式冷暖房システムで
は、たとえば図1(a)に示すように、凝縮器1と再生
器2との間、及び蒸発器3と吸収器4との間で水蒸気5
を移動させている。凝縮器1には、再生器2から加熱蒸
発したLiBr水溶液6の蒸気が送り込まれ、循環媒体
7によって熱量が系外に持ち出される。凝縮器1から蒸
発器3に純水8が送り込まれ、冷房ルーム9との間に配
管したブライン移送管10を流れるブラインを冷却す
る。そして、薄いLiBr水溶液11を収容した吸収器
4に送り込まれ、熱媒体12と熱交換される。この吸収
式冷暖房システムでは、たとえば図1(b)に示す構造
を持つ再生器が使用される。再生器を構成するフレーム
12の内部に希吸収液及び燃焼排ガス用流路を交互に形
成し、燃焼ガスを排ガスとして、希吸収液を沸騰吸収液
及び水蒸気としてそれぞれ送り出す。このとき、希吸収
液と燃焼排ガスとの熱交換効率を高めるため、熱交換器
13で流路を形成する。また、希吸収液の漏洩や大気の
混入を防止するため、熱交換器13をフレーム12にろ
う付け14する。
2. Description of the Related Art As an air conditioning system that does not use chlorofluorocarbon as a refrigerant, an absorption type air conditioning equipment that uses a highly concentrated alkaline LiBr aqueous solution having a concentration of 50% or more as an absorbent has been attracting attention due to environmental problems. In the absorption cooling and heating system, for example, as shown in FIG. 1 (a), water vapor 5 is generated between the condenser 1 and the regenerator 2 and between the evaporator 3 and the absorber 4.
Is moving. The vapor of the LiBr aqueous solution 6 heated and evaporated from the regenerator 2 is sent to the condenser 1, and the amount of heat is taken out of the system by the circulation medium 7. Pure water 8 is sent from the condenser 1 to the evaporator 3, and cools the brine flowing through the brine transfer pipe 10 that is connected to the cooling room 9. Then, it is sent to the absorber 4 containing the thin aqueous LiBr solution 11 and exchanges heat with the heat medium 12. In this absorption type cooling and heating system, for example, a regenerator having a structure shown in FIG. 1B is used. Rare absorbents and combustion exhaust gas passages are alternately formed inside the frame 12 constituting the regenerator, and the combustion gas is sent as exhaust gas and the rare absorbent is sent as boiling absorbent and steam. At this time, in order to enhance the heat exchange efficiency between the rare absorbent and the combustion exhaust gas, the heat exchanger 13 forms a flow path. Further, the heat exchanger 13 is brazed 14 to the frame 12 in order to prevent the leakage of the diluted absorbing liquid and the mixture of the atmosphere.

【0003】すでに実用化されている業務用大型機にお
いては、吸収式冷暖房機の再生器を炭素鋼,キュプロニ
ッケル等の材料で作り、再生器中でLiBrを主成分と
する高濃度のアルカリ性ハロゲン吸収液を最高150℃
で加熱している。吸収式冷暖房機器の普及を図るために
は、従来の業務用をベースに設計された大型の機器を小
型化,軽量化する必要がある。小型化,軽量化のために
は吸収冷却方式を水冷から空冷に変更する必要があり、
それに伴って運転効率を高効率化させる必要性が生じ
る。このようなことから、空冷式の吸収式冷暖房機にお
いては再生器の運転温度が最高約200℃と高くなるた
め、炭素鋼では十分な耐食性が得られない。そこで、炭
素鋼に代わる材料が検討されており、耐食性及びコスト
の面からステンレス鋼が最も有望な材料と考えられてい
る。フェライト系ステンレス鋼に関しては、Al,C
o,Cr,Ni,Mo,Cu等の添加によって高濃度の
ハロゲン化物中でも優れた耐食性を示すことが特公平6
−37692号公報,特公平5−34419号公報等で
紹介されている。特開平2−298237号公報では、
冷暖房機用のオーステナイト系ステンレス鋼を紹介して
いる。また、特開平7−35433号公報では、Si添
加によって自然腐食電位を再不動態化電位より低くする
ことにより、耐食性を改善したステンレス鋼が開示され
ている。
In a large-scale commercial machine that has already been put into practical use, a regenerator of an absorption type air conditioner is made of a material such as carbon steel or cupronickel, and a high concentration of alkaline halogen containing LiBr as a main component is used in the regenerator. Absorbing liquid up to 150 ℃
Heating. In order to popularize absorption-type cooling and heating equipment, it is necessary to reduce the size and weight of conventional large-scale equipment designed for business use. In order to reduce the size and weight, it is necessary to change the absorption cooling method from water cooling to air cooling.
Along with that, it becomes necessary to increase the operating efficiency. For this reason, the operating temperature of the regenerator is as high as about 200 ° C. in the air-cooled absorption air conditioner, and carbon steel cannot provide sufficient corrosion resistance. Therefore, a material replacing carbon steel has been studied, and stainless steel is considered to be the most promising material in terms of corrosion resistance and cost. For ferritic stainless steel, Al, C
It is disclosed in Japanese Patent Publication No. 6-6 that excellent corrosion resistance is exhibited even in high-concentration halides by the addition of o, Cr, Ni, Mo, Cu, etc.
-37692, Japanese Patent Publication No. 5-34419, etc. In Japanese Patent Laid-Open No. 2-298237,
Introducing austenitic stainless steel for air conditioners. Further, Japanese Patent Application Laid-Open No. 7-35433 discloses a stainless steel whose corrosion resistance is improved by lowering the spontaneous corrosion potential below the repassivation potential by adding Si.

【0004】[0004]

【発明が解決しようとする課題】Al,Co,Cr,N
i,Mo,Cu等の添加は、特公平6−37692号公
報,特公平5−34419号公報等にもみられるよう
に、高濃度のハロゲン化物中で優れた耐食性をステンレ
ス鋼に付与する。しかし、これら添加元素の作用は酸性
の吸収液に対しては有効であるものの、吸収式冷暖房の
吸収液はアルカリ性であり、アルカリ性のLiBr吸収
液に対するこれらステンレス鋼の合金成分の有効性は不
明である。特に再生器の熱交換部等は複雑な形状になっ
ているため、良好な加工性,溶接性及びろう付け性が要
求される。たとえば、ろう付けでは、耐食性に問題があ
るCuろうを使用できず、Niろうが使用される。しか
し、Niろうを使用するろう付けが比較的高温で行われ
るため、フェライト系ステンレス鋼では結晶粒が粗大化
することになる。
Problems to be Solved by the Invention Al, Co, Cr, N
Addition of i, Mo, Cu, etc. imparts excellent corrosion resistance to a stainless steel in a high-concentration halide, as seen in JP-B-6-37692 and JP-B-5-34419. However, although the action of these additional elements is effective for the acidic absorption liquid, the absorption liquid for absorption cooling and heating is alkaline, and the effectiveness of these alloy components of stainless steel for the alkaline LiBr absorption liquid is unknown. is there. Particularly, since the heat exchange part of the regenerator has a complicated shape, good workability, weldability and brazing property are required. For example, in brazing, Cu brazing which has a problem in corrosion resistance cannot be used, and Ni brazing is used. However, since brazing using Ni brazing is performed at a relatively high temperature, crystal grains become coarse in ferritic stainless steel.

【0005】この点、オーステナイト系ステンレス鋼
は、加工性,溶接性及びろう付け性がフェライト系ステ
ンレス鋼よりも優れており、耐孔食性及び耐隙間腐食性
においても優れた特性を呈する。しかし、オーステナイ
ト系ステンレス鋼を再生器用機材として使用すると、再
生器の運転中に水素ガスが発生し、冷暖房能力を低下さ
せる傾向を示す。そのため、オーステナイト系ステンレ
ス鋼製の再生器を使用する場合、発生した水素を除去
し、再生器内の真空度を適正な圧力に維持することが必
要になる。しかし、水素ガスの除去には専用の装置が要
求され、また水素ガスの除去操作中に機器の運転を止め
る必要がある。したがって、吸収式冷暖房機を実用化す
る上では、ガス発生量を抑制することが重要な問題とな
る。本発明は、このような問題を解消すべく案出された
ものであり、耐応力腐食割れ性に優れ、十分な加工性及
びろう付け性をもつオーステナイト系ステンレス鋼の表
面仕上げを規制することにより、ガス発生量を抑制し、
50%以上の高濃度アルカリ性LiBr吸収液を使用す
る冷暖房機に適したオーステナイト系ステンレス鋼を提
供することを目的とする。
In this respect, the austenitic stainless steel is superior in workability, weldability and brazing property to the ferritic stainless steel and exhibits excellent pitting corrosion resistance and crevice corrosion resistance. However, when austenitic stainless steel is used as equipment for a regenerator, hydrogen gas is generated during the operation of the regenerator, which tends to reduce the cooling and heating capacity. Therefore, when using the regenerator made of austenitic stainless steel, it is necessary to remove the generated hydrogen and maintain the degree of vacuum in the regenerator at an appropriate pressure. However, a dedicated device is required for removing hydrogen gas, and it is necessary to stop the operation of the device during the hydrogen gas removing operation. Therefore, it is an important problem to suppress the gas generation amount in order to put the absorption type air conditioner into practical use. The present invention has been devised to solve such a problem, by controlling the surface finish of austenitic stainless steel having excellent stress corrosion cracking resistance, sufficient workability and brazability. , Suppress the amount of gas generation,
It is an object of the present invention to provide an austenitic stainless steel suitable for an air conditioner using a highly concentrated alkaline LiBr absorbing solution of 50% or more.

【0006】[0006]

【課題を解決するための手段】本発明のオーステナイト
系ステンレス鋼は、その目的を達成するため、C:0.
08重量%以下,Si:1.0〜5.0重量%,Mn:
1.0重量%以下,P:0.045重量%以下,S:
0.005重量%以下,Cr:16.0〜25.0重量
%,Ni:6.0〜20.0重量%,Mo:0.5〜
3.0重量%及びN:0.005〜0.35重量%を含
み、残部が実質的にFeの組成を持ち、#80以上の番
手で研磨仕上げされた表面をもち、水を冷媒とし、Li
Brを主成分とする吸収液を使用する吸収式冷暖房機器
の構造材として使用されることを特徴とする。このステ
ンレス鋼は、更にCu:0.5〜3.0重量%を含むこ
とができる。
SUMMARY OF THE INVENTION The austenitic stainless steel of the present invention has a C content of 0.1%.
08 wt% or less, Si: 1.0 to 5.0 wt%, Mn:
1.0% by weight or less, P: 0.045% by weight or less, S:
0.005 wt% or less, Cr: 16.0 to 25.0 wt%, Ni: 6.0 to 20.0 wt%, Mo: 0.5 to
3.0% by weight and N: 0.005 to 0.35% by weight, the balance having a composition of substantially Fe, having a surface polished and finished with a # 80 or higher count, using water as a refrigerant, Li
It is characterized in that it is used as a structural material of an absorption type cooling and heating equipment using an absorption liquid containing Br as a main component. The stainless steel may further contain Cu: 0.5 to 3.0% by weight.

【0007】[0007]

【作用】吸収式冷暖房機においては、濃度50%以上の
高濃度アルカリ性LiBr水溶液を約200℃の高温に
加熱する。冷暖房機内は、真空に引いた後で密閉して運
転を開始するため、通常の環境と異なり、腐食反応又は
皮膜形成時のカソード反応により水素ガスがステンレス
鋼の表面に発生する。発生した水素ガスは、非凝縮性の
ガスであるため、熱交換効率を大幅に低下させる。本発
明者等は、水素ガス発生メカニズムを詳細に検討した結
果、ステンレス鋼の表面状態によって水素ガスの発生が
変わることを見い出した。すなわち、2B又は2D仕上
げのように酸洗によりオーステナイト系ステンレス鋼表
面に不動態皮膜を形成した場合にはガス発生量が増加
し、酸洗後に生じた不動態皮膜を研磨によって一旦除去
するときガス発生量が抑制される。LiBr濃度55
%,アルカリ度0.02N,Li2 Mo4 300ppm
の吸収液を150℃に保持し、アノード分極曲線がステ
ンレス鋼の表面状態によってどのように変わるかを調査
した。アノード分極曲線は、分極速度20mV/分で動
電位法によって測定した。アノード分極曲線は、2B仕
上げした表1Eのステンレス鋼板では図2、同じ材料を
600番で研磨仕上げしたものでは図3に示す曲線であ
った。
In the absorption type air conditioner, a high concentration alkaline LiBr aqueous solution having a concentration of 50% or more is heated to a high temperature of about 200 ° C. Since the inside of the air conditioner is closed and the operation is started after the air is evacuated, hydrogen gas is generated on the surface of the stainless steel due to the corrosion reaction or the cathode reaction during film formation, unlike the normal environment. Since the generated hydrogen gas is a non-condensable gas, the heat exchange efficiency is significantly reduced. As a result of detailed examination of the hydrogen gas generation mechanism, the present inventors have found that the generation of hydrogen gas changes depending on the surface condition of stainless steel. That is, when a passivation film is formed on the surface of austenitic stainless steel by pickling like 2B or 2D finishing, the gas generation amount increases, and when the passivation film generated after pickling is removed by polishing, The generation amount is suppressed. LiBr concentration 55
%, Alkalinity 0.02N, Li 2 Mo 4 300ppm
The absorption liquid of Example 1 was kept at 150 ° C., and it was investigated how the anodic polarization curve changes depending on the surface condition of stainless steel. The anodic polarization curve was measured by the potentiodynamic method at a polarization rate of 20 mV / min. The anodic polarization curve was the curve shown in FIG. 2 for the stainless steel plate of Table 1E finished with 2B and shown in FIG. 3 for the same material polished by No. 600.

【0008】図2と図3との比較から明らかなように、
研磨処理を施した材料は、不動態維持電流が小さく、ガ
ス発生量も少ないことが判る。このことから、研磨仕上
げは、ガス発生を抑制する有効な手段であるといえる。
しかし、研磨仕上げした材料は、2B,2D仕上げを施
した材料と比較すると、鋼中の非金属介在物等の欠陥部
が鋼表面に露出し易く、耐孔食性に劣る。そのため、研
磨目が粗いよりも研磨目が細かい方が実質的な表面積を
小さくし、欠陥が鋼表面に露出する頻度を低くできる上
で好ましい。このことから、最低でも80番以上の番手
で研磨する必要があり、好ましくは240番以上の番手
で研磨仕上げする。また、鋼種としても、高温の高濃度
アルカリ性LiBr水溶液に接する環境において研磨状
態で優れた耐食性が得られる合金設計を採用した。すな
わち、本発明のオーステナイト系ステンレス鋼に含まれ
る合金成分及びその含有量を次のように定めた。
As is clear from the comparison between FIG. 2 and FIG.
It can be seen that the material subjected to the polishing treatment has a small passivation sustaining current and a small amount of gas generation. From this, it can be said that polishing finish is an effective means for suppressing gas generation.
However, the polished material is inferior in pitting corrosion resistance as compared with the material subjected to 2B and 2D finishing because defective portions such as non-metallic inclusions in the steel are more likely to be exposed on the steel surface. Therefore, it is preferable that the fine polishing grain is finer than the coarse polishing grain because the substantial surface area can be reduced and the frequency of exposure of defects to the steel surface can be reduced. For this reason, it is necessary to polish with a count of at least 80 or more, and preferably with a count of 240 or more. Also, as the steel type, an alloy design was adopted that provides excellent corrosion resistance in a polished state in an environment in contact with a high-temperature, high-concentration alkaline LiBr aqueous solution. That is, the alloy components contained in the austenitic stainless steel of the present invention and their contents were determined as follows.

【0009】C:0.08重量%以下 オーステナイトを安定にする強力な元素であり、耐応力
腐食割れ性及び耐孔食性には大きな影響を与えない。し
かし、溶接部等での粒界腐食感受性を高めることから、
C含有量の上限を0.08重量%に定めた。 Si:1.0〜5.0重量% 本発明のオーステナイト系ステンレス鋼においては、重
要な作用を呈する合金元素であり、1.0重量%以上の
含有量で表面に安定な皮膜を形成し、高濃度ハロゲン化
物中における気相部及び液相部における耐孔食性を著し
く改善する。また、Cuとの複合添加で耐応力腐食割れ
性を高め、一定量のMoを添加しても耐応力腐食割れ性
を損なうことなく、耐隙間腐食性を改善する作用も呈す
る。しかし、強力なフェライト形成元素であることか
ら、Ni使用量を低く設定した状態でオーステナイト相
の安定化を図る上から、Si含有量の上限を5.0重量
%に定める。
C: 0.08% by weight or less It is a strong element that stabilizes austenite, and does not significantly affect stress corrosion cracking resistance and pitting corrosion resistance. However, because it increases the susceptibility to intergranular corrosion at welds,
The upper limit of the C content was set to 0.08% by weight. Si: 1.0 to 5.0 wt% In the austenitic stainless steel of the present invention, it is an alloying element that exhibits an important action, and a content of 1.0 wt% or more forms a stable film on the surface, It significantly improves the pitting corrosion resistance in the vapor phase part and the liquid phase part in a high concentration halide. Further, the compounded addition with Cu enhances the stress corrosion cracking resistance, and even if a fixed amount of Mo is added, the stress corrosion cracking resistance is not impaired and the crevice corrosion resistance is improved. However, since it is a strong ferrite forming element, the upper limit of the Si content is set to 5.0% by weight in order to stabilize the austenite phase in a state where the amount of Ni used is set low.

【0010】Mn:1.0重量%以下 腐食の起点となり易い可溶性硫化物MnSを生成し、耐
孔食性や耐隙間腐食性を劣化させる。そのため、Mn含
有量は少ないほど好ましく、本発明ではその上限を1.
0重量%に規定した。 P:0.045重量%以下 熱間加工性を低下させる有害元素であることから、通常
のステンレス鋼に許容される0.045重量%をP含有
量の上限とした。 S:0.005重量%以下 鋼中のMnと結合して可溶性硫化物MnSを生成し、耐
孔食性を悪化させる。S含有量は低いほど好ましく、本
発明ではその上限を0.005重量%に規定した。
Mn: 1.0% by weight or less Produces soluble sulfide MnS which easily becomes a starting point of corrosion and deteriorates pitting corrosion resistance and crevice corrosion resistance. Therefore, the smaller the Mn content is, the more preferable. In the present invention, the upper limit is 1.
It was defined as 0% by weight. P: 0.045 wt% or less Since it is a harmful element that deteriorates hot workability, 0.045 wt% allowed for ordinary stainless steel was set as the upper limit of P content. S: 0.005 wt% or less Combined with Mn in steel to form soluble sulfide MnS, which deteriorates pitting corrosion resistance. The lower the S content, the more preferable, and in the present invention, the upper limit is set to 0.005% by weight.

【0011】Cr:16.0〜25.0重量% ステンレス鋼においては耐食性を向上させる必要不可欠
の合金元素であり、本発明が対象とする高濃度ハロゲン
化物を含む吸収液環境においては16.0重量%以上の
Cr含有が必要である。Cr含有量が多いほど耐食性が
向上するが、オーステナイト相を維持するために必要な
Ni量が増加し、また製造性や加工性も損なわれる。そ
こで、本発明においては、Cr含有量の上限を25.0
重量%に定めた。 Ni:6.0〜20.0重量% オーステナイト相を維持するための主要合金元素であ
り、安定したオーステナイト相を確保するためには6重
量%以上のNiが必要である。しかし、20重量%を超
えるNi含有量は、鋼材コストを上昇させる原因とな
る。また、Niは、6.0〜20.0重量%の範囲で耐
孔食性を改善する作用を呈し、特に耐孔食性が要求され
る部位に使用される材料としては10重量%以上のNi
含有量が好ましい。
Cr: 16.0 to 25.0% by weight It is an essential alloying element for improving the corrosion resistance in stainless steel, and is 16.0 in the absorbing solution environment containing a high concentration halide which is the object of the present invention. It is necessary to contain Cr by weight% or more. The higher the Cr content, the higher the corrosion resistance, but the Ni content necessary for maintaining the austenite phase increases, and the manufacturability and workability are impaired. Therefore, in the present invention, the upper limit of the Cr content is set to 25.0.
Weight% is set. Ni: 6.0 to 20.0% by weight It is a main alloying element for maintaining the austenite phase, and 6% by weight or more of Ni is necessary to secure a stable austenite phase. However, the Ni content exceeding 20% by weight causes the steel material cost to increase. Further, Ni exhibits an effect of improving the pitting corrosion resistance in the range of 6.0 to 20.0% by weight, and particularly 10% by weight or more of Ni is used as a material used for a portion requiring the pitting corrosion resistance.
Content is preferred.

【0012】Mo:0.5〜3.0重量% 高濃度ハロゲン化物中における耐食性、特に耐孔食性の
改善に有効な合金元素である。Mo含有によって不動態
皮膜は強化されるが、その作用は、Siとの複合添加に
よって一層顕著になる。このようなMoの添加効果は、
0.5重量%以上、好ましくは0.7重量%以上で顕著
になる。しかし、3.0重量%を超えるMo含有量は、
高価なMoを多量に消費するため鋼材コストが高くなる
ばかりでなく、材料の硬質化によって製造性や加工性に
悪影響を及ぼす。 N:0.005〜0.35重量% 強力なオーステナイト形成元素であると共に、オーステ
ナイト系ステンレス鋼の耐食性を改善する有効な合金元
素である。このような作用は、0.005重量%以上の
N含有量で顕著になる。しかし、0.35重量%を超え
る多量のN含有は、製造性及び加工性を著しく低下させ
る。 Cu:0.5〜3.0 必要に応じて添加される合金元素であり、オーステナイ
ト系ステンレス鋼の耐孔食性を改善し、ハロゲン化物を
含む水溶液中における耐応力腐食割れ性を改善する。C
uの添加効果は、0.5重量%以上で顕著になり、3.
0重量%で飽和する。また、3.0重量%を超えて多量
のCuを含有させると、熱間加工性が劣化する。
Mo: 0.5 to 3.0% by weight It is an alloying element effective in improving corrosion resistance, particularly pitting corrosion resistance, in a high concentration halide. Although the passivation film is strengthened by the inclusion of Mo, its action becomes more remarkable by the combined addition with Si. The effect of adding Mo is
It becomes remarkable at 0.5% by weight or more, preferably 0.7% by weight or more. However, the Mo content exceeding 3.0% by weight is
Since a large amount of expensive Mo is consumed, not only the cost of the steel material increases, but also the hardness of the material adversely affects the manufacturability and workability. N: 0.005 to 0.35% by weight It is a strong austenite forming element and an effective alloying element that improves the corrosion resistance of austenitic stainless steel. Such an effect becomes remarkable when the N content is 0.005% by weight or more. However, a large amount of N content exceeding 0.35% by weight remarkably lowers manufacturability and workability. Cu: 0.5 to 3.0 It is an alloy element added as necessary, and improves the pitting corrosion resistance of austenitic stainless steel and the stress corrosion cracking resistance in an aqueous solution containing a halide. C
The effect of adding u becomes remarkable at 0.5% by weight or more, and 3.
Saturate at 0% by weight. Further, when a large amount of Cu is contained in excess of 3.0% by weight, hot workability deteriorates.

【0013】[0013]

【実施例】冷暖房機の再生器に使用されるステンレス鋼
の研磨仕上げが再生器の運転中に発生するガス量に及ぼ
す影響を調査するため、表1に組成を示した各種ステン
レス鋼に対して2B仕上げ,2D仕上げ及び2B材に1
20番研磨を施したものをそれぞれ用意した。
[Examples] In order to investigate the effect of the polishing finish of stainless steel used in the regenerator of an air conditioner on the amount of gas generated during the operation of the regenerator, various stainless steels whose compositions are shown in Table 1 were tested. 1 for 2B finish, 2D finish and 2B material
Each was polished with No. 20 and was prepared.

【0014】 [0014]

【0015】各ステンレス鋼で気相部の容積が700c
cの再生器を作製し、LiBr濃度55%,アルカリ度
0.02N,Li2 Mo4 300ppmの吸収液を使用
し、190℃で100時間運転させた。運転後のガス発
生量を測定したところ、図4に示すように2B材及び2
D材に比較して研磨材では運転時のガス発生量が著しく
低減していた。また、何れの仕上げ材においても、孔
食,隙間腐食,応力腐食割れ等が観察されなかった。更
に、研磨材の耐食性を調査するため、吸収式冷暖房機に
おいて最も過酷な条件、すなわち何らかの原因で空気が
装置内に混入した場合を想定した実験を行った。耐食性
試験では、表1に示した各種ステンレス鋼の供試材を1
50mm×30mmに加工した後、500番のエメリー
紙で乾式研磨し、MgO水溶液を用いて脱脂した後、一
晩以上乾燥させた。各試験片を濃度60%のLiBr水
溶液に浸漬部の深さが30mmとなるように試験片を半
浸漬し、液温を150℃に保持して168時間の半浸漬
試験を行った。その後、80℃に保った30%硝酸水溶
液中に試験片を浸漬することにより腐食生成物を除去
し、最大侵食深さを測定した。
Each stainless steel has a vapor phase volume of 700c.
A regenerator of c was prepared, and an absorbent having a LiBr concentration of 55%, an alkalinity of 0.02 N and Li 2 Mo 4 of 300 ppm was used, and operated at 190 ° C. for 100 hours. When the amount of gas generated after the operation was measured, as shown in FIG.
In the abrasive material, the amount of gas generated during operation was significantly reduced as compared with the material D. No pitting corrosion, crevice corrosion, stress corrosion cracking, etc. were observed in any of the finished materials. Further, in order to investigate the corrosion resistance of the abrasive, an experiment was conducted assuming the most severe condition in the absorption type cooling and heating machine, that is, the case where air was mixed into the apparatus for some reason. In the corrosion resistance test, the test materials of various stainless steels shown in Table 1
After processing into 50 mm × 30 mm, it was dry-polished with No. 500 emery paper, degreased with an aqueous MgO solution, and then dried overnight or more. Each test piece was semi-immersed in a 60% concentration LiBr aqueous solution so that the depth of the immersed part was 30 mm, and the liquid temperature was kept at 150 ° C. to carry out a semi-immersion test for 168 hours. Then, the corrosion product was removed by immersing the test piece in a 30% nitric acid aqueous solution kept at 80 ° C., and the maximum erosion depth was measured.

【0016】試験結果を図5に示すように、Moを0.
5重量%以上含むステンレス鋼は、空気混入下において
も良好な耐食性を示していた。また、Moを約1重量%
添加した鋼種B,D及びEについてSiの複合添加効果
をみると、図6に示されるように、1重量%以上のSi
を添加した鋼は、Mo単独添加の鋼種Bに比較すると大
気開放下における耐孔食性に優れている。すなわち、S
iとMoの複合添加は、吸収式冷暖房機の環境として考
えられる最も過酷な腐食環境においても孔食の発生及び
成長を抑制する作用を呈することが確認された。以上の
結果から、Si及びMoを複合添加したオーステナイト
系ステンレス鋼は、吸収式冷暖房機器用に適した材料で
あることが判る。
The test results are shown in FIG.
The stainless steel containing 5% by weight or more showed good corrosion resistance even under aeration. Also, Mo is about 1% by weight.
Looking at the combined effect of Si on the added steel types B, D and E, as shown in FIG.
The steel added with is superior to the pitting corrosion resistance in the open to the atmosphere as compared with the steel type B added with Mo alone. That is, S
It has been confirmed that the combined addition of i and Mo exhibits the effect of suppressing the occurrence and growth of pitting corrosion even in the most severe corrosive environment considered as the environment of the absorption type cooling and heating machine. From the above results, it is understood that the austenitic stainless steel to which Si and Mo are added in combination is a material suitable for absorption type cooling and heating equipment.

【0017】[0017]

【発明の効果】以上に説明したように、本発明において
は、吸収式冷暖房機の構成材料として使用されるオース
テナイト系ステンレス鋼を研磨仕上げすることにより、
冷暖房機運転中のガス発生を抑制し、運転時のガス抜き
にかかる作業やコストが低減される。更に、適量のSi
及びMoを複合添加することにより、吸収式冷暖房機の
環境として最も過酷な空気が混入した環境においても気
相部における腐食による被害が最少限に抑制され、メン
テナンスコストが大幅に削減される。
As described above, according to the present invention, by polishing the austenitic stainless steel used as the constituent material of the absorption type cooling and heating machine,
By suppressing gas generation during operation of the air conditioner, the work and cost for degassing during operation can be reduced. Furthermore, an appropriate amount of Si
By adding Mo and Mo together, even in the environment where the most severe air is mixed as the environment of the absorption type air conditioner, the damage due to the corrosion in the gas phase part is suppressed to the minimum, and the maintenance cost is greatly reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】 吸収式の冷暖房システム(a)及び再生器
(b)
FIG. 1 is an absorption type heating and cooling system (a) and a regenerator (b).

【図2】 研磨仕上げしていないオーステナイト系ステ
ンレス鋼のアノード分極曲線
Figure 2: Anodic polarization curve of unpolished austenitic stainless steel

【図3】 研磨仕上げしたオーステナイト系ステンレス
鋼のアノード分極曲線
FIG. 3 Anode polarization curve of polished austenitic stainless steel

【図4】 オーステナイト系ステンレス鋼の仕上げ状態
がガス発生量に及ぼす影響
[Fig. 4] Effect of finish state of austenitic stainless steel on gas generation rate

【図5】 Mo含有量がオーステナイト系ステンレス鋼
の耐孔食性に及ぼす影響
FIG. 5: Effect of Mo content on pitting corrosion resistance of austenitic stainless steel

【図6】 Mo及びSiの複合添加によって耐孔食性が
向上することを示したグラフ
FIG. 6 is a graph showing that pitting corrosion resistance is improved by the combined addition of Mo and Si.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 C:0.08重量%以下,Si:1.0
〜5.0重量%,Mn:1.0重量%以下,P:0.0
45重量%以下,S:0.005重量%以下,Cr:1
6.0〜25.0重量%,Ni:6.0〜20.0重量
%,Mo:0.5〜3.0重量%及びN:0.005〜
0.35重量%を含み、残部が実質的にFeの組成を持
ち、#80以上の番手で研磨仕上げされた表面をもち、
水を冷媒とし、LiBrを主成分とする吸収液を使用す
る吸収式冷暖房機器の構造材として使用されるオーステ
ナイト系ステンレス鋼。
1. C: 0.08 wt% or less, Si: 1.0
~ 5.0 wt%, Mn: 1.0 wt% or less, P: 0.0
45% by weight or less, S: 0.005% by weight or less, Cr: 1
6.0 to 25.0 wt%, Ni: 6.0 to 20.0 wt%, Mo: 0.5 to 3.0 wt% and N: 0.005 to
Containing 0.35% by weight, the balance being substantially Fe composition, having a surface polished with # 80 or more count,
An austenitic stainless steel used as a structural material for an absorption type cooling and heating device, which uses water as a refrigerant and an absorption liquid containing LiBr as a main component.
【請求項2】 更にCu:0.5〜3.0重量%を含む
請求項1記載のオーステナイト系ステンレス鋼。
2. The austenitic stainless steel according to claim 1, further comprising Cu: 0.5 to 3.0% by weight.
JP7212387A 1995-07-28 1995-07-28 Austenitic stainless steel for absorption-type air cooling and heating apparatus Withdrawn JPH0941097A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7212387A JPH0941097A (en) 1995-07-28 1995-07-28 Austenitic stainless steel for absorption-type air cooling and heating apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7212387A JPH0941097A (en) 1995-07-28 1995-07-28 Austenitic stainless steel for absorption-type air cooling and heating apparatus

Publications (1)

Publication Number Publication Date
JPH0941097A true JPH0941097A (en) 1997-02-10

Family

ID=16621746

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7212387A Withdrawn JPH0941097A (en) 1995-07-28 1995-07-28 Austenitic stainless steel for absorption-type air cooling and heating apparatus

Country Status (1)

Country Link
JP (1) JPH0941097A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6399216B1 (en) * 1997-09-17 2002-06-04 Gas Research Institute Corrosion-resistant coatings for steels used in bromide-based absorption cycles
US6725911B2 (en) 2001-09-28 2004-04-27 Gas Research Institute Corrosion resistance treatment of condensing heat exchanger steel structures exposed to a combustion environment
WO2007123225A1 (en) 2006-04-24 2007-11-01 Astellas Pharma Inc Oxadiazolidinedione compound
JP2015200023A (en) * 2014-03-31 2015-11-12 日新製鋼株式会社 AUSTENITE STAINLESS STEEL EXCELLENT IN Cu GRAIN BOUNDARY PERMEABILITY RESISTANCE DURING Cu BRAZING

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6399216B1 (en) * 1997-09-17 2002-06-04 Gas Research Institute Corrosion-resistant coatings for steels used in bromide-based absorption cycles
US6725911B2 (en) 2001-09-28 2004-04-27 Gas Research Institute Corrosion resistance treatment of condensing heat exchanger steel structures exposed to a combustion environment
WO2007123225A1 (en) 2006-04-24 2007-11-01 Astellas Pharma Inc Oxadiazolidinedione compound
JP2015200023A (en) * 2014-03-31 2015-11-12 日新製鋼株式会社 AUSTENITE STAINLESS STEEL EXCELLENT IN Cu GRAIN BOUNDARY PERMEABILITY RESISTANCE DURING Cu BRAZING

Similar Documents

Publication Publication Date Title
EP2280090B1 (en) Ferritic stainless steel and production method
CA2762899C (en) Ferritic stainless steel material for brazing and heat exchanger member
JP6295155B2 (en) Ferritic stainless steel, manufacturing method thereof, and heat exchanger using ferritic stainless steel as a member
JP5264199B2 (en) EGR cooler using ferritic stainless steel
JP2010116622A (en) Ferritic stainless steel for heat pipe and steel sheet, and heat pipe and high temperature waste heat recovery device
WO2011013193A1 (en) Ferritic stainless steel for egr cooler and egr cooler
JP2018172709A (en) Austenitic stainless steel, soldered structure, soldered structure component and exhaust gas heat exchange component
US5944917A (en) Stainless steel for ozone added water and manufacturing method thereof
EP0520384B1 (en) Process of suppressing corrosion of a heat exchanging apparatus
JPH0941097A (en) Austenitic stainless steel for absorption-type air cooling and heating apparatus
JP3655036B2 (en) High-temperature regenerator of air-cooled absorption chiller / heater
JPS60230962A (en) Ferritic stainless steel material having superior corrosion resistance
JP3524302B2 (en) Austenitic stainless steel for absorption chiller / heater
JP3547915B2 (en) Absorption refrigerator and manufacturing method thereof
CN112063919B (en) Duplex stainless steel
JPH0841595A (en) Iron-chromium-nickel alloy steel having superior corrosion resistance in chloride-containing molten salt
JPH11236654A (en) Stainless steel for ammonia-water base absorption type cycle heat exchanger excellent in brazing property
JPH08946B2 (en) Steel and pipes for absorption heat equipment with excellent corrosion resistance
JP3546113B2 (en) Stainless steel for ammonia-water absorption cycle heat exchanger
JPH0885852A (en) Austenitic stainless steel for absorption type cooling and warming machine for water
JPH10306350A (en) Ammonia-type absorption heat pump
JPS596359A (en) Austenite stainless steel for seamless steel pipe used in heat exchanger
JPH10280122A (en) Production of absorption type refrigerator
JPH02298237A (en) Absorptive refrigerator
JPH1068558A (en) Refrigerant composition for absorption type refrigerator

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20021001