JPH0841595A - Iron-chromium-nickel alloy steel having superior corrosion resistance in chloride-containing molten salt - Google Patents

Iron-chromium-nickel alloy steel having superior corrosion resistance in chloride-containing molten salt

Info

Publication number
JPH0841595A
JPH0841595A JP17426794A JP17426794A JPH0841595A JP H0841595 A JPH0841595 A JP H0841595A JP 17426794 A JP17426794 A JP 17426794A JP 17426794 A JP17426794 A JP 17426794A JP H0841595 A JPH0841595 A JP H0841595A
Authority
JP
Japan
Prior art keywords
corrosion resistance
molten salt
alloy steel
chloride
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP17426794A
Other languages
Japanese (ja)
Inventor
Norio Ariga
紀夫 有賀
Toru Shimada
透 島田
Katsumi Shomura
克身 正村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP17426794A priority Critical patent/JPH0841595A/en
Publication of JPH0841595A publication Critical patent/JPH0841595A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

PURPOSE:To improve corrosion resistance to chloride-containing high temp. molten salt by incorporating specific amounts of C, Si, Mn, Cr, Ni, Ca, Mg, and Fe. CONSTITUTION:This steel is an Fe-Cr-Ni alloy steel having a composition which contains, by weight, <=0.04% C, <=0.5% Si, <=1.5% Mn, >18-<30% Cr, >10-<35% Ni, and 0.0005-0.005% Ca+Mg and in which Cr/Fe and Ni/Fe are regulated to >0.33-<0.7 and >0.33-<1, respectively. Fe exerts a strong effect on corrosion resistance because it forms oxides with Cr and Ni. The proper content of Fe is determined by the amounts of Cr and Ni. Corrosion resistance reaches a maximum when Cr/Fe and Ni/Fe take values in respectively specified ranges. By this method, the Fe-Cr-Ni alloy, reduced in cost and having sufficient corrosion resistance, can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、300℃以上の高温
の塩化物を含む溶融塩に接する機器、構造物用材料とし
て使用される、耐腐食性に優れたFe−Cr−Ni系合
金鋼に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a Fe-Cr-Ni alloy steel having excellent corrosion resistance, which is used as a material for equipment and structures in contact with molten salt containing chloride at a high temperature of 300 ° C or higher. It is about.

【0002】[0002]

【従来の技術】ゴミ焼却炉の余熱発電ボイラー等におい
て、スーパーヒータの蒸気温度が300℃以上となる
と、塩化物の硫酸塩を主体とする溶融塩が付着し、激し
い腐食を生じることが知られている。このため、これら
の余熱発電ボイラー等においては、従来はスーパーヒー
タの蒸気温度が300℃未満に収まるような運転を行っ
てきた。
2. Description of the Related Art In a waste heat power generation boiler of a refuse incinerator, etc., when the steam temperature of a super heater exceeds 300 ° C., a molten salt composed mainly of sulfate of chloride adheres to cause severe corrosion. ing. Therefore, in these residual heat power generation boilers and the like, conventionally, operation has been performed such that the steam temperature of the super heater falls below 300 ° C.

【0003】しかしながら、近年の地球環境を悪化させ
ないという課題と関連して、エネルギー効率を向上させ
るために、運転温度を高くする必要が生じてきた。この
要求を満たすためには、高温の塩化物を含む溶塩中で優
れた耐食性を有する合金鋼が必要となる。
However, in connection with the recent problem of not deteriorating the global environment, it has become necessary to raise the operating temperature in order to improve energy efficiency. To meet this requirement, an alloy steel having excellent corrosion resistance in a molten salt containing high temperature chloride is required.

【0004】300℃以上の高温の塩化物を含む溶融塩
に接する機器、構造物用材料としては、従来、耐酸化性
に優れた合金鋼を適用しようとしてきた。例えば特開平
2−213449号公報に開示されたAlを高めた合
金、特開昭62−20856号公報に開示されたSiを
高めた合金、特開平4−221034号公報に開示され
たCoを高めた合金等が知られている。
Conventionally, alloy steel having excellent oxidation resistance has been tried to be used as a material for equipment and structures which come into contact with molten salt containing chloride at a high temperature of 300 ° C. or higher. For example, the Al-enriched alloy disclosed in JP-A-2-213449, the Si-enriched alloy disclosed in JP-A-62-20856, and the Co disclosed in JP-A-4-221403 are enhanced. Alloys and the like are known.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上述し
た従来の技術に示された合金は、Al、Siのように加
工性を阻害する成分を含有するため、加工費が高くなっ
たり、Coのように高価な金属を含有させるため、材料
費が高くなるという問題点がある。
However, since the alloys shown in the above-mentioned prior arts contain components such as Al and Si that hinder the workability, the processing cost is high and the alloys such as Co are not used. Since expensive metal is contained in the material, there is a problem that the material cost becomes high.

【0006】一方では、Al、Si添加鋼のように耐酸
化性を向上させた合金は、ゴミ焼却炉の実際の使用条件
下では、必ずしも耐食性が十分ではないという問題点も
明らかになった。
On the other hand, it has become clear that alloys having improved oxidation resistance, such as Al and Si-added steels, do not necessarily have sufficient corrosion resistance under actual conditions of use in a refuse incinerator.

【0007】したがって、塩化物を含む溶融塩に晒され
る機器、構造物に使用される材料で価格が安く、かつ十
分に耐食性に優れているものは無いというのが現状であ
る。
Therefore, at present, there is no material that is exposed to a molten salt containing chloride and is used for a structure, which is inexpensive and has excellent corrosion resistance.

【0008】この発明は、従来技術の上述のような問題
点を解消するためになされたものであり、価格が安く、
かつ塩化物を含む溶融塩中において優れた耐食性を有す
るFe−Cr−Ni系合金鋼を提供することを目的とし
ている。
The present invention has been made to solve the above-mentioned problems of the prior art, and is inexpensive and
Moreover, it aims at providing the Fe-Cr-Ni system alloy steel which has the outstanding corrosion resistance in the molten salt containing chloride.

【0009】[0009]

【課題を解決するための手段】この発明に係る塩化物を
含む溶融塩中において優れた耐食性を有するFe−Cr
−Ni系合金鋼は、重量%で、C:0.04%以下、S
i:0.5%以下、Mn:1.5%以下、Cr:18%
を越え30%未満、Ni:10%を越え35%未満、C
a+Mg:0.0005〜0.005%を含有し、Crの
含有量とFeの含有量との比Cr/Feが0.33を超
え0.7未満、Niの含有量とFeの含有量との比Ni
/Feが0.33を超え1.0未満であるものである。
Fe-Cr having excellent corrosion resistance in a molten salt containing chloride according to the present invention.
-Ni alloy steel, by weight%, C: 0.04% or less, S
i: 0.5% or less, Mn: 1.5% or less, Cr: 18%
Over 30%, Ni: over 10% and under 35%, C
a + Mg: 0.0005 to 0.005%, the ratio of the content of Cr to the content of Fe Cr / Fe is more than 0.33 and less than 0.7, the content of Ni and the content of Fe. Ratio Ni
/ Fe is more than 0.33 and less than 1.0.

【0010】[0010]

【作用】本発明では、Cr、Niの作用を再検討すると
ともに、従来ほとんど検討されていないFeの作用を詳
細に調査した。その結果、合金の加工性を劣化させる添
加元素や高価な添加元素を使用しない、低コストで耐食
性に優れた材料を見いだしたものである。以下に各成分
の含有する範囲を限定した理由を説明する。
In the present invention, the actions of Cr and Ni were reexamined, and the action of Fe, which had not been studied so far, was investigated in detail. As a result, they have found a material that does not use an additive element or an expensive additive element that deteriorates the workability of the alloy and has a low cost and excellent corrosion resistance. The reason for limiting the range of each component will be described below.

【0011】C:材料の強度を上げるために必要である
が、0.04%を越えて多量に含有させると溶接後の耐
食性を劣化させるので、0.04%以下とした。
C: It is necessary to increase the strength of the material, but if it is contained in a large amount exceeding 0.04%, the corrosion resistance after welding deteriorates, so it was made 0.04% or less.

【0012】Si:脱酸剤として使用されるが、0.5
%を越えると耐食性を劣化させるため0.5%以下とし
た。
Si: used as a deoxidizer, but 0.5
%, The corrosion resistance deteriorates, so the content was made 0.5% or less.

【0013】Mn:オーステナイト相を安定化させると
ともに、Sの悪影響を軽減する元素であるが、耐食性に
は影響がない。しかし、1.5%をこえて多量に含有量
させると脆化の原因になるため1.5%以下とした。
Mn: An element that stabilizes the austenite phase and reduces the adverse effect of S, but does not affect the corrosion resistance. However, if it is contained in a large amount exceeding 1.5%, it causes embrittlement, so the content was made 1.5% or less.

【0014】Ca+Mg:合金鋼の熱間加工性を改善す
るとともに、O、Sを固定し、耐食性を向上させるが、
0.0005%以下では効果がなく、0.005%以上
では介在物が増加し有害である。したがって、Ca+M
gは0.0005%を超え0.005%未満とした。
Ca + Mg: Improves hot workability of alloy steel and fixes O and S to improve corrosion resistance.
If it is less than 0.0005%, there is no effect, and if it is more than 0.005%, inclusions increase and it is harmful. Therefore, Ca + M
g was set to more than 0.0005% and less than 0.005%.

【0015】Cr:塩化物を含む高温溶融塩中での耐食
性を向上させる元素であるが、含有量が18%以下では
効果がない。また、30%以上添加しても効果が飽和
し、また熱間加工性を阻害するようになる。したがっ
て、Crは18%を超え30%未満とした。
Cr: An element that improves the corrosion resistance in a high temperature molten salt containing chloride, but is ineffective if the content is 18% or less. Further, even if added in an amount of 30% or more, the effect is saturated and the hot workability is impaired. Therefore, Cr is set to more than 18% and less than 30%.

【0016】Ni:耐食性を向上させるとともに、オー
ステナイト相を安定させるための元素であるが、10%
以下では耐食性に対する効果がないばかりか、オーステ
ナイト相が不安定となる。35%以上添加すると耐食性
がむしろ劣化する。したがって、Niは10%を超え3
5%未満とした。
Ni: an element for improving the corrosion resistance and stabilizing the austenite phase, but 10%
Below, not only is there no effect on corrosion resistance, but the austenite phase becomes unstable. If it is added in an amount of 35% or more, the corrosion resistance deteriorates. Therefore, Ni exceeds 10% and 3
It was less than 5%.

【0017】Fe:FeはCr、Niとともに塩化物を
含む高温溶融塩中で酸化物を形成するため、耐食性に強
く影響する元素である。発明者等は、Feの適正な含有
量は、合金鋼のCr、Ni量によって決まり、Crの含
有量とFeの含有量との比Cr/FeおよびNiの含有
量とFeの含有量との比Ni/Feが、ある特定の範囲
内にあるときに、耐食性が最大となることを見いだした
のである。これは、上記したような環境下においては、
酸化物の安定性ではなくて、酸化物の溶融塩中への溶解
速度が腐食を支配しているので、FeとCrおよびFe
とNiの含有量比がある特定の範囲にある場合に腐食速
度が最小となるためである。以上のことからCr/Fe
は0.33を超え0.7未満、Ni/Feは0.33を
超え1.0未満としたのである。
Fe: Fe is an element that strongly affects the corrosion resistance because it forms an oxide in a high temperature molten salt containing chloride together with Cr and Ni. The inventors have found that the proper content of Fe depends on the Cr and Ni contents of the alloy steel, and the ratio of the Cr content and the Fe content is Cr / Fe and the Ni content and the Fe content. It has been found that the corrosion resistance is maximized when the ratio Ni / Fe is within a specific range. In the environment described above, this is
Corrosion is governed by the rate of dissolution of the oxide in the molten salt, not the stability of the oxide.
This is because the corrosion rate becomes the minimum when the content ratio of Ni to Ni is in a certain range. From the above, Cr / Fe
Is more than 0.33 and less than 0.7, and Ni / Fe is more than 0.33 and less than 1.0.

【0018】炭化物形成元素であるTi,Nb,Vを添
加しても、腐食速度には影響を与えない。また少量のM
o,Cu,Nを含有する場合も同様に優れた耐食性が得
られる。なお、P、Sはいずれも耐食性、加工性を阻害
する元素であり、実用的に可能な範囲で少なくする。一
応の目安としてはSは0.01%以下、Pは0.03%
以下である。
The addition of the carbide forming elements Ti, Nb, V does not affect the corrosion rate. Also a small amount of M
Similarly, excellent corrosion resistance can be obtained when the alloy contains O, Cu, and N. Both P and S are elements that impair corrosion resistance and workability, and are reduced in a practically possible range. As a rough guide, S is 0.01% or less, P is 0.03%
It is the following.

【0019】[0019]

【実施例】表1に示す成分組成からなる本発明合金鋼お
よび比較材を、各10kg溶製し、熱間圧延機で15m
m厚さの熱延板に圧延した後、溶体化処理を施した。こ
のようにして得られた材料から、機械加工により幅15
mm×長さ20mm×厚さ5mmの腐食試験片を製作し
た。各試験片は研磨紙の800番まで研磨後、脱脂を施
した。
EXAMPLES 10 kg of each of the alloy steels of the present invention having the compositional composition shown in Table 1 and a comparative material were melted, and then 15 m in a hot rolling mill.
After being rolled into a hot-rolled sheet having a thickness of m, solution treatment was performed. From the material thus obtained, a width of 15
A corrosion test piece of mm × length 20 mm × thickness 5 mm was produced. Each test piece was degreased after polishing up to 800 of polishing paper.

【0020】[0020]

【表1】 [Table 1]

【0021】腐食試験は、都市ごみ焼却炉の加熱器管上
に堆積したダストを採取し、このダストを塗布した腐食
試験片を、実験室の加熱炉で加熱するという方法で実施
した。上述した腐食試験を詳述すると、重量比でダスト
9および腐食を加速するための塩化亜鉛1の混合塩を調
整し、腐食試験片の全表面に50mg/cm2 の割合で
均一に塗布し乾燥した後、アルミナボートの上に試験片
を置き、450℃の炉温で20時間加熱した。
The corrosion test was carried out by collecting the dust accumulated on the heater tube of the municipal solid waste incinerator and heating the corrosion test piece coated with the dust in the heating furnace of the laboratory. The corrosion test described above will be described in detail. A mixed salt of dust 9 and zinc chloride 1 for accelerating the corrosion was prepared in a weight ratio, uniformly coated on the entire surface of the corrosion test piece at a rate of 50 mg / cm 2 , and dried. After that, the test piece was placed on an alumina boat and heated at a furnace temperature of 450 ° C. for 20 hours.

【0022】加熱中炉内雰囲気ガスとして、30%H2
O、0.1%HCl、0.03%NO2 、0.03%S
2 および残部が空気からなる混合ガスを、継続して炉
内に供給した。雰囲気の圧力は常圧であり、混合ガスの
供給割合は1リットル/分とした。
As the atmosphere gas in the furnace during heating, 30% H 2
O, 0.1% HCl, 0.03% NO 2 , 0.03% S
A mixed gas consisting of O 2 and the balance air was continuously supplied into the furnace. The pressure of the atmosphere was normal pressure, and the supply rate of the mixed gas was 1 liter / min.

【0023】各試験片の腐食による減量は、加熱後試験
片の表面に生成された腐食スケールを、薬品を用いて除
去した後、試験片の重量を測定し、あらかじめ測定して
おいた加熱前の試験片の重量から加熱後の試験片の重量
を差し引いて算出した。さらに、算出した腐食減量を基
に腐食速度(mm/年)を求めた。
The weight loss of each test piece due to corrosion is determined by removing the corrosion scale produced on the surface of the test piece after heating with a chemical and then measuring the weight of the test piece before heating. It was calculated by subtracting the weight of the test piece after heating from the weight of the test piece of. Further, the corrosion rate (mm / year) was calculated based on the calculated corrosion weight loss.

【0024】腐食試験の結果を表1に示す。表1から明
らかなように、本発明合金鋼の腐食速度はいずれも3m
m/年以下であるのに対して、比較材の腐食速度は4m
m/年を超えるものがほとんどであり、本発明合金鋼が
ごみ焼却炉のような、塩化物を多量に含む高温溶融塩中
でも十分に使用に耐えることが分かる。
The results of the corrosion test are shown in Table 1. As is clear from Table 1, the corrosion rates of the alloy steels of the present invention are all 3 m
m / year or less, whereas the corrosion rate of the comparative material is 4 m
Most of them exceed m / year, and it can be seen that the alloy steel of the present invention can be sufficiently used even in a high temperature molten salt containing a large amount of chloride such as in a refuse incinerator.

【0025】図1は、Cr−Ni−Fe系3元状態図上
に各合金鋼の腐食量を表したものである。図中に線で囲
んだ部分が本発明合金鋼のCr、Niの限定範囲および
FeとCr、FeとNiの量比を満足する範囲である
が、この範囲の腐食速度が、範囲外の合金鋼の腐食速度
と比較して小さいことが分かる。
FIG. 1 shows the amount of corrosion of each alloy steel on the Cr-Ni-Fe ternary phase diagram. The portion surrounded by a line in the figure is a range satisfying the limited ranges of Cr and Ni of the alloy steel of the present invention and the quantitative ratio of Fe and Cr, and Fe and Ni, but the corrosion rate in this range is out of the range. It can be seen that it is small compared to the corrosion rate of steel.

【0026】[0026]

【発明の効果】本発明により、塩化物を含む高温溶融塩
中で使用する機器、構造物の素材として、価格が安く、
かつ十分に耐食性に優れているFe−Cr−Ni系合金
鋼を提供することができる。
EFFECTS OF THE INVENTION According to the present invention, the price is low as a material for equipment and structures used in high temperature molten salt containing chloride,
Further, it is possible to provide an Fe-Cr-Ni-based alloy steel having sufficiently excellent corrosion resistance.

【図面の簡単な説明】[Brief description of drawings]

【図1】合金鋼の腐食量を表したCr−Ni−Fe系3
元状態図である。
FIG. 1 Cr—Ni—Fe system 3 showing the amount of corrosion of alloy steel
It is an original state diagram.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、C:0.04%以下、Si:
0.5%以下、Mn:1.5%以下、Cr:18%を越
え30%未満、Ni:10%を越え35%未満、Ca+
Mg:0.0005〜0.005%を含有し、Crの含有
量とFeの含有量との比Cr/Feが0.33を超え
0.7未満、Niの含有量とFeの含有量との比Ni/
Feが0.33を超え1.0未満であることを特徴とす
る塩化物を含む溶融塩中において優れた耐食性を有する
Fe−Cr−Ni系合金鋼。
1. By weight%, C: 0.04% or less, Si:
0.5% or less, Mn: 1.5% or less, Cr: more than 18% and less than 30%, Ni: more than 10% and less than 35%, Ca +
Mg: 0.0005 to 0.005%, Cr / Fe ratio Cr / Fe is more than 0.33 and less than 0.7, Ni content and Fe content Ratio Ni /
Fe is more than 0.33 and less than 1.0, and Fe-Cr-Ni based alloy steel having excellent corrosion resistance in a molten salt containing chloride.
JP17426794A 1994-07-26 1994-07-26 Iron-chromium-nickel alloy steel having superior corrosion resistance in chloride-containing molten salt Withdrawn JPH0841595A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17426794A JPH0841595A (en) 1994-07-26 1994-07-26 Iron-chromium-nickel alloy steel having superior corrosion resistance in chloride-containing molten salt

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17426794A JPH0841595A (en) 1994-07-26 1994-07-26 Iron-chromium-nickel alloy steel having superior corrosion resistance in chloride-containing molten salt

Publications (1)

Publication Number Publication Date
JPH0841595A true JPH0841595A (en) 1996-02-13

Family

ID=15975666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17426794A Withdrawn JPH0841595A (en) 1994-07-26 1994-07-26 Iron-chromium-nickel alloy steel having superior corrosion resistance in chloride-containing molten salt

Country Status (1)

Country Link
JP (1) JPH0841595A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100334253B1 (en) * 1999-11-22 2002-05-02 장인순 Alloy steel having corrosion resistance in molten salt
WO2019138987A1 (en) 2018-01-10 2019-07-18 日本製鉄株式会社 Austenitic heat-resistant alloy, method for producing same, and austenitic heat-resistant alloy material
WO2019138986A1 (en) 2018-01-10 2019-07-18 日本製鉄株式会社 Austenitic heat-resistant alloy and method for producing same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100334253B1 (en) * 1999-11-22 2002-05-02 장인순 Alloy steel having corrosion resistance in molten salt
WO2019138987A1 (en) 2018-01-10 2019-07-18 日本製鉄株式会社 Austenitic heat-resistant alloy, method for producing same, and austenitic heat-resistant alloy material
WO2019138986A1 (en) 2018-01-10 2019-07-18 日本製鉄株式会社 Austenitic heat-resistant alloy and method for producing same
CN111601913A (en) * 2018-01-10 2020-08-28 日本制铁株式会社 Austenitic heat-resistant alloy and method for producing same
KR20200103822A (en) 2018-01-10 2020-09-02 닛폰세이테츠 가부시키가이샤 Austenitic heat-resistant alloy and its manufacturing method
KR20200105703A (en) 2018-01-10 2020-09-08 닛폰세이테츠 가부시키가이샤 Austenitic heat-resistant alloy and its manufacturing method, and austenitic heat-resistant alloy material
US11248297B2 (en) 2018-01-10 2022-02-15 Nippon Steel Corporation Austenitic heat resistant alloy and method for producing same, and austenitic heat-resistant alloy material
CN111601913B (en) * 2018-01-10 2022-03-04 日本制铁株式会社 Austenitic heat-resistant alloy and method for producing same
US11268195B2 (en) 2018-01-10 2022-03-08 Nippon Steel Corporation Austenitic heat resistant alloy and method for producing the same

Similar Documents

Publication Publication Date Title
JP4319817B2 (en) Low alloy steel excellent in hydrochloric acid corrosion resistance and sulfuric acid corrosion resistance and its welded joint
JP5420292B2 (en) Ferritic stainless steel
JP3584636B2 (en) Sulfuric acid / hydrochloric acid dew-point corrosion resistant steel with excellent hot workability
WO2016013482A1 (en) Ferritic stainless steel and method for producing same, and heat exchanger equipped with ferritic stainless steel as member
JPH0925536A (en) Acid dew point corrosion resistant steel
WO1999009231A1 (en) Austenitic stainless steel excellent in resistance to sulfuric acid corrosion and workability
JP7127355B2 (en) steel
WO1993017143A1 (en) High-chromium and high-phosphorus ferritic stainless steel excellent in weatherproofness and rustproofness
JPH0841595A (en) Iron-chromium-nickel alloy steel having superior corrosion resistance in chloride-containing molten salt
JP3960832B2 (en) High corrosion resistant heat resistant cast steel
JP3529946B2 (en) Ferritic stainless steel for heat transfer member of exhaust gas and manufacturing method
JP3514889B2 (en) Austenitic stainless clad steel sheet with excellent corrosion resistance and method for producing the same
JP4013301B2 (en) Welded structural steel excellent in sulfuric acid dew point corrosion resistance and method for producing the same
JPH11189848A (en) Austenitic stainless steel excellent in sulfuric acid corrosion resistance
JP3239763B2 (en) Austenitic stainless steel with excellent resistance to sulfuric acid corrosion
JP3527640B2 (en) Weld metal for high Cr ferritic heat resistant steel
JPH0570895A (en) Highly corrosion resistant alloy steel for heat transfer tube for waste incineration waste heat boiler
JP2005240112A (en) Ferritic stainless steel
JPH06179952A (en) Austenitic stainless steel for soda recovering boiler heat transfer pipe
JP2000001755A (en) Austenitic stainless steel excellent in sulfuric acid dew point corrosion resistance and its production
JPH11140586A (en) Steel product for flue and stack of lng-fired boiler for lng only
JP2020045539A (en) Steel
JP2562740B2 (en) Ferrite stainless steel with excellent intergranular corrosion resistance, pipe forming property and high temperature strength
JPH05195126A (en) Highly corrosion resistant alloy for heat exchanger tube of boiler
JPH02213449A (en) Highly corrosion resistant steel for waste incineration waste heat boiler tube

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20011002