JPH10203268A - Sound insulation structure - Google Patents

Sound insulation structure

Info

Publication number
JPH10203268A
JPH10203268A JP9025768A JP2576897A JPH10203268A JP H10203268 A JPH10203268 A JP H10203268A JP 9025768 A JP9025768 A JP 9025768A JP 2576897 A JP2576897 A JP 2576897A JP H10203268 A JPH10203268 A JP H10203268A
Authority
JP
Japan
Prior art keywords
fiber
surface layer
thickness
layer
sound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9025768A
Other languages
Japanese (ja)
Other versions
JP3632876B2 (en
Inventor
Yoshito Matsuoka
義人 松岡
Koichi Nemoto
好一 根本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP02576897A priority Critical patent/JP3632876B2/en
Publication of JPH10203268A publication Critical patent/JPH10203268A/en
Application granted granted Critical
Publication of JP3632876B2 publication Critical patent/JP3632876B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To make high sound absorption and low springing compatible by making thickness of an internal surface layer which is super extra fine fiber unwoven cloth and is located on the opposite side to a sound incident plane specified times as much as that of a surface layer. SOLUTION: In a sound insulation structure, unwoven cloth constituting a surface layer and a back face layer is made of polypropylene extra superfine fiber which can be obtained by a melt blow process. The surface layer and the back face layer are made of unwoven cloth made of extra superfine fibers of fiber diameter 0.1 to 10μm which can be obtained by the melt blow process. The average apparent density of the surface layer and the back face layer is determined for a range of 0.03 to 0.06g/cm<3> . Further, thicknesses of the surface layer and the back face layer are determined for a range of 5 to 15mm. Thickness of the internal layer is made 2 to 5 times as much as that of the surface layer.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高性能の自動車用
遮音構造体に係り、更に詳しくは、高い吸音性能と遮音
性能を両立させた自動車用遮音構造体に関するもので、
自動車用吸遮音材、フロアーインシュレーター及びダッ
シュパネルに取り付けられる自動車用ダッシュインシュ
レーター等の自動車用内装吸遮音材として好適に用いら
れる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-performance sound insulation structure for a vehicle, and more particularly to a sound insulation structure for a vehicle having both high sound absorption performance and high sound insulation performance.
It is suitably used as an interior sound absorbing and insulating material for automobiles, such as an automobile sound absorbing and insulating material, a floor insulator, and an automobile dash insulator attached to a dash panel.

【0002】[0002]

【従来の技術】近年、自動車用内装材、特にフロアイン
シュレーターやダッシュインシュレーターには良好な遮
音性能と吸音性能が要求されており、従来、かかる自動
車用遮音構造体としては、フェルトやウレタンフォーム
が使用されることが多かった。しかしながら、フェルト
は、賦形性が悪いことに起因してパネルとの密着性が悪
くなるので、一般的に吸遮音性能が劣る。また、フロア
ーインシュレーター等に使用されると、敷設されている
ワイヤーハーネス等による凹凸を吸収できないことがあ
り、カーペット表皮に凹凸が発生し、見栄えが悪くなる
ことがある。更に、解繊した繊維には天然繊維が含まれ
ているため、品質上の安定性に欠ける。加えて繊維間の
結合が弱いために、経時的なへたりを生じるという欠点
があった。
2. Description of the Related Art In recent years, interior materials for automobiles, particularly floor insulators and dash insulators, have been required to have good sound insulation performance and sound absorption performance. Conventionally, felt and urethane foams have been used as such sound insulation structures for automobiles. Was often done. However, since felt has poor adhesion to a panel due to poor shapeability, it generally has poor sound absorbing and insulating performance. In addition, when used for floor insulators and the like, irregularities due to the laid wire harness and the like may not be absorbed, and irregularities may be generated on the carpet skin, resulting in poor appearance. Furthermore, since the defibrated fibers contain natural fibers, they lack quality stability. In addition, there is a drawback that the sagging over time occurs due to weak bonding between the fibers.

【0003】一方、ウレタンフォームを遮音構造体とし
て用いる場合には、カーペット表皮とウレタンフォーム
との接着工程が必要となり、高コストとなる。発泡成形
型中にカーペット表皮とウレタン発泡原料を投入して一
体成形する方法も開発されているが、樹脂注入、発泡固
着工程が必要となるため生産性が劣るほか、設備も大規
模になり、また、ウレタン発泡材の原料を用いるため作
業環境が悪く、排気設備も必要となる。更に、ウレタン
フォームはリサイクルが困難であり、環境上問題となる
ため好ましくなく、フェルトに比べて硬いため遮音性能
も劣っている。
[0003] On the other hand, when urethane foam is used as a sound insulation structure, a bonding step between the carpet skin and the urethane foam is required, resulting in high costs. A method has been developed in which a carpet skin and a urethane foaming raw material are charged into a foaming mold and molded integrally, but productivity is inferior because resin injection and foaming and fixing processes are required, and the equipment becomes large-scale. In addition, since the raw material of the urethane foam is used, the working environment is poor, and exhaust equipment is required. Furthermore, urethane foam is difficult to recycle and is not preferred because it poses an environmental problem, and is inferior in sound insulation performance because it is harder than felt.

【0004】かかる欠点を改善するために、特開昭62
−223357号公報、特開平4−272263号公報
及び特開平4−185754号公報には、ポリエステル
等の合成繊維不織布を用いた遮音構造体が開示されてい
る。ところで、熱融着繊維(バインダー繊維)を用いる
サーマルボンドタイプの合成繊維製不織布は、バインダ
ー繊維の配合量、繊維径、見かけ密度を変えることで、
ばね定数や吸音性能をコントロールすることが可能であ
る。即ち、共振点のチューニングが可能であり、ノイズ
入力の大きな周波数と遮音構造体の共振点をずらすこと
で良好な遮音性能が得られる。
In order to improve such disadvantages, Japanese Patent Application Laid-Open No.
JP-A-223357, JP-A-4-272263 and JP-A-4-185754 disclose a sound insulating structure using a synthetic fiber nonwoven fabric such as polyester. By the way, the thermal bond type synthetic fiber non-woven fabric using the heat fusion fiber (binder fiber) is obtained by changing the amount of the binder fiber, the fiber diameter, and the apparent density.
It is possible to control the spring constant and sound absorption performance. That is, the resonance point can be tuned, and good sound insulation performance can be obtained by shifting the resonance point of the sound insulation structure from the frequency at which the noise input is large.

【0005】しかしながら、ノイズ入力の大きな周波数
が広い領域に亘る場合、共振点のチューニングのみでは
遮音が不十分であり、遮音構造体の高ダンピング化が必
要となる。ところが、従来のフェルトやウレタンフォー
ムや合成繊維不織布を用いた遮音構造体で高ダンピング
を実現するのは難しく、そのコントロールも困難なのが
現状である。このため、遮音構造体を多層構造とし、構
造体の一層をメルトブロー製法により得られる超極細繊
維不織布から成る遮音構造体が考案されている(特願平
7−151549号)。
However, when the frequency of a large noise input is over a wide range, the sound insulation is not sufficient only by tuning the resonance point, and a high damping of the sound insulation structure is required. However, it is difficult to achieve high damping with a conventional sound insulating structure using felt, urethane foam, or synthetic fiber nonwoven fabric, and at present it is difficult to control the damping. For this reason, a sound insulation structure has been devised in which the sound insulation structure has a multi-layer structure and one layer of the structure is made of an ultra-fine fiber non-woven fabric obtained by a melt blow method (Japanese Patent Application No. 7-151549).

【0006】[0006]

【発明が解決しようとする課題】上記多層型遮音構造体
を用いることにより、ダンピング性能に優れ、且つ、ダ
ンピング特性のコントロールが可能である。しかしなが
ら、この多層型遮音構造体では超極細繊維層が主たる音
の入射面に対して反対側又は中間に位置するため、超極
細繊維不織布のもつ大きな特徴である高吸音性が発揮で
きていない。また、超極細繊維不織布はもともと動ばね
定数が非常に大きく、超極細繊維層に対して他の層の厚
さが十分確保されていない場合、ばね定数が増加し遮音
性能が低下する等の課題があった。更に、吸遮音構造体
の性能は主に吸音性能とばね特性で決まるが、この2つ
の性能は二律背反的な側面を持ち、高吸音性と低ばね化
は両立が難しかった。
By using the above-mentioned multilayer sound insulation structure, the damping performance is excellent and the damping characteristics can be controlled. However, in this multilayer sound insulating structure, since the ultrafine fiber layer is located on the opposite side or the middle of the main sound incident surface, high sound absorption, which is a great feature of the ultrafine fiber nonwoven fabric, cannot be exhibited. In addition, the ultra-fine fiber nonwoven fabric has a very large dynamic spring constant from the beginning, and if the thickness of other layers is not sufficiently ensured with respect to the ultra-fine fiber layer, the spring constant increases and the sound insulation performance decreases. was there. Further, the performance of the sound absorbing and insulating structure is mainly determined by the sound absorbing performance and the spring characteristics. However, these two performances have a trade-off aspect, and it is difficult to achieve both high sound absorbing performance and low spring.

【0007】本発明は、このような従来技術の有する課
題に鑑みてなされたものであり、その目的とするところ
は、超極細繊維不織布の持つ大きな特長である高吸音性
を維持しつつ、ばね定数を低く抑えることで、高吸音性
と高遮音性(低ばね化)とを兼備した自動車用遮音構造
体を提供することにある。
The present invention has been made in view of the above-mentioned problems of the prior art, and an object of the present invention is to maintain a high sound absorbing property, which is a great feature of a microfiber nonwoven fabric, while maintaining a high sound absorbing property. An object of the present invention is to provide a sound insulating structure for an automobile having both high sound absorbing properties and high sound insulating properties (lower spring) by suppressing the constant to be low.

【0008】[0008]

【課題を解決するための手段】本発明者らは、上記課題
を解決すべく鋭意研究した結果、上述の如き超極細繊維
不織布の高い吸音性能は膜共振吸音形態と多孔質構造吸
音形態の二種類の吸音形態の混和に起因していること
と、超極細繊維不織布の動ばね定数はそのほとんどを空
気ばねが占めていることとを知見した。そこで、遮音構
造体を多層化して超極細繊維不織布を主たる音の入射面
となる表面層に配し、表面層の厚さや密度及び反対側に
位置する内面層の厚さや密度等を特定したところ、上記
課題が解決されることを見出し、本発明を完成するに至
った。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies to solve the above-mentioned problems, and as a result, the high sound absorption performance of the ultrafine fiber non-woven fabric as described above has two characteristics, a membrane resonance sound absorption form and a porous structure sound absorption form. It was found that the difference was due to the mixing of various types of sound absorbing forms, and that the dynamic spring constant of the microfiber nonwoven fabric was mostly occupied by air springs. Therefore, the sound insulation structure was multi-layered and the ultra-fine fiber non-woven fabric was placed on the surface layer that would be the main sound incident surface, and the thickness and density of the surface layer and the thickness and density of the inner layer located on the opposite side were specified. The inventors have found that the above problems can be solved, and have completed the present invention.

【0009】即ち、本発明の自動車用遮音構造体は、繊
維配合の異なる二層以上の繊維集合体から成る積層構造
体であって、主たる音の入射面となる表面層がメルトブ
ロー製法により得られる繊維径0.1〜10μmの繊維
から成る平均見かけ密度0.03〜0.06g/c
3、厚さ5〜15mmのポリプロピレン製不織布であ
り、音の入射面に対して反対側に位置する内面層の厚さ
が上記表面層の2〜5倍であることを特徴とする。
That is, the sound insulation structure for automobiles of the present invention is a laminated structure composed of two or more fiber aggregates having different fiber compositions, and a surface layer serving as a main sound incidence surface is obtained by a melt blow method. Average apparent density of fibers having a fiber diameter of 0.1 to 10 μm 0.03 to 0.06 g / c
m 3 , a polypropylene nonwoven fabric having a thickness of 5 to 15 mm, wherein the thickness of the inner surface layer located on the opposite side to the sound incidence surface is 2 to 5 times the surface layer.

【0010】[0010]

【作用】上述の如く、本発明者らは、ポリプロピレン製
超極細繊維不織布の高い吸音性能は膜共振吸音形態と多
孔質構造吸音形態の二種類の吸音形態の混和に起因して
いることと、ポリプロピレン製超極細繊維不織布の動ば
ね定数はそのほとんどを空気ばねが占めていることを解
明した。
As described above, the present inventors have determined that the high sound absorption performance of the polypropylene ultrafine fiber nonwoven fabric is due to the admixture of two types of sound absorption forms, a membrane resonance sound absorption form and a porous structure sound absorption form. It has been clarified that the air spring occupies most of the dynamic spring constant of the polypropylene microfiber nonwoven fabric.

【0011】即ち、ポリプロピレン製超極細繊維不織布
は従来の合成繊維不織布に比べて繊維径が細いため繊維
表面積が非常に大きく流動空気との摩擦が大きい。この
ためポリプロピレン製超極細繊維不織布は通気抵抗が極
めて大きく、不織布の表層の一部が膜として作用し膜共
振による吸音を起こしている。従来の合成繊維不織布に
はみられない500Hz付近の高い吸音性能は主にこの
ことに起因している。
That is, the polypropylene ultra-fine fiber non-woven fabric has a smaller fiber diameter than the conventional synthetic fiber non-woven fabric, and therefore has a very large fiber surface area and a large friction with flowing air. For this reason, the polypropylene ultra-fine fiber non-woven fabric has an extremely high airflow resistance, and a part of the surface layer of the non-woven fabric acts as a membrane, causing sound absorption due to membrane resonance. The high sound absorption performance near 500 Hz that is not seen in the conventional synthetic fiber nonwoven fabric is mainly due to this.

【0012】本発明では、ポリプロピレン製超極細繊維
不織布を多層化した遮音構造体の主たる音の入射面とな
る表面層に配設することで膜共振により吸音を起こさ
せ、ポリプロピレン製超極細繊維不織布単独とほぼ同等
の高い吸音性能を得ることができる。また、遮音構造体
を主たる音の入射方向から順に表面層、内面層、背面層
から成る三層構造体とし、表面層と背面層とをポリプロ
ピレン製超極細繊維不織布とすれば、主たる音源のみな
らず反射音等に対しても高い吸音性能を持たせることが
できる。
In the present invention, the sound absorption structure is caused by membrane resonance by disposing the ultra-fine polypropylene fiber non-woven fabric on the surface layer serving as the main sound incident surface of the multilayered sound insulation structure, and the polypropylene ultra-fine fiber non-woven fabric is provided. It is possible to obtain the same high sound absorbing performance as that of a single device. Also, if the sound insulation structure is a three-layer structure consisting of a surface layer, an inner layer, and a back layer in order from the main sound incident direction, and if the surface layer and the back layer are made of polypropylene ultra-fine fiber non-woven fabric, if only the main sound source is used In addition, high sound absorption performance can be provided for reflected sound and the like.

【0013】ところで、動ばね定数は繊維ばねと空気ば
ねで構成されているが、その高い通気抵抗性が災いして
ポリプロピレン製超極細繊維不織布の空気ばねは繊維ば
ねに対して数倍から十数倍に達しており、ポリプロピレ
ン製超極細繊維不織布単独では動ばね定数が非常に大き
く遮音性能は低くなる。そこで、本発明では、ポリプロ
ピレン製超極細繊維不織布の厚さに対して2〜5倍の厚
さを有する通気抵抗の小さいポリエステル繊維製不織布
と積層し、遮音構造体全体の空気ばねを低下させること
で動ばね定数を大幅に小さくしている。
By the way, the dynamic spring constant is composed of a fiber spring and an air spring. However, the air permeability of the polypropylene ultrafine fiber nonwoven fabric is several times to tens of times larger than that of the fiber spring because of its high airflow resistance. The dynamic spring constant is very large and the sound insulation performance is low when polypropylene ultra-fine fiber nonwoven fabric is used alone. Thus, in the present invention, the air spring of the entire sound insulation structure is reduced by laminating with a nonwoven fabric made of a polyester fiber having a small airflow resistance having a thickness of 2 to 5 times the thickness of the polypropylene ultrafine fiber nonwoven fabric. Greatly reduces the dynamic spring constant.

【0014】以上の知見より、本発明においては、遮音
構造体を多層化し、主たる音の入射面となる表面層にポ
リプロピレン製超極細繊維不織布を配し、音の入射面に
対して反対側に位置する内面層に、表面層に対して2〜
5倍の厚さを持たせることにより、優れた吸音性能と遮
音性能を両立させることができる。
From the above findings, in the present invention, the sound insulating structure is multi-layered, and a polypropylene ultra-fine fiber nonwoven fabric is disposed on a surface layer serving as a main sound incident surface, and the non-woven fabric is provided on the opposite side to the sound incident surface. In the inner layer located, 2 to the surface layer
By providing the thickness five times, it is possible to achieve both excellent sound absorbing performance and sound insulating performance.

【0015】[0015]

【発明の実施の形態】以下、本発明の自動車用遮音構造
体について詳細に説明する。本発明の多層型遮音構造体
は、上述のごとく、表面層と内面層とを備えるが、主た
る音の入射面を表面層、音の入射面に対して反対側に位
置する面を内面層と称する。また、三層構造をなす場合
には、主たる音の入射方面から順に表面層、内面層及び
背面層と称する。本発明の遮音構造体の構成の概略を図
1及び2に示す。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, a sound insulation structure for an automobile according to the present invention will be described in detail. As described above, the multilayer sound insulating structure of the present invention includes a surface layer and an inner layer, but the main sound incident surface is a surface layer, and the surface located on the opposite side to the sound incident surface is an inner layer. Name. In the case of a three-layer structure, they are referred to as a surface layer, an inner layer, and a back layer in order from the main sound incident direction. 1 and 2 schematically show the configuration of the sound insulation structure of the present invention.

【0016】本発明の遮音構造体において、表面層及び
背面層を構成する不織布はメルトブロー製法により得ら
れる超極細繊維から成る。繊維の材質としては、コス
ト、製造の容易さからポリプロピレンが好ましい。ま
た、内面層を構成する不織布は、コスト、成形性、耐久
性、加工後の性能安定性等から判断してポリエステル繊
維製であることが好ましい。
In the sound insulation structure of the present invention, the nonwoven fabric constituting the surface layer and the back layer is made of ultrafine fibers obtained by a melt blow method. As a material of the fiber, polypropylene is preferable from the viewpoint of cost and ease of production. The nonwoven fabric forming the inner layer is preferably made of polyester fiber in view of cost, moldability, durability, performance stability after processing, and the like.

【0017】また、上記表面層及び背面層はメルトブロ
ー製法により得られる繊維径0.1〜10μmの超極細
繊維から成る不織布で構成することが必要である。これ
は、繊維径が0.1μm未満の繊維の入手が困難であ
り、また緩衝材としての剛性を得難く、他方、繊維径が
10μmを超えると膜吸音を起こすほどの通気抵抗が得
られず、吸音性能が悪化することがあるためである。
Further, it is necessary that the surface layer and the back layer are formed of a non-woven fabric made of ultra-fine fibers having a fiber diameter of 0.1 to 10 μm obtained by a melt blow method. This is because it is difficult to obtain fibers having a fiber diameter of less than 0.1 μm, and it is difficult to obtain rigidity as a cushioning material. On the other hand, if the fiber diameter exceeds 10 μm, it is not possible to obtain a sufficient airflow resistance to cause membrane sound absorption. This is because the sound absorbing performance may be deteriorated.

【0018】表面層及び背面層の平均見かけ密度は,
0.03〜0.06g/cm3の範囲とすることを要
す。平均見かけ密度が0.03g/cm3未満では、フ
ロアーインシュレーターとして用いられた場合、クッシ
ョン性が極端に低下し、内面層を硬くしても荷重時の沈
み込みが生じることがある。また、0.06g/cm3
を超えると遮音性能、乗り心地等の低下が生じ、成形時
の追従性も悪化することがあるためである。
The average apparent density of the surface layer and the back layer is
It needs to be in the range of 0.03 to 0.06 g / cm 3 . When the average apparent density is less than 0.03 g / cm 3 , when used as a floor insulator, the cushioning property is extremely reduced, and even when the inner surface layer is hardened, sinking under load may occur. 0.06 g / cm 3
If the ratio exceeds the above range, the sound insulation performance, the riding comfort, etc. may be reduced, and the followability during molding may be deteriorated.

【0019】更に、表面層及び背面層の厚さは、5〜1
5mmの範囲とすることを要す。この厚さが5mm未満
では超極細繊維性不織布の効果が小さく、高い吸音性能
は得られないことがある。他方、厚さが15mmを超え
ると積層体全体の厚さが厚くなりすぎて設置上問題とな
ることがある。
Further, the thickness of the surface layer and the back layer is 5 to 1
It needs to be in the range of 5 mm. If the thickness is less than 5 mm, the effect of the ultrafine fibrous nonwoven fabric is small, and high sound absorbing performance may not be obtained. On the other hand, when the thickness exceeds 15 mm, the thickness of the entire laminate becomes too thick, which may cause a problem in installation.

【0020】一方、内面層の厚さは、表面層の厚さの2
〜5倍とすることが必要である。三層構造の場合は、内
面層の厚さは、表面層、背面層のうち厚さの厚い層に対
して2〜5倍とすることが好ましい。2倍未満では、超
極細繊維製不織布の空気ばねを大きく低下させることが
できず、動ばねが大きくなり遮音性が劣ることがある。
他方、5倍を超えると積層体全体の厚さが厚くなりすぎ
て設置上問題となることがあるためである。
On the other hand, the thickness of the inner surface layer is two times the thickness of the surface layer.
It is necessary to make it up to 5 times. In the case of a three-layer structure, the thickness of the inner surface layer is preferably 2 to 5 times the thickness of the thicker one of the surface layer and the back layer. If it is less than twice, the air spring of the ultrafine fiber nonwoven fabric cannot be greatly reduced, and the dynamic spring becomes large, resulting in poor sound insulation.
On the other hand, if it exceeds 5 times, the thickness of the entire laminate becomes too large, which may cause a problem in installation.

【0021】また、内面層を構成する不織布は1〜50
デニールの範囲の繊維径を有する繊維から成ることが好
ましく、また、平均見かけ密度が0.01〜0.07g
/cm3の範囲とすることが好ましい。繊維径が1デニ
ール未満では適度なクッション性が得難く、また耐久性
も低下することがある。更に、防糸速度が大幅に低下し
たり、カード通過性が悪く不織布の品質が悪化するおそ
れがある。他方、50デニールを超えると不織布が硬く
なり過ぎ、動ばね定数が大きくなり遮音性が低下するこ
とがある。また、平均見かけ密度が0.01g/cm3
未満では、クッション性、耐久性が大幅に低下し、0.
07g/cm3を超えると内面層の空気ばねが大きくな
り超極細繊維製不織布の空気ばねを低下させることがで
きず、遮音性が劣るほか、軽量化の要求にも反すること
になる。
The nonwoven fabric constituting the inner surface layer is 1 to 50
It is preferable that the fiber has a fiber diameter in the range of denier and has an average apparent density of 0.01 to 0.07 g.
/ Cm 3 is preferable. If the fiber diameter is less than 1 denier, it is difficult to obtain an appropriate cushioning property, and the durability may be reduced. Further, there is a possibility that the yarn protection speed is significantly reduced, the card passing property is poor, and the quality of the nonwoven fabric is deteriorated. On the other hand, if it exceeds 50 denier, the nonwoven fabric becomes too hard, the dynamic spring constant increases, and the sound insulation may decrease. The average apparent density is 0.01 g / cm 3
If it is less than 1.0, the cushioning property and the durability are significantly reduced,
When it exceeds 07 g / cm 3 , the air spring of the inner surface layer becomes large and the air spring of the ultrafine fiber non-woven fabric cannot be reduced, so that the sound insulation property is inferior and the demand for weight reduction is defeated.

【0022】また、本発明においては、内面層を構成す
る不織布を少なくとも2種類のポリエステル繊維から構
成し、60〜95重量%の繊維1をポリエチレンテレフ
タレート繊維とし、5〜40重量%の繊維2を、鞘部の
融点が繊維1のそれより100℃以上低い共重合ポリエ
ステルである芯鞘構造を有するポリエステル繊維とする
ことが好ましい。ここで、繊維1をポリエチレンテレフ
タレート繊維とするのは、バインダー繊維との融点の差
を確保し、選択できるバインダー繊維の融点幅を広くす
るためである。
In the present invention, the nonwoven fabric constituting the inner surface layer is composed of at least two kinds of polyester fibers, 60 to 95% by weight of the fiber 1 is polyethylene terephthalate fiber, and 5 to 40% by weight of the fiber 2 is It is preferable to use a polyester fiber having a core-in-sheath structure, which is a copolymerized polyester whose melting point of the sheath is 100 ° C. or lower than that of the fiber 1. Here, the reason why the fiber 1 is made of polyethylene terephthalate fiber is to secure a difference in melting point from the binder fiber and widen the melting point range of the binder fiber that can be selected.

【0023】また、繊維2はバインダー繊維として機能
する。繊維2の鞘部の融点を繊維1より100℃以上低
くするのは、融点の差が100℃未満であると表面層及
び背面層を構成しているポリプロピレン性の超極細繊維
の融点と重なってしまうため、成形時の温度条件が厳し
くなるためである。場合によっては、超極細繊維が溶融
し所期の性能が得られない可能性もある。融点差は大き
すぎても問題になることはないので特に限定されるもの
ではないが、150℃以上では繊維2の融点が下がりす
ぎて取扱が困難となる。また、繊維2の芯部の材質も特
に限定されるものではないが、バインダー繊維として機
能させやすくするために、ポリエチレンテレフタレート
とするのが好ましい。
The fibers 2 function as binder fibers. The reason why the melting point of the sheath portion of the fiber 2 is lower than that of the fiber 1 by 100 ° C. or more is that if the difference in melting point is less than 100 ° C., the melting point of the ultrafine polypropylene fibers constituting the surface layer and the back layer overlaps. This is because the temperature conditions during molding become severe. In some cases, the ultrafine fibers may melt and the desired performance may not be obtained. The melting point difference is not particularly limited because it does not cause a problem even if it is too large. However, at 150 ° C. or more, the melting point of the fiber 2 is too low, and handling becomes difficult. The material of the core portion of the fiber 2 is not particularly limited, but is preferably polyethylene terephthalate in order to easily function as a binder fiber.

【0024】繊維1を60〜95重量%、繊維2を5〜
40重量%とするのは以下の理由による。即ち、繊維1
が60重量%未満、繊維2が40重量%を超えるとバイ
ンダー繊維量が多すぎてコストの上昇やクッション性の
悪化を招くことがある。また、繊維1が95重量%を超
え、繊維2が5重量%未満であると、バインダー繊維量
が少なすぎて成形性や耐久性が低下することがある。
Fiber 1 is 60 to 95% by weight and fiber 2 is 5 to 5% by weight.
The reason for setting it to 40% by weight is as follows. That is, fiber 1
Is less than 60% by weight and the fiber 2 exceeds 40% by weight, the amount of the binder fiber is too large, which may lead to an increase in cost and a deterioration in cushioning property. When the content of the fiber 1 is more than 95% by weight and the content of the fiber 2 is less than 5% by weight, the amount of the binder fiber is too small, and the moldability and durability may be reduced.

【0025】また、積層構造体全体の厚さは、良好な吸
音、遮音性能を保ち、且つ設置上問題とならないように
20〜50mm程度とすることが好ましい。また、本発
明の遮音構造体は、自動車等のダッシュインシュレータ
ーやフロアーインシュレーターとして好適に用いること
ができる。
The thickness of the entire laminated structure is preferably about 20 to 50 mm so as to maintain good sound absorption and sound insulation performance and not cause a problem in installation. Further, the sound insulation structure of the present invention can be suitably used as a dash insulator or a floor insulator of an automobile or the like.

【0026】[0026]

【実施例】以下、本発明を実施例、比較例及び従来例に
より更に詳細に説明するが、本発明はこれら実施例に限
定されるものではない。 (実施例1)メルトブロー製法により得られる平均繊維
径3μm、厚さ8mm、平均見かけ密度0.05g/c
3のポリプロピレン製超極細繊維不織布を表面層に、
繊維配合6デニール×51mmのポリエステル繊維:8
0%、2デニール×51mmの芯鞘タイプのバインダー
繊維(鞘部融点110℃):20%で厚さ20mm、平
均見かけ密度0.05g/cm3のポリエステル製不織
布を内面層に用い、積層して自動車用遮音構造体を作成
した。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to Examples, Comparative Examples and Conventional Examples, but the present invention is not limited to these Examples. (Example 1) Average fiber diameter 3 μm, thickness 8 mm, average apparent density 0.05 g / c obtained by a melt blow method
The polypropylene microfiber nonwoven m 3 in the surface layer,
6-denier polyester fiber with fiber blend of 51 mm x 8
0%, 2 denier × 51 mm core-sheath type binder fiber (sheath melting point: 110 ° C.): 20%, 20 mm thick, average apparent density of 0.05 g / cm 3 non-woven fabric made of polyester for the inner surface layer, and laminated. To produce a sound insulation structure for automobiles.

【0027】(実施例2)メルトブロー製法により得ら
れる平均繊維径3μm、厚さ8mm、平均見かけ密度
0.05g/cm3のポリプロピレン製超極細繊維不織
布を表面層に、繊維配合2デニール×51mmのポリエ
ステル繊維:80%、2デニール×51mmの芯鞘タイ
プのバインダー繊維(鞘部融点110℃):20%で厚
さ20mm、平均見かけ密度0.04g/cm3のポリ
エステル製不織布を内面層に用い、積層して自動車用遮
音構造体を作成した。
(Example 2) An ultrafine nonwoven fabric made of polypropylene having an average fiber diameter of 3 μm, a thickness of 8 mm, and an average apparent density of 0.05 g / cm 3 obtained by a melt blow method was used as a surface layer, and a fiber blend of 2 denier × 51 mm was used. Polyester fiber: 80%, 2 denier × 51 mm core-sheath type binder fiber (sheath melting point: 110 ° C.): 20% thick, 20 mm thick, non-woven fabric made of polyester having an average apparent density of 0.04 g / cm 3 is used for the inner surface layer. And laminated to form a sound insulating structure for an automobile.

【0028】(実施例3)メルトブロー製法により得ら
れる平均繊維径3μm、厚さ8mm、平均見かけ密度
0.05g/cm3のポリプロピレン製超極細繊維不織
布を表面層に、繊維配合2デニール×51mmのポリエ
ステル繊維:80%、2デニール×51mmの芯鞘タイ
プのバインダー繊維(鞘部融点110℃):20%で厚
さ20mm、平均見かけ密度0.06g/cm3のポリ
エステル製不織布を内面層に用い、積層して自動車用遮
音構造体を作成した。
Example 3 A polypropylene ultra-fine fiber nonwoven fabric having an average fiber diameter of 3 μm, a thickness of 8 mm, and an average apparent density of 0.05 g / cm 3 obtained by a melt-blowing method was used as a surface layer, and a fiber blend of 2 denier × 51 mm was used. Polyester fiber: 80%, 2 denier × 51 mm core-sheath type binder fiber (sheath melting point: 110 ° C.): 20% thick, 20 mm thick, non-woven fabric made of polyester having an average apparent density of 0.06 g / cm 3 is used for the inner surface layer. And laminated to form a sound insulating structure for an automobile.

【0029】(実施例4)メルトブロー製法により得ら
れる平均繊維径3μm、厚さ8mm、平均見かけ密度
0.05g/cm3のポリプロピレン製超極細繊維不織
布を表面層に、繊維配合13デニール×51mmのポリ
エステル繊維:80%、2デニール×51mmの芯鞘タ
イプのバインダー繊維(鞘部融点110℃):20%で
厚さ30mm、平均見かけ密度0.05g/cm3のポ
リエステル製不織布を内面層に用い、積層して自動車用
遮音構造体を作成した。
Example 4 A nonwoven fabric made of ultrafine polypropylene fibers having an average fiber diameter of 3 μm, a thickness of 8 mm, and an average apparent density of 0.05 g / cm 3 obtained by a melt-blowing method was used as a surface layer. Polyester fiber: 80%, 2 denier × 51 mm core-sheath type binder fiber (sheath melting point: 110 ° C.): 20%, thickness: 30 mm, polyester nonwoven fabric having an average apparent density of 0.05 g / cm 3 is used for the inner surface layer. And laminated to form a sound insulating structure for an automobile.

【0030】(実施例5)メルトブロー製法により得ら
れる平均繊維径3μm、厚さ8mm、平均見かけ密度
0.04g/cm3のポリプロピレン製超極細繊維不織
布を表面層に、繊維配合2デニール×51mmのポリエ
ステル繊維:80%、2デニール×51mmの芯鞘タイ
プのバインダー繊維(鞘部融点110℃):20%で厚
さ25mm、平均見かけ密度0.06g/cm3のポリ
エステル製不織布を内面層に用い、積層して自動車用遮
音構造体を作成した。
(Example 5) An ultrafine nonwoven fabric made of polypropylene having an average fiber diameter of 3 μm, a thickness of 8 mm, and an average apparent density of 0.04 g / cm 3 obtained by a melt-blowing method was used as a surface layer, and a fiber blend of 2 denier × 51 mm was used. Polyester fiber: 80%, 2 denier × 51 mm core-sheath type binder fiber (sheath melting point: 110 ° C.): 20%, 25 mm thick, non-woven fabric made of polyester having an average apparent density of 0.06 g / cm 3 is used for the inner surface layer. And laminated to form a sound insulating structure for an automobile.

【0031】(実施例6)メルトブロー製法により得ら
れる平均繊維径3μm、厚さ8mm、平均見かけ密度
0.05g/cm3のポリプロピレン製超極細繊維不織
布を表面層に、繊維配合6デニール×51mmのポリエ
ステル繊維:90%、2デニール×51mmの芯鞘タイ
プのバインダー繊維(鞘部融点110℃):10%で厚
さ20mm、平均見かけ密度0.05g/cm3のポリ
エステル製不織布を内面層に用い、積層して自動車用遮
音構造体を作成した。
Example 6 A nonwoven fabric made of polypropylene ultrafine fibers having an average fiber diameter of 3 μm, a thickness of 8 mm, and an average apparent density of 0.05 g / cm 3 obtained by a melt-blowing method was used as a surface layer, and 6 denier × 51 mm of a fiber blend was used. Polyester fiber: 90%, 2 denier × 51 mm core-sheath type binder fiber (sheath melting point: 110 ° C.): 10%, 20 mm thick, polyester nonwoven fabric having an average apparent density of 0.05 g / cm 3 is used for the inner surface layer. And laminated to form a sound insulating structure for an automobile.

【0032】(実施例7)メルトブロー製法により得ら
れる平均繊維径3μm、厚さ8mm、平均見かけ密度
0.05g/cm3のポリプロピレン製超極細繊維不織
布を表面層及び背面層に、繊維配合6デニール×51m
mのポリエステル繊維:80%、2デニール×51mm
の芯鞘タイプのバインダー繊維(鞘部融点110℃):
20%で厚さ20mm、平均見かけ密度0.05g/c
3のポリエステル製不織布を内面層に用い、積層して
自動車用遮音構造体を作成した。
(Example 7) A polypropylene ultra-fine fiber nonwoven fabric having an average fiber diameter of 3 μm, a thickness of 8 mm, and an average apparent density of 0.05 g / cm 3 obtained by a melt blow method was used for the surface layer and the back layer, and the fiber blending was 6 denier. × 51m
m polyester fiber: 80%, 2 denier x 51 mm
Core-sheath type binder fiber (sheath melting point 110 ° C):
20% thickness 20mm, average apparent density 0.05g / c
using polyester nonwoven fabric of m 3 on the inner surface layer, creating the automotive sound insulation structure by laminating.

【0033】(実施例8)メルトブロー製法により得ら
れる平均繊維径3μm、厚さ8mm、平均見かけ密度
0.05g/cm3のポリプロピレン製超極細繊維不織
布を表面層及び背面層に、繊維配合2デニール×51m
mのポリエステル繊維:80%、2デニール×51mm
の芯鞘タイプのバインダー繊維(鞘部融点110℃):
20%で厚さ20mm、平均見かけ密度0.04g/c
3のポリエステル製不織布を内面層に用い、積層して
自動車用遮音構造体を作成した。
(Example 8) A polypropylene ultra-fine fiber nonwoven fabric having an average fiber diameter of 3 μm, a thickness of 8 mm, and an average apparent density of 0.05 g / cm 3 obtained by a melt-blowing method was used for the surface layer and the back layer, and 2 deniers of fiber mixture were used. × 51m
m polyester fiber: 80%, 2 denier x 51 mm
Core-sheath type binder fiber (sheath melting point 110 ° C):
20% thickness 20 mm, average apparent density 0.04 g / c
using polyester nonwoven fabric of m 3 on the inner surface layer, creating the automotive sound insulation structure by laminating.

【0034】(実施例9)メルトブロー製法により得ら
れる平均繊維径3μm、厚さ10mm、平均見かけ密度
0.05g/cm3のポリプロピレン製超極細繊維不織
布を表面層に、繊維配合2デニール×51mmのポリエ
ステル繊維:80%、2デニール×51mmの芯鞘タイ
プのバインダー繊維(鞘部融点110℃):20%で厚
さ20mm、平均見かけ密度0.06g/cm3のポリ
エステル製不織布を内面層に、メルトブロー製法により
得られる平均繊維径3μm、厚さ6mm、平均見かけ密
度0.04g/cm3のポリプロピレン製超極細繊維不
織布を背面層に用い、積層して自動車用遮音構造体を作
成した。
(Example 9) An ultrafine nonwoven fabric made of polypropylene having an average fiber diameter of 3 μm, a thickness of 10 mm, and an average apparent density of 0.05 g / cm 3 , obtained by a melt blow method, was used as a surface layer, and a fiber blend of 2 denier × 51 mm was used. Polyester fiber: 80%, 2 denier × 51 mm core-sheath type binder fiber (sheath melting point: 110 ° C.): 20% thick, 20 mm thick, non-woven fabric made of polyester having an average apparent density of 0.06 g / cm 3 in the inner layer, An ultrafine nonwoven fabric made of polypropylene having an average fiber diameter of 3 μm, a thickness of 6 mm, and an average apparent density of 0.04 g / cm 3 obtained by a melt-blowing method was used as a back layer and laminated to produce a sound insulating structure for automobiles.

【0035】(実施例10)メルトブロー製法により得
られる平均繊維径3μm、厚さ8mm、平均見かけ密度
0.05g/cm3のポリプロピレン製超極細繊維不織
布を表面層に、繊維配合13デニール×51mmのポリ
エステル繊維:80%、2デニール×51mmの芯鞘タ
イプのバインダー繊維(鞘部融点110℃):20%で
厚さ30mm、平均見かけ密度0.05g/cm3のポ
リエステル製不織布を内面層に、メルトブロー製法によ
り得られる平均繊維径3μm、厚さ8mm、平均見かけ
密度0.04g/cm3のポリプロピレン製超極細繊維
不織布を背面層に用い、積層して自動車用遮音構造体を
作成した。
(Example 10) An ultrafine nonwoven fabric made of polypropylene having an average fiber diameter of 3 μm, a thickness of 8 mm, and an average apparent density of 0.05 g / cm 3 obtained by a melt-blowing method was used as a surface layer, and a fiber blend of 13 denier × 51 mm was used. Polyester fiber: 80%, 2 denier × 51 mm core-sheath type binder fiber (sheath melting point: 110 ° C.): 20%, 30 mm in thickness, and a polyester nonwoven fabric having an average apparent density of 0.05 g / cm 3 in the inner surface layer, An ultrafine nonwoven fabric made of polypropylene having an average fiber diameter of 3 μm, a thickness of 8 mm, and an average apparent density of 0.04 g / cm 3 obtained by a melt blow method was used as a back layer, and laminated to produce a sound insulating structure for automobiles.

【0036】(従来例1)30mmのクリアランスを有
する注入発泡型内にポリオールとしてプロピレンオキサ
イド1,2,6−ヘキサントリオール:100部、水:
2部、界面活性剤:1部、カーボンブラック:0.5部
から成るA液とトリレンジイソシアナート:100部、
シリコンオイル:0.5部から成るB液をポリオールに
対してイソシアナート1.25倍当量を低圧注入して発
泡させ、厚さ30mm、平均見かけ密度0.06g/c
3のウレタンフォームを得て自動車用遮音構造体とし
た。
(Conventional Example 1) In an injection foaming mold having a clearance of 30 mm, propylene oxide 1,2,6-hexanetriol: 100 parts as a polyol, water:
Liquid A consisting of 2 parts, surfactant: 1 part, carbon black: 0.5 part and tolylene diisocyanate: 100 parts,
Silicone oil: B liquid consisting of 0.5 part was injected at a low pressure with 1.25 times equivalent of isocyanate to the polyol and foamed to a thickness of 30 mm and an average apparent density of 0.06 g / c.
m 3 urethane foam was obtained to provide a sound insulating structure for automobiles.

【0037】(従来例2)豊和繊維工業製、厚さ30m
m、平均見かけ密度0.06g/cm3のフェルト(商
品名フェルトップ)を用い、自動車用遮音構造体とし
た。
(Conventional example 2) 30 m thick, manufactured by Howa Textile Industry
m, a felt (trade name: Feltop) having an average apparent density of 0.06 g / cm 3 was used as an automobile sound insulation structure.

【0038】(従来例3)繊維配合6デニール×51m
mのポリエステル繊維:80%、2デニール×51mm
の芯鞘タイプのバインダー繊維(鞘部融点110℃):
20%で厚さ30mm、平均見かけ密度0.05g/c
3のポリエステル製不織布を用い、自動車用遮音構造
体とした。
(Conventional example 3) Fiber blend 6 denier × 51 m
m polyester fiber: 80%, 2 denier x 51 mm
Core-sheath type binder fiber (sheath melting point 110 ° C):
20%, thickness 30mm, average apparent density 0.05g / c
using polyester nonwoven fabric of m 3, and the automotive sound insulation structure.

【0039】(従来例4)メルトブロー製法により得ら
れる平均繊維径3μm、厚さ30mm、平均見かけ密度
0.05g/cm3のポリプロピレン製超極細繊維不織
布を用い、自動車用遮音構造体とした。
(Conventional Example 4) A sound insulating structure for automobiles was prepared using a polypropylene ultra-fine fiber nonwoven fabric having an average fiber diameter of 3 μm, a thickness of 30 mm, and an average apparent density of 0.05 g / cm 3 obtained by a melt blow method.

【0040】(比較例1)繊維配合6デニール×51m
mのポリエステル繊維:80%、2デニール×51mm
の芯鞘タイプのバインダー繊維(鞘部融点110℃):
20%で厚さ20mm、平均見かけ密度0.05g/c
3のポリエステル製不織布を表面層に、メルトブロー
製法により得られる平均繊維径3μm、厚さ8mm、平
均見かけ密度0.05g/cm3のポリプロピレン製超
極細繊維不織布を内面層に用い、積層して自動車用遮音
構造体を作成した。
(Comparative Example 1) Fiber blend 6 denier x 51 m
m polyester fiber: 80%, 2 denier x 51 mm
Core-sheath type binder fiber (sheath melting point 110 ° C):
20% thickness 20mm, average apparent density 0.05g / c
The polyester nonwoven fabric of m 3 is used for the surface layer, and the ultrafine nonwoven fabric made of polypropylene having an average fiber diameter of 3 μm, a thickness of 8 mm, and an average apparent density of 0.05 g / cm 3 obtained by a melt blow method is used for the inner surface layer. A sound insulation structure for an automobile was created.

【0041】(比較例2)繊維配合6デニール×51m
mのポリエステル繊維:80%、2デニール×51mm
の芯鞘タイプのバインダー繊維(鞘部融点110℃):
20%で厚さ10mm、平均見かけ密度0.05g/c
3のポリエステル製不織布を表面層に、メルトブロー
製法により得られる平均繊維径3μm、厚さ20mm、
平均見かけ密度0.05g/cm3のポリプロピレン製
超極細繊維不織布を内面層に用い、積層して自動車用遮
音構造体を作成した。
(Comparative Example 2) Fiber blend 6 denier x 51 m
m polyester fiber: 80%, 2 denier x 51 mm
Core-sheath type binder fiber (sheath melting point 110 ° C):
20% thickness 10mm, average apparent density 0.05g / c
m 3 polyester nonwoven fabric on the surface layer, average fiber diameter 3 μm, thickness 20 mm obtained by melt blown method,
An ultra-fine nonwoven fabric made of polypropylene having an average apparent density of 0.05 g / cm 3 was used as an inner layer and laminated to form a sound insulating structure for an automobile.

【0042】(比較例3)メルトブロー製法により得ら
れる平均繊維径3μm、厚さ2mm、平均見かけ密度
0.04g/cm3のポリプロピレン製超極細繊維不織
布を表面層に、繊維配合6デニール×51mmのポリエ
ステル繊維:80%、2デニール×51mmの芯鞘タイ
プのバインダー繊維(鞘部融点110℃):20%で厚
さ30mm、平均見かけ密度0.05g/cm3のポリ
エステル製不織布を内面層に用い、積層して自動車用遮
音構造体を作成した。
(Comparative Example 3) A nonwoven fabric made of polypropylene ultrafine fibers having an average fiber diameter of 3 μm, a thickness of 2 mm, and an average apparent density of 0.04 g / cm 3 obtained by a melt blow method was used as a surface layer, and a fiber blend of 6 denier × 51 mm was used. Polyester fiber: 80%, 2 denier × 51 mm core-sheath type binder fiber (sheath melting point: 110 ° C.): 20%, thickness: 30 mm, polyester nonwoven fabric having an average apparent density of 0.05 g / cm 3 is used for the inner surface layer. And laminated to form a sound insulating structure for an automobile.

【0043】(比較例4)繊維配合6デニール×51m
mのポリエステル繊維:80%、2デニール×51mm
の芯鞘タイプのバインダー繊維(鞘部融点110℃):
20%で厚さ10mm、平均見かけ密度0.05g/c
3のポリエステル製不織布を表面層及び背面層に、メ
ルトブロー製法により得られる平均繊維径3μm、厚さ
10mm、平均見かけ密度0.04g/cm3のポリプ
ロピレン製超極細繊維不織布を内面層に用い、積層して
自動車用遮音構造体を作成した。
(Comparative Example 4) Fiber blend 6 denier x 51 m
m polyester fiber: 80%, 2 denier x 51 mm
Core-sheath type binder fiber (sheath melting point 110 ° C):
20% thickness 10mm, average apparent density 0.05g / c
m 3 polyester non-woven fabric for the surface layer and the back layer, and a polypropylene ultra-fine fiber non-woven fabric having an average fiber diameter of 3 μm, a thickness of 10 mm, and an average apparent density of 0.04 g / cm 3 obtained by a melt-blow method. The layers were laminated to create a sound insulation structure for an automobile.

【0044】(比較例5)繊維配合6デニール×51m
mのポリエステル繊維:80%、2デニール×51mm
の芯鞘タイプのバインダー繊維(鞘部融点110℃):
20%で厚さ8mm、平均見かけ密度0.05g/cm
3のポリエステル製不織布を表面層及び背面層に、メル
トブロー製法により得られる平均繊維径3μm、厚さ3
0mm、平均見かけ密度0.04g/cm3のポリプロ
ピレン製超極細繊維不織布を内面層に用い、積層して自
動車用遮音構造体を作成した。
(Comparative Example 5) Fiber blend 6 denier x 51 m
m polyester fiber: 80%, 2 denier x 51 mm
Core-sheath type binder fiber (sheath melting point 110 ° C):
8% thick at 20%, average apparent density 0.05 g / cm
3 polyester nonwoven fabric on the surface layer and the back layer, the average fiber diameter obtained by the melt blow method is 3 μm, and the thickness is 3
An ultra-fine nonwoven fabric made of polypropylene having a thickness of 0 mm and an average apparent density of 0.04 g / cm 3 was used as an inner layer and laminated to form a sound insulating structure for automobiles.

【0045】(性能評価)上記実施例1〜10、従来例
1〜3及び比較例1〜5において得られた自動車用遮音
構造体について100〜1600Hzの垂直入射吸音率
を測定した。また、振動伝達率測定法を用いて共振周波
数よりばね定数を求めた。振動伝達率測定法では大気中
の測定から全体ばね定数が、真空中の測定から繊維ばね
定数がそれぞれ求められ、その差が空気ばね定数とな
る。表1に各実施例、従来例及び比較例の物性データ、
吸音率測定結果(500Hz、1000Hz)、及び各
ばね定数測定結果を示す。
(Evaluation of Performance) The sound-absorbing structures for automobiles obtained in Examples 1 to 10, Conventional Examples 1 to 3, and Comparative Examples 1 to 5 were measured for a normal incidence sound absorption coefficient of 100 to 1600 Hz. The spring constant was determined from the resonance frequency using the vibration transmissibility measurement method. In the vibration transmissibility measuring method, the whole spring constant is obtained from the measurement in the atmosphere, and the fiber spring constant is obtained from the measurement in a vacuum, and the difference is the air spring constant. Table 1 shows the physical property data of each Example, Conventional Example and Comparative Example,
The measurement results of the sound absorption coefficient (500 Hz, 1000 Hz) and the measurement results of each spring constant are shown.

【0046】[0046]

【表1】 [Table 1]

【0047】表1より、実施例で作成された各種自動車
用遮音構造体は、従来例に比べ、高い吸音率を維持しつ
つ、ばね定数が低く抑えられており、高吸音性と低ばね
化が両立した自動車用遮音構造体であることが確認され
た。また、表1より、本発明の範囲にない比較例の自動
車用遮音構造体は、高吸音性と低ばね化の両立が果たさ
れておらず、実施例の自動車用遮音構造体に比し、性能
が劣ることが確認された。
From Table 1, it can be seen that the various types of sound insulation structures for automobiles prepared in the examples have a low spring constant while maintaining a high sound absorption coefficient as compared with the conventional example, and have high sound absorption and low spring. It was confirmed that this was a compatible sound insulation structure for automobiles. Further, from Table 1, the sound insulating structure for a vehicle of the comparative example, which is not within the scope of the present invention, did not achieve both high sound absorption and low spring, and was compared with the sound insulating structure for a vehicle of the example. It was confirmed that the performance was inferior.

【0048】[0048]

【発明の効果】以上説明してきたように、本発明によれ
ば、遮音構造体を多層化し超極細繊維不織布を主たる音
の入射面となる表面層に配し、表面層の厚さや密度及び
反対側に位置する内面層の厚さや密度等を特定したた
め、超極細繊維不織布の持つ大きな特長である高吸音性
を維持しつつ、ばね定数を低く抑えることで、高吸音性
と高遮音性(低ばね化)が両立した自動車用遮音構造体
を提供することができる。
As described above, according to the present invention, according to the present invention, the sound insulating structure is multi-layered and the ultrafine fiber non-woven fabric is disposed on the surface layer serving as the main sound incident surface, and the thickness and density of the surface layer and the opposite are obtained. Since the thickness and density of the inner surface layer located on the side have been specified, the high sound absorption and high sound insulation (low It is possible to provide a sound insulation structure for an automobile that is compatible with springing.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の遮音構造体の構成例(二層)を示す概
略図である。
FIG. 1 is a schematic diagram showing a configuration example (two layers) of a sound insulation structure of the present invention.

【図2】本発明の遮音構造体の構成例(三層)を示す概
略図である。
FIG. 2 is a schematic diagram showing a configuration example (three layers) of the sound insulation structure of the present invention.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI E04B 1/82 E04B 1/82 H 1/86 1/86 N G10K 11/162 G10K 11/16 A 11/16 D ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code FI E04B 1/82 E04B 1/82 H 1/86 1/86 NG10K 11/162 G10K 11/16 A 11/16 D

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 繊維配合の異なる二層以上の繊維集合体
から成る積層構造体であって、主たる音の入射面となる
表面層がメルトブロー製法により得られる繊維径0.1
〜10μmの繊維から成る平均見かけ密度0.03〜
0.06g/cm3、厚さ5〜15mmのポリプロピレ
ン製不織布であり、音の入射面に対して反対側に位置す
る内面層の厚さが上記表面層の2〜5倍であることを特
徴とする自動車用遮音構造体。
1. A laminated structure comprising two or more fiber aggregates having different fiber blends, wherein a surface layer serving as a main sound incident surface has a fiber diameter of 0.1 obtained by a melt blow method.
Average apparent density of 0.03 to 10 μm fibers
It is a nonwoven fabric made of polypropylene having a thickness of 0.06 g / cm 3 and a thickness of 5 to 15 mm, wherein the thickness of the inner surface layer located on the opposite side to the sound incident surface is 2 to 5 times the surface layer. Automotive sound insulation structure.
【請求項2】 上記積層構造体が、主たる音の入射方向
から順に表面層、内面層及び背面層から成る三層構造を
成し、この表面層と背面層とがメルトブロー製法により
得られる繊維径0.1〜10μmの繊維から成る平均見
かけ密度0.03〜0.06g/cm3、厚さ5〜15
mmのポリプロピレン製不織布で構成され、上記内面層
の厚さが上記表面層及び背面層のうちの厚さの厚い層に
対して2〜5倍であることを特徴とする請求項1記載の
自動車用遮音構造体。
2. The laminated structure has a three-layer structure consisting of a surface layer, an inner layer and a back layer in order from the main sound incident direction, and the fiber diameter of the surface layer and the back layer obtained by a melt blow method. Average apparent density of fibers of 0.1-10 μm 0.03-0.06 g / cm 3 , thickness 5-15
2. The automobile according to claim 1, wherein the inner layer is 2 to 5 times the thickness of the thicker one of the surface layer and the back layer. 3. For sound insulation structure.
【請求項3】 上記内面層が、1〜50デニールの繊維
径を有するポリエステル繊維から成る平均見かけ密度
0.01〜0.07g/cm3のポリエステル不織布で
あることを特徴とする請求項1又は2記載の自動車用遮
音構造体。
3. The polyester nonwoven fabric according to claim 1, wherein the inner surface layer is a polyester nonwoven fabric having an average apparent density of 0.01 to 0.07 g / cm 3 made of polyester fibers having a fiber diameter of 1 to 50 denier. 3. The sound insulation structure for vehicles according to 2.
【請求項4】 上記内面層を構成する不織布が少なくと
も2種類のポリエステル繊維から成り、60〜95重量
%を占める繊維1がポリエチレンテレフタレート繊維で
あり、5〜40重量%を占める繊維2が鞘部の融点が繊
維1のそれより100℃以上低い共重合ポリエステルで
ある芯鞘構造を有するポリエステル繊維であることを特
徴とする請求項3記載の自動車用遮音構造体。
4. The nonwoven fabric constituting the inner surface layer is composed of at least two kinds of polyester fibers, wherein fiber 1 occupying 60 to 95% by weight is polyethylene terephthalate fiber, and fiber 2 occupying 5 to 40% by weight is sheath. 4. The sound insulation structure for an automobile according to claim 3, wherein the polyester fiber has a core-sheath structure which is a copolymerized polyester having a melting point of 100 ° C. or lower than that of the fiber 1.
【請求項5】 上記積層構造体全体の厚さが20〜50
mmであることを特徴とする請求項1〜4のいずれか1
つの項に記載の自動車用遮音構造体。
5. The thickness of the entire laminated structure is 20 to 50.
mm.
4. The sound insulation structure for an automobile according to any one of the above items.
【請求項6】 車両のダッシュインシュレーター又はフ
ロアインシュレーターとして用いることを特徴とする請
求項5記載の自動車用遮音構造体。
6. The sound insulating structure for an automobile according to claim 5, wherein the sound insulating structure is used as a dash insulator or a floor insulator of a vehicle.
JP02576897A 1997-01-27 1997-01-27 Sound insulation structure Expired - Fee Related JP3632876B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02576897A JP3632876B2 (en) 1997-01-27 1997-01-27 Sound insulation structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02576897A JP3632876B2 (en) 1997-01-27 1997-01-27 Sound insulation structure

Publications (2)

Publication Number Publication Date
JPH10203268A true JPH10203268A (en) 1998-08-04
JP3632876B2 JP3632876B2 (en) 2005-03-23

Family

ID=12175030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02576897A Expired - Fee Related JP3632876B2 (en) 1997-01-27 1997-01-27 Sound insulation structure

Country Status (1)

Country Link
JP (1) JP3632876B2 (en)

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11240088A (en) * 1998-02-24 1999-09-07 Bridgestone Corp Fiber laminate molding
JP2000202933A (en) * 1999-01-18 2000-07-25 Nissan Motor Co Ltd Sound insulating material
JP2000238157A (en) * 1999-02-22 2000-09-05 Hayashi Gijutsu Kenkyusho:Kk Sound absorber structure
JP2001205725A (en) * 2000-01-26 2001-07-31 Toyobo Co Ltd Sound-absorbing nonwoven fabric laminate structure
JP2001279570A (en) * 2000-03-30 2001-10-10 Toyobo Co Ltd Composite nonwoven fabric and method for producing the same
JP2001279567A (en) * 2000-03-30 2001-10-10 Toyobo Co Ltd Sound-absorbing material and method for producing the same
JP2002087138A (en) * 2000-09-18 2002-03-26 Howa Kogyo Kk Raising material for automobile
JP2002161464A (en) * 2000-11-27 2002-06-04 Toyobo Co Ltd Lightweight sound-absorbing material
JP2002161465A (en) * 2000-11-27 2002-06-04 Toyobo Co Ltd Sound-absorbing material
JP2002220009A (en) * 2001-01-23 2002-08-06 Kasai Kogyo Co Ltd Insulator for automobile
JP2004027383A (en) * 2002-06-21 2004-01-29 Kasai Kogyo Co Ltd Sound-absorbing mat for forming and vehicular sound-absorbing material
JP2004145180A (en) * 2002-10-28 2004-05-20 Teijin Fibers Ltd Sound_absorbing structure
JP2004239936A (en) * 2003-02-03 2004-08-26 Teijin Fibers Ltd Multilayer sound-absorbing structure
JP2004294619A (en) * 2003-03-26 2004-10-21 Takehiro:Kk Extra-lightweight sound-proofing material
GB2407296A (en) * 2003-10-22 2005-04-27 Auto Insulations Ltd Composite sheet insulation
KR100489331B1 (en) * 2002-10-31 2005-05-12 (주)대한솔루션 sound absorbing and insulating material
JP2005215021A (en) * 2004-01-27 2005-08-11 Teijin Fibers Ltd Sound-absorbing/insulating multilayer fiber structure and sound-absorbing/insulating product
GB2418643A (en) * 2003-10-22 2006-04-05 Auto Insulations Ltd Composite sheet insulation
JP2006126598A (en) * 2004-10-29 2006-05-18 Showa Electric Wire & Cable Co Ltd Acoustic material and refractory acoustic material
CN1298531C (en) * 2003-12-31 2007-02-07 Sk化学株式会社 Sound absorbing material for a vehicle
JP2008068799A (en) * 2006-09-15 2008-03-27 Teijin Fibers Ltd Sound absorber and vehicular floor sheet
JP2009057663A (en) * 2007-08-31 2009-03-19 Three M Innovative Properties Co Ventilation-resistant membrane and method for producing the same, and sound-absorbing laminated member using the ventilation-resistant membrane
US7618907B2 (en) 2002-08-02 2009-11-17 Owens Corning Intellectual Capital, Llc Low porosity facings for acoustic applications
JP2009287143A (en) * 2008-05-29 2009-12-10 Kenatekkusu:Kk Sound-absorbing material and method for producing the same
US7757811B2 (en) * 2005-10-19 2010-07-20 3M Innovative Properties Company Multilayer articles having acoustical absorbance properties and methods of making and using the same
US8158246B2 (en) 2003-03-26 2012-04-17 Takehiro Co., Ltd. Ultralight soundproof material
WO2015025696A1 (en) * 2013-08-22 2015-02-26 株式会社オートネットワーク技術研究所 Acoustic material and wire harness with acoustic material
JP2015121631A (en) * 2013-12-23 2015-07-02 日本バイリーン株式会社 Sound absorber
CN107635831A (en) * 2015-05-19 2018-01-26 Hp佩尔泽控股有限公司 Fire wall
CN108995329A (en) * 2018-07-19 2018-12-14 全球能源互联网研究院有限公司 A kind of baffle blanket
JP2018199374A (en) * 2017-05-26 2018-12-20 豊和繊維工業株式会社 Dash silencer for automobile
WO2018235741A1 (en) * 2017-06-21 2018-12-27 Jxtgエネルギー株式会社 Sound absorbing material
JP2019202479A (en) * 2018-05-23 2019-11-28 トヨタ紡織株式会社 Skin material
CN111196225A (en) * 2020-01-08 2020-05-26 佩尔哲汽车内饰系统(太仓)有限公司 Automobile front wall sound insulation pad and test method thereof
JP2021173907A (en) * 2020-04-28 2021-11-01 帝人フロンティア株式会社 Multilayer sound absorption material

Cited By (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11240088A (en) * 1998-02-24 1999-09-07 Bridgestone Corp Fiber laminate molding
JP2000202933A (en) * 1999-01-18 2000-07-25 Nissan Motor Co Ltd Sound insulating material
JP2000238157A (en) * 1999-02-22 2000-09-05 Hayashi Gijutsu Kenkyusho:Kk Sound absorber structure
JP2001205725A (en) * 2000-01-26 2001-07-31 Toyobo Co Ltd Sound-absorbing nonwoven fabric laminate structure
JP2001279570A (en) * 2000-03-30 2001-10-10 Toyobo Co Ltd Composite nonwoven fabric and method for producing the same
JP2001279567A (en) * 2000-03-30 2001-10-10 Toyobo Co Ltd Sound-absorbing material and method for producing the same
JP2002087138A (en) * 2000-09-18 2002-03-26 Howa Kogyo Kk Raising material for automobile
JP2002161464A (en) * 2000-11-27 2002-06-04 Toyobo Co Ltd Lightweight sound-absorbing material
JP2002161465A (en) * 2000-11-27 2002-06-04 Toyobo Co Ltd Sound-absorbing material
JP2002220009A (en) * 2001-01-23 2002-08-06 Kasai Kogyo Co Ltd Insulator for automobile
JP2004027383A (en) * 2002-06-21 2004-01-29 Kasai Kogyo Co Ltd Sound-absorbing mat for forming and vehicular sound-absorbing material
US7820573B2 (en) 2002-08-02 2010-10-26 OCV Intellectual Capital, LLC, Low porosity facings for acoustic applications
US7618907B2 (en) 2002-08-02 2009-11-17 Owens Corning Intellectual Capital, Llc Low porosity facings for acoustic applications
JP2004145180A (en) * 2002-10-28 2004-05-20 Teijin Fibers Ltd Sound_absorbing structure
KR100489331B1 (en) * 2002-10-31 2005-05-12 (주)대한솔루션 sound absorbing and insulating material
JP2004239936A (en) * 2003-02-03 2004-08-26 Teijin Fibers Ltd Multilayer sound-absorbing structure
JP2004294619A (en) * 2003-03-26 2004-10-21 Takehiro:Kk Extra-lightweight sound-proofing material
US9087505B2 (en) 2003-03-26 2015-07-21 Takehiro Co., Ltd. Ultra-light sound insulator
US8637145B2 (en) 2003-03-26 2014-01-28 Takehiro Co., Ltd. Ultra-light sound insulator
US8158246B2 (en) 2003-03-26 2012-04-17 Takehiro Co., Ltd. Ultralight soundproof material
GB2407296B (en) * 2003-10-22 2006-03-08 Auto Insulations Ltd Composite insulation
GB2418643A (en) * 2003-10-22 2006-04-05 Auto Insulations Ltd Composite sheet insulation
GB2418643B (en) * 2003-10-22 2006-09-06 Auto Insulations Ltd Composite insulation
GB2407296A (en) * 2003-10-22 2005-04-27 Auto Insulations Ltd Composite sheet insulation
CN1298531C (en) * 2003-12-31 2007-02-07 Sk化学株式会社 Sound absorbing material for a vehicle
JP2005215021A (en) * 2004-01-27 2005-08-11 Teijin Fibers Ltd Sound-absorbing/insulating multilayer fiber structure and sound-absorbing/insulating product
JP2006126598A (en) * 2004-10-29 2006-05-18 Showa Electric Wire & Cable Co Ltd Acoustic material and refractory acoustic material
US7757811B2 (en) * 2005-10-19 2010-07-20 3M Innovative Properties Company Multilayer articles having acoustical absorbance properties and methods of making and using the same
JP2008068799A (en) * 2006-09-15 2008-03-27 Teijin Fibers Ltd Sound absorber and vehicular floor sheet
US10783868B2 (en) 2007-08-31 2020-09-22 3M Innovative Properties Company Acoustic air flow resistive article and method of making
JP2009057663A (en) * 2007-08-31 2009-03-19 Three M Innovative Properties Co Ventilation-resistant membrane and method for producing the same, and sound-absorbing laminated member using the ventilation-resistant membrane
US9767782B2 (en) 2007-08-31 2017-09-19 3M Innovative Properties Company Acoustic air flow resistive article and method of making
JP2009287143A (en) * 2008-05-29 2009-12-10 Kenatekkusu:Kk Sound-absorbing material and method for producing the same
WO2015025696A1 (en) * 2013-08-22 2015-02-26 株式会社オートネットワーク技術研究所 Acoustic material and wire harness with acoustic material
JP2015039846A (en) * 2013-08-22 2015-03-02 株式会社オートネットワーク技術研究所 Sound absorbing material and wire harness with sound absorbing material
US9570061B2 (en) 2013-08-22 2017-02-14 Autonetworks Technologies, Ltd. Acoustic material and wire harness with acoustic material
JP2015121631A (en) * 2013-12-23 2015-07-02 日本バイリーン株式会社 Sound absorber
JP2018517931A (en) * 2015-05-19 2018-07-05 ハーペー ペルツァー ホルディング ゲーエムベーハー Firewall
CN107635831A (en) * 2015-05-19 2018-01-26 Hp佩尔泽控股有限公司 Fire wall
JP2018199374A (en) * 2017-05-26 2018-12-20 豊和繊維工業株式会社 Dash silencer for automobile
WO2018235741A1 (en) * 2017-06-21 2018-12-27 Jxtgエネルギー株式会社 Sound absorbing material
JP2019005939A (en) * 2017-06-21 2019-01-17 Jxtgエネルギー株式会社 Sound absorber
US11705098B2 (en) 2017-06-21 2023-07-18 Eneos Corporation Sound absorbing material
JP2019202479A (en) * 2018-05-23 2019-11-28 トヨタ紡織株式会社 Skin material
CN108995329A (en) * 2018-07-19 2018-12-14 全球能源互联网研究院有限公司 A kind of baffle blanket
CN108995329B (en) * 2018-07-19 2020-11-13 全球能源互联网研究院有限公司 Sound absorption felt
CN111196225A (en) * 2020-01-08 2020-05-26 佩尔哲汽车内饰系统(太仓)有限公司 Automobile front wall sound insulation pad and test method thereof
JP2021173907A (en) * 2020-04-28 2021-11-01 帝人フロンティア株式会社 Multilayer sound absorption material

Also Published As

Publication number Publication date
JP3632876B2 (en) 2005-03-23

Similar Documents

Publication Publication Date Title
JP3632876B2 (en) Sound insulation structure
JP3304264B2 (en) Automotive body panel insulator
US6659223B2 (en) Sound attenuating material for use within vehicles and methods of making same
US7055649B2 (en) Multi-density sound attenuating laminates and methods of making same
US6631785B2 (en) Sound attenuating composite articles incorporating scrim material and methods of making same
US20060289231A1 (en) Acoustic absorber/barrier composite
JP4997057B2 (en) Sound insulation for vehicles
US20060246799A1 (en) Sound attenuating/absorbing laminates and methods of making same
JP3342817B2 (en) Sound insulation structure
JP3247629B2 (en) Automotive interior materials
JP3701010B2 (en) Insulator dash for automobile
JP2974920B2 (en) Silencer pad for car floor
JP2000202933A (en) Sound insulating material
JPH091704A (en) Noise insulating structure
KR102214761B1 (en) Multi layer non-woven fabric for autumobile floor carpet
JPH10236204A (en) Floor insulator for automobile and manufacture therefor
JP3378489B2 (en) Carpet base material
JP3140610B2 (en) High rigidity sound absorbing material
JP2004232162A (en) Felt sound absorbing material having multiple density construction
JP3188598B2 (en) Sound insulation structure and method of manufacturing the same
KR102516518B1 (en) Dash insulator for vechicle and its manufacturing method
KR101958482B1 (en) Fiber aggregate having excellent sound absorption performance and manufacturing method thereof
KR100353077B1 (en) Insulation pad for dashboard of vehicle
KR20140047209A (en) Fiber aggregate having excellent sound absorption performance and manufacturing method thereof
JP2002079868A (en) Vehicle floor level raising material and level raising structure

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040908

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041216

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090107

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100107

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees