JP3342817B2 - Sound insulation structure - Google Patents

Sound insulation structure

Info

Publication number
JP3342817B2
JP3342817B2 JP04883097A JP4883097A JP3342817B2 JP 3342817 B2 JP3342817 B2 JP 3342817B2 JP 04883097 A JP04883097 A JP 04883097A JP 4883097 A JP4883097 A JP 4883097A JP 3342817 B2 JP3342817 B2 JP 3342817B2
Authority
JP
Japan
Prior art keywords
fiber
sound insulation
insulation structure
density
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04883097A
Other languages
Japanese (ja)
Other versions
JPH10247085A (en
Inventor
万亀男 永田
智 永島
恭一 渡辺
好一 根本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP04883097A priority Critical patent/JP3342817B2/en
Publication of JPH10247085A publication Critical patent/JPH10247085A/en
Application granted granted Critical
Publication of JP3342817B2 publication Critical patent/JP3342817B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Vehicle Interior And Exterior Ornaments, Soundproofing, And Insulation (AREA)
  • Laminated Bodies (AREA)
  • Nonwoven Fabrics (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)
  • Building Environments (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、外部からの振動
および/または騒音の入射を防ぐ為に設置される二重壁
タイプの遮音構造体に関するもので、特に自動車のフロ
ア鋼板等からの振動・騒音の入射を防止・遮断するため
に設置されるフロアインシュレータカーペット等に適す
る。また、本発明の遮音構造体は、低周波領域における
遮音性能を向上させるために、特に通気性を制御したも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a double-walled sound insulation structure installed to prevent external vibration and / or noise from entering, and more particularly to vibration and noise from floor steel plates of automobiles. Suitable for floor insulator carpets etc. installed to prevent / block noise. Further, the sound insulating structure of the present invention is one in which air permeability is particularly controlled in order to improve sound insulating performance in a low frequency region.

【0002】[0002]

【従来の技術】一般に自動車用フロアインシュレータ
は、図1に示すように車室を外部と区画するフロアパネ
ル1の車室内側に遮音構造体2が位置し、車外から車室
内への騒音の伝達を防止する役目を有する。従来の遮音
構造体2は、図示のようにフェルト、ポリウレタンフォ
ーム、不織布等の多孔質基材からなる低密度層3と、充
填材を混入したEVA材シート、ポリエチレンシート等
の通気性の全くない高密度層4の積層構造体で構成され
ている。そして上記低密度層3により車外からの騒音を
吸収するとともに、フロアパネル1と高密度層4との間
に低密度層3を介在させた2重壁構造により、上記遮音
効果と併せて良好な防音性能を発揮するように構成され
ている。5はカーペット表皮である。
2. Description of the Related Art Generally, as shown in FIG. 1, a floor insulator for an automobile has a sound insulation structure 2 located on the interior side of a floor panel 1 which divides the interior of the vehicle from the outside, and transmits noise from outside to the interior of the vehicle. Has the role of preventing The conventional sound insulating structure 2 has a low-density layer 3 made of a porous base material such as felt, polyurethane foam, or non-woven fabric as shown in the figure, and has no air permeability such as an EVA material sheet or a polyethylene sheet mixed with a filler. It is composed of a laminated structure of the high density layer 4. The low-density layer 3 absorbs noise from outside the vehicle, and the double-walled structure in which the low-density layer 3 is interposed between the floor panel 1 and the high-density layer 4 provides a good sound insulation effect. It is configured to exhibit soundproof performance. 5 is a carpet skin.

【0003】[0003]

【発明が解決しようとする課題】このような従来のフロ
アインシュレータの2重壁遮音構造においては、高密度
層4は通気性を有しないために、高周波域での遮音性能
に優れているが、フロア部品の遮音性能上重要となる低
周波域では共振点付近の性能低下が見られ、積層構造体
全体の質量により決定される音響透過損失(TL)の質
量則の遮音レベルに対する優位性が小さい。
In such a conventional double-walled sound insulation structure of a floor insulator, the high-density layer 4 does not have air permeability, so that it has excellent sound insulation performance in a high frequency range. In the low frequency range, which is important for the sound insulation performance of floor components, a decrease in performance near the resonance point is observed, and the superiority of the mass rule of sound transmission loss (TL) determined by the mass of the entire laminated structure over the sound insulation level is small. .

【0004】本発明はこのような事情に鑑みてなされた
もので、成形体からなる通気性を有する遮音構造体にお
いて、通気性を制御することで共振点付近での性能を向
上させることにより、低周波域での遮音性能を高めた遮
音構造体を提供することを目的とするものである。
The present invention has been made in view of such circumstances, and in a sound-insulating structure made of a molded article having air permeability, the performance near the resonance point is improved by controlling the air permeability. It is an object of the present invention to provide a sound insulating structure having improved sound insulating performance in a low frequency range.

【0005】[0005]

【課題を解決するための手段】上記目的は、通気性の異
なる少なくとも2層の不織布が積層されてなり、0.5
〜3.0kg/cm2 の面密度(目付)と16〜60m
mの厚みとを有する積層体であって、各層の通気量差が
空気圧0.01kg/cm2 において450〜1000
cc/cm2 ・min.であることを特徴とする遮音構
造体により達成される。
The above object is achieved by laminating at least two layers of non-woven fabrics having different air permeability.
Surface density (basis weight) of ~ 3.0 kg / cm 2 and 16 ~ 60m
m, and the difference in air flow between each layer is 450 to 1000 at an air pressure of 0.01 kg / cm 2 .
cc / cm 2 · min. This is achieved by a sound insulation structure characterized by the following.

【0006】[0006]

【発明の実施の形態】先ず、積層体に充分な遮音性能を
付与するには、高密度層の少なくとも1層が外部隔壁と
2重壁構造をなす上で十分な通気抵抗を確保し、且つ低
密度層をその吸音率向上及びバネ定数の低減に必要な通
気抵抗に制御することを要する。そのためには、高密度
層と低密度層の通気量差を、空気圧0.01kg/cm
2 において450〜1000cc/cm2 ・min.の
範囲内としなければならない。通気量差が450cc/
cm2 ・min.未満では、単層構造体と実質的に同じ
となり、2重壁構造を成さなくなる。通気量差が100
0cc/cm2 ・min.を超えると低密度層の遮音性
能目標が達せられない。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS First, in order to impart sufficient sound insulating performance to a laminate, at least one of the high-density layers has a sufficient ventilation resistance so as to form a double wall structure with an external partition, and It is necessary to control the low-density layer to the airflow resistance necessary for improving its sound absorption coefficient and reducing the spring constant. For this purpose, the difference in air flow between the high-density layer and the low-density layer is determined by adjusting the air pressure to 0.01 kg / cm.
2 at 450 to 1000 cc / cm 2 · min. Must be within the range. 450cc / ventilation difference
cm 2 · min. If it is less than the above, it is substantially the same as the single-layer structure, and does not form a double wall structure. Ventilation difference is 100
0 cc / cm 2 · min. If it exceeds, the target of the sound insulation performance of the low-density layer cannot be achieved.

【0007】積層体全体では面密度が0.5〜3.0k
g/m2 の範囲でなければならない。遮音性能を確保す
る上で積層体の面密度は高いほど良いが、3.0kg/
2を超えると実使用の上で重すぎて好ましくない。ま
た面密度が0.5kg/m22未満では吸音性能等の遮
音性能向上の目的を達成できない。
[0007] The surface density of the entire laminate is 0.5 to 3.0 k.
g / m 2 . In order to ensure sound insulation performance, the higher the areal density of the laminate, the better, but 3.0 kg /
If it exceeds m 2 , it is undesirably too heavy for practical use. On the other hand, if the areal density is less than 0.5 kg / m 2 , the object of improving sound insulation performance such as sound absorption performance cannot be achieved.

【0008】積層体全体の厚みは16〜60mmの範囲
でなければならない。上記範囲の面密度で16mm未満
の厚みでは通気性が過小となり、特に低周波領域で共振
点付近における充分な遮音性能を得られない。また、吸
音性能の向上には厚みは大きいほど良いが、60mmを
超えると実際に使用する上でスペース確保等の観点から
好ましくない。
[0008] The total thickness of the laminate must be in the range of 16 to 60 mm. If the surface density in the above range is less than 16 mm, the air permeability becomes too small, and it is not possible to obtain a sufficient sound insulating performance especially near the resonance point in a low frequency region. The thickness is preferably as large as possible to improve the sound absorbing performance. However, if the thickness exceeds 60 mm, it is not preferable from the viewpoint of securing a space for practical use.

【0009】次いで、高密度層について説明する。本発
明の遮音構造体を外部隔壁、例えば自動車のフロアパネ
ルの車室内側に添設して遮音性能を向上させるには、高
密度層はその通気性を低減させること、外部隔壁と共に
2重壁遮音構造を形成させることが必要となる。
Next, the high-density layer will be described. In order to improve the sound insulation performance by attaching the sound insulation structure of the present invention to an outer partition, for example, the interior side of the floor panel of an automobile, the high-density layer is required to reduce its air permeability, It is necessary to form a sound insulation structure.

【0010】第1に、遮音性能の向上には通気量を低減
することが効果的である。不織布層の通気性はその面密
度と厚みとによって決定される層の密度、構成繊維の繊
維径、繊維断面形状等の様々な要因に依存するが、中で
も面密度を増加すること及び不織布を構成する繊維の平
均径を小さくすることは通気性の低下に極めて有効であ
る。しかし単なる密度の増加に頼ることは全体の重量増
加につながり、車輛に搭載するには不向きとなるのみな
らず材料費も高くなる不利がある。
First, it is effective to reduce the ventilation rate to improve the sound insulation performance. The air permeability of the non-woven fabric layer depends on various factors such as the density of the layer determined by its surface density and thickness, the fiber diameter of the constituent fibers, the cross-sectional shape of the fibers, and the like. Reducing the average diameter of the fibers to be formed is extremely effective in reducing air permeability. However, relying on mere increase in density leads to an increase in overall weight, which is disadvantageous in that it is not suitable for mounting on a vehicle, but also increases material costs.

【0011】第2に、外部隔壁と高密度層とが低密度層
を介して2重壁構造を形成すると遮音性能向上の効果が
増大することは既に知られている。しかしながら、この
ような2重壁構造においても、上述の重量増加等の不利
を避けつつ更に遮音性能を向上させるためには、繊維配
合、面密度、厚み等の操作で通気性、剛性等の物性を適
宜に制御することが望ましい。従って、本発明の遮音構
造体は、外部隔壁との間で優れた遮音性能を示す2重壁
遮音構造を形成し得るように、先ず高密度不織布層の通
気性を上記構成繊維の構造、配合、面密度および厚みの
選定を主体として好適な範囲に制御することが重要であ
る。
Second, it is already known that the effect of improving the sound insulation performance increases when the outer partition and the high-density layer form a double-walled structure via the low-density layer. However, even in such a double-walled structure, in order to further improve the sound insulation performance while avoiding the disadvantages such as the increase in weight described above, physical properties such as air permeability and rigidity are required by operations such as fiber blending, surface density, and thickness. Is desirably controlled appropriately. Therefore, the sound insulating structure of the present invention firstly sets the air permeability of the high-density nonwoven fabric layer to the structure and composition of the constituent fibers so as to form a double-walled sound insulating structure exhibiting excellent sound insulating performance with the external partition walls. It is important to mainly control the selection of the areal density and the thickness in a suitable range.

【0012】高密度層は、好適には繊維形成性線状重合
体、典型的にはポリエチレンテレフタレートを主成分と
するポリエステルよりなり、直径10〜25μm、繊維
長30〜100mmの円形断面繊維もしくは異形断面繊
維の短繊維で構成された不織布であり、通気量が空気圧
0.01kg/cm2 において700〜1250cc/
cm2 ・min.であることが好ましい。
The high-density layer is preferably made of a fiber-forming linear polymer, typically a polyester mainly composed of polyethylene terephthalate, and has a diameter of 10 to 25 μm and a fiber of 30 to 100 mm in circular cross section or irregular shape. It is a nonwoven fabric composed of short fibers having a cross-sectional fiber, and has an air permeability of 700 to 1250 cc / at an air pressure of 0.01 kg / cm 2 .
cm 2 · min. It is preferable that

【0013】通気性は、構成繊維の繊維径、面密度、厚
みに依存して変化する。繊維径が小さいほど、つまり不
織布中の繊維表面積が大きいほど通気抵抗は増大し、通
気性は低下する。しかし細デニールの繊維は高価であり
且つカーディング特性が劣り不織布の形成が困難である
ため繊維径10μm未満の繊度は経済性、成形性の点か
ら好ましくない。また、25μmを超えると充分な通気
抵抗が得られず遮音性能の向上を期し難い。
The air permeability changes depending on the fiber diameter, surface density, and thickness of the constituent fibers. The smaller the fiber diameter, that is, the larger the surface area of the fiber in the nonwoven fabric, the higher the airflow resistance and the lower the air permeability. However, fine denier fibers are expensive and have poor carding properties, making it difficult to form a nonwoven fabric. Therefore, a fineness of less than 10 μm in fiber diameter is not preferable in terms of economy and moldability. On the other hand, if it exceeds 25 μm, sufficient ventilation resistance cannot be obtained, and it is difficult to improve the sound insulation performance.

【0014】不織布中の繊維表面積への影響や、カーデ
ィング特性等の不織布製造時の作業性、不織布の機械的
強度向上等の観点から、構成繊維の繊維長は30〜10
0mmであることが好ましい。繊維長が30mm未満で
は不織布製造時の作業性に劣り、100mmを超えると
不織布中に均一に分散させることが困難となり、良好且
つ均一な品質の不織布層を形成し難くなるので好ましく
ない。
The fiber length of the constituent fibers is from 30 to 10 in view of the effect on the fiber surface area in the nonwoven fabric, the workability in producing the nonwoven fabric such as carding characteristics, and the improvement of the mechanical strength of the nonwoven fabric.
It is preferably 0 mm. If the fiber length is less than 30 mm, the workability during the production of the nonwoven fabric is inferior. If it exceeds 100 mm, it is difficult to uniformly disperse the nonwoven fabric in the nonwoven fabric, and it is difficult to form a good and uniform quality nonwoven fabric layer.

【0015】ポリエステルを主成分とする短繊維よりな
る高密度不織布層の更に好適な態様は、繊維径10〜2
5μm、繊維長50〜100mmの円形もしくは異形断
面繊維(繊維A)が高々80重量%と、繊維Aの軟化点
より少なくとも20℃低い軟化点を有し、繊維径10〜
20μm、繊維長30〜100mmの繊維(繊維B、ま
たは以下バインダー繊維ともいう)が少なくとも20重
量%とよりなる。繊維Aは、繊維径が10μm未満の細
デニールとなると、既述の通り技術的に製造困難なため
安定供給が難しく、コスト増加を伴い、更に他の繊維B
と混ざりにくく均一な不織布を得難いので経済性、成形
性の両面から好ましくない。また、繊維径が25μmを
超えると充分な通気抵抗が得られず遮音性能の向上を期
し難い。更に、異形断面の短繊維は通気抵抗の増大に更
に寄与する。また、繊維Aの配合量が高密度層の重量基
準で80重量%を超えると、吸音材の厚みの制御が困難
となり、充分な密度を確保し難くなるので好ましくな
い。
A more preferred embodiment of the high-density nonwoven fabric layer comprising short fibers mainly composed of polyester is a fiber having a fiber diameter of 10 to 2
5 μm, a circular or irregular cross-section fiber (fiber A) having a fiber length of 50 to 100 mm has a softening point of at most 80% by weight, a softening point at least 20 ° C. lower than the softening point of fiber A, and a fiber diameter of 10 to 10.
Fibers having a fiber length of 20 μm and a fiber length of 30 to 100 mm (hereinafter also referred to as “fiber B” or “binder fiber”) are at least 20% by weight. When the fiber A is fine denier with a fiber diameter of less than 10 μm, as described above, it is difficult to manufacture the fiber A stably because it is technically difficult to manufacture, and the cost is increased.
It is difficult to obtain a uniform non-woven fabric because it is difficult to mix with the non-woven fabric, which is not preferable in terms of both economic efficiency and moldability. On the other hand, if the fiber diameter exceeds 25 μm, sufficient airflow resistance cannot be obtained, and it is difficult to improve the sound insulation performance. In addition, irregularly shaped short fibers further contribute to an increase in airflow resistance. On the other hand, if the amount of the fiber A exceeds 80% by weight based on the weight of the high-density layer, it is difficult to control the thickness of the sound absorbing material, and it is difficult to secure a sufficient density.

【0016】また、本発明の遮音構造体は、例えば自動
車のフロアパネル等の凹凸面に添設して使用する場合
に、凹凸面形状に追従し密着した状態で成形可能である
ことが応用面で重要であるばかりでなく、また遮音性能
向上のための大きな要因をもなす。繊維Aを骨格とした
遮音構造体は、上記のようにその面密度と厚みを限定し
且つ短繊維を用いたために型の形状によく追従するが、
その状態で繊維Aとバインダー繊維との軟化点間の適宜
な温度で加熱成形すると、バインダー繊維は軟化して接
着性を発揮し、繊維間交点を接合して不織布の形態を安
定化する。
Further, when the sound insulation structure of the present invention is used in addition to an uneven surface of, for example, a floor panel of an automobile, the sound insulating structure can follow the uneven surface shape and can be molded in a state of being in close contact therewith. Not only is it important, but also a major factor in improving sound insulation performance. The sound-insulating structure having the fiber A as a skeleton follows the shape of the mold well because the surface density and thickness are limited and short fibers are used as described above.
In this state, when heat molding is performed at an appropriate temperature between the softening points of the fibers A and the binder fibers, the binder fibers soften and exhibit adhesiveness, and the intersections between the fibers are joined to stabilize the form of the nonwoven fabric.

【0017】繊維Aと繊維Bの軟化点の差が20℃未満
となると、加熱成形時に繊維Aの強度、剛性の低下を抑
制し不織布の形状を維持した状態で、繊維Bのみを軟化
させ接着性を発現させる温度管理が極めて困難となり、
不織布全体の軟化を生じる危険性が増大する。
When the difference between the softening points of the fibers A and B is less than 20 ° C., only the fibers B are softened and bonded in a state in which the strength and rigidity of the fibers A are suppressed from decreasing during the heat molding and the shape of the nonwoven fabric is maintained. It becomes extremely difficult to control the temperature to develop
The risk of causing softening of the entire nonwoven fabric increases.

【0018】繊維径10μm未満のバインダー繊維は一
般的でなくコスト高となり、加熱成形時にバインダー繊
維自体にへたり(永久的圧潰変形)が生じ、また繊維A
と混ざりにくく均一な不織布を得難いので、同様に経済
性、成形性の両面から好ましくない。一方、バインダー
繊維の繊維径が20μmを超えると、繊維径の増加に伴
って相対的に繊維の本数が減少するため、構成繊維間の
接合点が減少し、形状安定性及び成形性が低下するので
好ましくない。また、繊維Bの配合量が高密度層の重量
基準で20重量%未満となると、同様に接合点の減少に
より高密度層に充分な成形性を付与することができな
い。
Binder fibers having a fiber diameter of less than 10 μm are unusual and costly, causing settling (permanent crush deformation) of the binder fibers themselves during heat molding, and the fiber A
It is also difficult to obtain a uniform nonwoven fabric, which is not preferable in terms of both economic efficiency and moldability. On the other hand, when the fiber diameter of the binder fiber exceeds 20 μm, the number of fibers relatively decreases with an increase in the fiber diameter, so that the number of bonding points between constituent fibers decreases, and the shape stability and moldability decrease. It is not preferable. When the amount of the fiber B is less than 20% by weight based on the weight of the high-density layer, sufficient molding properties cannot be imparted to the high-density layer due to a decrease in the number of bonding points.

【0019】繊維材料としては、上記のポリエステルが
流通性、機械的強度、剛性等の点から適しており、コス
トパフォーマンスも高い。また、ナイロン等のポリアミ
ド系、ポリアクリロニトリル等のポリビニル系、及びポ
リエチレン、ポリプロピレン等のポリオレフィン系等の
繊維形成性合成重合体或いはセルロースアセテート等の
半合成重合体も使用可能であり、上記繊維径の繊維を製
造して不織布化することにより、ほぼ同等の通気抵抗を
有するものが得られる。
As the fiber material, the above polyester is suitable from the viewpoints of flowability, mechanical strength, rigidity and the like, and has high cost performance. In addition, polyamide-based polyamides such as nylon, polyvinyl-based such as polyacrylonitrile, and polyethylene, a fiber-forming synthetic polymer such as a polyolefin such as polypropylene, or a semi-synthetic polymer such as cellulose acetate can also be used. By producing the fiber and converting it into a nonwoven fabric, a material having substantially the same airflow resistance can be obtained.

【0020】バインダー繊維としては、繊維Aと親和性
のあるポリマー、例えば、繊維Aがホモポリエステル系
重合体繊維の場合には、バインダー繊維もポリエステル
系として他の二塩基酸成分および/またはグリコール成
分を共重合またはブレンドすることにより軟化点を低下
させたコポリマー或いはブレンドポリマー繊維が好適に
用いられる。更に好ましくは、このようなコポリマー或
いはブレンドポリマーを鞘成分とし、ホモポリマーを芯
成分としたコンジュゲート繊維である。かかるコンジュ
ゲート繊維は、鞘成分が接着機能を司る間に、芯成分は
軟化或いは溶融せず支持機能を果たす。
As the binder fiber, a polymer having an affinity for the fiber A, for example, when the fiber A is a homopolyester polymer fiber, the binder fiber is also made of polyester and has another dibasic acid component and / or glycol component. Copolymers or blended polymer fibers whose softening point has been lowered by copolymerizing or blending are preferably used. More preferred is a conjugate fiber comprising such a copolymer or blend polymer as a sheath component and a homopolymer as a core component. In such a conjugate fiber, the core component performs a supporting function without softening or melting while the sheath component performs the bonding function.

【0021】次いで、高密度層の不織布が外部隔壁と共
に2重壁構造を形成して遮音性能を確保するのに好適な
高密度層の面密度は0.1〜1.0kg/m2 の範囲に
ある。0.1kg/m2 未満の面密度では遮音性能の向
上が不充分であり、一方1.0kg/m2 を超えると材
料コスト上昇、重量増加等の観点から好ましくない。
Next, the areal density of the high-density layer suitable for ensuring the sound insulation performance by forming the double-walled structure with the non-woven fabric of the high-density layer together with the outer partition walls is in the range of 0.1 to 1.0 kg / m 2 . It is in. If the areal density is less than 0.1 kg / m 2, the improvement of the sound insulation performance is insufficient, while if it exceeds 1.0 kg / m 2 , it is not preferable from the viewpoint of an increase in material cost and weight.

【0022】面密度が上記範囲にある高密度層の不織布
は1〜10mmの厚みを有することが好ましい。1mm
未満の厚みで上記の面密度を有する高密度層は成形困難
であり、たとえ成形可能であっても成形体の通気抵抗が
大き過ぎ、却って遮音性能が低下するので好ましくな
い。一方10mmを超えると上記の面密度範囲内では遮
音性能を発揮するための充分な通気抵抗を得難いので好
ましくない。
The non-woven fabric of the high-density layer having a surface density in the above range preferably has a thickness of 1 to 10 mm. 1mm
A high-density layer having a thickness less than the above and having the above-mentioned surface density is difficult to mold, and even if moldable, it is not preferable because the molded article has excessively high airflow resistance and, on the contrary, deteriorates sound insulation performance. On the other hand, if it exceeds 10 mm, it is difficult to obtain a sufficient ventilation resistance for exhibiting sound insulation performance in the above-mentioned area density range, which is not preferable.

【0023】上記繊維種と繊維構成とにより形成された
高密度不織布層は、その通気量が空気圧0.01kg/
cm2 において700〜1250cc/cm2 ・mi
n.となり、優れた遮音性能を備えるに至る。通気抵抗
が増大し過ぎて通気量が700cc/cm2 ・min.
未満となると、特に低周波領域における共振点付近の遮
音性能低下が著しくなり、従来の問題点を克服し難いの
で好ましくなく、また1250cc/cm2 ・min.
を超えると逆に通気抵抗が不充分で外部隔壁とで有効な
2重壁遮音構造を形成し難くなり好ましくない。
The high-density nonwoven fabric layer formed by the above-mentioned fiber type and fiber composition has an air permeability of 0.01 kg / air.
In cm 2 700~1250cc / cm 2 · mi
n. , Leading to excellent sound insulation performance. The airflow resistance is too high and the airflow is 700 cc / cm 2 · min.
If it is less than 1, the sound insulation performance particularly near the resonance point in the low frequency region is remarkably reduced, and it is difficult to overcome the conventional problems, so that it is not preferable, and 1250 cc / cm 2 · min.
On the other hand, if it exceeds, the airflow resistance is insufficient and it is difficult to form an effective double-walled sound insulation structure with the external partition, which is not preferable.

【0024】次いで、低密度層について説明する。本発
明の遮音構造体の遮音性能を向上させるには、上記高密
度層の通気性制御と相俟って、低密度層の通気性の制
御、振動伝達率の低減、吸音率の向上が必要である。
Next, the low density layer will be described. In order to improve the sound insulation performance of the sound insulation structure of the present invention, it is necessary to control the air permeability of the low density layer, reduce the vibration transmissibility, and improve the sound absorption rate, in combination with the air permeability control of the high density layer. It is.

【0025】第1に、通気性の指標となる通気抵抗は、
高密度層の説明の中でも述べたように、繊維径、面密
度、厚みに依存して変化する。
First, the airflow resistance, which is an index of air permeability, is:
As described in the description of the high-density layer, it changes depending on the fiber diameter, the surface density, and the thickness.

【0026】第2に、振動伝達率を低減させるほど遮音
性能は向上する。ここで、振動伝達率はその物体の動的
バネ定数に大きく依存し、従って遮音性能向上には動的
バネ定数の低減が必要となる。バネ定数は繊維径に依存
して変化する。
Second, the sound insulation performance improves as the vibration transmission rate decreases. Here, the vibration transmissibility greatly depends on the dynamic spring constant of the object. Therefore, it is necessary to reduce the dynamic spring constant to improve the sound insulation performance. The spring constant changes depending on the fiber diameter.

【0027】第3に、低密度層の吸音率は高いほど遮音
性能は向上する。吸音率は不織布層の面密度と厚みとに
よって決定される層の密度、構成繊維の繊維径、繊維断
面形状等の様々な要因に依存するが、中でも面密度を増
加すること及び不織布を構成する繊維の平均径を小さく
することは吸音率の向上に極めて有効である。しかし単
なる密度の増加に頼ることは全体の重量増加につなが
り、車輛に搭載するには不向きとなるのみならず、材料
費も高くなる不利がある。
Third, the higher the sound absorption coefficient of the low density layer, the better the sound insulation performance. The sound absorption coefficient depends on various factors such as the density of the layer determined by the surface density and the thickness of the nonwoven fabric layer, the fiber diameter of the constituent fibers, the fiber cross-sectional shape, etc. Among them, increasing the surface density and configuring the nonwoven fabric Reducing the average diameter of the fibers is extremely effective in improving the sound absorption coefficient. However, relying solely on the increase in density leads to an increase in the overall weight, which is not only unsuitable for mounting on a vehicle, but also has the disadvantage of increasing material costs.

【0028】本発明の遮音構造体の低密度層を構成する
繊維は10〜40μmの繊維径と30〜100mmの繊
維長とを有することが好ましい。繊維径が小さいほど、
つまり不織布中の繊維表面積が大きいほど通気抵抗は増
大し、通気性は低下し、また同時に繊維径が小さいほど
吸音性能は向上するが、繊維径が10μm未満の細デニ
ールの繊維は高価なためコスト増を招き、且つカーディ
ング特性が劣り不織布への形成性も劣るため好ましくな
い。また、40μmを超えると通気抵抗と吸音性能とが
同時に著しく低下するため遮音性能の向上を期し難い。
The fibers constituting the low-density layer of the sound insulation structure of the present invention preferably have a fiber diameter of 10 to 40 μm and a fiber length of 30 to 100 mm. The smaller the fiber diameter,
In other words, as the fiber surface area in the nonwoven fabric increases, the airflow resistance increases and the air permeability decreases. At the same time, the smaller the fiber diameter, the better the sound absorption performance. However, fine denier fibers with a fiber diameter of less than 10 μm are expensive, so the cost is low. This is not preferable because of increasing the carding properties and the poor formability of the nonwoven fabric. On the other hand, if it exceeds 40 μm, the ventilation resistance and the sound absorption performance are significantly reduced at the same time, so that it is difficult to improve the sound insulation performance.

【0029】不織布中の繊維表面積への影響や、カーデ
ィング特性等の不織布製造時の作業性、不織布の機械的
強度向上等の観点から、構成繊維の繊維長は30〜10
0mmであることが好ましい。繊維長が30mm未満で
は不織布製造時の作業性に劣り、100mmを超えると
不織布中に均一に分散させることが困難となり、良好且
つ均一な品質の不織布層を形成し難くなるので好ましく
ない。
From the viewpoint of the effect on the fiber surface area in the nonwoven fabric, the workability in producing the nonwoven fabric such as carding characteristics, and the improvement of the mechanical strength of the nonwoven fabric, the fiber length of the constituent fibers is 30 to 10%.
It is preferably 0 mm. If the fiber length is less than 30 mm, the workability during the production of the nonwoven fabric is inferior. If it exceeds 100 mm, it is difficult to uniformly disperse the nonwoven fabric in the nonwoven fabric, and it is difficult to form a good and uniform quality nonwoven fabric layer.

【0030】繊維材料としては、高密度層と同様、前記
のポリエステルが流通性、機械的強度、剛性等の点から
適しており、コストパフォーマンスも高い。また、ナイ
ロン等のポリアミド系、ポリアクリロニトリル等のポリ
ビニル系、及びポリエチレン、ポリプロピレン等のポリ
オレフィン系等の合成重合体或いはセルロースアセテー
ト等の半合成重合体も使用可能であり、上記繊維径の繊
維を製造して不織布化することにより、ほぼ同等の通気
抵抗を有するものが得られる。
As a fiber material, the above-mentioned polyester is suitable from the viewpoints of flowability, mechanical strength, rigidity and the like, similarly to the high-density layer, and has high cost performance. Further, synthetic polymers such as polyamides such as nylon, polyvinyls such as polyacrylonitrile, and polyolefins such as polyethylene and polypropylene, or semi-synthetic polymers such as cellulose acetate can also be used. By forming a nonwoven fabric, a material having substantially the same airflow resistance can be obtained.

【0031】低密度不織布層がその遮音性能を確保する
ために好適な面密度は0.4〜2.0kg/m2 の範囲
にある。0.4kg/m2 未満の面密度では遮音性能の
向上が不充分であり、一方2.0kg/m2 を超えると
材料コスト上昇、重量増加等の観点から好ましくない。
また、バネ定数は不織布層の面密度とともに増加して振
動伝達率を悪化させることからも2.0kg/m2 を超
えることは避けるべきである。
The suitable areal density of the low-density nonwoven fabric layer for ensuring its sound insulation performance is in the range of 0.4 to 2.0 kg / m 2 . If the areal density is less than 0.4 kg / m 2, the improvement of the sound insulation performance is insufficient, while if it exceeds 2.0 kg / m 2 , it is not preferable from the viewpoints of increase in material cost and weight.
Also, since the spring constant increases with the areal density of the nonwoven fabric layer and deteriorates the vibration transmissibility, it should be avoided to exceed 2.0 kg / m 2 .

【0032】面密度が上記範囲にある低密度不織布層は
15〜50mmの厚みを有することが好ましい。15m
m未満の厚みでは高密度不織布層との密度差が小さくな
り2重壁構造が実質的に形成されないので吸音性能が低
下し、一方50mmを超えると実際に使用する上でスペ
ースの確保の点等から適当でないため好ましくない。
The low-density nonwoven fabric layer having a surface density in the above range preferably has a thickness of 15 to 50 mm. 15m
When the thickness is less than m, the difference in density from the high-density nonwoven fabric layer becomes small and the double-wall structure is not substantially formed, so that the sound absorption performance is reduced. On the other hand, when the thickness is more than 50 mm, the space for practical use is secured. It is not preferable because it is not appropriate.

【0033】また、上記繊維種と構成により形成された
低密度不織布層は、その通気量が空気圧0.01kg/
cm2 において1700〜1950cc/cm2 ・mi
n.となり、優れた遮音性能を備えるに至る。通気量が
1700cc/cm2 ・min.未満となると通気抵抗
が増大し過ぎて、共振点付近の遮音性能低下が著しくな
り、従来の問題点を克服し難いので好ましくなく、また
1950cc/cm2・min.を超えると逆に通気抵
抗が不充分で外部隔壁とで有効な2重壁遮音構造を形成
し難くなり好ましくない。
The low-density nonwoven fabric layer formed by the above fiber type and composition has an air permeability of 0.01 kg / air.
In cm 2 1700~1950cc / cm 2 · mi
n. , Leading to excellent sound insulation performance. When the ventilation rate is 1700 cc / cm 2 · min. If it is less than 1, the airflow resistance is excessively increased, and the sound insulation performance near the resonance point is remarkably deteriorated, and it is difficult to overcome the conventional problems, so that it is not preferable, and 1950 cc / cm 2 · min. On the other hand, if it exceeds, the airflow resistance is insufficient and it is difficult to form an effective double-walled sound insulation structure with the external partition, which is not preferable.

【0034】また、本発明の遮音構造体を構成する低密
度不織布層の更に好適な態様は、繊維径10〜40μ
m、繊維長50〜100mmの繊維(繊維C)が70〜
90重量%と、繊維Cの軟化点より少なくとも20℃低
い軟化点を有し、繊維径10〜20μm、繊維長30〜
100mmの繊維(繊維B、またはバインダー繊維)1
0〜30重量%とよりなる。かかる低密度不織布層は主
として通気性を制御し、振動伝達率を低減し、吸音率を
向上させる作用を果たす。
Further, a more preferable embodiment of the low-density nonwoven fabric layer constituting the sound insulating structure of the present invention is a fiber diameter of 10 to 40 μm.
m, the fiber (fiber C) having a fiber length of 50-100 mm is 70-
90% by weight and a softening point at least 20 ° C. lower than the softening point of the fiber C, a fiber diameter of 10 to 20 μm, and a fiber length of 30 to
100 mm fiber (fiber B or binder fiber) 1
0 to 30% by weight. Such a low-density nonwoven fabric layer mainly functions to control air permeability, reduce vibration transmission, and improve sound absorption.

【0035】繊維Cは、繊維径が10μm未満の細デニ
ールとなると、既述の通り技術的に製造困難なため安定
供給が難しく、コスト増加を伴い、更に他の繊維Cと混
ざりにくく均一な不織布を得難いので経済性、成形性の
両面から好ましくない。遮音性能を向上させ、通気量を
低減させるには、細い繊維を多量に配合することが望ま
しいが、それによって低密度層の形状維持特性が低下
し、へたりが発生して要求性能を満たすに必要な厚みを
確保できなくなる虞れが生じる。そのため、前記高密度
層に配合する繊維Aに比べて同等または比較的大きい繊
度の繊維を配合することが望ましい。しかしながら繊維
径が40μmを超えると充分な通気抵抗が得られず良好
な遮音性能を得るには不適である。また、繊維Cの配合
量が低密度層の重量基準で90重量%を超えると、吸音
材の厚みの制御が困難となり、充分な密度を確保し難く
なるので好ましくない。また、配合量が70重量%未満
となると、バネ定数の低減および成形性の確保の点から
好ましくない。
If the fiber C has a fine denier with a fiber diameter of less than 10 μm, as described above, it is difficult to manufacture it technically, so that it is difficult to supply the fiber C stably, the cost increases, and the uniform nonwoven fabric is hardly mixed with other fibers C. Is difficult to obtain, which is not preferable from both aspects of economy and moldability. In order to improve the sound insulation performance and reduce the amount of ventilation, it is desirable to incorporate a large amount of fine fibers, but this reduces the shape retention characteristics of the low-density layer and causes sagging to meet the required performance. There is a possibility that the required thickness cannot be secured. Therefore, it is desirable to mix fibers having a fineness equal to or relatively large as compared with the fibers A mixed in the high-density layer. However, if the fiber diameter exceeds 40 μm, sufficient airflow resistance cannot be obtained, which is not suitable for obtaining good sound insulation performance. On the other hand, if the amount of the fiber C exceeds 90% by weight based on the weight of the low-density layer, it is difficult to control the thickness of the sound absorbing material, and it is difficult to secure a sufficient density. On the other hand, if the amount is less than 70% by weight, it is not preferable from the viewpoint of reducing the spring constant and ensuring the formability.

【0036】本発明の積層構造体は、これを外部隔壁に
添設することにより、高密度層の少なくとも一層と外部
隔壁とにより2重壁遮音構造を形成する。かかる2重壁
遮音構造はその特性として、遮音性能曲線上の或る周波
数で共振現象を発生する。そこでこの共振点をより低周
波側に移行させることで、周波数に対する遮音性能曲線
全体を低周波側にシフトして性能向上を図ることができ
る。本発明の2重壁遮音構造は、共振点を任意に設定す
ることが可能である。即ち、高密度層の繊維配合、密
度、通気量、剛性及び弾性率、並びに低密度層の繊維配
合、厚さ、密度、動的バネ定数及び通気量を適宜に調整
することにより、1次共振周波数を50〜300Hzの
任意の周波数に設定することができる。
In the laminated structure of the present invention, a double-walled sound insulation structure is formed by attaching at least one of the high-density layers and the external partition to the external partition. As a characteristic of such a double-walled sound insulation structure, a resonance phenomenon occurs at a certain frequency on a sound insulation performance curve. Therefore, by shifting the resonance point to a lower frequency side, the entire sound insulation performance curve with respect to the frequency can be shifted to the lower frequency side to improve the performance. In the double-wall sound insulation structure of the present invention, the resonance point can be set arbitrarily. That is, by appropriately adjusting the fiber composition, density, air permeability, rigidity and elastic modulus of the high-density layer, and the fiber composition, thickness, density, dynamic spring constant and air permeability of the low-density layer, the primary resonance can be achieved. The frequency can be set to any frequency between 50 and 300 Hz.

【0037】中間層として低密度層を介在させた2重壁
遮音構造の1次共振周波数(f)は一般的に下記(1)
式で近似される。
The primary resonance frequency (f) of a double-walled sound insulation structure having a low-density layer as an intermediate layer is generally represented by the following (1).
It is approximated by an equation.

【0038】[0038]

【数1】 f=1/2π・〔{(m1 +m2 )/m1 ・m2 }・E/d〕1/2 ---(1) ここで、m1 、m2 は外部隔壁および高密度層のそれぞ
れ面密度、Eは低密度層のヤング率、dは低密度層の厚
さであり、ヤング率は弾性率等より算出する。
F = 1 / 2π · [{(m 1 + m 2 ) / m 1 · m 2 } · E / d] 1 / 2- (1) where m 1 and m 2 are external partition walls And E are the surface densities of the high-density layer, E is the Young's modulus of the low-density layer, d is the thickness of the low-density layer, and the Young's modulus is calculated from the elastic modulus and the like.

【0039】しかし本発明によって構成される2重壁遮
音構造は完全な2重壁を形成していないので、(1)式
だけでは1次共振周波数を決定できない。そこで共振点
を任意に設定する具体的手段として、低周波に設定する
には上記の範囲内で高密度層の繊維配合を操作し、厚み
を増加させ、密度を上げ、動的バネ定数と通気量とを低
減するといった方法が有効である。これらすべてを同時
に行うことで更に精密な共振点設定が可能となるが、特
に限定はしない。
However, since the double-walled sound insulation structure constructed according to the present invention does not form a complete double-walled structure, the primary resonance frequency cannot be determined only by equation (1). Therefore, as a specific means to set the resonance point arbitrarily, to set a low frequency, operate the fiber blending of the high density layer within the above range, increase the thickness, increase the density, and increase the dynamic spring constant and ventilation. A method of reducing the amount is effective. Performing all of these at the same time enables more precise resonance point setting, but is not particularly limited.

【0040】本発明の積層構造体は、1次共振周波数を
50〜300Hzの周波数に設定することが好ましい。
300Hz超の周波数に共振点を設定すると1kHz以
下の低周波数で遮音性能が低下してしまうので好ましく
ない。50Hz未満に共振点を設定するには上記操作に
おいて密度増加が大きくなり、重量増加につながるため
好ましくない。
In the laminated structure of the present invention, the primary resonance frequency is preferably set to a frequency of 50 to 300 Hz.
Setting the resonance point at a frequency higher than 300 Hz is not preferable because the sound insulation performance is reduced at a low frequency of 1 kHz or less. Setting the resonance point at less than 50 Hz is not preferable because the density increase in the above operation increases, leading to an increase in weight.

【0041】次いで、質量則の遮音性能比較について説
明する。本発明の遮音構造体を用いた2重壁遮音構造に
おいて、積層構造体全体の質量により決定される音響透
過損失(TL)の質量則の遮音レベルに対して、該2重
壁遮音構造は300Hz〜1kHzの周波数領域におい
て、その周波数平均で音響透過損失が1〜3dB向上す
る。
Next, comparison of sound insulation performance according to the mass law will be described. In the double-walled sound-insulating structure using the sound-insulating structure of the present invention, the double-walled sound-insulating structure has a frequency of 300 Hz with respect to the sound insulation level of the mass rule of sound transmission loss (TL) determined by the mass of the entire laminated structure. In the frequency range of 11 kHz, the sound transmission loss is improved by 1 to 3 dB on the average frequency.

【0042】遮音構造体を構成する積層構造体全体の質
量は遮音性能を決定する要因の一つである。質量則と
は、この遮音構造体の質量によって周波数ごとの遮音性
能が決定されるものである。しかし積層構造体が外部隔
壁と共に2重壁遮音構造を形成すると前記のように共振
域では質量則を下回るが、それ以外の領域では質量則を
上回る遮音性能を得ることができる。そこで2重壁遮音
構造を形成し、前記のように共振点を操作することで任
意の周波数領域で遮音性能を向上させることが可能とな
る。本発明の遮音構造体は以上の手段を用いることで3
00Hz〜1kHzの周波数領域において、音響透過損
失(TL)の質量則の遮音レベルを1〜3dB上回るこ
とが可能となる。
The mass of the entire laminated structure constituting the sound insulation structure is one of the factors that determine the sound insulation performance. The mass rule is that the sound insulation performance for each frequency is determined by the mass of the sound insulation structure. However, when the laminated structure forms a double-walled sound insulation structure together with the outer partition, as described above, the sound insulation performance is lower than the mass law in the resonance region, but can be higher than the mass law in other regions. Therefore, by forming a double-walled sound insulation structure and operating the resonance point as described above, it becomes possible to improve the sound insulation performance in an arbitrary frequency region. The sound insulation structure of the present invention can be made 3
In the frequency range of 00 Hz to 1 kHz, it is possible to exceed the sound insulation level of the mass rule of sound transmission loss (TL) by 1 to 3 dB.

【0043】次いで、自動車用フロアインシュレータへ
の適用について説明する。自動車用フロア部品において
低周波数領域、特に1kHz以下での遮音性能を確保す
ることが、要求仕様面から重要であるが、本発明の遮音
構造体は自動車用フロアインシュレータに要求されるか
かる仕様を十分満足することができる。更に共振点を任
意に設定できることで、低周波数領域での遮音性能をよ
り一層向上させることも可能となる。
Next, application to a floor insulator for an automobile will be described. It is important in terms of required specifications to ensure sound insulation performance in a low-frequency region, particularly 1 kHz or lower, of floor components for automobiles. However, the sound insulation structure of the present invention sufficiently meets such specifications required for floor insulators for automobiles. Can be satisfied. Further, since the resonance point can be set arbitrarily, it is possible to further improve the sound insulation performance in a low frequency region.

【0044】また、自動車用フロアインシュレータに用
いられるカーペット表皮はポリエステルが使われること
が多く、本発明の遮音構造体と組み合わせることでフロ
アインシュレータ全体をポリエステルで製造することが
可能となり、工程上で発生するバリ等のリサイクル性も
向上させることができる。
In addition, polyester is often used for the carpet skin used for floor insulators for automobiles. By combining with the sound insulating structure of the present invention, the entire floor insulator can be manufactured from polyester, which is generated in the process. The recyclability of burrs and the like can be improved.

【0045】本発明の遮音構造体は、通気性を全く有し
ない高密度層を少なくとも1層有する全く同一形状、同
一重量の従来品に比べ、通気性と、低周波領域における
優れた遮音性能とを有する。
The sound-insulating structure of the present invention has air permeability and excellent sound insulation performance in a low-frequency region as compared with a conventional product having at least one high-density layer having no air permeability and having the same shape and the same weight. Having.

【0046】本発明の遮音構造体の製造法は、通気性の
小さい高密度層の好ましくはポリエステルよりなる短繊
維ウェブと、通気性の大きい低密度層の好ましくはポリ
エステルよりなる短繊維ウェブとを別体に作製して、両
者を積層しニードルパンチング及び/又は加熱成形によ
り一体化する。
The method for producing a sound insulating structure of the present invention comprises the steps of: forming a short-fiber web of a high-density layer having low air permeability, preferably made of polyester; and a short-fiber web of a low-density layer having high air permeability, preferably made of polyester. They are manufactured separately, and both are laminated and integrated by needle punching and / or heat molding.

【0047】更に具体的には、繊維径10〜25μm、
繊維長30〜100mmの短繊維、又は好ましくはそれ
に該繊維の軟化点より少なくとも20℃低い軟化点を有
する繊維径10〜20μm、繊維長30〜100mmの
バインダー繊維少なくとも20重量%をブレンドした繊
維原料を常法によりカーディング・ラッピング工程を経
て所定目付の高密度層用ウェブ形成する。同様に、繊維
径10〜40μm、繊維長30〜100mmの繊維、又
は好ましくはこの繊維70〜90重量%と上記バインダ
ー繊維10〜30重量%とをブレンドした繊維原料を常
法によりカーディング・ラッピング工程を経て所定目付
の低密度層用ウェブ形成する。次いで、これらの短繊維
ウェブを連続した複数のクロスレイヤーによりウェブ積
層体となし、その後全体をニードルパンチングにより一
体化し、必要に応じてヒートセットを行い、0.5〜
3.0kg/cm2 の面密度と16〜60mmの厚みと
を有する積層体に成形する。
More specifically, the fiber diameter is 10 to 25 μm,
Fiber raw material blended with short fibers having a fiber length of 30 to 100 mm, or at least 20% by weight of binder fibers having a softening point at least 20 ° C. lower than the softening point of the fiber and having a fiber diameter of 10 to 20 μm and a fiber length of 30 to 100 mm. Is subjected to a carding and lapping step by a conventional method to form a web for a high density layer having a predetermined basis weight. Similarly, carding and wrapping of a fiber material having a fiber diameter of 10 to 40 μm and a fiber length of 30 to 100 mm, or preferably, a fiber raw material obtained by blending 70 to 90% by weight of the fiber with 10 to 30% by weight of the binder fiber is performed. Through the steps, a low density layer web having a predetermined basis weight is formed. Next, these short fiber webs are formed into a web laminate by a plurality of continuous cross layers, and thereafter the whole is integrated by needle punching, and heat-set as necessary, and 0.5 to
It is formed into a laminate having an area density of 3.0 kg / cm 2 and a thickness of 16 to 60 mm.

【0048】[0048]

【実施例】以下、実施例について本発明を更に詳細に説
明する。
The present invention will be described below in more detail with reference to Examples.

【0049】以下の実施例及び比較例における各特性値
の測定方法は次の通りである。 1.通気抵抗 各サンプルについて、JIS L1004、L101
8、及びL1096に規定される通気性試験の測定方法
に準拠して通気量を測定した。 2.遮音性能 各サンプルについて、JIS A1416の「残響室−
残響室を利用した音響透過損失測定」に準じて測定し
た。このとき、各サンプルについて面密度を統一し、積
層構造体全体の質量により決定される音響透過損失(T
L)の質量則の遮音レベルを0dB基準として遮音性能
差を算出した。更にこの差を300〜500Hz、50
0Hz〜1kHzの周波数で平均し、グラフにまとめ
た。
The measuring method of each characteristic value in the following examples and comparative examples is as follows. 1. Ventilation resistance For each sample, JIS L1004, L101
8, and the air permeability was measured according to the measurement method of the air permeability test specified in L1096. 2. Sound insulation performance For each sample, refer to JIS A1416 “Reverberation room-
Sound transmission loss measurement using a reverberation room ". At this time, the areal density is unified for each sample, and the sound transmission loss (T
The sound insulation performance difference was calculated using the sound insulation level of the mass rule of L) as a 0 dB reference. Further, this difference is set to 300-500 Hz, 50
The values were averaged at a frequency of 0 Hz to 1 kHz and summarized in a graph.

【0050】(実施例1)高密度層が面密度200g/
cm2 、厚み2mmで、繊維径14μm、繊維長約50
mmのポリエステル繊維Aを50重量%と、繊維径14
μm、繊維長約50mmで繊維Aより軟化点が90℃低
いポリエステル繊維Bを50重量%とで構成され、通気
量が空気圧0.01kg/cm2 において1000cc
/cm2 ・min.であり、低密度層が面密度875g
/cm2 、厚み35mmで、繊維径25μm、繊維長約
50mmのポリエステル繊維Cを90重量%と、繊維径
14μm、繊維長約50mmで繊維Cより軟化点が90
℃低いポリエステル繊維Bを10重量%とで構成され、
通気量が空気圧0.01kg/cm2 において1700
cc/cm2 ・min.であるそれぞれ不織布を使用し
て遮音構造体(1)を作製した。これを外部隔壁に添設
することで1次共振点を200Hzに設定した。
(Example 1) The high-density layer had an area density of 200 g /
cm 2 , thickness 2 mm, fiber diameter 14 μm, fiber length about 50
50% by weight of polyester fiber A having a fiber diameter of 14 mm.
μm, a fiber length of about 50 mm, and a softening point of 90% lower than that of the fiber A by 50% by weight of a polyester fiber B. The air permeability is 1000 cc at an air pressure of 0.01 kg / cm 2 .
/ Cm 2 · min. And the low density layer has an area density of 875 g.
/ Cm 2, a thickness of 35 mm, fiber diameter 25 [mu] m, and 90 wt% polyester fiber C and a fiber length of about 50 mm, fiber diameter 14 [mu] m, the softening point than the fiber C with a fiber length of about 50 mm 90
10% by weight of polyester fiber B lower by 10 ° C.,
The ventilation rate is 1700 at an air pressure of 0.01 kg / cm 2 .
cc / cm 2 · min. The sound insulation structure (1) was produced using each nonwoven fabric. The primary resonance point was set to 200 Hz by attaching this to an external partition.

【0051】(実施例2)高密度層の面密度を100g
/cm2 、通気量を空気圧0.01kg/cm2におい
て1150cc/cm2 ・min.とした以外は実施例
1と全く同じにして遮音構造体(2)を作製した。
Example 2 The high-density layer had an area density of 100 g.
/ Cm 2 and an air flow rate of 1150 cc / cm 2 · min. At an air pressure of 0.01 kg / cm 2 . A sound insulation structure (2) was produced in exactly the same manner as in Example 1 except for the above.

【0052】(実施例3)高密度層の面密度を1000
g/cm2 、通気量を空気圧0.01kg/cm 2 にお
いて700cc/cm2 ・min.とした以外は実施例
1と全く同じにして遮音構造体(3)を作製した。
Example 3 The high-density layer had an area density of 1000
g / cmTwo, Air flow rate 0.01kg / cm TwoIn
700cc / cmTwo-Min. Example except for
A sound insulation structure (3) was produced in exactly the same manner as in (1).

【0053】(実施例4)高密度層の厚みを1mm、通
気量を空気圧0.01kg/cm2 において1000c
c/cm2 ・min.とした以外は実施例1と全く同じ
にして遮音構造体(4)を作製した。
(Example 4) Thickness of a high-density layer was 1 mm, and air permeability was 1000 c at an air pressure of 0.01 kg / cm 2 .
c / cm 2 · min. A sound insulation structure (4) was produced in exactly the same manner as in Example 1, except that

【0054】(実施例5)高密度層の厚みを10mm、
通気量を空気圧0.01kg/cm2 において750c
c/cm2 ・min.とした以外は実施例1と全く同じ
にして遮音構造体(5)を作製した。
(Example 5) The thickness of the high-density layer was 10 mm,
The air flow rate is 750 c at an air pressure of 0.01 kg / cm 2 .
c / cm 2 · min. A sound insulation structure (5) was produced in exactly the same manner as in Example 1, except that

【0055】(実施例6)高密度層が繊維径10μm、
繊維長50mmのポリエステル繊維Aを50重量%と、
繊維径14μm、繊維長50mmで繊維Aより軟化点が
90℃低いポリエステル繊維Bを50重量%とで構成さ
れ、通気量が空気圧0.01kg/cm2において95
0cc/cm2 ・min.である以外は実施例1と全く
同じにして遮音構造体(6)を作製した。
Example 6 The high-density layer has a fiber diameter of 10 μm,
50% by weight of a polyester fiber A having a fiber length of 50 mm,
It is composed of 50% by weight of a polyester fiber B having a fiber diameter of 14 μm, a fiber length of 50 mm, and a softening point lower by 90 ° C. than that of the fiber A, and having an air permeability of 95 kg / cm 2 at an air pressure of 0.01 kg / cm 2 .
0 cc / cm 2 · min. A sound insulating structure (6) was produced in exactly the same manner as in Example 1 except for the following.

【0056】(実施例7)高密度層が繊維径25μm、
繊維長50mmのポリエステル繊維Aを50重量%と、
繊維径14μm、繊維長50mmで繊維Aより軟化点が
90℃低いポリエステル繊維Bを50重量%とで構成さ
れ、通気量が空気圧0.01kg/cm2において11
00cc/cm2 ・min.である以外は実施例1と全
く同じにして遮音構造体(7)を作製した。
Example 7 The high-density layer had a fiber diameter of 25 μm,
50% by weight of a polyester fiber A having a fiber length of 50 mm,
A polyester fiber B having a fiber diameter of 14 μm, a fiber length of 50 mm, and a softening point of 90 ° C. lower than that of the fiber A is constituted by 50% by weight, and the air permeability is 11 at an air pressure of 0.01 kg / cm 2 .
00 cc / cm 2 · min. A sound insulating structure (7) was produced in exactly the same manner as in Example 1 except for the following.

【0057】(実施例8)高密度層が繊維径14μm、
繊維長30mmのポリエステル繊維Aを50重量%と、
繊維径14μm、繊維長50mmで繊維Aより軟化点が
90℃低いポリエステル繊維Bを50重量%とで構成さ
れ、通気量が空気圧0.01kg/cm2において95
0cc/cm2 ・min.である以外は実施例1と全く
同じにして遮音構造体(8)を作製した。
Example 8 The high-density layer had a fiber diameter of 14 μm.
50% by weight of a polyester fiber A having a fiber length of 30 mm,
It is composed of 50% by weight of a polyester fiber B having a fiber diameter of 14 μm, a fiber length of 50 mm, and a softening point lower by 90 ° C. than that of the fiber A, and having an air permeability of 95 kg / cm 2 at an air pressure of 0.01 kg / cm 2 .
0 cc / cm 2 · min. A sound insulating structure (8) was produced in exactly the same manner as in Example 1 except for the following.

【0058】(実施例9)高密度層が繊維径14μm、
繊維長100mmのポリエステル繊維Aを50重量%
と、繊維径14μm、繊維長50mmで繊維Aより軟化
点が90℃低いポリエステル繊維Bを50重量%とで構
成され、通気量が空気圧0.01kg/cm 2 において
1050cc/cm2 ・min.である以外は実施例1
と全く同じにして遮音構造体(9)を作製した。
Example 9 The high-density layer had a fiber diameter of 14 μm,
50% by weight of 100 mm polyester fiber A
With a fiber diameter of 14 μm and a fiber length of 50 mm, softened from fiber A
The polyester fiber B whose point is lower by 90 ° C. is composed of 50% by weight.
Air flow rate is 0.01kg / cm TwoAt
1050cc / cmTwo-Min. Example 1 except that
A sound insulation structure (9) was produced in exactly the same manner as in (1).

【0059】(実施例10)高密度層が繊維径14μ
m、繊維長50mmで前記繊維Aより軟化点が90℃低
いポリエステル繊維Bのみで構成され、通気量が空気圧
0.01kg/cm2において1250cc/cm2
min.である以外は実施例1と全く同じにして遮音構
造体(10)を作製した。
Example 10 The high-density layer had a fiber diameter of 14 μm.
m, consisting of only polyester fiber B having a fiber length of 50 mm and a softening point 90 ° C. lower than that of the fiber A, and having a ventilation volume of 1250 cc / cm 2 at an air pressure of 0.01 kg / cm 2.
min. A sound insulation structure (10) was produced in exactly the same manner as in Example 1 except for the following.

【0060】(実施例11)高密度層が繊維径14μ
m、繊維長50mmのポリエステル繊維Aを80重量%
と、繊維径14μm、繊維長50mmで繊維Aより軟化
点が90℃低いポリエステル繊維Bを20重量%とで構
成され、通気量が空気圧0.01kg/cm2において
900cc/cm2 ・min.である以外は実施例1と
全く同じにして遮音構造体(11)を作製した。
Example 11 The high-density layer had a fiber diameter of 14 μm.
80% by weight of polyester fiber A having a fiber length of 50 mm
And 20% by weight of a polyester fiber B having a fiber diameter of 14 μm, a fiber length of 50 mm and a softening point lower than that of the fiber A by 90 ° C., and a ventilation rate of 900 cc / cm 2 · min. At an air pressure of 0.01 kg / cm 2 . A sound insulation structure (11) was produced in exactly the same manner as in Example 1 except for the following.

【0061】(実施例12)高密度層が繊維径14μ
m、繊維長50mmのポリエステル繊維Aを50重量%
と、繊維径10μm、繊維長50mmで繊維Aより軟化
点が90℃低いポリエステル繊維Bを50重量%とで構
成され、通気量が空気圧0.01kg/cm2において
950cc/cm2 ・min.である以外は実施例1と
全く同じにして遮音構造体(12)を作製した。
Example 12 The high-density layer had a fiber diameter of 14 μm.
50% by weight of polyester fiber A having a fiber length of 50 mm
And 50% by weight of a polyester fiber B having a fiber diameter of 10 μm, a fiber length of 50 mm and a softening point lower than that of the fiber A by 90 ° C., and a ventilation rate of 950 cc / cm 2 · min. At an air pressure of 0.01 kg / cm 2 . A sound insulating structure (12) was produced in exactly the same manner as in Example 1 except for the following.

【0062】(実施例13)高密度層が繊維径14μ
m、繊維長50mmのポリエステル繊維Aを50重量%
と、繊維径20μm、繊維長50mmで繊維Aより軟化
点が90℃低いポリエステル繊維Bを50重量%とで構
成され、通気量が空気圧0.01kg/cm2において
1100cc/cm2 ・min.である以外は実施例1
と全く同じにして遮音構造体(13)を作製した。
Example 13 The high-density layer had a fiber diameter of 14 μm.
50% by weight of polyester fiber A having a fiber length of 50 mm
And 50% by weight of a polyester fiber B having a fiber diameter of 20 μm, a fiber length of 50 mm and a softening point lower than that of the fiber A by 90 ° C., and a ventilation rate of 1100 cc / cm 2 · min. At an air pressure of 0.01 kg / cm 2 . Example 1 except that
A sound insulation structure (13) was produced in exactly the same manner as in (1).

【0063】(実施例14)高密度層が繊維径14μ
m、繊維長50mmのポリエステル繊維Aを50重量%
と、繊維径14μm、繊維長30mmで繊維Aより軟化
点が90℃低いポリエステル繊維Bを50重量%とで構
成され、通気量が空気圧0.01kg/cm2において
950cc/cm2 ・min.である以外は実施例1と
全く同じにして遮音構造体(14)を作製した。
Example 14 The high-density layer had a fiber diameter of 14 μm.
50% by weight of polyester fiber A having a fiber length of 50 mm
And 50% by weight of a polyester fiber B having a fiber diameter of 14 μm, a fiber length of 30 mm and a softening point lower than that of the fiber A by 90 ° C., and a ventilation rate of 950 cc / cm 2 · min. At an air pressure of 0.01 kg / cm 2 . A sound insulating structure (14) was produced in exactly the same manner as in Example 1 except for the following.

【0064】(実施例15)高密度層が繊維径14μ
m、繊維長50mmのポリエステル繊維Aを50重量%
と、繊維径14μm、繊維長100mmで繊維Aより軟
化点が90℃低いポリエステル繊維Bを50重量%とで
構成され、通気量が空気圧0.01kg/cm 2 におい
て1050cc/cm2 ・min.である以外は実施例
1と全く同じにして遮音構造体(15)を作製した。
(Example 15) The high-density layer had a fiber diameter of 14 μm.
50% by weight of polyester fiber A having a fiber length of 50 mm
With a fiber diameter of 14 μm and a fiber length of 100 mm, it is softer than fiber A
50% by weight of polyester fiber B whose crystallization point is 90 ° C lower
Constructed and air flow rate is 0.01kg / cm Twosmell
1050cc / cmTwo-Min. Examples other than
A sound insulation structure (15) was produced in exactly the same manner as in Example 1.

【0065】(実施例16)低密度層の面密度を400
g/cm2 、通気量を空気圧0.01kg/cm2にお
いて1800cc/cm2 ・min.とした以外は実施
例1と全く同じにして遮音構造体(16)を作製した。
Example 16 The low-density layer had an area density of 400.
g / cm 2 , and an air flow rate of 1800 cc / cm 2 · min. at an air pressure of 0.01 kg / cm 2 . A sound insulating structure (16) was produced in exactly the same manner as in Example 1, except that

【0066】(実施例17)低密度層の面密度を200
0g/cm2 、通気量を空気圧0.01kg/cm 2
おいて1600cc/cm2 ・min.とした以外は実
施例1と全く同じにして遮音構造体(17)を作製し
た。
(Example 17) The low-density layer had an area density of 200
0 g / cmTwo, Air flow rate 0.01kg / cm TwoTo
1600cc / cmTwo-Min. Other than
A sound insulation structure (17) was produced in exactly the same manner as in Example 1.
Was.

【0067】(実施例18)低密度層の厚みを15m
m、通気量を空気圧0.01kg/cm2 において15
50cc/cm2 ・min.とした以外は実施例1と全
く同じにして遮音構造体(18)を作製した。
(Example 18) The low-density layer had a thickness of 15 m.
m, the ventilation rate is 15 at an air pressure of 0.01 kg / cm 2 .
50 cc / cm 2 · min. A sound insulating structure (18) was produced in exactly the same manner as in Example 1, except that

【0068】(実施例19)低密度層の厚みを50m
m、通気量を空気圧0.01kg/cm2 において18
00cc/cm2 ・min.とした以外は実施例1と全
く同じにして遮音構造体(19)を作製した。
(Example 19) The thickness of the low-density layer was set to 50 m.
m, the ventilation rate is 18 at an air pressure of 0.01 kg / cm 2 .
00 cc / cm 2 · min. A sound insulation structure (19) was produced in exactly the same manner as in Example 1 except that the above-mentioned conditions were adopted.

【0069】(実施例20)低密度層が、繊維径10μ
m、繊維長50mmのポリエステル繊維Cを90重量%
と、繊維径14μm、繊維長50mmで繊維Cより軟化
点が90℃低いポリエステル繊維Bを10重量%とで構
成され、通気量を空気圧0.01kg/cm 2 において
1650cc/cm2 ・min.とした以外は実施例1
と全く同じにして遮音構造体(20)を作製した。
Example 20 The low-density layer had a fiber diameter of 10 μm.
90% by weight of polyester fiber C having a fiber length of 50 mm
With a fiber diameter of 14 μm and a fiber length of 50 mm, softened from fiber C
The polyester fiber B whose point is 90 ° C lower is composed of 10% by weight.
Air flow rate is 0.01kg / cm TwoAt
1650cc / cmTwo-Min. Example 1 except that
A sound-insulating structure (20) was produced in exactly the same manner as described above.

【0070】(実施例21)低密度層が、繊維径40μ
m、繊維長50mmのポリエステル繊維Cを90重量%
と、繊維径14μm、繊維長50mmで繊維Cより軟化
点が90℃低いポリエステル繊維Bを10重量%とで構
成され、通気量を空気圧0.01kg/cm 2 において
1900cc/cm2 ・min.とした以外は実施例1
と全く同じにして遮音構造体(21)を作製した。
Example 21 The low-density layer had a fiber diameter of 40 μm.
90% by weight of polyester fiber C having a fiber length of 50 mm
With a fiber diameter of 14 μm and a fiber length of 50 mm, softened from fiber C
The polyester fiber B whose point is 90 ° C lower is composed of 10% by weight.
Air flow rate is 0.01kg / cm TwoAt
1900cc / cmTwo-Min. Example 1 except that
A sound insulation structure (21) was produced in exactly the same manner as in (1).

【0071】(実施例22)低密度層が、繊維径25μ
m、繊維長100mmのポリエステル繊維Cを90重量
%と、繊維径14μm、繊維長50mmで繊維Cより軟
化点が90℃低いポリエステル繊維Bを10重量%とで
構成され、通気量を空気圧0.01kg/cm2 におい
て1900cc/cm2 ・min.とした以外は実施例
1と全く同じにして遮音構造体(22)を作製した。
Example 22 The low-density layer had a fiber diameter of 25 μm.
m, 90% by weight of polyester fiber C having a fiber length of 100 mm, and 10% by weight of polyester fiber B having a fiber diameter of 14 μm, a fiber length of 50 mm and a softening point of 90 ° C. lower than that of fiber C. in the 01kg / cm 2 1900cc / cm 2 · min. A sound insulation structure (22) was produced in exactly the same manner as in Example 1 except that the above-mentioned conditions were adopted.

【0072】(実施例23)低密度層が、繊維径25μ
m、繊維長50mmのポリエステル繊維Cを70重量%
と、繊維径14μm、繊維長50mmで繊維Cより軟化
点が90℃低いポリエステル繊維Bを30重量%とで構
成され、通気量を空気圧0.01kg/cm 2 において
1950cc/cm2 ・min.とした以外は実施例1
と全く同じにして遮音構造体(23)を作製した。
Example 23 The low-density layer had a fiber diameter of 25 μm.
m, 70% by weight of polyester fiber C having a fiber length of 50 mm
With a fiber diameter of 14 μm and a fiber length of 50 mm, softened from fiber C
30% by weight of polyester fiber B whose point is lower by 90 ° C.
Air flow rate is 0.01kg / cm TwoAt
1950cc / cmTwo-Min. Example 1 except that
A sound-insulating structure (23) was produced in exactly the same manner as described above.

【0073】(実施例24)低密度層が、繊維径25μ
m、繊維長50mmのポリエステル繊維Cを90重量%
と、繊維径10μm、繊維長50mmで繊維Cより軟化
点が90℃低いポリエステル繊維Bを10重量%とで構
成され、通気量を空気圧0.01kg/cm 2 において
1650cc/cm2 ・min.とした以外は実施例1
と全く同じにして遮音構造体(24)を作製した。
Example 24 The low-density layer had a fiber diameter of 25 μm.
90% by weight of polyester fiber C having a fiber length of 50 mm
With a fiber diameter of 10 μm and a fiber length of 50 mm, softened from fiber C
The polyester fiber B whose point is 90 ° C lower is composed of 10% by weight.
Air flow rate is 0.01kg / cm TwoAt
1650cc / cmTwo-Min. Example 1 except that
A sound insulation structure (24) was produced in exactly the same manner as in (1).

【0074】(実施例25)低密度層が、繊維径25μ
m、繊維長50mmのポリエステル繊維Cを90重量%
と、繊維径20μm、繊維長50mmで繊維Cより軟化
点が90℃低いポリエステル繊維Bを10重量%とで構
成され、通気量を空気圧0.01kg/cm 2 において
1850cc/cm2 ・min.とした以外は実施例1
と全く同じにして遮音構造体(25)を作製した。
Example 25 The low-density layer had a fiber diameter of 25 μm.
90% by weight of polyester fiber C having a fiber length of 50 mm
With a fiber diameter of 20 μm and a fiber length of 50 mm, softened from fiber C
The polyester fiber B whose point is 90 ° C lower is composed of 10% by weight.
Air flow rate is 0.01kg / cm TwoAt
1850cc / cmTwo-Min. Example 1 except that
A sound insulation structure (25) was produced in exactly the same manner as in (1).

【0075】(実施例26)低密度層が、繊維径25μ
m、繊維長50mmのポリエステル繊維Cを90重量%
と、繊維径14μm、繊維長30mmで繊維Cより軟化
点が90℃低いポリエステル繊維Bを10重量%とで構
成され、通気量を空気圧0.01kg/cm 2 において
1750cc/cm2 ・min.とした以外は実施例1
と全く同じにして遮音構造体(26)を作製した。
Example 26 The low-density layer had a fiber diameter of 25 μm.
90% by weight of polyester fiber C having a fiber length of 50 mm
With a fiber diameter of 14 μm and a fiber length of 30 mm, softened from fiber C
The polyester fiber B whose point is 90 ° C lower is composed of 10% by weight.
Air flow rate is 0.01kg / cm TwoAt
1750cc / cmTwo-Min. Example 1 except that
A sound insulation structure (26) was produced in exactly the same manner as in (1).

【0076】(実施例27)低密度層が、繊維径25μ
m、繊維長50mmのポリエステル繊維Cを90重量%
と、繊維径14μm、繊維長100mmで繊維Cより軟
化点が90℃低いポリエステル繊維Bを10重量%とで
構成され、通気量を空気圧0.01kg/cm2 におい
て1900cc/cm2 ・min.とした以外は実施例
1と全く同じにして遮音構造体(27)を作製した。
(Example 27) The low-density layer had a fiber diameter of 25 μm.
90% by weight of polyester fiber C having a fiber length of 50 mm
And 10% by weight of a polyester fiber B having a fiber diameter of 14 μm, a fiber length of 100 mm, and a softening point lower than that of the fiber C by 90 ° C., and a ventilation rate of 1900 cc / cm 2 · min. At an air pressure of 0.01 kg / cm 2 . A sound insulation structure (27) was produced in exactly the same manner as in Example 1 except that the above-mentioned conditions were adopted.

【0077】(実施例28)高密度層を形成するポリエ
ステル繊維Aとポリエステル繊維Bの軟化点の差が20
℃で、通気量を空気圧0.01kg/cm2 において1
200cc/cm2・min.とした以外は実施例1と
全く同じにして遮音構造体(28)を作製した。
(Example 28) The difference between the softening points of the polyester fibers A and B forming the high-density layer was 20.
° C, the ventilation rate is 1 at an air pressure of 0.01 kg / cm 2 .
200 cc / cm 2 · min. A sound insulation structure (28) was produced in exactly the same manner as in Example 1, except that

【0078】(実施例29)低密度層を形成するポリエ
ステル繊維Cとポリエステル繊維Bの軟化点の差が20
℃で、通気量を空気圧0.01kg/cm2 において1
850cc/cm2・min.とした以外は実施例1と
全く同じにして遮音構造体(29)を作製した。
(Example 29) The difference between the softening points of the polyester fibers C and B forming the low-density layer was 20.
° C, the ventilation rate is 1 at an air pressure of 0.01 kg / cm 2 .
850 cc / cm 2 · min. A sound insulation structure (29) was produced in exactly the same manner as in Example 1 except that the above-mentioned conditions were adopted.

【0079】(実施例30)低密度層が、繊維径25μ
m 、繊維長30mmのポリエステル繊維Cを90重量%
と、繊維径14μm 、繊維長50mmで繊維Cより軟化
点が90℃低いポリエステル繊維Bを10重量%とで構
成され、通気量を空気圧0.01kg/cm 2 ・mi
n.において1650cc/cm2 ・min.とした以
外は実施例1と全く同じにして遮音構造体(30)を作
製した。
Example 30 The low-density layer had a fiber diameter of 25 μm.
m, 90% by weight of polyester fiber C having a fiber length of 30 mm
With a fiber diameter of 14 μm and a fiber length of 50 mm, softened from fiber C
The polyester fiber B whose point is 90 ° C lower is composed of 10% by weight.
Air flow rate is 0.01kg / cm Two・ Mi
n. At 1650cc / cmTwo-Min. Because
Outside, a sound insulation structure (30) was made in exactly the same manner as in Example 1.
Made.

【0080】(比較例1)高密度層の面密度を50g/
cm2 、通気量を空気圧0.01kg/cm2 において
1300cc/cm2 ・min.とした以外は実施例1
と全く同じにして遮音構造体(31)を作製した。
Comparative Example 1 The high-density layer had an area density of 50 g /
cm 2 and an air flow rate of 1300 cc / cm 2 · min. at an air pressure of 0.01 kg / cm 2 . Example 1 except that
A sound-insulating structure (31) was produced in exactly the same manner as described above.

【0081】(比較例2)高密度層の面密度を2000
g/cm2 、通気量を空気圧0.01kg/cm 2 にお
いて400cc/cm2 ・min.とした以外は実施例
1と全く同じにして遮音構造体(32)を作製した。
(Comparative Example 2) The area density of the high-density layer was 2000
g / cmTwo, Air flow rate 0.01kg / cm TwoIn
And 400cc / cmTwo-Min. Example except for
A sound insulation structure (32) was produced in exactly the same manner as in Example 1.

【0082】(比較例3)高密度層の厚みを1mm以下
に成形する以外は実施例1と全く同じにして遮音構造体
(33)を作製しようとしたが、成形時の繊維の圧縮が
できず、作製できなかった。
(Comparative Example 3) A sound insulating structure (33) was produced in exactly the same manner as in Example 1 except that the thickness of the high-density layer was formed to 1 mm or less. And could not be produced.

【0083】(比較例4)高密度層の厚みを20mm、
通気量を空気圧0.01kg/cm2 において1200
cc/cm2 ・min.とした以外は実施例1と全く同
じにして遮音構造体(34)を作製した。
(Comparative Example 4) The thickness of the high-density layer was 20 mm,
The air flow rate is 1200 at an air pressure of 0.01 kg / cm 2 .
cc / cm 2 · min. A sound insulating structure (34) was produced in exactly the same manner as in Example 1 except that the above-mentioned conditions were adopted.

【0084】(比較例5)高密度層が、繊維径5μm、
繊維長50mmのポリエステル繊維Aを50重量%と、
繊維径14μm、繊維長50mmで繊維Aより軟化点が
90℃低いポリエステル繊維Bを50重量%とで構成さ
れる以外は実施例1と全く同じにして遮音構造体(3
5)を作製しようとしたが、繊維Aが細すぎて不織布と
ならず、作製できなかった。
(Comparative Example 5) The high-density layer had a fiber diameter of 5 µm,
50% by weight of a polyester fiber A having a fiber length of 50 mm,
Except that the fiber diameter is 14 μm, the fiber length is 50 mm, and the softening point is 90 ° C. lower than that of the fiber A, the polyester fiber B is composed of 50% by weight.
An attempt was made to produce 5), but the fiber A was too thin to form a nonwoven fabric and could not be produced.

【0085】(比較例6)高密度層が繊維径40μm、
繊維長50mmのポリエステル繊維Aを50重量%と、
繊維径14μm、繊維長50mmで繊維Aより軟化点が
90℃低いポリエステル繊維Bを50重量%とで構成さ
れ、通気量が空気圧0.01kg/cm2において14
00cc/cm2 ・min.である以外は実施例1と全
く同じにして遮音構造体(36)を作製した。
Comparative Example 6 The high-density layer had a fiber diameter of 40 μm,
50% by weight of a polyester fiber A having a fiber length of 50 mm,
It is composed of 50% by weight of a polyester fiber B having a fiber diameter of 14 μm, a fiber length of 50 mm and a softening point lower than that of the fiber A by 90 ° C., and a ventilation volume of 14 kg at an air pressure of 0.01 kg / cm 2 .
00 cc / cm 2 · min. A sound insulation structure (36) was produced in exactly the same manner as in Example 1 except for the following.

【0086】(比較例7)高密度層が、繊維径14μ
m、繊維長30mmのポリエステル繊維Aを50重量%
と、繊維径14μm、繊維長50mmで繊維Aより軟化
点が90℃低いポリエステル繊維Bを50重量%とで構
成される以外は実施例1と全く同じにして遮音構造体
(37)を作製しようとしたが、繊維Aが短く不織布と
ならず、作製できなかった。
Comparative Example 7 The high-density layer had a fiber diameter of 14 μm.
50% by weight of polyester fiber A having a fiber length of 30 mm
A sound insulation structure (37) was produced in exactly the same manner as in Example 1, except that the fiber diameter was 14 μm, the fiber length was 50 mm, and the softening point was 90 ° C. lower than that of the fiber A. However, the fiber A was too short to be a non-woven fabric and could not be produced.

【0087】(比較例8)高密度層が、繊維径14μ
m、繊維長200mmのポリエステル繊維Aを50重量
%と、繊維径14μm、繊維長50mmで繊維Aより軟
化点が90℃低いポリエステル繊維Bを50重量%とで
構成され、通気量が空気圧0.01kg/cm2 におい
て1300cc/cm2 ・min.である以外は実施例
1と全く同じにして遮音構造体(38)を作製した。
Comparative Example 8 The high-density layer had a fiber diameter of 14 μm.
m, 50% by weight of a polyester fiber A having a fiber length of 200 mm, and 50% by weight of a polyester fiber B having a fiber diameter of 14 μm, a fiber length of 50 mm and a softening point of 90 ° C. lower than that of the fiber A. in the 01kg / cm 2 1300cc / cm 2 · min. A sound insulation structure (38) was produced in exactly the same manner as in Example 1 except for the following.

【0088】(比較例9)高密度層が、繊維径14μ
m、繊維長50mmのポリエステル繊維Aのみで構成さ
れる以外は実施例1と全く同じにして遮音構造体(3
9)を作製しようとしたが、高密度層は繊維Aのみでは
厚みを十分に薄く成形できず、遮音構造体(39)の厚
みを60mm以下に作製できなかった。
Comparative Example 9 The high-density layer had a fiber diameter of 14 μm.
m, and the sound insulation structure (3
9) was attempted, but the high-density layer could not be formed sufficiently thin with only the fiber A, and the thickness of the sound insulating structure (39) could not be reduced to 60 mm or less.

【0089】(比較例10)高密度層が、繊維径14μ
m、繊維長50mmのポリエステル繊維Aを50重量%
と、繊維径5μm、繊維長50mmで繊維Aより軟化点
が90℃低いポリエステル繊維Bを50重量%とで構成
される以外は実施例1と全く同じにして遮音構造体(4
0)を作製しようとしたが、繊維Bが細すぎて不織布と
ならず、作製できなかった。
Comparative Example 10 The high-density layer had a fiber diameter of 14 μm.
50% by weight of polyester fiber A having a fiber length of 50 mm
And a 50% by weight polyester fiber B having a fiber diameter of 5 μm, a fiber length of 50 mm and a softening point 90 ° C. lower than that of the fiber A, and the weight of the sound insulating structure (4
0) was attempted, but the fiber B was too thin to form a non-woven fabric and could not be produced.

【0090】(比較例11)高密度層が、繊維径14μ
m、繊維長50mmのポリエステル繊維Aを50重量%
と、繊維径40μm、繊維長50mmで繊維Aより軟化
点が90℃低いポリエステル繊維Bを50重量%とで構
成され、通気量が空気圧0.01kg/cm 2 において
1400cc/cm2 ・min.である以外は実施例1
と全く同じにして遮音構造体(41)を作製した。
Comparative Example 11 The high-density layer had a fiber diameter of 14 μm.
50% by weight of polyester fiber A having a fiber length of 50 mm
With a fiber diameter of 40 μm and a fiber length of 50 mm, softened from fiber A
The polyester fiber B whose point is lower by 90 ° C. is composed of 50% by weight.
Air flow rate is 0.01kg / cm TwoAt
1400cc / cmTwo-Min. Example 1 except that
A sound insulation structure (41) was produced in exactly the same manner as in the above.

【0091】(比較例12)高密度層が、繊維径14μ
m、繊維長50mmのポリエステル繊維Aを50重量%
と、繊維径14μm、繊維長15mmで繊維Aより軟化
点が90℃低いポリエステル繊維Bを50重量%とで構
成される以外は実施例1と全く同じにして遮音構造体
(42)を作製しようとしたが、繊維Bが短すぎて不織
布とならず、作製できなかった。
(Comparative Example 12) The high-density layer had a fiber diameter of 14 μm.
50% by weight of polyester fiber A having a fiber length of 50 mm
A sound insulation structure (42) was produced in exactly the same manner as in Example 1 except that the fiber diameter was 14 μm, the fiber length was 15 mm, and the softening point was 90 ° C. lower than that of the fiber A. However, the fiber B was too short to be made into a nonwoven fabric and could not be produced.

【0092】(比較例13)高密度層が、繊維径14μ
m、繊維長50mmのポリエステル繊維Aを50重量%
と、繊維径14μm、繊維長200mmで繊維Aより軟
化点が90℃低いポリエステル繊維Bを50重量%とで
構成され、通気量が空気圧0.01kg/cm2 におい
て1300cc/cm2 ・min.である以外は実施例
1と全く同じにして遮音構造体(43)を作製した。
(Comparative Example 13) The high-density layer had a fiber diameter of 14 μm.
50% by weight of polyester fiber A having a fiber length of 50 mm
And 50% by weight of a polyester fiber B having a fiber diameter of 14 μm, a fiber length of 200 mm and a softening point lower than that of the fiber A by 90 ° C., and a ventilation rate of 1300 cc / cm 2 · min. At an air pressure of 0.01 kg / cm 2 . A sound insulation structure (43) was produced in exactly the same manner as in Example 1 except for the following.

【0093】(比較例14)低密度層の面密度を200
g/cm2 、通気量を空気圧0.01kg/cm2にお
いて1900cc/cm2 ・min.とした以外は実施
例1と全く同じにして遮音構造体(44)を作製した。
(Comparative Example 14) The low-density layer had an area density of 200
g / cm 2 , and an air flow rate of 1900 cc / cm 2 · min. at an air pressure of 0.01 kg / cm 2 . A sound insulation structure (44) was produced in exactly the same manner as in Example 1 except that the above-mentioned conditions were satisfied.

【0094】(比較例15)低密度層の面密度を300
0g/cm2 、通気量を空気圧0.01kg/cm 2
おいて1200cc/cm2 ・min.とした以外は実
施例1と全く同じにして遮音構造体(45)を作製し
た。
(Comparative Example 15) The low-density layer had an area density of 300
0 g / cmTwo, Air flow rate 0.01kg / cm TwoTo
1200 cc / cmTwo-Min. Other than
A sound insulation structure (45) was produced in exactly the same manner as in Example 1.
Was.

【0095】(比較例16)低密度層の厚みを10m
m、通気量を空気圧0.01kg/cm2 において12
00cc/cm2 ・min.とした以外は実施例1と全
く同じにして遮音構造体(46)を作製した。
(Comparative Example 16) The low-density layer had a thickness of 10 m.
m, the ventilation rate is 12 at an air pressure of 0.01 kg / cm 2 .
00 cc / cm 2 · min. A sound insulation structure (46) was produced in exactly the same manner as in Example 1 except that the above-mentioned conditions were adopted.

【0096】(比較例17)低密度層の厚みを100m
mとした以外は実施例1と全く同じにして遮音構造体
(47)を作製しようとしたが、実使用上から現実的な
サイズとならなかった。
(Comparative Example 17) The thickness of the low density layer was 100 m
An attempt was made to produce the sound insulation structure (47) in exactly the same manner as in Example 1 except that the size was changed to m, but the size did not become a realistic size in practical use.

【0097】(比較例18)低密度層が、繊維径5μ
m、繊維長50mmのポリエステル繊維Cを90重量%
と、繊維径14μm、繊維長50mmで繊維Cより軟化
点が90℃低いポリエステル繊維Bを10重量%とで構
成される以外は実施例1と全く同じにして遮音構造体
(48)を作製しようとしたが、繊維Cが細すぎて不織
布とならず、作製できなかった。
(Comparative Example 18) The low-density layer had a fiber diameter of 5 μm.
90% by weight of polyester fiber C having a fiber length of 50 mm
And a 10% by weight polyester fiber B having a fiber diameter of 14 μm, a fiber length of 50 mm, and a softening point 90 ° C. lower than that of the fiber C, and the sound insulation structure (48) was produced in exactly the same manner as in Example 1. However, the fiber C was too thin to be formed into a non-woven fabric and could not be produced.

【0098】(比較例19)低密度層が、繊維径60μ
m、繊維長50mmのポリエステル繊維Cを90重量%
と、繊維径14μm、繊維長50mmで繊維Cより軟化
点が90℃低いポリエステル繊維Bを10重量%とで構
成され、通気量を空気圧0.01kg/cm 2 において
2150cc/cm2 ・min.とした以外は実施例1
と全く同じにして遮音構造体(49)を作製した。
Comparative Example 19 The low-density layer had a fiber diameter of 60 μm.
90% by weight of polyester fiber C having a fiber length of 50 mm
With a fiber diameter of 14 μm and a fiber length of 50 mm, softened from fiber C
The polyester fiber B whose point is 90 ° C lower is composed of 10% by weight.
Air flow rate is 0.01kg / cm TwoAt
2150cc / cmTwo-Min. Example 1 except that
A sound insulation structure (49) was produced in exactly the same manner as in (1).

【0099】(比較例20)低密度層が、繊維径25μ
m、繊維長20mmのポリエステル繊維Cを90重量%
と、繊維径14μm、繊維長50mmで繊維Cより軟化
点が90℃低いポリエステル繊維Bを10重量%とで構
成される以外は実施例1と全く同じにして遮音構造体
(50)を作製しようとしたが、繊維Cが短くて不織布
とならず、作製できなかった。
Comparative Example 20 The low-density layer had a fiber diameter of 25 μm.
90% by weight of polyester fiber C having a fiber length of 20 mm
A sound insulation structure (50) was produced in the same manner as in Example 1 except that the fiber diameter was 14 μm, the fiber length was 50 mm, and the softening point was 90 ° C. lower than that of the fiber C. However, the fiber C was so short that it did not become a nonwoven fabric and could not be produced.

【0100】(比較例21)低密度層が、繊維径25μ
m、繊維長200mmのポリエステル繊維Cを90重量
%と、繊維径14μm、繊維長50mmで繊維Cより軟
化点が90℃低いポリエステル繊維Bを10重量%とで
構成され、通気量を空気圧0.01kg/cm2 におい
て2050cc/cm2 ・min.とした以外は実施例
1と全く同じにして遮音構造体(51)を作製した。
(Comparative Example 21) The low-density layer had a fiber diameter of 25 μm.
m, 90% by weight of a polyester fiber C having a fiber length of 200 mm, and 10% by weight of a polyester fiber B having a fiber diameter of 14 μm, a fiber length of 50 mm and a softening point lower by 90 ° C. than the fiber C by 10% by weight. in the 01kg / cm 2 2050cc / cm 2 · min. A sound insulation structure (51) was produced in exactly the same manner as in Example 1 except that the above-mentioned conditions were adopted.

【0101】(比較例22)低密度層が、繊維径25μ
m、繊維長50mmのポリエステル繊維Cを50重量%
と、繊維径14μm、繊維長50mmで繊維Cより軟化
点が90℃低いポリエステル繊維Bを50重量%とで構
成され、通気量を空気圧0.01kg/cm 2 において
2100cc/cm2 ・min.とした以外は実施例1
と全く同じにして遮音構造体(52)を作製した。
Comparative Example 22 The low-density layer had a fiber diameter of 25 μm.
50% by weight of polyester fiber C having a fiber length of 50 mm
With a fiber diameter of 14 μm and a fiber length of 50 mm, softened from fiber C
The polyester fiber B whose point is lower by 90 ° C. is composed of 50% by weight.
Air flow rate is 0.01kg / cm TwoAt
2100cc / cmTwo-Min. Example 1 except that
A sound insulation structure (52) was produced in exactly the same manner as in (1).

【0102】(比較例23)低密度層が、繊維径25μ
m、繊維長50mmのポリエステル繊維Cのみで構成さ
れる以外は実施例1と全く同じにして遮音構造体(5
3)を作製しようとしたが、低密度層は繊維Cのみでは
成形体の厚みを十分に抑えることができず、遮音構造体
(53)の厚みを60mm以下に作製できなかった。
(Comparative Example 23) The low-density layer had a fiber diameter of 25 μm.
m, the sound insulation structure (5
Although 3) was attempted, the thickness of the low-density layer could not be sufficiently suppressed only by the fiber C, and the thickness of the sound insulating structure (53) could not be reduced to 60 mm or less.

【0103】(比較例24)低密度層が、繊維径25μ
m、繊維長50mmのポリエステル繊維Cを90重量%
と、繊維径5μm、繊維長50mmで繊維Cより軟化点
が90℃低いポリエステル繊維Bを10重量%とで構成
される以外は実施例1と全く同じにして遮音構造体(5
4)を作製しようとしたが、繊維Bが細すぎて不織布と
ならず、作製できなかった。
(Comparative Example 24) The low-density layer had a fiber diameter of 25 μm.
90% by weight of polyester fiber C having a fiber length of 50 mm
And 10% by weight of a polyester fiber B having a fiber diameter of 5 μm, a fiber length of 50 mm and a softening point 90 ° C. lower than that of the fiber C, and the sound insulating structure (5
An attempt was made to produce 4), but the fiber B was too thin to form a non-woven fabric and could not be produced.

【0104】(比較例25)低密度層が、繊維径25μ
m、繊維長50mmのポリエステル繊維Cを90重量%
と、繊維径40μm、繊維長50mmで繊維Cより軟化
点が90℃低いポリエステル繊維Bを10重量%とで構
成され、通気量を空気圧0.01kg/cm 2 において
2050cc/cm2 ・min.とした以外は実施例1
と全く同じにして遮音構造体(55)を作製した。
(Comparative Example 25) The low-density layer had a fiber diameter of 25 μm.
90% by weight of polyester fiber C having a fiber length of 50 mm
With a fiber diameter of 40 μm and a fiber length of 50 mm, softened from fiber C
The polyester fiber B whose point is 90 ° C lower is composed of 10% by weight.
Air flow rate is 0.01kg / cm TwoAt
2050cc / cmTwo-Min. Example 1 except that
A sound insulation structure (55) was produced in exactly the same manner as described above.

【0105】(比較例26)低密度層が、繊維径25μ
m、繊維長50mmのポリエステル繊維Cを90重量%
と、繊維径14μm、繊維長15mmで繊維Cより軟化
点が90℃低いポリエステル繊維Bを10重量%とで構
成される以外は実施例1と全く同じにして遮音構造体
(56)を作製しようとしたが、繊維Bが短くて不織布
とならず、作製できなかった。
Comparative Example 26 The low-density layer had a fiber diameter of 25 μm.
90% by weight of polyester fiber C having a fiber length of 50 mm
A sound insulating structure (56) was produced in exactly the same manner as in Example 1, except that the fiber diameter was 14 μm, the fiber length was 15 mm, and the softening point was 90 ° C. lower than that of the fiber C by 10% by weight. However, the fiber B was so short that it did not become a nonwoven fabric and could not be produced.

【0106】(比較例27)低密度層が、繊維径25μ
m、繊維長50mmのポリエステル繊維Cを90重量%
と、繊維径14μm、繊維長200mmで繊維Cより軟
化点が90℃低いポリエステル繊維Bを10重量%とで
構成され、通気量を空気圧0.01kg/cm2 におい
て2100cc/cm2 ・min.とした以外は実施例
1と全く同じにして遮音構造体(57)を作製した。
(Comparative Example 27) The low-density layer had a fiber diameter of 25 μm.
90% by weight of polyester fiber C having a fiber length of 50 mm
When the fiber diameter 14 [mu] m, a softening point from fiber C with a fiber length 200mm is composed of 10 wt% to 90 ° C. lower polyester fiber B, 2100cc / cm 2 · min airflow rate at pressure 0.01 kg / cm 2. A sound insulation structure (57) was produced in exactly the same manner as in Example 1 except that the above-mentioned conditions were adopted.

【0107】(比較例28)高密度層を形成するポリエ
ステル繊維Aとポリエステル繊維Bの軟化点の差が10
℃で、通気量を空気圧0.01kg/cm2 において1
350cc/cm2・min.とした以外は実施例1と
全く同じにして遮音構造体(58)を作製した。
(Comparative Example 28) The difference in softening point between the polyester fibers A and B forming the high-density layer was 10
° C, the ventilation rate is 1 at an air pressure of 0.01 kg / cm 2 .
350 cc / cm 2 · min. A sound insulation structure (58) was produced in exactly the same manner as in Example 1, except that

【0108】(比較例29)低密度層を形成するポリエ
ステル繊維Cとポリエステル繊維Bの軟化点の差が10
℃で、通気量を空気圧0.01kg/cm2 において2
100cc/cm2・min.とした以外は実施例1と
全く同じにして遮音構造体(59)を作製した。
(Comparative Example 29) The difference in softening point between the polyester fiber C and the polyester fiber B forming the low density layer was 10
° C, the ventilation rate is 2 at an air pressure of 0.01 kg / cm 2 .
100 cc / cm 2 · min. A sound insulation structure (59) was produced in exactly the same manner as in Example 1 except that the above-mentioned conditions were adopted.

【0109】上記の各実施例及び比較例によって得たサ
ンプルについて、それらの構成及び特性値の試験結果を
表1、表2、表3及び表4に示す。
Tables 1, 2, 3 and 4 show the test results of the structures and characteristic values of the samples obtained by the above Examples and Comparative Examples.

【0110】[0110]

【表1】 [Table 1]

【0111】[0111]

【表2】 [Table 2]

【0112】[0112]

【表3】 [Table 3]

【0113】[0113]

【表4】 [Table 4]

【0114】上記の表に示す結果において、音響透過損
失差が300〜500Hz、500Hz〜1kHzの周
波数域のどちらかで1dB未満のものはその効果がない
ものと判断した。
In the results shown in the above table, it was determined that a sound transmission loss difference of less than 1 dB in any of the frequency ranges of 300 to 500 Hz and 500 Hz to 1 kHz had no effect.

【0115】これらの表より、実施例で作製した本発明
の各遮音構造体は、積層構造体全体の質量により決定さ
れる音響透過損失(TL)の質量則の遮音レベルに比べ
て、低周波数域での遮音性能が向上することが確認され
た。また、本発明に該当しない比較例は、遮音性能につ
いて満足な値を得ることができなかった。
From these tables, it can be seen that each of the sound insulation structures of the present invention produced in the examples has a lower frequency than the sound insulation level based on the mass rule of sound transmission loss (TL) determined by the mass of the entire laminated structure. It was confirmed that the sound insulation performance in the region was improved. Moreover, the comparative example which does not correspond to the present invention could not obtain a satisfactory value for the sound insulation performance.

【0116】[0116]

【発明の効果】以上説明したように、本発明の遮音構造
体は、高密度層の通気量を制御でき、従来の通気性のな
い高密度層をその構成に有する遮音構造体より低周波数
域での遮音性能が格段に向上する効果を有する。
As described above, the sound-insulating structure of the present invention can control the air permeability of the high-density layer, and has a lower frequency range than the conventional sound-insulating structure having a high-density layer having no air permeability. This has the effect of significantly improving the sound insulation performance of the device.

【図面の簡単な説明】[Brief description of the drawings]

【図1】車輛に搭載されたフロアインシュレータの模式
図。
FIG. 1 is a schematic diagram of a floor insulator mounted on a vehicle.

【図2】フロアインシュレータの垂直断面図。FIG. 2 is a vertical sectional view of a floor insulator.

【符号の説明】[Explanation of symbols]

1 フロアパネル 2 遮音構造体 3 低密度層 4 高密度層 5 フロアカーペット DESCRIPTION OF SYMBOLS 1 Floor panel 2 Sound insulation structure 3 Low density layer 4 High density layer 5 Floor carpet

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI E04B 1/86 G10K 11/16 D G10K 11/162 A (72)発明者 渡辺 恭一 神奈川県横浜市神奈川区宝町2番地 日 産自動車株式会社内 (72)発明者 根本 好一 神奈川県横浜市神奈川区宝町2番地 日 産自動車株式会社内 (56)参考文献 特開 平10−236206(JP,A) 特開 平8−152890(JP,A) 特開 平9−1704(JP,A) 実開 昭49−88701(JP,U) (58)調査した分野(Int.Cl.7,DB名) G10K 11/16 B32B 5/26 B32B 25/10 B60R 13/08 D04H 1/54 E04B 1/86 ────────────────────────────────────────────────── ─── Continued on the front page (51) Int.Cl. 7 Identification symbol FI E04B 1/86 G10K 11/16 D G10K 11/162 A (72) Inventor Kyoichi Watanabe 2 Takaracho, Kanagawa-ku, Yokohama-shi, Kanagawa Nissan (72) Inventor Yoshikazu Nemoto 2 Takara-cho, Kanagawa-ku, Yokohama, Kanagawa Prefecture Nissan Motor Co., Ltd. (56) References JP-A-10-236206 (JP, A) JP-A-8-152890 ( JP, A) JP-A-9-1704 (JP, A) JP-A-49-88701 (JP, U) (58) Fields investigated (Int. Cl. 7 , DB name) G10K 11/16 B32B 5/26 B32B 25/10 B60R 13/08 D04H 1/54 E04B 1/86

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 通気性の異なる少なくとも2層の不織布
が積層されてなり、0.5〜3.0kg/cm2 の面密
度と16〜60mmの厚みとを有する積層体であって、
各層の通気量差が空気圧0.01kg/cm2 において
450〜1000cc/cm2 ・min.であることを
特徴とする遮音構造体。
1. A laminate having at least two layers of nonwoven fabrics having different air permeability laminated thereon and having a surface density of 0.5 to 3.0 kg / cm 2 and a thickness of 16 to 60 mm,
The difference in air flow between the layers is 450 to 1000 cc / cm 2 · min. At an air pressure of 0.01 kg / cm 2 . A sound insulation structure characterized by the following.
【請求項2】 上記積層体において、各不織布層の密度
比率が2/1〜100/1の範囲にあり、通気性の小さ
い層は繊維径10〜25μmの繊維で構成され0.1〜
1.0kg/cm2 の面密度と1〜10mmの厚みとを
有する高密度層であり、通気性の大きい層は繊維径10
〜40μmの繊維で構成され0.4〜2.0kg/cm
2 の面密度と15〜50mmの厚みとを有する低密度層
であることを特徴とする請求項1記載の遮音構造体。
2. In the laminate, the density ratio of each nonwoven fabric layer is in the range of 2/1 to 100/1, and the layer having low air permeability is made of fibers having a fiber diameter of 10 to 25 μm and 0.1 to 0.1 μm.
A high-density layer having an area density of 1.0 kg / cm 2 and a thickness of 1 to 10 mm, and a layer having a high air permeability has a fiber diameter of 10
0.4 to 2.0 kg / cm
2. The sound insulation structure according to claim 1, wherein the sound insulation structure is a low-density layer having a surface density of 2 and a thickness of 15 to 50 mm.
【請求項3】 上記高密度層がポリエステルを主成分と
する短繊維よりなる不織布で、繊維径10〜25μm、
繊維長30〜100mmの繊維A高々80重量%と、該
繊維Aの軟化点より少なくとも20℃低い軟化点を有す
る繊維径10〜20μm、繊維長30〜100mmの繊
維B少なくとも20重量%とで構成され且つ通気量が空
気圧0.01kg/cm2 において700〜1250c
c/cm2 ・min.であることを特徴とする請求項2
記載の遮音構造体。
3. The non-woven fabric according to claim 1, wherein the high-density layer is made of short fibers mainly composed of polyester, and has a fiber diameter of 10 to 25 μm.
Consisting of at most 80% by weight of fiber A having a fiber length of 30 to 100 mm, and at least 20% by weight of fiber B having a softening point at least 20 ° C. lower than the softening point of fiber A and having a diameter of 10 to 20 μm and a fiber length of 30 to 100 mm. 700 to 1250 c at an air pressure of 0.01 kg / cm 2
c / cm 2 · min. 3. The method according to claim 2, wherein
The sound insulation structure according to any one of the preceding claims.
【請求項4】 上記低密度層がポリエステルを主成分と
する短繊維よりなる不織布で、繊維径10〜40μm、
繊維長30〜100mmの繊維C70〜90重量%と、
該繊維Cの軟化点より少なくとも20℃低い軟化点を有
する繊維径10〜20μm、繊維長30〜100mmの
繊維B10〜30重量%とで構成され、且つ通気量が空
気圧0.01kg/cm2 において1700〜1950
cc/cm2 ・min.であることを特徴とする請求項
2〜3の何れか1項に記載の遮音構造体。
4. The non-woven fabric, wherein the low-density layer is made of short fibers mainly composed of polyester, and has a fiber diameter of 10 to 40 μm.
A fiber C having a fiber length of 30 to 100 mm and 70 to 90% by weight;
The fiber C has a softening point at least 20 ° C. lower than that of the fiber C, a fiber diameter of 10 to 20 μm, a fiber length of 30 to 100 mm, and a fiber B of 10 to 30% by weight, and an air flow rate of 0.01 kg / cm 2 . 1700-1950
cc / cm 2 · min. The sound insulation structure according to any one of claims 2 to 3, wherein
【請求項5】 上記積層体を外部隔壁に添設することに
より、前記少なくとも1層の高密度層が少なくとも1層
の低密度層を介して該外部隔壁と共に2重壁遮音構造を
形成し、該2重壁遮音構造の1次共振周波数が50〜3
00Hzの範囲の周波数に設定されてなることを特徴と
する請求項2〜4の何れか1項記載の遮音構造体。
5. A double-walled sound insulation structure in which the at least one high-density layer is formed together with the external partition through at least one low-density layer by attaching the laminate to an external partition; The primary resonance frequency of the double wall sound insulation structure is 50 to 3
The sound insulation structure according to any one of claims 2 to 4, wherein the frequency is set to a frequency in a range of 00Hz.
【請求項6】 上記2重壁遮音構造は、積層体全体の質
量により決定される音響透過損失(TL)の質量則の遮
音レベルに対し、300Hz〜1kHzの周波数領域に
おいて、その周波数平均で1〜3dB向上した音響透過
損失(TL)を示すことを特徴とする請求項5記載の遮
音構造体。
6. The double-walled sound insulation structure has a frequency average of 1 to 300 Hz to 1 kHz in a frequency range of 300 Hz to 1 kHz with respect to a sound insulation level according to a mass law of sound transmission loss (TL) determined by the mass of the whole laminate. 6. The sound insulation structure according to claim 5, wherein the sound insulation structure exhibits a sound transmission loss (TL) improved by ~ 3 dB.
【請求項7】 前記外部隔壁が自動車のフロアパネルで
あり、上記2重壁遮音構造が車室内側に形成され、上記
積層体上にカーペットを設置した状態で、自動車用フロ
アインシュレータとして適用されることを特徴とする請
求項5または6記載の遮音構造体。
7. The floor insulator of an automobile, wherein the double-walled sound insulation structure is formed on the vehicle interior side, and is applied as an automobile floor insulator with a carpet installed on the laminate. The sound insulation structure according to claim 5, wherein:
JP04883097A 1997-03-04 1997-03-04 Sound insulation structure Expired - Fee Related JP3342817B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04883097A JP3342817B2 (en) 1997-03-04 1997-03-04 Sound insulation structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04883097A JP3342817B2 (en) 1997-03-04 1997-03-04 Sound insulation structure

Publications (2)

Publication Number Publication Date
JPH10247085A JPH10247085A (en) 1998-09-14
JP3342817B2 true JP3342817B2 (en) 2002-11-11

Family

ID=12814161

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04883097A Expired - Fee Related JP3342817B2 (en) 1997-03-04 1997-03-04 Sound insulation structure

Country Status (1)

Country Link
JP (1) JP3342817B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005215021A (en) * 2004-01-27 2005-08-11 Teijin Fibers Ltd Sound-absorbing/insulating multilayer fiber structure and sound-absorbing/insulating product

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6296075B1 (en) * 2000-06-02 2001-10-02 Lear Corporation Lightweight acoustical system
JP2003150170A (en) * 2001-11-09 2003-05-23 Showa Electric Wire & Cable Co Ltd Sound absorbing and vibration damping material
KR20030047438A (en) * 2001-12-10 2003-06-18 (주)대한솔루션 sound absorbing and insulating material
US7563498B2 (en) 2001-12-27 2009-07-21 Suminoe Textile Co., Ltd. Carpet for vehicles
JP4139593B2 (en) * 2001-12-27 2008-08-27 住江織物株式会社 Carpet for vehicle and method for manufacturing the same
JP2003241762A (en) * 2002-02-14 2003-08-29 Koei Chemical Kogyosho:Kk Sound absorbing mat and method of manufacturing the same
KR20020035050A (en) * 2002-03-19 2002-05-09 권회현 Door
KR100537566B1 (en) * 2002-11-06 2005-12-19 (주)휴인텍 Fiber board and preparation thereof
JP4507919B2 (en) * 2005-03-08 2010-07-21 豊田合成株式会社 Exterior material
JP6801643B2 (en) * 2015-03-12 2020-12-16 東レ株式会社 Laminated non-woven fabric
US11407367B2 (en) 2017-03-27 2022-08-09 Howa Co., Ltd. Soundproof body and silencer for motor vehicles

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5120724Y2 (en) * 1972-11-11 1976-05-29
JPH08152890A (en) * 1994-11-29 1996-06-11 Nissan Motor Co Ltd Sound absorbing material for low frequency
JPH091704A (en) * 1995-06-19 1997-01-07 Nissan Motor Co Ltd Noise insulating structure
JP3399279B2 (en) * 1997-02-25 2003-04-21 トヨタ車体株式会社 Soundproofing material for vehicles

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005215021A (en) * 2004-01-27 2005-08-11 Teijin Fibers Ltd Sound-absorbing/insulating multilayer fiber structure and sound-absorbing/insulating product

Also Published As

Publication number Publication date
JPH10247085A (en) 1998-09-14

Similar Documents

Publication Publication Date Title
JP3304264B2 (en) Automotive body panel insulator
JP3519588B2 (en) Carpet material and method of manufacturing the same
JP3342817B2 (en) Sound insulation structure
JP2005512885A (en) Noise attenuation composite incorporating scrim material and method of manufacturing the same
WO2003031229A2 (en) Sound attenuating material for use within vehicles and methods of making same
JPH10203268A (en) Sound insulation structure
CN106335258B (en) Multilayer buffering isolation pad and vehicle comprising same
JP3247629B2 (en) Automotive interior materials
JP3284729B2 (en) Automotive sound insulating material and method of manufacturing the same
JPH1161616A (en) Sound insulating laminated material and double-wall sound insulating structural material containing the same
JP3564973B2 (en) Carpet material
JPH10236204A (en) Floor insulator for automobile and manufacture therefor
JPH10147191A (en) Bulky raised nonwovent fabric for automobile interior and manufacture thereof
JP3538293B2 (en) Sound insulation structure
JP3378489B2 (en) Carpet base material
KR101875927B1 (en) Nonwoven fabric having good sound-absorbing
JPH08132990A (en) Silencer pad for automobile floor
JPH1120570A (en) Inner facing material for automobile
JP3813279B2 (en) Automotive floor laying interior material and manufacturing method thereof
JP2000202933A (en) Sound insulating material
JPH073599A (en) Sound-absorbing material of high stiffness
JP3264761B2 (en) Polypropylene silencer pad
JP3170998B2 (en) Automotive sound insulation material
JP2002079868A (en) Vehicle floor level raising material and level raising structure
JP3188598B2 (en) Sound insulation structure and method of manufacturing the same

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080823

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080823

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090823

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090823

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100823

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110823

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110823

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120823

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120823

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130823

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130823

Year of fee payment: 11

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130823

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees