JPH10199425A - Manufacture of cathode-ray tube - Google Patents

Manufacture of cathode-ray tube

Info

Publication number
JPH10199425A
JPH10199425A JP321497A JP321497A JPH10199425A JP H10199425 A JPH10199425 A JP H10199425A JP 321497 A JP321497 A JP 321497A JP 321497 A JP321497 A JP 321497A JP H10199425 A JPH10199425 A JP H10199425A
Authority
JP
Japan
Prior art keywords
electrode
knocking
anode
imr
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP321497A
Other languages
Japanese (ja)
Inventor
Keitaro Yonemura
敬太郎 米村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP321497A priority Critical patent/JPH10199425A/en
Publication of JPH10199425A publication Critical patent/JPH10199425A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Electron Tubes, Discharge Lamp Vessels, Lead-In Wires, And The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To effectively perform main knocking between an anode electrode and an intermediate electrode in a cathode-ray tube formed so as to supply high voltage to the intermediate electrode through a high resistance of a internal divided resistance from the anode electrode. SOLUTION: An anode electrode where an internal divided resistance IMR is connected to one end and an intermediate electrode GM to which high voltage is supplied through the internal divided resistance IMR, are provided, and high voltage having a AC plus or minus output waveform is applied between an anode electrode G6 and an IMR pin 2, and stem pins of the other all electrodes G1 to G5 except for the electrodes G6 and GM are lowered to grounding electric potential, and the all stem pins containing the IMR pin 2 are immersed in insulating oil 3, and main knocking is performed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は陰極線管の製造方法
に係わり、特に陰極線管の製造工程中のノッキング工程
の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a cathode ray tube, and more particularly to an improvement in a knocking step in a process for manufacturing a cathode ray tube.

【0002】[0002]

【従来の技術】従来からカラーCRTを製造する工程で
CRT中のネック部内に組み込まれた電子銃の電極のバ
リ等を介して実働時に放電を発生しない様なノッキング
処理工程は図4に示す様にCRT完成近くの工程で行わ
れている。
2. Description of the Related Art Conventionally, in a process of manufacturing a color CRT, a knocking process which does not generate a discharge during operation through a burr of an electrode of an electron gun incorporated in a neck portion of the CRT is shown in FIG. In the process near the completion of the CRT.

【0003】図4のCRTの製造工程図に示す様に、カ
ーボンストライプ及びR(赤)、G(緑)、B(青)の
蛍光体ストライプが硝子パネル内面に形成され、色選別
電極が組み込まれたパネル及びネック部内にカーボン塗
布されて、ファンネル端面にフリット塗布したファンネ
ルとを第1ステップST1 でフリットを融解し、結晶化
し、接合面を固着する。
As shown in the CRT manufacturing process diagram of FIG. 4, carbon stripes and phosphor stripes of R (red), G (green), and B (blue) are formed on the inner surface of a glass panel, and a color selection electrode is incorporated. is carbon coated on the panel and the neck, to melt the frit and the funnel was frit applied to the funnel end surface in a first step ST 1, and crystallized, to secure the joint surfaces.

【0004】次の第2ステップST2 ではファンネルの
ネック内に複数の電極をビードガラスで組み立てた電子
銃を、ステムガラスに固定し、ネック内に封止する。
[0004] The electron gun assembly of the plurality of electrodes in a bead glass in the next second step ST 2 the funnel neck is fixed to the stem glass, sealed in the neck.

【0005】この様な封止時に硝子ネック部端面に排気
管付のステムガラスをバーナ等を介して溶着するため、
電子銃の特にネック部開口近傍の電極が酸化する。
At the time of such sealing, a stem glass with an exhaust pipe is welded to the end face of the glass neck via a burner or the like.
Electrodes of the electron gun, particularly near the neck opening, are oxidized.

【0006】この様な酸化した、電極の表面を酸化還元
させるために第4ステップST4 で示す様にベーキング
処理が行われる。
[0006] Such oxidized, fourth baking treatment as shown in step ST 4 is performed the surface of the electrodes in order to redox.

【0007】この様にベーキング処理を施さないと、実
働時に、これら酸化した電極から放出したO2 のガスが
電子銃のカソードに塗布した酸化物(オキサイド)と結
合してエミッション特性を劣化させる。
If the baking treatment is not performed as described above, the O 2 gas released from the oxidized electrodes in actual operation combines with the oxide (oxide) applied to the cathode of the electron gun to deteriorate the emission characteristics.

【0008】この様なベーキング処理の後の第5ステッ
プST5 ではゲッタをファンネル外部から高周波加熱し
て、バリウムを蒸着させて管内の真空度をより向上させ
るゲッタフラッシュ処理を行う。
[0008] The fifth step ST 5 the getter after such a baking treatment by high-frequency heating from the funnel outside, performs a getter flash process to improve the degree of vacuum tube by depositing barium.

【0009】次の第6ステップST6 では爆縮防止用の
補強処理がパネル又はパネル周辺部に施されると共にフ
ァンネル外面にカーボン塗布が行われて、高圧用平滑回
路コンデンサを構成させる。
[0009] The carbon coating is carried out in the funnel outer surface with a reinforcing treatment for the next sixth step ST 6 the implosion prevention is applied to the panel or panel periphery, thereby constituting a high-voltage smoothing circuit capacitor.

【0010】次の、第7ステップST7 ではノッキング
及びエージングの処理が施される。このノッキング処理
は電子銃に高電圧を印加し、通常動作時に電極で放電が
発生しない様にすると共に、カソードから電子放射が行
われる様なエージング処理が行われる。
[0010] the following, the process of the seventh step ST 7 the knocking and aging is performed. In this knocking process, a high voltage is applied to the electron gun to prevent discharge from occurring at the electrodes during normal operation, and an aging process is performed to emit electrons from the cathode.

【0011】以下、従来のノッキング処理を説明する。
図5は3ガン型カラーCRT1の電子銃の1例の電極配
列を示すもので、R,G,B用のヒータHを含むカソー
ド、Kは3ガン構成で、インライン状に配設され、これ
らカソードKに対して共通となるように第1電極G1
第2電極G2 、第2の第3電極G3V、第1の第3電極G
3C、第4電極G4 、第1の第5電極G5C、第2の第5電
極(フォーカス電極)G5V、中間電極GM 、第6電極G
6 が順次配列され、第1電極G1 乃至第6電極G6
は、図示せざるもR,G,Bの各電子ビームが通過する
電子ビーム通過孔が設けられている。
Hereinafter, a conventional knocking process will be described.
FIG. 5 shows an electrode arrangement of an example of an electron gun of a three-gun type color CRT 1, in which cathodes including heaters H for R, G, and B, and K have a three-gun configuration and are arranged in-line. The first electrodes G 1 ,
The second electrode G 2 , the second third electrode G 3V , the first third electrode G
3C , a fourth electrode G 4 , a first fifth electrode G 5C , a second fifth electrode (focus electrode) G 5V , an intermediate electrode G M , and a sixth electrode G
6 are sequentially arranged, and the first to sixth electrodes G 1 to G 6 are provided with electron beam passage holes (not shown) through which R, G, and B electron beams pass.

【0012】第2電極G2 と第4電極G4 は同電位が印
加され、第2の第3電極G3Vと第2の第5電極G5Vは共
通接続され、約7kVの電圧が印加され、第1の第3電
極G3Cと第1の第5電極G5Cは共通接続されて共通電圧
が印加される。
The same potential is applied to the second electrode G 2 and the fourth electrode G 4 , the second third electrode G 3V and the second fifth electrode G 5V are commonly connected, and a voltage of about 7 kV is applied. , The first third electrode G 3C and the first fifth electrode G 5C are commonly connected, and a common voltage is applied.

【0013】第6電極G6 はアノード釦を介して27k
Vのアノード電圧が供給される。中間電極GM には、内
部分割抵抗IMRによって、アノード電圧を抵抗R1
42%ダウンさせた電圧(例えば14kV)が供給さ
れ、更に内部分割抵抗IMRの抵抗R2 で残りの58%
をダウンさせてネック端のステム端子に配設したIMR
ピン2に接続されている。このIMRは例えば、セラミ
ック基板上に抵抗パターンR1 及びR2 を印刷したもの
である。
The sixth electrode G 6 is connected via an anode button to 27 k
V anode voltage is supplied. The intermediate electrode G M, the internal dividing resistor IMR, voltage and the anode voltage is resistance R 1 by 42% down (e.g. 14 kV) is supplied, further remaining 58% by the resistance R 2 of the internal dividing resistor IMR
IMR placed on the stem terminal at the neck end
Connected to pin 2. This IMR is obtained, for example, by printing resistance patterns R 1 and R 2 on a ceramic substrate.

【0014】上述の様な電極構造の電子銃1に於いて、
通常ノッキング処理を行う場合には図5に示す様に第1
電極G1 、第2電極G2 、第1及び第2の第3電極G3C
及びG3V、第4電極G4 、第1及び第2の第5電極G5C
及びG5Vのステムピンを共通接続してノッキング電圧A
CK−65kVを印加し、第6電極G6 、即ちアノード
釦を接地電位に落としている。
In the electron gun 1 having the above-described electrode structure,
When performing the normal knocking process, the first knocking process is performed as shown in FIG.
The electrode G 1 , the second electrode G 2 , the first and second third electrodes G 3C
, G 3V , the fourth electrode G 4 , the first and second fifth electrodes G 5C
And knocking voltage A stem pins of G 5V commonly connected
CK-65 kV is applied to drop the sixth electrode G 6 , that is, the anode button, to the ground potential.

【0015】[0015]

【発明が解決しようとする課題】上述の様に従来のメイ
ンノッキング処理での各電極に印加する電圧は、図5の
構成の電子銃1について考察すると、アノード電圧が印
加される第6電極G6 と中間電極GM 間にノッキング電
圧ACK=−60kVを印加して、放電を起こさせ、実
働時に中間電極GM から不要電子を放出させない様にな
さなければならないが、図4の電子銃1はアノードから
の高電圧をIMRの高抵抗R1 及びR2 で分割した分割
電圧を中間電極GM に供給する様に成しているので、ノ
ッキング時に印加するノッキング電圧ACKの電圧も抵
抗R1 及びR2 によって分割される。
As described above, the voltage applied to each electrode in the conventional main knocking process is considered to be the sixth electrode G to which the anode voltage is applied, considering the electron gun 1 having the configuration shown in FIG. 6 and by applying a knocking voltage ACK = -60kV between intermediate electrode G M, the discharge to cause a, but the production time must made from the intermediate electrode G M so as not to release an unnecessary electron, electron gun 1 of FIG. 4 because forms a divided voltage obtained by dividing the high voltage from the anode of a high-resistance R 1 and R 2 IMR so as to supply to the intermediate electrode G M, the voltage of the knocking voltage ACK to be applied to the knocking resistance R 1 And R 2 .

【0016】従来のメインノッキング処理ではIMRの
抵抗分割比R1 /R2 は42%/58%であり、IMR
ピン2側からノッキング電圧ACK=−65kVを印加
しているため、抵抗の分割比は第6電極G6 と中間電極
M 間<中間電極GM とIMRピン2間の場合は、IM
Rピン2と中間電極GM 間の方が第6電極G6 と中間電
極GM 間より高電圧となるため中間電極GM と第6電極
6 間では放電を発生しなくなる。
In the conventional main knocking process, the resistance division ratio R 1 / R 2 of the IMR is 42% / 58%,
Since the application of the knocking voltage ACK = -65kV from pin 2 side, dividing ratio of the resistors is the case between the sixth electrode G 6 and between the intermediate electrode G M <intermediate electrode G M and IMR pin 2, IM
R pins 2 and towards between the intermediate electrode G M is not generated a discharge between the sixth electrode G 6 and the intermediate electrode G intermediate electrode for a high voltage from among M G M and the sixth electrode G 6.

【0017】この様にノッキング処理を施しても高電圧
が印加される第6電極G6 と中間電極GM 間では実働時
に中間電極GM 側から不要電子が頻繁に発生し、CRT
の耐電圧特性を劣化させる問題があった。
The unwanted electrons from the intermediate electrode G M side during production is between the sixth electrode G 6 and the intermediate electrode G M to which a high voltage be subjected to a knocking process in this manner is applied is frequently, CRT
There is a problem of deteriorating the withstand voltage characteristics of the device.

【0018】本発明は叙上の問題点を解消したCRTの
製造方法を提供しようとするものであり、その課題とす
るところはアノード電圧が印加される第6電極G6 に隣
接して配設された中間電極GM に内部分割抵抗(IM
R)を介して接続された電子銃構造のCRTであって
も、適正なノッキング電圧が印加されて、第6電極G6
と中間電極GM 間で放電を起こすことでバリ等を飛散さ
せ、常働時に高電圧を印加しても放電を生じない様に成
したものである。
An object of the present invention is to provide a method of manufacturing a CRT which solves the above-mentioned problems, and an object of the present invention is to arrange a CRT adjacent to a sixth electrode G 6 to which an anode voltage is applied. internal dividing resistor to the intermediate electrode G M which is (IM
Even if the CRT has an electron gun structure connected via R), an appropriate knocking voltage is applied and the sixth electrode G 6
And to scatter the burrs by generating discharge between the intermediate electrode G M, even if a high voltage is applied to the normal働時is obtained form so as not to cause a discharge.

【0019】[0019]

【課題を解決するための手段】本発明のCRTの製造方
法は、その例が図1に示されている様に、陰極線管のフ
ォーカス電極G5V及びG5Cとアノード電極G6 との間に
フォーカス電圧より高くアノード電圧より低い電位とな
る様に配された中間電極GM に内部分割抵抗IMRをを
介して、該アノード電極G6 から高電圧を供給する様に
成した陰極線管の製造方法であって、上記陰極線管のプ
リフォーカス及びフォーカス電極G1 乃至G5 側ステム
ピンのすべてを接地電位とし、アノード電極G6 の一端
と上記内部分割抵抗IMRの一端が接続されたステムピ
ン2間に交流高電圧を印加すると共にすべてのステムピ
ンを絶縁油3で浸してノッキングを行う様に成したもの
である。
CRT method of manufacturing of the problem-solving means for the invention, as an example of which is shown in Figure 1, between the focus electrode G 5V and G 5C and the anode electrode G 6 of the cathode ray tube through the internal dividing resistor IMR the intermediate electrode G M arranged so as to be lower than the higher anode voltage than focus voltage potential method for manufacturing a cathode ray tube forms so as to supply a high voltage from the anode electrode G 6 a is, all pre-focus and focus electrode G 1 to G 5 side stem pins of the cathode ray tube and a ground potential, alternating between stem pin 2 to which one end and the one end of the internal dividing resistor IMR anode electrode G 6 is connected Knocking is performed by applying a high voltage and immersing all stem pins with insulating oil 3.

【0020】本発明のCRTのノッキング処理によれば
中間電極GM と第6電極(アノード電極)G6 間でノッ
キングが行われて、電極のバリ等を有効に排除可能なC
RTの製造方法が得られる。
According to the knocking treatment of the CRT of the present invention, the knocking is performed between the intermediate electrode G M and the sixth electrode (anode electrode) G 6 , and the burrs of the electrodes can be effectively eliminated.
An RT manufacturing method is obtained.

【0021】[0021]

【発明の実施の形態】以下、本発明のCRTの製造方法
を図1乃至図3によって詳記する。図1は本発明のメイ
ンノッキング説明図、図2は本発明のカラーCRTの構
成図、図3はノッキング出力波形図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a method of manufacturing a CRT according to the present invention will be described in detail with reference to FIGS. FIG. 1 is an explanatory diagram of main knocking of the present invention, FIG. 2 is a configuration diagram of a color CRT of the present invention, and FIG. 3 is a knocking output waveform diagram.

【0022】図1によって本発明のCRTに用いる電子
銃の電極構造を説明するに先だち、図2を用いて本発明
のカラーCRTの全体的構成を説明する。
Before describing the electrode structure of the electron gun used in the CRT of the present invention with reference to FIG. 1, the overall structure of the color CRT of the present invention will be described with reference to FIG.

【0023】図2で、CRT4を構成する陰極線管体6
のパネル内面にはR,G,Bの蛍光面5が形成され、図
示しない色選別電極(シャドーマスク或はアパーチャグ
リル)がパネル内面に設けられる。又、陰極線管体6の
ファンネル部にはアノード釦8が配設されて、内部カー
ボン膜12がファンネル部の内面に塗布されて、アノー
ド電極である第6電極G6 には内部カーボン膜12を通
じてアノード電圧(27kV)が供給される。
In FIG. 2, the cathode ray tube 6 constituting the CRT 4 is shown.
The R, G, and B fluorescent screens 5 are formed on the inner surface of the panel, and a color selection electrode (shadow mask or aperture grill) (not shown) is provided on the inner surface of the panel. Further, the funnel portion of the cathode ray tube body 6 is an anode button 8 is disposed, inside the carbon film 12 is applied to the inner surface of the funnel portion, the sixth electrode G 6 is an anode electrode via an internal carbon film 12 An anode voltage (27 kV) is supplied.

【0024】又、図5で詳記した複数の電極G1 乃至G
6 をビードガラスを介して一体化した電子銃1がネック
部内に配設され、電子銃1はネック部の開放端を封止す
るステムガラス11に立設されている。ステムガラスに
は電子銃1の各電極G1 乃至G6 に対応したステムピン
が植立されている。2はIMRの一端に接続されたIM
Rピンを示す。7は偏向ヨークであり、電子銃1で収束
したR,G,Bの各電子ビームBR ,BG ,BB を蛍光
面5にコンバージェンスさせて所定スポットを形成す
る。
Further, a plurality of electrodes G 1 to G described in detail in FIG.
The electron gun 1 is formed in the neck portion by integrating the electron gun 6 through a bead glass, and the electron gun 1 is erected on a stem glass 11 for sealing an open end of the neck portion. Stem pins corresponding to the electrodes G 1 to G 6 of the electron gun 1 are planted on the stem glass. 2 is an IM connected to one end of the IMR
Indicates the R pin. Reference numeral 7 denotes a deflection yoke which converges the R, G, and B electron beams B R , B G , and B B converged by the electron gun 1 on the phosphor screen 5 to form a predetermined spot.

【0025】本例では、メインノッキング時にはステム
ガラス11に植立したステムピンを絶縁油3内に浸し、
ノッキング電源ACKのプラス端子+をアノード釦に接
続し、マイナス端子−をIMRピン2に接続すると共に
IMRピン2以外のステムピンを共通接続して接地電位
に落とす様に成されている。
In this example, at the time of main knocking, the stem pins planted on the stem glass 11 are immersed in the insulating oil 3,
The positive terminal + of the knocking power supply ACK is connected to the anode button, the negative terminal-is connected to the IMR pin 2, and the stem pins other than the IMR pin 2 are commonly connected to lower the ground potential.

【0026】ノッキング電源ACKのトランスTの1次
巻線P側は商用電源10の60HzのAC源に接続さ
れ、2次巻線S側は中点が接地された昇圧コイルのプラ
ス端子+をアノード釦8に接続し、マイナス端子−をI
MRピン2に接続している。
The primary winding P side of the transformer T of the knocking power supply ACK is connected to a 60 Hz AC source of the commercial power supply 10, and the secondary winding S side is connected to the positive terminal + of the step-up coil whose middle point is grounded. Button 8 and the negative terminal-
Connected to MR pin 2.

【0027】図1は上述のカラーCRTの電子銃とメイ
ンノッキング時の模式的電極構成を示している。図1に
示された電極構成は図5で説明したと全く同一構成の電
極であるので対応部分には同一符号を付して重複説明は
省略するが、本例では第1電極G1 乃至第4電極G4
マルチプリフォーカス電極が構成され、フォーカス用の
第5電極G5Vと中間電極GM 及びアノード用の第6電極
6 で主電子レンズが構成される。
FIG. 1 shows an electron gun of the above-described color CRT and a schematic electrode configuration at the time of main knocking. Electrode configuration shown in Figure 1 is omitted redundant description like reference numbers refer to like parts so exactly as that described is the electrode having the same configuration in FIG. 5, first electrodes G 1, second in the present example 4 is constructed multi prefocus electrode in the electrode G 4, the fifth electrode G 5V and the intermediate electrode G M and the sixth main electron lens electrode G 6 for the anode is configured for focusing.

【0028】図4で説明したノッキング工程では第1電
極G1 、第2電極G2 、第2の第3電極G3V、第1の第
3電極G3C、第4電極G4 、第1の第5電極G5C並びに
第2の第5電極G5Vの各ステムピンを共通に接続して接
地する。
In the knocking step described with reference to FIG. 4, the first electrode G 1 , the second electrode G 2 , the second third electrode G 3V , the first third electrode G 3C , the fourth electrode G 4 , The stem pins of the fifth electrode G 5C and the second fifth electrode G 5V are commonly connected and grounded.

【0029】更にIMRピン2及びアノード電極の第6
電極G6 に内部カーボン膜12で接続されたアノード釦
8にノッキング電源ACKのマイナス端子−及びプラス
端子+を接続する。図1ではノッキング電源ACKは2
つに分かれて書かれているが、図2の様にトランスTの
2次巻線Sの接地された中点を境にプラス及びマイナス
の交流電源波形が印加される。即ち、ノッキング電圧と
して−60kV乃至70kVと+60kV乃至70kV
がアノードの第6電極G6 とIMRピン2間に印加され
るため、第6電極G6 とIMRピン2間には120kV
〜140kVの電位差のノッキング電圧が2〜3秒間供
給されることになる。
Further, the IMR pin 2 and the anode electrode 6
Negative terminal of the knocking power ACK to the anode button 8 connected internally carbon film 12 to the electrode G 6 - and to connect the positive terminal +. In FIG. 1, knocking power supply ACK is 2
As shown in FIG. 2, positive and negative AC power supply waveforms are applied from the grounded middle point of the secondary winding S of the transformer T as shown in FIG. That is, the knocking voltages are −60 kV to 70 kV and +60 kV to 70 kV.
Is applied between the sixth electrode G 6 of the anode and the IMR pin 2, so that 120 kV is applied between the sixth electrode G 6 and the IMR pin 2.
A knocking voltage having a potential difference of 140140 kV is supplied for a few seconds.

【0030】図3は、この様なノッキング電圧のマイナ
ス側の出力波形の1例を示す。この場合の半値幅は約1
20μsであるが、IMRピン2と接地電位に落とされ
たステムガラス11に植立した他の電極のピンとの間に
は±60kVの電圧が供給されることになり、空気中で
はIMRピン2と他の接地電極ピン間で放電を起こす危
険性がある。
FIG. 3 shows an example of an output waveform on the negative side of such a knocking voltage. In this case, the half width is about 1
Although it is 20 μs, a voltage of ± 60 kV will be supplied between the IMR pin 2 and the pin of another electrode planted on the stem glass 11 which has been dropped to the ground potential. There is a risk of causing a discharge between other ground electrode pins.

【0031】従って、本例ではピン間の耐圧を向上させ
る為にフロリナート(3M商品名)等の絶縁油3を容器
等に充填し、ステムピン側を絶縁油3内に浸して、メイ
ンノッキングを行う様にした。この様なピン間耐圧破壊
を防ぐには図3で示した出力波形の半値幅を所定の値に
抑える必要がある。
Therefore, in this embodiment, in order to improve the pressure resistance between the pins, the container or the like is filled with an insulating oil 3 such as Fluorinert (trade name of 3M), and the stem pin side is immersed in the insulating oil 3 to perform main knocking. I did it. In order to prevent such a breakdown voltage between pins, it is necessary to suppress the half width of the output waveform shown in FIG. 3 to a predetermined value.

【0032】この様にCRTのメインノッキング時に内
部分割抵抗IMRの高抵抗R1 及びR2 で分圧されて、
アノード電圧が中間電極GM に供給される様な電子銃1
であっても、アノード用の第6電極G6 と中間電極GM
間で有効なノッキングが行われ、中間電極GM のバリ等
から放電を開始し、バリを飛散させ、電極表面を清浄化
するコンディショニングが行われ、実働時に高アノード
電圧を印加しても放電等を生じない高品質のCRTを得
ることが出来る。
As described above, at the time of main knocking of the CRT, the voltage is divided by the high resistances R 1 and R 2 of the internal division resistance IMR,
Electron gun such as anode voltage is supplied to the intermediate electrode G M 1
However, the sixth electrode G 6 for the anode and the intermediate electrode G M
Effective knocking is performed between, begin discharging from burrs of the intermediate electrode G M, is scattered burrs, is performed conditioning to clean the electrode surface, even when a high anode voltage is applied to the production time of discharge or the like And a high-quality CRT that does not cause the problem can be obtained.

【0033】[0033]

【発明の効果】本発明のCRTの製造方法によれば、ア
ノード用の第6電極G6 から中間電極GM 間に内部分割
抵抗IMRの高抵抗を介して高電圧(例えば14kV)
を印加する様な構成の電子銃であっても、第6電極G6
と中間電極GM 間で有効なノッキング処理を行うことが
可能となり、コンディショニングの難しい高電圧印加電
極側のノッキング効果をより高めることが可能となる。
According to CRT manufacturing method of the present invention, the sixth from the electrode G 6 between the intermediate electrode G M through the high resistance of the internal dividing resistor IMR high voltage for the anode (e.g., 14 kV)
Is applied to the sixth electrode G 6.
And it is possible to perform effective knocking processing between the intermediate electrode G M, it is possible to enhance the knocking effect of the conditioning hard high voltage application electrode side.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のメインノッキング説明図である。FIG. 1 is an explanatory diagram of main knocking of the present invention.

【図2】本発明に用いるCRTの構成図である。FIG. 2 is a configuration diagram of a CRT used in the present invention.

【図3】本発明のノッキングに用いる出力波形図であ
る。
FIG. 3 is an output waveform diagram used for knocking according to the present invention.

【図4】従来のCRTの製造工程図である。FIG. 4 is a manufacturing process diagram of a conventional CRT.

【図5】従来のメインノッキングの説明図である。FIG. 5 is an explanatory view of a conventional main knocking.

【符号の説明】[Explanation of symbols]

1 電子銃、2 IMRピン、3 絶縁油、GM 中間電
極、G6 第6電極(アノード電極)
1 electron gun, 2 IMR pins, 3 insulating oil, G M intermediate electrode, G 6 sixth electrode (anode electrode)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 陰極線管のフォーカス電極とアノード電
極との間にフォーカス電圧より高く、アノード電圧より
低い電位となる様に配された中間電極に内部分割抵抗を
介して、該アノード電極から高電圧を供給する様に成し
た陰極線管の製造方法であって、 上記陰極線管のプリフォーカス及びフォーカス電極側の
ステムピンのすべてを接地電位とし、上記アノード電極
の一端と上記内部分割抵抗の一端が接続されたステムピ
ン間に交流高電圧を印加すると共にすべてのステムピン
を絶縁油で浸してノッキングを行う様に成したことを特
徴とする陰極線管の製造方法。
An intermediate electrode disposed between a focus electrode and an anode electrode of a cathode ray tube so as to have a potential higher than the focus voltage and lower than the anode voltage through an internal dividing resistor, and a high voltage is applied from the anode electrode to the intermediate electrode. Wherein all of the pre-focus and focus electrode side stem pins of the cathode ray tube are set to the ground potential, and one end of the anode electrode and one end of the internal dividing resistor are connected. A method of manufacturing a cathode ray tube, characterized in that an alternating high voltage is applied between stem pins and all the stem pins are immersed in insulating oil to perform knocking.
【請求項2】 前記交流高電圧供給用電源の一端をアノ
ード釦に接続し、他端を内部分割抵抗引出ステムピンに
接続して成ることを特徴とする請求項1記載の陰極線管
の製造方法。
2. The method for manufacturing a cathode ray tube according to claim 1, wherein one end of the AC high voltage power supply is connected to an anode button, and the other end is connected to an internally divided resistor extraction stem pin.
JP321497A 1997-01-10 1997-01-10 Manufacture of cathode-ray tube Pending JPH10199425A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP321497A JPH10199425A (en) 1997-01-10 1997-01-10 Manufacture of cathode-ray tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP321497A JPH10199425A (en) 1997-01-10 1997-01-10 Manufacture of cathode-ray tube

Publications (1)

Publication Number Publication Date
JPH10199425A true JPH10199425A (en) 1998-07-31

Family

ID=11551202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP321497A Pending JPH10199425A (en) 1997-01-10 1997-01-10 Manufacture of cathode-ray tube

Country Status (1)

Country Link
JP (1) JPH10199425A (en)

Similar Documents

Publication Publication Date Title
JPH02223136A (en) Cathode-ray tube
JPH10199425A (en) Manufacture of cathode-ray tube
CA1246242A (en) High voltage processing of crt mounts
WO2004057641A1 (en) Resistor for electron gun structure, electron gun structure and cathode ray tube
JP3406617B2 (en) Resistor for cathode ray tube electron gun
JPH09320483A (en) Electron gun for cathode-ray tube
US20040195583A1 (en) Election gun assembly resistor and cathode ray tube
JPH0525160Y2 (en)
JP3095445B2 (en) Method of manufacturing color picture tube
JP3133352B2 (en) Withstand voltage treatment method for cathode ray tube
JPH11224607A (en) High-voltage processing method for cathode-ray tube
JPS5848340A (en) Cathode-ray tube
JPH10188813A (en) Manufacturing of cathode-ray tube
JPH08315749A (en) Cathode-ray tube
JPS63114024A (en) Seasoning method for cathode-ray tube
JPH11224608A (en) High-voltage processing method for cathode-ray tube
JP2007073247A (en) Electron gun structure and cathode-ray tube
JPS63313452A (en) Withstand voltage processing method for cathode-ray tube
JPH07114887A (en) Cathode-ray tube
JP2004139791A (en) Resistor for electron gun structure
JP2004095284A (en) Cathode-ray tube
JPS58212030A (en) High voltage aging of cathode ray tube
JPH01151133A (en) Cathode-ray tube
JPH07211246A (en) Built-in resistor for cathode-ray tube
JP2000149814A (en) Cathode-ray tube and manufacture thereof