JPH10197515A - Estimating method of working temperature of cobalt group heat resistant alloy - Google Patents

Estimating method of working temperature of cobalt group heat resistant alloy

Info

Publication number
JPH10197515A
JPH10197515A JP9017344A JP1734497A JPH10197515A JP H10197515 A JPH10197515 A JP H10197515A JP 9017344 A JP9017344 A JP 9017344A JP 1734497 A JP1734497 A JP 1734497A JP H10197515 A JPH10197515 A JP H10197515A
Authority
JP
Japan
Prior art keywords
temperature
heat resistant
resistant alloy
heating
lmp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9017344A
Other languages
Japanese (ja)
Inventor
Masahiro Yamada
政博 山田
Etsuro Shimizu
悦郎 志水
Ikuo Okada
郁生 岡田
Keiichi Moriya
慶一 守屋
Hisataka Kawai
久孝 河合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP9017344A priority Critical patent/JPH10197515A/en
Publication of JPH10197515A publication Critical patent/JPH10197515A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To estimate a working temperature of Co group heat resistant alloys with high accuracy by using a correlation curve related to a Larson-Miller parameter(LMP) value. SOLUTION: Heating materials of plural Co group heat resistant allays ECY 768 are heated at about 750 to 1000 deg.C for about 5000 hours at the longest in the atmosphere, and secondary carbide is observed on the respective heating materials by a scanning electron microscope, and a change in the average area is quantitatively determined by an image processor. The average area of this secondary carbide shows an excellent correlation with an LMP value being a function of a temperature and time, and the LMP value corresponding to the average area of the secondary carbide is read from this correlation curve, and a metal temperature can be estimated from it and known operation time. Here, the LMP value can be expressed by (273+T)×(C+log t) by using a heating temperature T deg.C, heating working time (t) and a time constant C. A working temperature of the heat resistant alloys ECY 768 can be accurately estimated by this method.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は高温部材、特にガス
タービン静翼材として長期間使用されたCo基耐熱合金
材の使用中の温度(メタル温度とも呼ばれる。)の推定
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for estimating a temperature (also called a metal temperature) during the use of a high-temperature member, particularly a Co-based heat-resistant alloy material used for a long time as a gas turbine stationary blade material.

【0002】[0002]

【従来の技術】従来、温度推定が行われている合金とし
て、ガスタービン動翼などに使用されているNi基合金
及びボイラーチューブ等に使用されている低合金鋼があ
る。これらの合金は高温長時間の使用に伴い、組織変
化、例えばγ’相の粗大化又はパーライト量の減少等が
見られ、これらの経時変化をもとに使用中の温度の推定
が行われている。
2. Description of the Related Art Conventionally, alloys for which temperature estimation is performed include Ni-based alloys used for gas turbine rotor blades and the like, and low alloy steels used for boiler tubes and the like. With the use of these alloys for a long time at high temperature, structural changes such as coarsening of the γ 'phase or a decrease in the amount of pearlite are observed, and the temperature during use is estimated based on these changes over time. I have.

【0003】そこで、このようなミクロ組織の経時変化
をCo基耐熱合金でも確認することができれば実機部材
の使用温度の推定が可能となると予測される。このCo
基耐熱合金の例として、次表に示すような化学組成を成
す合金であるECY768(商品名)がある。
[0003] Therefore, it is expected that the use temperature of an actual machine member can be estimated if such a temporal change in the microstructure can be confirmed even with a Co-based heat-resistant alloy. This Co
As an example of the base heat-resistant alloy, there is ECY768 (trade name) which is an alloy having a chemical composition shown in the following table.

【0004】[0004]

【表1】 [Table 1]

【0005】ECY768については、従来は実験室に
おいてあらかじめ高温長時間加熱されたECY768の
金属組織写真と、実機において長時間使用されたECY
768の組織写真を比較し、二次炭化物の析出や、粗大
化状況から、異常な高温使用の有無をチェックする程度
にとどまっていた。
[0005] Regarding ECY768, a metallographic photograph of ECY768 previously heated in a laboratory at a high temperature for a long time and an ECY768 which has been used for a long time in a real machine have been used.
By comparing the microstructure photographs of No. 768, it was only possible to check the presence or absence of abnormal high temperature use from the precipitation of secondary carbides and the state of coarsening.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記従
来の温度推定方法は、高温で長時間使用されたECY7
68の金属組織写真を、あらかじめ種々の温度と時間に
よる時効処理によって作成された基準となる組織写真と
比較するという方法であるため、主観的評価に成り易い
ばかりでなく、推定の温度範囲が広いものとなってしま
う欠点があった。
However, the above-mentioned conventional temperature estimation method uses the ECY7 which has been used at a high temperature for a long time.
Since the metallographic photograph of No. 68 is compared with a reference structural photograph prepared in advance by aging treatment at various temperatures and times, not only is it easy to perform a subjective evaluation, but the temperature range of estimation is wide. There was a drawback that would be a thing.

【0007】本発明は上記事情に鑑みてなされたもの
で、実機部材であるCo基耐熱合金の使用中の温度を客
観的、定量的かつ精度よく推定する方法を提供すること
にある。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a method for objectively, quantitatively and accurately estimating a temperature during use of a Co-based heat-resistant alloy which is an actual machine member.

【0008】[0008]

【課題を解決するための手段】本発明は、上記目的を解
決するためになされたものであり、その要旨はCo基耐
熱合金の使用温度の推定方法において、上記Co基耐熱
合金の時効処理に伴う組織変化を定量的に表す数値であ
るラーソン・ミラーパラメータと関係づけた相関曲線に
基づいて、Co基耐熱合金の使用温度を推定することに
ある。また、本発明が適用できるCo基耐熱合金は、炭
化物が析出する炭素やクロムなどを含むものである。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned object, and the gist of the present invention is to provide a method for estimating the use temperature of a Co-based heat-resistant alloy. An object of the present invention is to estimate a service temperature of a Co-based heat-resistant alloy based on a correlation curve associated with a Larson-Miller parameter which is a numerical value quantitatively representing the accompanying structural change. The Co-based heat-resistant alloy to which the present invention can be applied contains carbon or chromium on which carbides are precipitated.

【0009】[0009]

【発明の実施の形態】以下に図面を参照しながら、本発
明に係るCo基耐熱合金の使用温度推定方法を説明す
る。Co基耐熱合金ECY768の光学顕微鏡組織は、
図1に示すとおり、MC型一次炭化物1、M236 型一
次炭化物2、デンドライト境界部のM236 型二次炭化
物3、デンドライト中央部のM236 型二次炭化物4及
びマトリックスの5種類の相から構成されている。デン
ドライトとは溶融金属の凝固組織に見られる樹枝状の外
形をした結晶の集まりである。このうちデンドライト中
央部のM236 型二次炭化物4については、高温長時間
の加熱に伴い粗大化したり、増大したりして顕著な組織
変化を示す。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A method for estimating the use temperature of a Co-based heat-resistant alloy according to the present invention will be described below with reference to the drawings. The optical microstructure of the Co-based heat-resistant alloy ECY768 is
As shown in FIG. 1, MC type primary carbide 1, M 23 C 6 type primary carbide 2, M 23 C 6 type secondary carbide 3 at the boundary of dendrite, M 23 C 6 type secondary carbide 4 at the center of dendrite and matrix Of the five types. Dendrite is a collection of crystals having a dendritic outer shape, which is observed in the solidification structure of molten metal. For M 23 C 6 type secondary carbides 4 of these dendrites center portion, or coarse due to a high temperature for a long time heating, or by increasing exhibit significant tissue changes.

【0010】そして、この炭化物の粗大化や増大化に着
目し、全組織中に占めるその平均面積とラーソン・ミラ
ーパラメータ値(以下、LMP値という。)との相互関
係を求め、この関係から得られた相関曲線から実機使用
部材の金属組織の二次炭化物の平均面積に相応するLM
P値を読みとり、その値と既知の運転時間により温度を
推定する。ここで、LMP値は、加熱温度をT(℃)、
加熱しての使用時間をt(hr)及び定数Cを用いて、
(273+T)×(C+logt)と表わされる。ま
た、Cは定数であって、17〜23の値がクリープ強度
特性や組織変化の挙動に関連して一般的に用いられてい
る。ここでは、実験的にデータのばらつきが少ない値で
あるC=20を用いた。Cの値は、適用される合金に応
じて実験的に選定されるものである。
Focusing on the coarsening and increasing of the carbide, the correlation between the average area of the entire structure and the Larson-Miller parameter value (hereinafter referred to as the LMP value) is obtained, and the correlation is obtained. LM corresponding to the average area of secondary carbide in the metallographic structure of the member used in actual equipment from the obtained correlation curve
The P value is read and the temperature is estimated from the value and the known operation time. Here, the LMP value is obtained by setting the heating temperature to T (° C.),
Using the heating time, using t (hr) and constant C,
It is expressed as (273 + T) × (C + logt). C is a constant, and a value of 17 to 23 is generally used in relation to the creep strength characteristics and the behavior of the structural change. Here, C = 20 which is a value with little data variation was experimentally used. The value of C is experimentally selected depending on the alloy to be applied.

【0011】[0011]

【実施例】Co基耐熱合金ECY768材を大気中で7
50℃から1000℃の範囲で最長5000時間の高
温、長時間加熱を実施し、各加熱材について走査型電子
顕微鏡(以下、SEMという。)により二次炭化物を観
察した。組織変化を示す代表例として、図2に未加熱の
ECY768材に関する二次炭化物のSEM像の模式図
を、図3には温度1000℃で5000時間加熱したも
のの二次炭化物のSEM像の模式図を示す。
EXAMPLE A Co-based heat-resistant alloy ECY768 was used in air at 7
High-temperature and long-time heating was performed in the range of 50 ° C. to 1000 ° C. for a maximum of 5000 hours, and secondary carbides were observed for each heating material by a scanning electron microscope (hereinafter, referred to as SEM). As a typical example showing the structural change, FIG. 2 is a schematic view of an SEM image of a secondary carbide of an unheated ECY768 material, and FIG. Is shown.

【0012】図中の白粒の部分がM236 型二次炭化物
4であり、高温長時間加熱により粗大化したことが分か
る。図2、図3をそれぞれ画像解析における二値化処理
をし、粒径の大きいものから順に7個を選択した二値化
像を図4及び図5に示す。二値化処理をする目的は、S
EM像では二次炭化物とマトリックスの境界が不鮮明な
ため、完全に二色化し、その境界を明瞭にするためであ
る。また、二値化像中の炭化物の面積を全て加算し、そ
れを個数で割った平均面積は、図4については0.03
7μm2 、図5については0.484μm2 であった。
The white particles in the figure are M 23 C 6 type secondary carbides 4, which can be seen to be coarsened by heating at a high temperature for a long time. FIGS. 4 and 5 show binarized images obtained by performing binarization processing in image analysis on FIGS. 2 and 3, respectively, and selecting seven images in descending order of particle size. The purpose of the binarization process is S
This is because the boundary between the secondary carbide and the matrix is unclear in the EM image, so that it is completely dichroic and the boundary is clear. The average area obtained by adding all the carbide areas in the binarized image and dividing the sum by the number is 0.03 in FIG.
7 [mu] m 2, the FIG. 5 was 0.484μm 2.

【0013】このようにして得られた種々の加熱条件に
よるECY768のM236 型二次炭化物の平均面積と
LMP値との相関を示すグラフが図6である。図中の白
四角は加熱温度が750℃、黒四角は800℃、白丸は
850℃、黒丸は900℃、白三角は950℃、黒三角
は1000℃であることを表わしている。ここで、前述
したように、LMP値は加熱温度をT(℃)、加熱され
た時間をt(hr)とすると、LMP値=(273+
T)×(C+logt)で表わされる。また、Cは定数
であって、ここでは20を用いた。
[0013] Graph showing a correlation between average area and LMP value of M 23 C 6 type secondary carbides ECY768 by various heating conditions thus obtained is shown in FIG 6. The white squares in the figure indicate that the heating temperature is 750 ° C., the black squares are 800 ° C., the white circles are 850 ° C., the black circles are 900 ° C., the white triangles are 950 ° C., and the black triangles are 1000 ° C. Here, as described above, assuming that the heating temperature is T (° C.) and the heating time is t (hr), the LMP value = (273+
T) × (C + logt). C is a constant, and 20 is used here.

【0014】この図6を用いて、実機で長時間使用した
ECY768材のM236 型二次炭化物の平均面積か
ら、これに対応するLMP値を読みとった。次に既知で
ある実機運転時間(hr)を上記のLMP算出式に代入
することによって使用温度(メタル温度)を求める。
Using FIG. 6, an LMP value corresponding to the average area of the M 23 C 6 type secondary carbide of the ECY768 material used for a long time in the actual machine was read. Next, the working temperature (metal temperature) is obtained by substituting the known actual machine operation time (hr) into the above LMP calculation formula.

【0015】以下に、本発明による作用について説明す
る。Co基耐熱合金ECY768を大気中で750℃か
ら1000℃の範囲で最長5000時間の高温、長時間
加熱を実施し、各加熱材についてSEMにより二次炭化
物を観察し、平均面積の変化を画像処理装置を用いて定
量化する。この二次炭化物の平均面積は、温度と時間の
関数であるLMP値と良好な相関関係を示しており、そ
れらを整理して作成した温度推定線図からメタル温度を
推定することができる。
The operation of the present invention will be described below. The Co-based heat-resistant alloy ECY768 is heated in the air at a temperature of 750 ° C. to 1000 ° C. for up to 5000 hours at a high temperature for a long time, and secondary carbides are observed by SEM for each heating material, and the change in average area is image-processed. Quantify using instrument. The average area of the secondary carbide shows a good correlation with the LMP value that is a function of temperature and time, and the metal temperature can be estimated from a temperature estimation diagram created by organizing them.

【0016】したがって、従来の加熱温度及び時間の実
験点として与えられる限られた組織写真との比較法に比
べて、本発明においてはLMP値を導入した手法となる
ため、推定の温度範囲が狭ばまり、精度が向上する。
[0016] Therefore, compared with the conventional method of comparison with a limited photograph of a structure given as an experimental point of the heating temperature and time, the method of the present invention adopts the LMP value, so that the estimated temperature range is narrow. And the accuracy is improved.

【0017】[0017]

【発明の効果】本発明により、Co基耐熱合金の使用温
度を客観的、定量的かつ精度よく推定することができ
る。
According to the present invention, the working temperature of a Co-based heat-resistant alloy can be objectively, quantitatively and accurately estimated.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の方法の実施の対象となるECY768
の金属組織を示す、倍率500倍の顕微鏡写真である。
FIG. 1: ECY768 subject to practice of the method of the present invention
5 is a photomicrograph of 500 times magnification showing the metallographic structure.

【図2】未加熱のECY768の二次炭化物のSEM模
式図である。
FIG. 2 is an SEM schematic diagram of an unheated secondary carbide of ECY768.

【図3】1000℃で5000時間加熱後のECY76
8の二次炭化物のSEM模式図である。
FIG. 3: ECY76 after heating at 1000 ° C. for 5000 hours
It is a SEM schematic diagram of the secondary carbide of No. 8.

【図4】図2の二値化像を示す模式図である。FIG. 4 is a schematic diagram showing the binarized image of FIG. 2;

【図5】図3の二値化像を示す模式図である。FIG. 5 is a schematic diagram showing the binarized image of FIG. 3;

【図6】ECY768を高温、長時間加熱して得られた
236 型二次炭化物の平均面積とLMP値の相関曲線
である。
FIG. 6 is a correlation curve between an average area of an M 23 C 6 type secondary carbide and an LMP value obtained by heating ECY768 at a high temperature for a long time.

【符号の説明】[Explanation of symbols]

1 MC型一次炭化物 2 M236 型一次炭化物 3 デンドライト境界部のM236 型二次炭化物 4 デンドライト中央部のM236 型二次炭化物1 MC-type primary carbides 2 M 23 C 6 type primary carbides 3 dendrite boundary portion M 23 C 6 type secondary carbides 4 dendrite central portion M 23 C 6 type secondary carbides

───────────────────────────────────────────────────── フロントページの続き (72)発明者 守屋 慶一 兵庫県高砂市荒井町新浜2丁目1番1号 三菱重工業株式会社高砂研究所内 (72)発明者 河合 久孝 兵庫県高砂市荒井町新浜2丁目1番1号 三菱重工業株式会社高砂製作所内 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Keiichi Moriya 2-1-1, Shinhama, Arai-machi, Takasago City, Hyogo Prefecture Inside the Takasago Research Laboratory, Mitsubishi Heavy Industries, Ltd. No. 1 Inside the Mitsubishi Heavy Industries, Ltd. Takasago Factory

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 Co基耐熱合金の使用温度の推定方法に
おいて、上記Co基耐熱合金の時効処理に伴う組織変化
を定量的に表す数値であるラーソン・ミラーパラメータ
と関係づけた相関曲線に基づいて、Co基耐熱合金の使
用温度を推定することを特徴とするCo基耐熱合金の使
用温度の推定方法。
1. A method for estimating the use temperature of a Co-based heat-resistant alloy, comprising the steps of: estimating a structural change associated with aging treatment of the Co-based heat-resistant alloy on the basis of a correlation curve associated with a Larson-Miller parameter which is a numerical value quantitatively representing the structure change; A method for estimating the use temperature of a Co-based heat-resistant alloy.
【請求項2】 上記Co基耐熱合金がECY768材で
あることを特徴とする請求項1に記載のCo基耐熱合金
の使用温度の推定方法。
2. The method according to claim 1, wherein the Co-based heat-resistant alloy is an ECY768 material.
JP9017344A 1997-01-14 1997-01-14 Estimating method of working temperature of cobalt group heat resistant alloy Pending JPH10197515A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9017344A JPH10197515A (en) 1997-01-14 1997-01-14 Estimating method of working temperature of cobalt group heat resistant alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9017344A JPH10197515A (en) 1997-01-14 1997-01-14 Estimating method of working temperature of cobalt group heat resistant alloy

Publications (1)

Publication Number Publication Date
JPH10197515A true JPH10197515A (en) 1998-07-31

Family

ID=11941445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9017344A Pending JPH10197515A (en) 1997-01-14 1997-01-14 Estimating method of working temperature of cobalt group heat resistant alloy

Country Status (1)

Country Link
JP (1) JPH10197515A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003004549A (en) * 2001-06-18 2003-01-08 Mitsubishi Heavy Ind Ltd Method of estimating temperature of high-temperature member
JP2003065914A (en) * 2001-08-28 2003-03-05 Babcock Hitachi Kk Method for estimating use temperature and creep damage of austenite steel heat transfer pipe material
JP5973096B1 (en) * 2016-01-14 2016-08-23 三菱日立パワーシステムズ株式会社 Plant analysis apparatus, plant analysis method, and program
WO2016151954A1 (en) * 2015-03-26 2016-09-29 三菱重工業株式会社 Method for estimating use temperature of heat resistant member
JP6062581B1 (en) * 2016-01-14 2017-01-18 三菱日立パワーシステムズ株式会社 Plant analysis apparatus, plant analysis method, and program
JP2019002908A (en) * 2017-06-15 2019-01-10 三菱日立パワーシステムズ株式会社 Inspection method of heat-resistant member

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003004549A (en) * 2001-06-18 2003-01-08 Mitsubishi Heavy Ind Ltd Method of estimating temperature of high-temperature member
JP2003065914A (en) * 2001-08-28 2003-03-05 Babcock Hitachi Kk Method for estimating use temperature and creep damage of austenite steel heat transfer pipe material
JP4628609B2 (en) * 2001-08-28 2011-02-09 バブコック日立株式会社 Operating temperature and creep damage estimation method for austenitic steel heat transfer tubes.
JP2016183899A (en) * 2015-03-26 2016-10-20 三菱重工業株式会社 Heat resistant member working temperature estimation method
WO2016151954A1 (en) * 2015-03-26 2016-09-29 三菱重工業株式会社 Method for estimating use temperature of heat resistant member
JP6062581B1 (en) * 2016-01-14 2017-01-18 三菱日立パワーシステムズ株式会社 Plant analysis apparatus, plant analysis method, and program
JP5973096B1 (en) * 2016-01-14 2016-08-23 三菱日立パワーシステムズ株式会社 Plant analysis apparatus, plant analysis method, and program
JP2017125456A (en) * 2016-01-14 2017-07-20 三菱日立パワーシステムズ株式会社 Plant analysis device, plant analysis method and program
WO2017122469A1 (en) * 2016-01-14 2017-07-20 三菱日立パワーシステムズ株式会社 Plant analysis device, plant analysis method, and program
JP2017125776A (en) * 2016-01-14 2017-07-20 三菱日立パワーシステムズ株式会社 Plant analysis device, plant analysis method, and program
KR20180095579A (en) * 2016-01-14 2018-08-27 미츠비시 히타치 파워 시스템즈 가부시키가이샤 Plant analysis apparatus, plant analysis method, and program
CN108463616A (en) * 2016-01-14 2018-08-28 三菱日立电力系统株式会社 Device analysis device, device analysis method and program
JP2019002908A (en) * 2017-06-15 2019-01-10 三菱日立パワーシステムズ株式会社 Inspection method of heat-resistant member
WO2019198679A1 (en) * 2017-06-15 2019-10-17 三菱日立パワーシステムズ株式会社 Method for inspecting heat resistant member

Similar Documents

Publication Publication Date Title
Sivaprasad et al. Influence of weld cooling rate on microstructure and mechanical properties of alloy 718 weldments
Hawk et al. Gamma prime stability in Haynes 282: theoretical and experimental considerations
Christofidou et al. Microstructural control and optimization of Haynes 282 manufactured through laser powder bed fusion
JPH10197515A (en) Estimating method of working temperature of cobalt group heat resistant alloy
Suzuki et al. Degradation of the strength of a grain boundary in Ni-base superalloy under creep-fatigue loading
JPH11248605A (en) Estimation device and method for creep remaining life of gas turbine vane
JP4153675B2 (en) Material life evaluation system and evaluation method
Parker et al. The high-temperature performance of nickel-based transition joints: II. Fracture behaviour
He et al. Low-cycle fatigue behavior of a solution-treated and HIPped nickel-based single-crystal superalloy at 760° C
Chang et al. Microstructure, tensile properties, and hot-working characteristics of a hot isostatic-pressed powder metallurgy superalloy
JP4440124B2 (en) Damage assessment method for gas turbine parts
Salehnasab et al. Failure assessment of the first stage blade of a gas turbine engine
JP3912815B2 (en) High temperature sulfidation corrosion resistant Ni-base alloy
JP6131539B2 (en) Degradation evaluation method for machine parts
Kim et al. Quantification of the minor precipitates in UDIMET™ alloy720 (LI) using electrolytic extraction and X-ray diffraction
Qian An investigation of the repair weldability of Waspaloy and Alloy 718
Rettig et al. Verification of a commercial CALPHAD database for Re and Ru containing nickel-base superalloys
Scheibel et al. Mechanical Properties in GTD-111 Alloy in Heavy Frame Gas Turbines
Wenschot The Properties of Ni-Al bronze sand cast ship propellers in relation to section thickness
JP2004012377A (en) Method for estimating strain of high-temperature component of gas turbine and strain estimation device
Sabri et al. Effect of rejuvenation heat treatment on the degraded turbine blades
Swaminathan et al. Microstructure and property assessment of conventionally cast and directionally solidified buckets refurbished after long-term service
EP3901295A1 (en) Hot-forged tial-based alloy, method for producing same, and uses for same
JP3303944B2 (en) Creep life evaluation method by temperature accelerated test
JPH11108921A (en) Evaluation of secular damage of austenite stainless material

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20031021