JP6131539B2 - Degradation evaluation method for machine parts - Google Patents

Degradation evaluation method for machine parts Download PDF

Info

Publication number
JP6131539B2
JP6131539B2 JP2012157413A JP2012157413A JP6131539B2 JP 6131539 B2 JP6131539 B2 JP 6131539B2 JP 2012157413 A JP2012157413 A JP 2012157413A JP 2012157413 A JP2012157413 A JP 2012157413A JP 6131539 B2 JP6131539 B2 JP 6131539B2
Authority
JP
Japan
Prior art keywords
precipitate
heat
resistant steel
replica
deterioration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012157413A
Other languages
Japanese (ja)
Other versions
JP2014020821A (en
Inventor
康明 渡部
康明 渡部
栄 和泉
栄 和泉
陽一郎 村上
陽一郎 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2012157413A priority Critical patent/JP6131539B2/en
Publication of JP2014020821A publication Critical patent/JP2014020821A/en
Application granted granted Critical
Publication of JP6131539B2 publication Critical patent/JP6131539B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
  • Investigating And Analyzing Materials By Characteristic Methods (AREA)

Description

本発明は、タービン部品などの機械部品の劣化を評価する方法に関し、特に、高Cr鋼などの耐熱鋼からなる機械部品の劣化評価方法に関する。   The present invention relates to a method for evaluating deterioration of a machine part such as a turbine part, and more particularly to a method for evaluating deterioration of a machine part made of heat-resistant steel such as high Cr steel.

一般に、火力発電所で使用される蒸気タービンは、高温高圧の環境下で使用される。このため、ロータ、ケーシング、配管などのタービン部品は耐熱鋼からなるものが使用され、特に主蒸気温度が600℃級のUSC機(超々臨界圧発電機)では、9質量%〜12質量%のCrを含有する高Cr鋼がタービン部品の材料として使用されている。
高Cr鋼は鋼組織がマルテンサイト組織であり、モリブデン(Mo)やタングステン(W)などによる固溶強化、金属間化合物であるラーベス相やMX炭窒化物の分散強化・析出強化、ホウ素(B)による粒界強化といった様々な組織強化法によって優れた高温強度を有している。
Generally, a steam turbine used in a thermal power plant is used in a high temperature and high pressure environment. For this reason, turbine parts such as rotors, casings, and piping are made of heat-resistant steel. Especially in USC machines (super super critical pressure generators) having a main steam temperature of 600 ° C., they are 9% by mass to 12% by mass. High Cr steel containing Cr is used as a material for turbine parts.
High Cr steel has a martensitic steel structure, solid solution strengthening with molybdenum (Mo), tungsten (W), etc., dispersion strengthening / precipitation strengthening of Laves phase and MX carbonitride which are intermetallic compounds, boron (B ) Has excellent high temperature strength by various structure strengthening methods such as grain boundary strengthening.

しかし、高Cr鋼からなるタービン部品を高温、高応力の環境下で長時間使用すると、MoやWなどの固溶強化元素がラーベス相あるいは炭窒化物などの析出物となってタービン部品の鋼組織に析出する。そして、析出した析出物が結晶粒界やマルテンサイトラス境界に凝集・粗大化すると材料の強度低下を招き、析出物の凝集・粗大箇所がクリープ損傷の主要因であるボイドの発生箇所や亀裂の起点となりやすい。   However, when turbine parts made of high-Cr steel are used for a long time in a high-temperature, high-stress environment, solid solution strengthening elements such as Mo and W become precipitates such as Laves phases or carbonitrides, resulting in steel for turbine parts. It precipitates in the structure. When the deposited precipitates agglomerate and coarsen at the grain boundaries and martensite lath boundaries, the strength of the material is reduced. It is easy to become.

このような材料劣化がタービン部品に生じるとタービン部品の破損に至るため、クリープ、脆性、疲労などの劣化度や損傷度を非破壊で高精度に評価することでタービン部品の余寿命を算出し、破損に至る前にタービン部品の保守管理を行う必要がある。
高Cr鋼などの耐熱鋼からなるタービン部品の劣化を評価する方法としては、耐熱鋼の表面に析出した析出物の面積率または耐熱鋼の表面に発生したボイドの個数密度を算出し、その算出値を基にタービン部品の劣化を評価する方法が知られている(例えば、特許文献1参照)。
When such material deterioration occurs in turbine parts, the turbine parts are damaged. Therefore, the remaining life of turbine parts is calculated by nondestructively evaluating the degree of deterioration and damage such as creep, brittleness and fatigue. It is necessary to perform maintenance management of turbine parts before they are damaged.
As a method of evaluating the deterioration of turbine parts made of heat-resistant steel such as high Cr steel, the area ratio of precipitates deposited on the surface of the heat-resistant steel or the number density of voids generated on the surface of the heat-resistant steel is calculated and the calculation is performed. A method for evaluating deterioration of a turbine component based on a value is known (see, for example, Patent Document 1).

特開2009−92478号公報JP 2009-92478 A

しかしながら、析出物の面積率は、図7に示すように、析出物の検出箇所によって異なる値となり、析出物の面積率を劣化の指標値とした場合には、指標値にバラツキが生じる。なお、図7(a)(析出物面積率81%)および図7(b)(析出物面積率10.6%)は、同じサンプルにおける異なる検出箇所について測定した析出物の反射電子像を同じ拡大率で示す図である。また、耐熱鋼表面に析出する析出物のうちラーベス相は、M23C6やMX炭窒化物などの析出物と比較して、応力依存性が低い。このため、ラーベス相を含む析出物の面積率を劣化指標値にすると、析出物の面積率を指標値とする耐熱鋼のクリープ損傷評価曲線が図8に示すようなクリープ損傷評価曲線となり、応力が負荷される場合の劣化と応力が負荷されない場合の劣化とを区別して評価することが困難となる。従って、ラーベス相を含む析出物の面積率からタービン部品の劣化を評価する方法では、高応力が負荷されるタービン部品の劣化を正確に評価できないという問題がある。   However, as shown in FIG. 7, the area ratio of the precipitate varies depending on the detected position of the precipitate. When the area ratio of the precipitate is used as an index value for deterioration, the index value varies. 7A (precipitate area ratio 81%) and FIG. 7B (precipitate area ratio 10.6%) are the same as the reflected electron images of the precipitates measured at different detection locations in the same sample. It is a figure shown by an expansion rate. In addition, Laves phase out of the precipitates precipitated on the surface of the heat resistant steel is less stress-dependent than precipitates such as M23C6 and MX carbonitride. For this reason, when the area ratio of the precipitate containing Laves phase is used as the degradation index value, the creep damage evaluation curve of the heat resistant steel with the area ratio of the precipitate as the index value becomes a creep damage evaluation curve as shown in FIG. It is difficult to distinguish and evaluate the deterioration when the load is applied and the deterioration when the stress is not applied. Therefore, the method for evaluating the deterioration of the turbine component from the area ratio of the precipitate containing the Laves phase has a problem that the deterioration of the turbine component to which a high stress is applied cannot be accurately evaluated.

また、566℃級タービンの構成部材であるCrMoV鋼では、主としてM23C6、MC、MX窒化物などの析出物が生成され、損傷率50%程度からボイドの発生が認められるが、600℃級タービンの構成部材である高Cr鋼では、材料強化因子が複雑であり、寿命末期でないとボイドが発生しない。このため、ボイドの個数密度からタービン部品の劣化を評価しても、高応力が負荷されるタービン部品の劣化を正確に評価できないという問題がある。
本発明は、上述した問題点に鑑みてなされたもので、使用条件が高温・高応力下であっても耐熱鋼からなる機械部品の劣化を正確に評価することのできる機械部品の劣化評価方法を提供することを目的とするものである。
In addition, in CrMoV steel, which is a component of a 566 ° C class turbine, precipitates such as M23C6, MC, MX nitride are mainly generated, and voids are observed from a damage rate of about 50%. In the high Cr steel which is a constituent member, the material strengthening factor is complicated, and voids are not generated unless it is at the end of life. For this reason, even if the deterioration of the turbine component is evaluated from the number density of the voids, there is a problem that the deterioration of the turbine component to which a high stress is applied cannot be accurately evaluated.
The present invention has been made in view of the above-mentioned problems, and a deterioration evaluation method for machine parts that can accurately evaluate the deterioration of machine parts made of heat-resistant steel even when the use conditions are high temperature and high stress. Is intended to provide.

上記課題を解決するために、本発明は、耐熱鋼からなる機械部品の劣化を評価する方法であって、前記機械部品の鋼組織に析出した析出物のレプリカを抽出レプリカ法により作成し、次いで前記レプリカを電子顕微鏡により撮像して前記析出物の反射電子像を得た後、得られた反射電子像の明度から前記析出物をラーベス相とラーベス相以外の析出物とに分類し、次いで前記ラーベス相以外の析出物1個当りの平均面積を求め、該平均面積を指標値とする耐熱鋼のクリープ損傷度をラーソン・ミラー・パラメータ(LMP)線図から求め、前記クリープ損傷度をPr、前記ラーソン・ミラー・パラメータ(LMP)線図においてクリープ損傷曲線C1がクリープ破断曲線C2と交わる点のラーソン・ミラー・パラメータ(LMP)をPc、耐熱鋼の使用温度をT(℃)、使用時間をt(h)として、クリープ損傷寿命Tfを
Tf=(10 ((Pc-Pr)・100/T) -1)t
で求めて前記機械部品の劣化を評価することを特徴とする。
In order to solve the above-mentioned problems, the present invention is a method for evaluating deterioration of a machine part made of heat-resistant steel, wherein a replica of a precipitate precipitated in the steel structure of the machine part is created by an extraction replica method, and then After obtaining the reflected electron image of the precipitate by imaging the replica with an electron microscope, the precipitate is classified into Laves phase and precipitates other than Laves phase from the brightness of the obtained reflected electron image, The average area per precipitate other than the Laves phase is obtained, the creep damage degree of the heat-resistant steel with the average area as an index value is obtained from a Larson-Miller parameter (LMP) diagram , and the creep damage degree is determined as Pr, In the Larson Miller parameter (LMP) diagram, the Larson Miller parameter (LMP) at the point where the creep damage curve C1 intersects the creep rupture curve C2 is defined as Pc, The working temperature of the steel T (° C.), the use time as t (h), the creep damage life Tf
Tf = (10 ((Pc-Pr) · 100 / T) −1) t
In determined and evaluating the deterioration of the mechanical parts.

本発明において、前記電子顕微鏡の観察視野が耐熱鋼の結晶粒界を含む視野となるように前記レプリカを電子顕微鏡により撮像して反射電子像を得ることが好ましい。
また、前記ラーベス相以外の析出物のうちM23C6の1個当りの平均面積を求め、該平均面積を指標値とする耐熱鋼のクリープ損傷度を求めて前記機械部品の劣化を評価することが好ましい。
In the present invention, it is preferable to obtain a reflected electron image by imaging the replica with an electron microscope so that the observation field of view of the electron microscope becomes a field of view including a grain boundary of heat-resistant steel.
The front Symbol obtain an average area per the M23C6 of Laves other than phase precipitates, be seeking creep damage of the heat-resisting steel is used as an index value to the average area to evaluate the degradation of the mechanical component preferable.

本発明では、機械部品の劣化を評価する際に応力依存性の低いラーベス相を除外できると共に、応力が負荷される場合の劣化と応力が負荷されない場合の劣化とを区別して評価することが可能となる。従って、使用条件が高温・高応力下であっても耐熱鋼からなる機械部品の劣化を正確に評価することができる。   In the present invention, Laves phases with low stress dependency can be excluded when evaluating deterioration of machine parts, and it is possible to distinguish and evaluate deterioration when stress is applied and deterioration when stress is not applied. It becomes. Therefore, it is possible to accurately evaluate the deterioration of mechanical parts made of heat-resistant steel even when the use conditions are high temperature and high stress.

本発明の一実施形態に係る機械部品の劣化評価方法を説明するための工程図である。It is process drawing for demonstrating the degradation evaluation method of the machine component which concerns on one Embodiment of this invention. 抽出レプリカ法を説明するための図である。It is a figure for demonstrating the extraction replica method. 析出物のレプリカを走査型電子顕微鏡により撮像して得られる析出物の反射電子像を示す図である。It is a figure which shows the reflected electron image of the precipitate obtained by imaging the replica of a precipitate with a scanning electron microscope. ラーベス相以外の析出物1個当りの平均面積を算出する方法を説明するための図である。It is a figure for demonstrating the method of calculating the average area per deposit other than a Laves phase. 耐熱鋼のクリープ特性を表すラーソン・ミラー・パラメータ線図を示す図である。It is a figure which shows the Larson Miller parameter diagram showing the creep characteristic of heat resistant steel. ラーベス相以外の析出物1個当りの平均面積を指標値とする耐熱鋼のクリープ損傷曲線を示す図である。It is a figure which shows the creep damage curve of the heat-resisting steel which uses as an index value the average area per precipitate except a Laves phase. ラーベス相を含む析出物の面積率が8.1%である場合と10.6%である場合の析出物の反射電子像を示す図である。It is a figure which shows the backscattered electron image of a precipitate when the area ratio of the deposit containing a Laves phase is 8.1% and 10.6%. ラーベス相を含む析出物の面積率を指標値とする耐熱鋼のクリープ損傷曲線を示す図である。It is a figure which shows the creep damage curve of heat-resistant steel which uses the area ratio of the precipitate containing a Laves phase as an index value.

以下、図面を参照して本発明の一実施の形態について説明する。
本発明の一実施形態に係る機械部品の劣化評価方法を説明するための工程図を図1に示す。本発明の一実施形態に係る機械部品の劣化評価方法は、図1に示すように、レプリカ作成工程S1、反射電子像取得工程S2、析出物分類工程S3、平均面積算出工程S4、クリープ損傷度算出工程S5、余寿命算出工程S6および余寿命率算出工程S7を経て機械部品の劣化を評価する方法である。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a process diagram for explaining a deterioration evaluation method for mechanical parts according to an embodiment of the present invention. As shown in FIG. 1, the degradation evaluation method for mechanical parts according to an embodiment of the present invention includes a replica creation step S1, a reflected electron image acquisition step S2, a precipitate classification step S3, an average area calculation step S4, and a creep damage degree. This is a method for evaluating the deterioration of the machine component through the calculation step S5, the remaining life calculation step S6, and the remaining life rate calculation step S7.

(レプリカ作成工程)
レプリカ作成工程S1は耐熱鋼からなる機械部品の鋼組織に析出した析出物のレプリカを図2に示す抽出レプリカ法により作成する工程であって、具体的には、機械部品1の表面を例えば9μm以下のダイヤモンド砥粒でバフ研磨し、機械部品1の表面を鏡面に仕上げた後、機械部品1の表面を析出物2が明瞭となるまでエッチングする。次に、機械部品1の表面をアルコールあるいは洗浄液により洗浄した後、機械部品1の表面を乾燥させ、乾燥した機械部品1の表面上に膜厚が3μm以下のカーボンレプリカ膜3を蒸着する。
その後、カーボンレプリカ膜3の膜端部に2mm角程度の切り込みを入れた後、再び機械部品1の表面をエッチングする。このとき腐食液はカーボンレプリカ膜3の切り込み箇所から浸入し、切り込み箇所から浸入した腐食液によって機械部品1の鋼組織が溶け出すことにより、析出物2のみがカーボンレプリカ膜3に付着する。
(Replica creation process)
The replica creation step S1 is a step of creating a replica of precipitates precipitated in the steel structure of a machine part made of heat-resistant steel by the extraction replica method shown in FIG. 2, and specifically, the surface of the machine part 1 is, for example, 9 μm. After buffing with the following diamond abrasive grains and finishing the surface of the machine part 1 to a mirror surface, the surface of the machine part 1 is etched until the precipitate 2 becomes clear. Next, after the surface of the machine part 1 is washed with alcohol or a cleaning liquid, the surface of the machine part 1 is dried, and a carbon replica film 3 having a film thickness of 3 μm or less is deposited on the dried surface of the machine part 1.
Then, after cutting about 2 mm square in the film | membrane edge part of the carbon replica film | membrane 3, the surface of the machine component 1 is etched again. At this time, the corrosive liquid enters from the cut portion of the carbon replica film 3, and the steel structure of the machine part 1 is melted by the corrosive liquid that has entered from the cut portion, whereby only the precipitate 2 adheres to the carbon replica film 3.

次に、カーボンレプリカ膜3を機械部品1の表面から剥がし、カーボンレプリカ膜3を洗浄液により洗浄する。その後、Cuグリッドによりレプリカ膜を洗浄槽からすくい取り、自然乾燥させることで、析出物2のレプリカを得ることができる。
なお、カーボンレプリカ膜3を有機溶媒により洗浄する場合は、有機溶媒の濃度が高いとカーボンレプリカ膜3に曲りが生ずるため、有機溶媒の濃度を減少させた洗浄液を幾つか用意しておくことが好ましい。
Next, the carbon replica film 3 is peeled off from the surface of the mechanical component 1 and the carbon replica film 3 is cleaned with a cleaning liquid. Thereafter, the replica film is scooped out from the washing tank by a Cu grid and is naturally dried, whereby a replica of the precipitate 2 can be obtained.
When the carbon replica film 3 is washed with an organic solvent, since the carbon replica film 3 is bent when the concentration of the organic solvent is high, it is necessary to prepare several cleaning liquids with a reduced concentration of the organic solvent. preferable.

(反射電子像取得工程)
反射電子像取得工程S2はレプリカ作成工程S1で得られた析出物2のレプリカを走査型電子顕微鏡等の電子顕微鏡により撮像して析出物2の反射電子像を得る工程であって、析出物2の反射電子像を得るときには、電子顕微鏡の撮像視野が耐熱鋼の結晶粒界を含む視野となるように析出物2のレプリカを電子顕微鏡により撮像して反射電子像を得ることが好ましい。
(Reflected electron image acquisition process)
The reflected electron image acquisition step S2 is a step of obtaining a reflected electron image of the precipitate 2 by imaging the replica of the precipitate 2 obtained in the replica creation step S1 with an electron microscope such as a scanning electron microscope. When the reflected electron image is obtained, it is preferable to obtain the reflected electron image by imaging the replica of the precipitate 2 with the electron microscope so that the imaging field of view of the electron microscope is a field of view including the grain boundary of the heat resistant steel.

(析出物分類工程)
析出物分類工程S3は反射電子像取得工程S2で得られた反射電子像の明度から析出物2をラーベス相とラーベス相以外の析出物とに分類する工程であって、析出物2のレプリカを走査型電子顕微鏡等の電子顕微鏡で撮像すると、図3に示すように、ラーベス相はラーベス以外の析出物よりも明度の高い反射電子像となるので、反射電子像取得工程S2で得られた反射電子像の明度から析出物2をラーベス相とラーベス相以外の析出物とに分類することができる。なお、図3(b)は図3(a)の中央箇所を拡大表示した図である。
(Precipitation classification process)
The precipitate classification step S3 is a step of classifying the precipitate 2 into a Laves phase and a precipitate other than the Laves phase based on the brightness of the reflected electron image obtained in the reflected electron image acquisition step S2, and a replica of the precipitate 2 is classified. When imaged with an electron microscope such as a scanning electron microscope, as shown in FIG. 3, the Laves phase becomes a reflected electron image having a higher brightness than precipitates other than Laves, so the reflection obtained in the reflected electron image acquisition step S2 Precipitates 2 can be classified into Laves phases and precipitates other than Laves phases based on the brightness of the electronic image. FIG. 3B is an enlarged view of the central portion of FIG.

(平均面積算出工程)
平均面積算出工程S4はラーベス相以外の析出物1個当りの平均面積を求める工程であって、ラーベス相以外の析出物1個当りの平均面積を求める方法としては、例えば図4に示す方法を用いることができる。
具体的には、図4に示すように、反射電子像取得工程S2で得られた反射電子像を2値化処理し、ラーベス相を含む全ての析出物の面積と個数を求める。次に、ラーベス相のみを2値化し、ラーベス相の面積と個数を求め、全析出物の面積からラーベス相の面積を差し引いた値(ラーベス相以外の析出物の全面積)を全析出物の個数からラーベス相の個数を差し引いた値により除することで、ラーベス相以外の析出物1個当りの平均面積を求めることができる。
なお、ラーベス相以外の析出物としてはM23C6、MX炭窒化物、Z相化などが挙げられるが、これらの中でM23C6は応力負荷による凝集・粗大化が促進されるため、M23C6の1個当りの平均面積を求めることが望ましい。
(Average area calculation process)
The average area calculating step S4 is a step of obtaining an average area per precipitate other than the Laves phase, and as a method for obtaining the average area per precipitate other than the Laves phase, for example, the method shown in FIG. Can be used.
Specifically, as shown in FIG. 4, the reflected electron image obtained in the reflected electron image acquisition step S2 is binarized, and the areas and the number of all precipitates including Laves phases are obtained. Next, only the Laves phase was binarized, the area and the number of Laves phases were obtained, and the value obtained by subtracting the Laves phase area from the total precipitate area (total area of precipitates other than the Laves phase) By dividing by the value obtained by subtracting the number of Laves phases from the number, the average area per precipitate other than the Laves phase can be obtained.
Examples of precipitates other than the Laves phase include M23C6, MX carbonitride, and Z phase. Among these, M23C6 promotes agglomeration and coarsening due to stress load, and therefore per M23C6. It is desirable to obtain the average area of

(クリープ損傷度算出工程)
クリープ損傷度算出工程S5はラーベス相以外の析出物1個当りの平均面積を指標値とする耐熱鋼のクリープ損傷度Prを求める工程であって、例えば図5に示すラーソン・ミラー・パラメータ(LMP)線図からクリープ損傷度Prを求めることができる。
(余寿命算出工程)
余寿命算出工程S6は耐熱鋼のクリープ損傷余寿命Tfを求める工程であって、図5に示すクリープ損傷曲線C1がクリープ破断曲線C2と交わる点のLMPをPc、耐熱鋼の使用温度をT(℃)、使用時間をt(h)とすると、下記に示す式(1)からクリープ損傷余寿命Tfを求めることができる。
(Creep damage degree calculation process)
The creep damage degree calculation step S5 is a step for obtaining the creep damage degree Pr of the heat-resistant steel using the average area per precipitate other than the Laves phase as an index value. For example, the Larson Miller parameter (LMP) shown in FIG. ) Creep damage degree Pr can be obtained from the diagram.
(Remaining life calculation process)
The remaining life calculation step S6 is a step for obtaining the creep damage remaining life Tf of the heat-resistant steel. The LMP at the point where the creep damage curve C1 shown in FIG. 5 intersects the creep rupture curve C2 is Pc, and the operating temperature of the heat-resistant steel is T ( C) and the usage time is t (h), the creep damage remaining life Tf can be obtained from the following equation (1).

Figure 0006131539
Figure 0006131539

(余寿命率算出工程)
損傷率算出工程S7は耐熱鋼のクリープ損傷余寿命率φcを求める工程であって、下記に示す式(2)からクリープ損傷余寿命率φcを求めることができる。
φc=t/(t+Tf)・100 ‥‥(2)
ただし、Tf:クリープ損傷余寿命、t:耐熱鋼の使用時間(h)である。
上記のように、耐熱鋼からなる機械部品の鋼組織に析出した析出物のレプリカを抽出レプリカ法により作成し、作成されたレプリカを走査型電子顕微鏡等の電子顕微鏡により撮像して析出物の反射電子像を得た後、得られた反射電子像の明度から析出物をラーベス相とラーベス相以外の析出物とに分類することで、機械部品の劣化を評価する際に応力依存性の低いラーベス相を除外することができる。
(Remaining life rate calculation process)
The damage rate calculation step S7 is a step of obtaining the creep damage remaining life rate φc of the heat-resistant steel, and the creep damage remaining life rate φc can be obtained from the following equation (2).
φc = t / (t + Tf) · 100 (2)
However, Tf: Creep damage remaining life, t: Use time (h) of heat-resistant steel.
As described above, a replica of precipitates deposited on the steel structure of mechanical parts made of heat-resistant steel is created by the extraction replica method, and the created replica is imaged with an electron microscope such as a scanning electron microscope to reflect the precipitates. After obtaining an electron image, Laves is less stress-dependent when evaluating deterioration of mechanical parts by classifying precipitates into Laves phases and precipitates other than Laves phases based on the brightness of the obtained reflected electron images. Phases can be excluded.

また、ラーベス相以外の析出物1個当りの平均面積を求め、該平均面積を指標値とする耐熱鋼のクリープ損傷度を求めることで、耐熱鋼のクリープ損傷評価曲線が図6に示すようなクリープ損傷評価曲線となり、応力が負荷される場合の劣化と応力が負荷されない場合の劣化とを区別して評価することが可能となる。
従って、機械部品の鋼組織に析出した析出物のレプリカを抽出レプリカ法により作成し、次いで上記レプリカを走査型電子顕微鏡等の電子顕微鏡により撮像して反射電子像を得た後、上記反射電子像の明度から析出物をラーベス相とラーベス相以外の析出物とに分類し、次いで上記ラーベス相以外の析出物1個当りの平均面積を求め、該平均面積を指標値とする耐熱鋼のクリープ損傷度を求めて機械部品の劣化を評価することで、使用条件が高温・高応力下であっても耐熱鋼からなる機械部品の劣化を正確に評価することができる。
Further, by obtaining the average area per precipitate other than the Laves phase and obtaining the creep damage degree of the heat resistant steel using the average area as an index value, the creep damage evaluation curve of the heat resistant steel is as shown in FIG. It becomes a creep damage evaluation curve, and it becomes possible to distinguish and evaluate deterioration when stress is applied and deterioration when stress is not applied.
Accordingly, a replica of the precipitate deposited on the steel structure of the machine part is created by the extraction replica method, and then the reflected electron image is obtained by imaging the replica with an electron microscope such as a scanning electron microscope, and then the reflected electron image. The precipitates are classified into Laves phases and precipitates other than Laves phases from the brightness of the steel, and then the average area per precipitate other than the Laves phase is obtained. Creep damage of heat-resistant steel using the average area as an index value By evaluating the degree of deterioration of the machine part, it is possible to accurately evaluate the deterioration of the machine part made of heat-resistant steel even if the use conditions are high temperature and high stress.

また、上述したように、電子顕微鏡の撮像視野が耐熱鋼の結晶粒界を含む視野となるように析出物のレプリカを電子顕微鏡により撮像して反射電子像を得ることで、析出物の凝集・粗大化が顕著となる視野で析出物のレプリカを電子顕微鏡により撮像することができ、これにより、使用条件が高温・高応力下であっても耐熱鋼からなる機械部品の劣化をより正確に評価することができる。
また、クリープ損傷度Prから耐熱鋼のクリープ損傷余寿命Tfを求め、クリープ損傷余寿命Tfから耐熱鋼のクリープ損傷余寿命率φcを求めることで、耐熱鋼からなる機械部品の余寿命を正確に診断することができる。
In addition, as described above, a replica of the precipitate is imaged by an electron microscope so that the imaging field of view of the electron microscope becomes a field of view including the grain boundary of the heat-resistant steel, and a reflection electron image is obtained. A replica of precipitates can be imaged with an electron microscope in a field where coarsening becomes noticeable, and this allows more accurate evaluation of deterioration of mechanical parts made of heat-resistant steel even under high-temperature and high-stress conditions. can do.
In addition, the creep damage remaining life Tf of the heat resistant steel is obtained from the creep damage degree Pr, and the creep damage remaining life ratio φc of the heat resistant steel is obtained from the creep damage remaining life Tf. Can be diagnosed.

また、ラーベス相以外の析出物のうちM23C6の1個当りの平均面積を求め、該平均面積を指標値とする耐熱鋼のクリープ損傷度を求めて機械部品の劣化を評価することで、M23C6は応力依存性が高く、析出物の凝集・粗大化が応力によって促進されるため、使用条件が高温・高応力下であっても耐熱鋼からなる機械部品の劣化をより正確に評価することができる。   Further, by calculating the average area per M23C6 of precipitates other than the Laves phase, and determining the degree of creep damage of the heat-resistant steel using the average area as an index value, the deterioration of machine parts is evaluated. Stress dependence is high, and the aggregation and coarsening of precipitates are promoted by stress, so it is possible to more accurately evaluate the deterioration of mechanical parts made of heat-resistant steel even under high-temperature and high-stress conditions. .

1…機械部品
2…析出物
3…カーボンレプリカ膜
S1…レプリカ作成工程
S2…反射電子像取得工程
S3…析出物分類工程
S4…平均面積算出工程
S5…クリープ損傷度算出工程
S6…余寿命算出工程
S7…余寿命率算出工程
DESCRIPTION OF SYMBOLS 1 ... Mechanical part 2 ... Precipitate 3 ... Carbon replica film S1 ... Replica production process S2 ... Reflected electron image acquisition process S3 ... Precipitate classification process S4 ... Average area calculation process S5 ... Creep damage degree calculation process S6 ... Remaining life calculation process S7 ... remaining life rate calculation step

Claims (3)

耐熱鋼からなる機械部品の劣化を評価する方法であって、
前記機械部品の鋼組織に析出した析出物のレプリカを抽出レプリカ法により作成し、
次いで前記レプリカを電子顕微鏡により撮像して前記析出物の反射電子像を得た後、
得られた反射電子像の明度から前記析出物をラーベス相とラーベス相以外の析出物とに分類し、
次いで前記ラーベス相以外の析出物1個当りの平均面積を求め、
該平均面積を指標値とする耐熱鋼のクリープ損傷度をラーソン・ミラー・パラメータ(LMP)線図から求め
前記クリープ損傷度をPr、前記ラーソン・ミラー・パラメータ(LMP)線図においてクリープ損傷曲線C1がクリープ破断曲線C2と交わる点のラーソン・ミラー・パラメータ(LMP)をPc、耐熱鋼の使用温度をT(℃)、使用時間をt(h)として、クリープ損傷寿命Tfを
Tf=(10 ((Pc-Pr)・100/T) -1)t
で求めて前記機械部品の劣化を評価することを特徴とする機械部品の劣化
評価方法。
A method for evaluating the deterioration of mechanical parts made of heat-resistant steel,
Create a replica of the precipitate deposited in the steel structure of the machine part by the extraction replica method,
Next, the replica was imaged with an electron microscope to obtain a reflected electron image of the precipitate,
The precipitates are classified into Laves phase and precipitates other than Laves phase from the brightness of the obtained reflected electron image,
Next, the average area per precipitate other than the Laves phase is determined,
The creep damage degree of heat-resistant steel using the average area as an index value is determined from a Larson-Miller parameter (LMP) diagram ,
The creep damage degree is Pr, the Larson Miller parameter (LMP) at the point where the creep damage curve C1 intersects the creep rupture curve C2 in the Larson Miller parameter (LMP) diagram, and the operating temperature of the heat resistant steel is T. (° C.), the usage time is t (h), and the creep damage life Tf is
Tf = (10 ((Pc-Pr) · 100 / T) −1) t
Deterioration evaluation method of mechanical parts, characterized in that in determined to evaluate the degradation of the mechanical parts.
前記電子顕微鏡の観察視野が耐熱鋼の結晶粒界を含む視野となるように前記レプリカを電子顕微鏡により撮像して前記析出物の反射電子像を得ることを特徴とする請求項1に記載の機械部品の劣化評価方法。   2. The machine according to claim 1, wherein a reflected electron image of the precipitate is obtained by imaging the replica with an electron microscope so that an observation field of view of the electron microscope is a field of view including a grain boundary of heat-resistant steel. Degradation evaluation method for parts. 前記ラーベス相以外の析出物のうちM23C6の1個当りの平均面積を求め、該平均面積を指標値とする耐熱鋼のクリープ損傷度を求めて前記機械部品の劣化を評価することを特徴とする請求項1または2に記載の機械部品の劣化評価方法。 An average area per one M23C6 of precipitates other than the Laves phase is obtained, and the creep damage degree of the heat-resistant steel with the average area as an index value is obtained to evaluate the deterioration of the machine part. The deterioration evaluation method for machine parts according to claim 1 or 2.
JP2012157413A 2012-07-13 2012-07-13 Degradation evaluation method for machine parts Active JP6131539B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012157413A JP6131539B2 (en) 2012-07-13 2012-07-13 Degradation evaluation method for machine parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012157413A JP6131539B2 (en) 2012-07-13 2012-07-13 Degradation evaluation method for machine parts

Publications (2)

Publication Number Publication Date
JP2014020821A JP2014020821A (en) 2014-02-03
JP6131539B2 true JP6131539B2 (en) 2017-05-24

Family

ID=50195890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012157413A Active JP6131539B2 (en) 2012-07-13 2012-07-13 Degradation evaluation method for machine parts

Country Status (1)

Country Link
JP (1) JP6131539B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109781395A (en) * 2018-12-27 2019-05-21 西安交通大学 A kind of cylinder creep detection and life-span prediction method based on DENSENET

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6344741B2 (en) * 2015-01-30 2018-06-20 三菱日立パワーシステムズ株式会社 Operating temperature estimation method and creep life estimation method
CN113533674A (en) * 2021-07-14 2021-10-22 中国特种设备检测研究院 Quantitative evaluation method for creep damage microstructure evolution of heat-resistant steel

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11108921A (en) * 1997-10-06 1999-04-23 Mitsubishi Heavy Ind Ltd Evaluation of secular damage of austenite stainless material
JP5010422B2 (en) * 2007-10-05 2012-08-29 三菱重工業株式会社 Degradation evaluation method for heat resistant steel and degradation evaluation method for turbine
JP2010101848A (en) * 2008-10-27 2010-05-06 Ihi Corp Damage evaluation method of high-chromium steel product
JP2011013071A (en) * 2009-07-01 2011-01-20 Kurimoto Ltd Structure evaluation method of ductile cast iron

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109781395A (en) * 2018-12-27 2019-05-21 西安交通大学 A kind of cylinder creep detection and life-span prediction method based on DENSENET
CN109781395B (en) * 2018-12-27 2020-07-28 西安交通大学 Cylinder creep detection and life prediction method based on DENSENET

Also Published As

Publication number Publication date
JP2014020821A (en) 2014-02-03

Similar Documents

Publication Publication Date Title
Stinville et al. Microstructural statistics for fatigue crack initiation in polycrystalline nickel-base superalloys
JP6131539B2 (en) Degradation evaluation method for machine parts
JP5010422B2 (en) Degradation evaluation method for heat resistant steel and degradation evaluation method for turbine
Mazánová et al. Initiation and growth of short fatigue cracks in austenitic Sanicro 25 steel
JP4979730B2 (en) Creep damage evaluation method
JP6704747B2 (en) Evaluation method for alloy materials
JP2009092652A (en) Remaining life evaluation method and deformation amount evaluation method for metallic material
CN103308372A (en) T91-steel ageing ranking method based on transmission electron microscope
JP2013113144A (en) Secular bending amount predicting method for structural member
JP2010164430A (en) Method and apparatus for evaluating creep damage of metallic material
Schmuck et al. Crack length estimations for small-scale fracture experiments via image processing techniques
JP5506771B2 (en) Long-term creep strength estimation method, remaining life estimation method, and remaining life evaluation apparatus for precipitation strengthened heat resistant alloys
JP5412540B2 (en) Degradation evaluation method for heat resistant steel and degradation evaluation method for turbine
Antony Harison et al. Root cause analysis of steam turbine blade failure
JP5254863B2 (en) Brittleness determination method
Ananda Rao et al. Failure analysis of a low-pressure turbine blade in a coal-based thermal power plant
JP6741233B2 (en) Method for evaluating embrittlement of steel members
JP4331042B2 (en) Non-destructive evaluation method for embrittlement of metal materials
JP6657788B2 (en) Remaining life prediction method for metal materials
JP2014142304A (en) Life evaluation method for austenite stainless steel
JP3015599B2 (en) Creep damage evaluation method for ferritic heat-resistant steel
JP5622406B2 (en) Evaluation method of embrittlement of heat-resistant steel
Tarafder et al. Microstructural damage evaluation in Ni-based superalloy gas turbine blades by fractal analysis
CN113533674A (en) Quantitative evaluation method for creep damage microstructure evolution of heat-resistant steel
Hyde et al. Small ring testing of high temperature materials

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150615

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170321

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170403

R150 Certificate of patent or registration of utility model

Ref document number: 6131539

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250