JP5010422B2 - Degradation evaluation method for heat resistant steel and degradation evaluation method for turbine - Google Patents

Degradation evaluation method for heat resistant steel and degradation evaluation method for turbine Download PDF

Info

Publication number
JP5010422B2
JP5010422B2 JP2007262458A JP2007262458A JP5010422B2 JP 5010422 B2 JP5010422 B2 JP 5010422B2 JP 2007262458 A JP2007262458 A JP 2007262458A JP 2007262458 A JP2007262458 A JP 2007262458A JP 5010422 B2 JP5010422 B2 JP 5010422B2
Authority
JP
Japan
Prior art keywords
heat
resistant steel
turbine
embrittlement
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007262458A
Other languages
Japanese (ja)
Other versions
JP2009092478A (en
Inventor
裕一 平川
博明 吉田
慶一郎 宮島
好邦 角屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2007262458A priority Critical patent/JP5010422B2/en
Publication of JP2009092478A publication Critical patent/JP2009092478A/en
Application granted granted Critical
Publication of JP5010422B2 publication Critical patent/JP5010422B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、耐熱鋼、特に高Cr鋼の熱的損傷による劣化の評価方法、及びこれを用いたタービンの劣化評価方法に関するものである。   The present invention relates to a method for evaluating deterioration due to thermal damage of heat resistant steel, particularly high Cr steel, and a method for evaluating deterioration of a turbine using the same.

蒸気タービンやガスタービンは、ロータ、主要弁、車室などから構成されている。これら高温部材には、低合金鋼や、より高温で使用される部位にはCrを9〜12重量%含有する高Cr鋼が用いられる。   Steam turbines and gas turbines are composed of a rotor, main valves, a passenger compartment, and the like. For these high temperature members, low alloy steel and high Cr steel containing 9 to 12% by weight of Cr are used for parts used at higher temperatures.

タービンを高温で長時間運転することにより、高温部材はクリープ損傷、脆化、疲労などの熱的損傷を受ける。例えば、タービン用ロータの翼溝部では、運転中に高温となるとともに、遠心応力が負荷されて多軸応力場となり、クリープ損傷が発生しやすい。また、車室や主要弁でも同様に内圧が負荷されて多軸応力場となり、クリープ損傷が発生する。さらに、タービン用ロータのような回転部品では、高温で長時間使用することによる脆化も重要な問題となる。このように、タービン高温部の各部位によって熱的損傷の発生状況は異なっている。従って、それぞれの部位の高温部材の劣化を非破壊で検出し、高精度で早期に劣化度合いを評価する保守管理を行う必要がある。   By operating the turbine at a high temperature for a long time, the high temperature member is subjected to thermal damage such as creep damage, embrittlement, and fatigue. For example, in a blade groove portion of a turbine rotor, the temperature becomes high during operation, and centrifugal stress is applied to form a multiaxial stress field, which easily causes creep damage. Similarly, the internal pressure is applied to the passenger compartment and the main valve, resulting in a multiaxial stress field and creep damage. Further, in a rotating part such as a turbine rotor, embrittlement due to long-term use at a high temperature becomes an important problem. As described above, the occurrence of thermal damage differs depending on each portion of the turbine high temperature portion. Therefore, it is necessary to perform maintenance management in which deterioration of the high temperature member at each part is detected nondestructively and the degree of deterioration is evaluated with high accuracy and at an early stage.

低合金鋼のクリープ損傷を評価する手法としては、硬さ法、Aパラメータ法、電気抵抗法などが実用化されている。また、脆化を評価する手法としては、粒界溝エッチング法などが実用化されている。
しかし、高Cr鋼は、金属組織がマルテンサイト組織でありベイナイト組織を有する低合金鋼とは異なるために、損傷モードが低合金鋼と異なり、従来の低合金鋼のクリープ損傷評価手法や脆化評価手法を適用できない。
As a method for evaluating the creep damage of low alloy steel, a hardness method, an A parameter method, an electric resistance method and the like have been put into practical use. Further, as a method for evaluating embrittlement, a grain boundary groove etching method or the like has been put into practical use.
However, high Cr steel is different from low alloy steel with martensitic structure and bainite structure in the metal structure. Therefore, the damage mode is different from low alloy steel. The evaluation method cannot be applied.

高Cr鋼表面のクリープ損傷を非破壊で評価する方法は、例えば特許文献1から3に開示されている。
特許第1547716号 特開昭64−53156号公報 特許第2084622号
Non-destructive evaluation methods for creep damage on high Cr steel surfaces are disclosed in, for example, Patent Documents 1 to 3.
Patent No. 1547716 JP-A 64-53156 Patent No. 2084622

特許文献1及び2は、使用中に高Cr鋼に析出する析出物(ラーベス相)の析出量から当該温度における使用時間を推定し、当該温度と応力とから推定されるクリープ破断時間と使用時間との差を残寿命として評価するものである。このように、高Cr鋼に発生する析出物量の変化からクリープ損傷を評価するが、脆化の評価については記載されていない。また、特許文献3は、ボイド分布状況とクリープ損傷との相関を用いてクリープ損傷を評価している。これは、低合金鋼や溶接熱影響部などのボイド発生の大きい材料や部位については効果的な方法である。しかし、高Cr鋼ではボイド発生量が少なく、また、応力場の影響を多分に受けるため、評価部位によって応力状態が異なるタービン高温部材においては、単一的なボイド評価カーブを用いた評価では評価精度が不十分である。例えば、高Cr鋼は、短軸クリープ試験ではボイドの発生が確認できないまま破断に至るのに対して、切欠きクリープ試験や内圧クリープ試験などの多軸応力場における試験ではボイド発生が確認される。このように、応力状態によりボイド発生量が異なっている。   Patent Documents 1 and 2 estimate the use time at the temperature from the amount of precipitates (Laves phase) precipitated in high Cr steel during use, and the creep rupture time and use time estimated from the temperature and stress. The difference is evaluated as the remaining life. Thus, although creep damage is evaluated from the change of the amount of precipitates generated in high Cr steel, it does not describe the evaluation of embrittlement. Patent Document 3 evaluates creep damage using the correlation between the void distribution state and creep damage. This is an effective method for materials and parts with large void generation such as low alloy steel and weld heat affected zone. However, in high Cr steel, the amount of voids generated is small, and the influence of the stress field is large. Therefore, high temperature turbine components with different stress states depending on the evaluation site are evaluated using a single void evaluation curve. The accuracy is insufficient. For example, high Cr steel breaks without confirming the occurrence of voids in the short axis creep test, whereas generation of voids is confirmed in tests in a multiaxial stress field such as a notch creep test and an internal pressure creep test. . Thus, the amount of void generation varies depending on the stress state.

以上のように、高Cr鋼の脆化や多軸応力場におけるクリープ損傷を非破壊かつ高精度で評価する手法は現在のところ報告されていない。高Cr鋼に関する熱的損傷による劣化の体系的な評価手法は確立されていないのが現状である。
タービンの保守管理においては、使用温度や応力状態の異なる各部位について表面および内部に発生する種々の熱的損傷を反映した評価を行い、精度の高いタービン全体の劣化評価を迅速に行うことが求められる。
As described above, no method has been reported so far for non-destructive and highly accurate evaluation of embrittlement of high Cr steel and creep damage in a multiaxial stress field. At present, a systematic evaluation method for deterioration due to thermal damage on high Cr steel has not been established.
In turbine maintenance management, it is necessary to evaluate each part with different operating temperature and stress state, reflecting various thermal damages occurring on the surface and inside, and to quickly evaluate the deterioration of the entire turbine with high accuracy. It is done.

本発明は、上記課題を解決するためになされたものであって、耐熱鋼、特に高Cr鋼に発生するクリープ損傷と脆化を非破壊で判定し、耐熱鋼の劣化を評価する方法を提供するものである。また、本発明の耐熱鋼の劣化評価方法を用いて、耐熱鋼を使用したタービン、特にロータ、車室、主要弁といったタービン高温部の劣化を評価する方法を提供するものである。   The present invention has been made to solve the above-mentioned problems, and provides a method for evaluating creep damage and embrittlement occurring in heat-resistant steel, particularly high Cr steel, in a non-destructive manner and evaluating deterioration of the heat-resistant steel. To do. In addition, the present invention provides a method for evaluating deterioration of a high-temperature turbine such as a turbine using heat-resistant steel, particularly a rotor, a passenger compartment, and a main valve, using the heat-resistant steel deterioration evaluation method of the present invention.

すなわち、本発明は、検査対象の耐熱鋼の表面に生成した析出物を検出し、該検査対象の耐熱鋼の表面に生成した析出物の面積率を算出し、予め作成された、脆化指標と耐熱鋼に生成した析出物の面積率との相関を表すグラフに基づき、前記検査対象の耐熱鋼の表面に生成した析出物の面積率から検査対象の耐熱鋼の脆化の度合いを判定する耐熱鋼の劣化評価方法を提供する。   That is, the present invention detects precipitates generated on the surface of the heat-resistant steel to be inspected, calculates the area ratio of precipitates generated on the surface of the heat-resistant steel to be inspected, The degree of embrittlement of the heat-resistant steel to be inspected is determined from the area ratio of the precipitate generated on the surface of the heat-resistant steel to be inspected based on a graph representing the correlation between the area ratio of the precipitate generated on the heat-resistant steel and the heat-resistant steel. A method for evaluating deterioration of heat resistant steel is provided.

本発明によれば、検査対象となる耐熱鋼の表面に生成した析出物を非破壊的手法により検出し、該検査対象の耐熱鋼の表面に生成した析出物の面積率を算出する。そして、得られた検査対象の耐熱鋼の表面に生成した析出物の面積率を、予め作成された脆化指標と耐熱鋼に生成した析出物の面積率との相関を表すグラフと照合して、検査対象となる耐熱鋼の脆化度合いを判定する。これにより、耐熱鋼の脆化度合いを非破壊かつ高精度に評価することが可能となる。   According to the present invention, the precipitate generated on the surface of the heat-resistant steel to be inspected is detected by a non-destructive method, and the area ratio of the precipitate generated on the surface of the heat-resistant steel to be inspected is calculated. Then, the area ratio of precipitates generated on the surface of the obtained heat-resistant steel to be inspected is collated with a graph representing the correlation between the embrittlement index prepared in advance and the area ratio of precipitates generated in the heat-resistant steel. The degree of embrittlement of the heat resistant steel to be inspected is determined. This makes it possible to evaluate the degree of embrittlement of the heat-resistant steel with high accuracy and non-destructiveness.

上記発明において、前記検査する析出物、結晶粒界近傍の粗大析出物である。 In the above invention, precipitates the test, Ru coarse precipitates der grain boundary vicinity.

耐熱鋼中に存在する析出物は、製造時にCrを主成分とするM23炭化物が結晶粒界近傍および結晶粒内に析出し、NbまたはVを主体としたMX型炭窒化物が結晶粒内に析出している。さらに経年使用中に金属間化合物であるラーベス相(Fe(Mo,W))が結晶粒界近傍に析出する。これらの析出物は経年使用中に使用温度や時間に応じた粗大化が進行するが、脆化には結晶粒界近傍の粗大析出物が影響する。このように、結晶粒界近傍の粗大析出物のみを検出して面積率を算出すれば、脆化の進行に影響しない微細析出物の面積率への寄与を除外できるので、評価精度が向上する。 Precipitates present in the heat-resistant steel are M 23 C 6 carbides containing Cr as a main component at the time of production, precipitated in the vicinity of the crystal grain boundaries and in the crystal grains, and MX type carbonitrides mainly containing Nb or V are crystallized. Precipitates within the grains. Furthermore, the Laves phase (Fe 2 (Mo, W)), which is an intermetallic compound, is precipitated in the vicinity of the grain boundary during use over time. While these precipitates are coarsened according to the use temperature and time during the use over time, the coarse precipitates in the vicinity of the grain boundaries affect the embrittlement. Thus, if only the coarse precipitates in the vicinity of the grain boundaries are detected and the area ratio is calculated, contribution to the area ratio of fine precipitates that do not affect the progress of embrittlement can be excluded, thus improving the evaluation accuracy. .

上記発明において、前記検出する析出物の大きさが0.4μm以上であることが好ましい。このように、0.4μm以上の粗大な析出物のみを検出すれば、耐熱鋼素材状態の結晶粒内に存在する微細な析出物をほぼ全て除外でき、評価精度が更に向上する。   In the above invention, the size of the precipitate to be detected is preferably 0.4 μm or more. Thus, if only coarse precipitates of 0.4 μm or more are detected, almost all fine precipitates present in the crystal grains in the heat-resistant steel material state can be excluded, and the evaluation accuracy is further improved.

上記発明において、前記脆化指標が、延性脆性遷移温度またはシャルピー吸収エネルギーとすることができる。延性脆性遷移温度およびシャルピー吸収エネルギーは、簡便な脆性評価手法であるシャルピー衝撃試験により得られ、そのため短時間で脆性の度合いを評価することが可能となる。   In the above invention, the embrittlement index can be a ductile brittle transition temperature or Charpy absorbed energy. The ductile brittle transition temperature and the Charpy absorbed energy are obtained by a Charpy impact test, which is a simple brittleness evaluation technique, and therefore the degree of brittleness can be evaluated in a short time.

本発明の参考例は、検査対象の耐熱鋼の表面に生成したボイドを検出し、該検査対象の耐熱鋼の表面に生成したボイドの個数密度を算出し、該検査対象の耐熱鋼の表面に生成したボイドの個数密度を多軸度で規格化し、予め作成された、耐熱鋼の寿命比と多軸度で規格化したボイドの個数密度との相関を表すグラフに基づき、前記多軸度で規格化した検査対象の耐熱鋼の表面に生成したボイドの個数密度から検査対象の耐熱鋼のクリープ損傷の度合いを判定する耐熱鋼の劣化評価方法を提供する。 The reference example of the present invention detects voids generated on the surface of the heat-resistant steel to be inspected, calculates the number density of voids generated on the surface of the heat-resistant steel to be inspected, and The number density of the generated voids is normalized by the multiaxiality, and based on the graph showing the correlation between the life ratio of the heat-resistant steel and the number density of voids normalized by the multiaxiality, Provided is a heat-resistant steel deterioration evaluation method for determining the degree of creep damage of a heat-resistant steel to be inspected from the number density of voids generated on the surface of the standardized heat-resistant steel to be inspected.

高Cr鋼などの耐熱鋼に発生するボイドの量は耐熱鋼にかかる応力場に依存し、応力状態、特に多軸度が大きいほどボイド発生量が多くなる。本発明の参考例によると、ボイドの個数密度を耐熱鋼の多軸度で規格化するので、ボイド発生への応力場の影響を補正することができる。
そして、本発明の参考例によると、非破壊的手法で検出し算出した検査対象である耐熱鋼の表面のボイド個数密度を多軸度で規格化し、この値を予め作成された耐熱鋼の寿命比と多軸度で規格化したボイドの個数密度との相関を表すグラフと照合して、検査対象となる耐熱鋼のクリープ損傷の度合いを判定する。これにより、耐熱鋼のクリープ損傷の度合いを非破壊かつ高精度に評価することが可能となる。
The amount of voids generated in heat-resistant steel such as high Cr steel depends on the stress field applied to the heat-resistant steel. The larger the stress state, especially the multiaxiality, the more voids are generated. According to the reference example of the present invention , since the number density of voids is normalized by the multiaxiality of the heat-resistant steel, the influence of the stress field on the void generation can be corrected.
And according to the reference example of the present invention , the void number density on the surface of the heat-resistant steel to be inspected detected and calculated by a non-destructive method is normalized by multiaxiality, and this value is the life of the heat-resistant steel prepared in advance. The degree of creep damage of the heat-resistant steel to be inspected is determined by comparing with a graph representing the correlation between the ratio and the number density of voids normalized by the multiaxiality. This makes it possible to evaluate the degree of creep damage of the heat-resistant steel with high accuracy and non-destructiveness.

また、上記発明の参考例において、前記ボイドの個数密度を、耐熱鋼における前記ボイドを検出した位置での多軸度で規格化することが好ましい。
耐熱鋼の多軸度は、材料の形状や部位によって異なる。ボイド個数密度を、耐熱鋼のボイドを検出した場所での多軸度で規格化すれば、多軸度の影響を除外した評価ができるので、耐熱鋼の劣化評価の精度を更に向上させることができる。
Further, in the reference example of the invention, the number density of the voids is preferably a child normalized by multiaxiality at a position detecting the voids in the heat-resisting steel.
The multiaxiality of heat-resistant steel varies depending on the shape and part of the material. If the void number density is normalized by the multiaxiality at the location where the voids of the heat-resistant steel are detected, the evaluation can be performed without the influence of the multiaxiality, so that the accuracy of deterioration evaluation of the heat-resistant steel can be further improved. it can.

また、上記発明の参考例において、前記耐熱鋼の脆化の度合いおよび前記耐熱鋼のクリープ損傷の度合いを判定することにより、検査対象の耐熱鋼の劣化の度合いを評価してもよい。 In the reference example of the invention , the degree of deterioration of the heat-resistant steel to be inspected may be evaluated by determining the degree of embrittlement of the heat-resistant steel and the degree of creep damage of the heat-resistant steel.

本発明または本発明の参考例は、上記の方法を用い、耐熱鋼の脆化の度合いおよび耐熱鋼のクリープ損傷の度合いの少なくとも一方を判定することにより、タービンの劣化度合いを評価するタービンの劣化評価方法を提供する。 The present invention or a reference example of the present invention uses the above-described method to evaluate the degree of turbine deterioration by determining at least one of the degree of embrittlement of the heat-resistant steel and the degree of creep damage of the heat-resistant steel. Provide an evaluation method.

本発明によれば、上記の耐熱鋼の劣化評価方法をタービン、特にタービン高温部に適用することで、タービンの熱的損傷による劣化を非破壊かつ高精度で早期に評価することが可能となる。これにより、タービンの劣化を事前に予測し、劣化によってタービンが停止し経済的損失を被ることを回避することができる。   According to the present invention, by applying the above-described degradation evaluation method for heat-resistant steel to a turbine, particularly a turbine high-temperature part, it becomes possible to evaluate degradation due to thermal damage of the turbine in an early stage with high accuracy and non-destructiveness. . Accordingly, it is possible to predict the deterioration of the turbine in advance and avoid the economic loss due to the turbine being stopped due to the deterioration.

本発明及び本発明の参考例によれば、耐熱鋼、特に高Cr鋼の脆化とクリープ損傷を非破壊で判定し、耐熱鋼の劣化度合いを高精度で評価することができる。また、本発明は高Cr鋼を使用したタービンの劣化度合いを非破壊で早期に、高精度で評価できる。このため、タービンの熱的損傷による劣化を事前に予測し、タービン停止によって経済的損失を被ることを回避することができる。 According to the present invention and the reference example of the present invention, the embrittlement and creep damage of heat resistant steel, particularly high Cr steel, can be determined nondestructively, and the degree of deterioration of the heat resistant steel can be evaluated with high accuracy. In addition, the present invention can evaluate the degree of deterioration of a turbine using high Cr steel with high accuracy at an early stage without any destruction. For this reason, deterioration due to thermal damage of the turbine can be predicted in advance, and it is possible to avoid incurring economic loss due to turbine shutdown.

本発明に係る耐熱鋼の劣化評価方法について、脆化の度合いを判定する場合の一実施形態を以下で説明する。   One embodiment in the case of determining the degree of embrittlement will be described below for the method for evaluating deterioration of heat-resistant steel according to the present invention.

検査対象となる耐熱鋼表面の析出物の抽出レプリカを採取する。具体的には、まず検査対象となる耐熱鋼の調査位置をサンドペーパー及びバフにより研磨する。研磨面をエッチング液を用いて組織が現出するまでエッチングし、エッチングした被検面をアルコール洗浄し乾燥させる。次いで、被検面に酢酸メチルを塗布し、酢酸メチルが乾燥する前にアセチルセルロースフィルム等のレプリカフィルムを貼り付ける。レプリカフィルムが乾燥した後、被検面から剥がし、耐熱鋼表面の析出物を転写し付着させたレプリカを採取する。   Extract a replica of the precipitate on the surface of the heat-resistant steel to be inspected. Specifically, the investigation position of the heat-resistant steel to be inspected is first polished by sandpaper and buffing. The polished surface is etched using an etchant until the structure appears, and the etched test surface is washed with alcohol and dried. Next, methyl acetate is applied to the test surface, and a replica film such as an acetylcellulose film is attached before the methyl acetate is dried. After the replica film is dried, the replica film is peeled off from the surface to be tested, and the replica on which the precipitate on the surface of the heat-resistant steel is transferred and adhered is collected.

採取したレプリカフィルムを走査型電子顕微鏡などの電子顕微鏡で観察し、旧オーステナイト粒界三重点を含む視野を選び、所定の観察倍率で析出物の電子顕微鏡写真を撮影する。次に、電子顕微鏡写真を画像処理し、析出物に対応するコントラストのみを抽出した2値化像に変換する。得られた2値化像から0.4μm未満の析出物に対応するコントラストを除外して粗大析出物のみのコントラストとする。このようにして検出した析出物の面積率を画像処理により算出する。   The collected replica film is observed with an electron microscope such as a scanning electron microscope, a visual field including the prior austenite grain boundary triple point is selected, and an electron micrograph of the precipitate is taken at a predetermined observation magnification. Next, the electron micrograph is subjected to image processing and converted into a binarized image in which only the contrast corresponding to the precipitate is extracted. From the obtained binarized image, the contrast corresponding to precipitates of less than 0.4 μm is excluded, and the contrast of only coarse precipitates is obtained. The area ratio of the precipitates thus detected is calculated by image processing.

耐熱鋼中には、製造時に、Crを主成分とするM23炭化物が結晶粒界近傍および結晶粒内に析出し、NbまたはVを主体としたMX型炭窒化物が結晶粒内に析出する。さらに、高温下における経年使用により金属間化合物であるラーベス相(Fe(Mo,W))が結晶粒界近傍に析出する。これらの析出物は経年使用中に使用温度や時間に応じた粗大化が進行するが、脆化には結晶粒界近傍の粗大析出物が影響する。そこで、粒界近傍に析出した粗大なM23炭化物およびラーベス相(Fe(Mo,W))のみを抽出し、脆化の進行に影響しない微細析出物の面積率への寄与を除外することで、評価精度を向上させる。 In the heat-resistant steel, M 23 C 6 carbide containing Cr as a main component is precipitated in the vicinity of the crystal grain boundary and in the crystal grain at the time of manufacture, and MX type carbonitride mainly containing Nb or V is contained in the crystal grain. Precipitate. Furthermore, the Laves phase (Fe 2 (Mo, W)), which is an intermetallic compound, precipitates in the vicinity of the grain boundary due to the use over time at high temperatures. While these precipitates are coarsened according to the use temperature and time during the use over time, the coarse precipitates in the vicinity of the grain boundaries affect the embrittlement. Therefore, only the coarse M 23 C 6 carbide and Laves phase (Fe 2 (Mo, W)) precipitated in the vicinity of the grain boundaries are extracted, and the contribution to the area ratio of fine precipitates that do not affect the progress of embrittlement is excluded. This improves the evaluation accuracy.

上記の各種析出物を、走査型電子顕微鏡観察のEDS分析等により判別するのは非常に煩雑であるので、本発明では簡便的に脆化に影響する析出物を大きさで判別する。また、粒界近傍の析出物に限定するため、粗大析出物が最も密集している旧オーステナイト粒界三重点を含む視野を所定の倍率で観察する。粗大析出物のみをクローズアップさせて評価するために、検出する析出物の大きさの閾値を検討した。その結果、図1に示すように、0.4μmを閾値とし、大きさが0.4μm未満の析出物を除外して2値化像を作成すると、素材状態における粒内の微細析出物をほぼ全て除外することができた。また、長時間加熱試験を実施した耐熱鋼表面の粗大析出物に対応する部分が非常に鮮明となった。従って、大きさが0.4μm以上の析出物に対応する部分を抽出した2値化像を作成しその面積率を算出することにより、粒内に存在する微細な析出物を完全に除外でき、さらに2値化像における粗大析出物に対応する部分が鮮明となるため、面積率の算出精度が向上する。その結果耐熱鋼の脆化評価の精度を向上させることができる。   Since it is very complicated to discriminate the above various precipitates by EDS analysis or the like of observation with a scanning electron microscope, in the present invention, the precipitates that easily affect embrittlement are discriminated by size. Further, in order to limit the precipitate to the vicinity of the grain boundary, the visual field including the prior austenite grain boundary triple point where the coarse precipitates are most densely packed is observed at a predetermined magnification. In order to close up and evaluate only coarse precipitates, the threshold of the size of the precipitates to be detected was examined. As a result, as shown in FIG. 1, when a binarized image is created by setting a threshold value of 0.4 μm and excluding precipitates having a size of less than 0.4 μm, the fine precipitates in the grain in the material state are almost eliminated. All could be excluded. Moreover, the part corresponding to the coarse precipitate on the surface of the heat-resistant steel subjected to the heating test for a long time became very clear. Therefore, by creating a binarized image in which a portion corresponding to a precipitate having a size of 0.4 μm or more is extracted and calculating the area ratio, fine precipitates existing in the grains can be completely excluded, Furthermore, since the part corresponding to the coarse precipitate in the binarized image becomes clear, the calculation accuracy of the area ratio is improved. As a result, the accuracy of the embrittlement evaluation of the heat resistant steel can be improved.

ここで、耐熱鋼試験片についての脆化指標と耐熱鋼に生成した析出物の面積率との相関を表すグラフを予め作成しておく。具体的には、実験室にて試験片を500〜600℃で最大10万時間まで長時間加熱し、上述の手順に従って試験片表面に生成した析出物の面積率を算出する。   Here, the graph showing the correlation between the embrittlement index for the heat-resistant steel test piece and the area ratio of precipitates generated in the heat-resistant steel is prepared in advance. Specifically, the test piece is heated in a laboratory at 500 to 600 ° C. for a long time up to 100,000 hours, and the area ratio of precipitates generated on the surface of the test piece is calculated according to the procedure described above.

試験片の脆化を測定する。脆化は、例えば、シャルピー衝撃試験によって測定することができる。シャルピー衝撃試験は、材料の脆性を簡便に評価する手法として有効であり、脆性評価を短時間で行える利点がある。シャルピー衝撃試験で得られた延性脆性遷移温度またはシャルピー吸収エネルギーを、脆化指標とする。   Measure the embrittlement of the specimen. The embrittlement can be measured by, for example, a Charpy impact test. The Charpy impact test is effective as a method for simply evaluating the brittleness of a material, and has an advantage that brittleness evaluation can be performed in a short time. The ductile brittle transition temperature or Charpy absorbed energy obtained in the Charpy impact test is used as an embrittlement index.

図2に、耐熱鋼試験片の生成析出物の面積率と脆性指標との相関を表すグラフを示す。同図において、脆性指標は、延性脆性遷移温度の初期値からの変化量(ΔFATT)とし、マスターカーブを作成する。   In FIG. 2, the graph showing the correlation with the area ratio of the product precipitate of a heat-resistant steel test piece and a brittle parameter | index is shown. In the figure, the brittleness index is the amount of change (ΔFATT) from the initial value of the ductile brittle transition temperature, and a master curve is created.

検査対象の耐熱鋼に生成した析出物の面積率の値と、図2のマスターカーブとを照合し、その面積率に対応するΔFATTの値を読み取る。このΔFATTの値を、検査対象の耐熱鋼の脆化度合いとし、耐熱鋼の劣化を評価する。   The value of the area ratio of the precipitate generated in the heat-resistant steel to be inspected is compared with the master curve in FIG. 2, and the value of ΔFATT corresponding to the area ratio is read. The value of ΔFATT is used as the degree of embrittlement of the heat-resistant steel to be inspected, and the deterioration of the heat-resistant steel is evaluated.

さらに、得られた検査対象となる耐熱鋼のΔFATTの値を材料の規格値と比較し、脆化による劣化進行の程度を評価することもできる。   Furthermore, the ΔFATT value of the obtained heat-resistant steel to be inspected can be compared with the standard value of the material to evaluate the degree of progress of deterioration due to embrittlement.

次に、本発明の参考例に係る耐熱鋼の劣化評価方法について、クリープ損傷の度合いを判定する場合の一実施形態を以下で説明する。 Next, an embodiment for determining the degree of creep damage will be described below with respect to the method for evaluating deterioration of heat-resistant steel according to a reference example of the present invention.

脆化の度合いを判定する場合の実施形態と同様にして、検査対象となる耐熱鋼表面の金属組織のレプリカを採取し、走査型電子顕微鏡にて所定の倍率及び視野数で粒界上のボイドを観察し、電子顕微鏡写真を撮影する。   In the same manner as in the embodiment for determining the degree of embrittlement, a replica of the metal structure on the surface of the heat-resistant steel to be inspected is collected, and a void on the grain boundary is obtained with a predetermined magnification and the number of fields of view with a scanning electron microscope. And take an electron micrograph.

得られた電子顕微鏡写真を、画像処理によって粒界上のボイドに対応するコントラストを抽出して2値化像に変換する。このようにして検出したボイドの個数を画像処理により計測し、単位面積当たりの個数密度を算出する。   From the obtained electron micrograph, the contrast corresponding to the void on the grain boundary is extracted by image processing and converted into a binary image. The number of voids detected in this way is measured by image processing, and the number density per unit area is calculated.

次に、検査対象の耐熱鋼のボイドの個数密度を、検査対象部位の多軸度で規格化する。耐熱鋼である高Cr鋼のボイドの発生量は、多軸度だけでなく最大主応力などの応力とも相関があるが、本発明の参考例では最も相関が強い多軸度を採用した。多軸度は、FEM計算等を用いて設計条件から算出される。高Cr鋼が多軸応力場で加熱されると、多軸度が大きいほどボイドが多く発生する。例えば、タービンロータ翼溝は各段落で翼溝形状が異なるとともに、タービン形式により翼溝形状も変わってくるため、多軸度の値に幅がある。さらに、車室や主要弁などの内圧下では翼溝と多軸度が異なっている。本発明の参考例のように、得られたボイドの個数密度を耐熱鋼の多軸度で規格化することで、多軸度の影響を除外できる。このとき、ボイドを検出した位置(レプリカを採取した位置)での多軸度で規格化すると、評価精度が更に向上するので好ましい。 Next, the number density of voids in the heat-resistant steel to be inspected is normalized by the multiaxiality of the inspection target part. The amount of voids generated in the high Cr steel, which is a heat-resistant steel, has a correlation with not only the multiaxiality but also the stress such as the maximum principal stress, but the multiaxiality having the strongest correlation was adopted in the reference example of the present invention. The multiaxiality is calculated from design conditions using FEM calculation or the like. When high Cr steel is heated in a multiaxial stress field, the larger the multiaxiality, the more voids are generated. For example, the turbine rotor blade groove has different blade groove shapes in each stage, and the blade groove shape also varies depending on the turbine type. Further, the blade groove and the multiaxiality are different under the internal pressure of the vehicle compartment and the main valve. As in the reference example of the present invention, the influence of the multiaxiality can be excluded by normalizing the number density of the obtained voids with the multiaxiality of the heat-resistant steel. At this time, it is preferable to normalize by the multiaxiality at the position where the void is detected (position where the replica is collected) because the evaluation accuracy is further improved.

ここで、別の耐熱鋼試験片を用いて、耐熱鋼のクリープ破断寿命比と多軸度で規格化したボイドの個数密度との相関を表すグラフを予め作成しておく。具体的には、切欠き試験片のクリープ試験や内圧クリープ試験を実験室において行い、任意の試験時間で試験を止め、試験片の表面および内部に生成したボイドの個数密度を計測する。試験片の多軸度は、試験片の切欠き形状や検査位置で異なるので、検査対象部位での多軸度を試験片のFEM解析により算出し、得られた多軸度でボイド個数密度を規格化する。また、各切欠き形状の試験片それぞれの破断時間を測定し、クリープ試験時間を破断時間で除算した値を寿命比とする。   Here, a graph showing the correlation between the creep rupture life ratio of the heat-resistant steel and the number density of voids normalized by the multiaxiality is prepared in advance using another heat-resistant steel test piece. Specifically, a creep test and an internal pressure creep test of a notch specimen are performed in a laboratory, the test is stopped at an arbitrary test time, and the number density of voids generated on the surface and inside of the specimen is measured. Since the multiaxiality of the test piece differs depending on the notch shape of the test piece and the inspection position, the multiaxiality at the inspection target site is calculated by FEM analysis of the test piece, and the void number density is calculated by the obtained multiaxiality. Standardize. Further, the rupture time of each notched test piece is measured, and the value obtained by dividing the creep test time by the rupture time is defined as the life ratio.

図3は、耐熱鋼の各種試験片形状におけるクリープ破断寿命比t/tと生成ボイドの個数密度との相関を表すグラフである。図3には、各試験片の測定点を二乗平均した近似曲線を示し、試験片の測定点の範囲(データバンド)を網掛け部で示した。寿命比の増大とともにボイド個数密度が増大する傾向があるが、同じ寿命比であっても試験片によりボイド個数密度にばらつきが見られ、多軸度が大きい試験片でボイドが多く発生する。また、試験片表面と内部とでは、内部の方が多軸度が大きいのでボイドが多く発生する。本試験の範囲では、ボイド個数密度のばらつきは、データバンドのほぼ中央に位置している内圧クリープ先端表面のカーブに対して、最大で縦軸の2倍、最小で縦軸の1/2の範囲内(factor of 2)であった。このように、ボイド観察部の多軸度とボイド発生量に相関があるため、試験片形状や観察部位毎に別々のマスターカーブを作成する必要があり、評価が煩雑になってしまう。 FIG. 3 is a graph showing the correlation between the creep rupture life ratio t / tr and the number density of generated voids in various test piece shapes of heat resistant steel. FIG. 3 shows an approximate curve obtained by squaring the measurement points of each test piece, and the range (data band) of the measurement points of the test piece is indicated by a shaded portion. Although the void number density tends to increase as the life ratio increases, even if the life ratio is the same, the void number density varies depending on the test piece, and many voids are generated in the test piece having a large multiaxiality. In addition, a large number of voids are generated between the test piece surface and the inside because the inside has a larger multiaxiality. In the range of this test, the variation in the void number density is twice as large as the vertical axis and as small as 1/2 of the vertical axis with respect to the curve of the internal pressure creep tip surface located almost in the center of the data band. It was within the range (factor of 2). Thus, since there is a correlation between the multiaxiality of the void observation unit and the amount of void generation, it is necessary to create a separate master curve for each test piece shape and observation site, and the evaluation becomes complicated.

図4は、図3におけるボイド個数密度を各検査位置における多軸度で規格化したグラフである。図4の網掛け部は、試験片の測定点の範囲を示している。多軸度は、試験片のFEM解析により算出した。発生したボイドの個数密度を多軸度で規格化することにより、多軸度が異なる試験片ごとのボイド個数密度のばらつきは、全データ平均線に対して、最大で縦軸の1.3倍、最小で縦軸の1/1.3の範囲内(factor of 1.3)にまで大幅に低減される。また、多軸度で規格化したボイド個数密度を基にマスターカーブを作成しているので、例えばタービン型式や検査部位によって多軸度の異なる実機において、それぞれの部位毎にマスターカーブを作成する手間が省け、評価の効率化が図られる。   FIG. 4 is a graph in which the void number density in FIG. 3 is normalized by the multiaxiality at each inspection position. The shaded portion in FIG. 4 indicates the range of measurement points on the test piece. The multiaxiality was calculated by FEM analysis of the test piece. By standardizing the number density of the generated voids with multiaxiality, the variation in the void number density for each test piece with different multiaxiality is 1.3 times the vertical axis at the maximum with respect to the average line of all data. Is significantly reduced to a factor of 1.3 within the vertical axis. In addition, since the master curve is created based on the void number density standardized by multiaxiality, for example, in an actual machine with different multiaxiality depending on the turbine model and inspection site, it is troublesome to create a master curve for each part. Can be omitted, and the efficiency of evaluation can be improved.

検査対象の耐熱鋼に生成したボイドの個数密度を検査対象部位での多軸度で規格化した値を、図4のマスターカーブと照合し、そのボイド個数密度での寿命比t/tを読み取る。この寿命比を検査対象の耐熱鋼のクリープ損傷の度合いとし、検査対象の耐熱鋼の劣化度合いを評価する。 The value normalized by multiaxiality in the inspected portion of the number density of voids produced in the heat resistant steel to be tested, against the master curve of FIG. 4, the life ratio t / t r at the void number density read. This life ratio is defined as the degree of creep damage of the heat-resistant steel to be inspected, and the degree of deterioration of the heat-resistant steel to be inspected is evaluated.

本発明の参考例においては、上記の方法に従って脆化度合いの判定およびクリープ損傷度合いの判定の両方を行い、これらを併せて検査対象の耐熱鋼の劣化度合いを評価することも可能である。 In the reference example of the present invention , both the determination of the degree of embrittlement and the determination of the degree of creep damage can be performed according to the above-described method, and these can be combined to evaluate the degree of deterioration of the heat-resistant steel to be inspected.

次に、本発明及び本発明の参考例の耐熱鋼の劣化評価方法を用いたタービンの劣化評価方法の一実施形態を説明する。
Next, an embodiment of a turbine deterioration evaluation method using the heat resistance steel deterioration evaluation method of the present invention and a reference example of the present invention will be described.

ロータ、車室、主要弁などタービン高温部の調査位置の表面から、上述の工程により金属組織のレプリカを採取する。   A replica of the metal structure is collected from the surface of the investigation position in the high temperature part of the turbine, such as the rotor, casing, and main valve, by the above-described process.

タービン高温部の脆化による劣化を評価する。採取したレプリカフィルムを走査型電子顕微鏡で観察し、旧オーステナイト粒界三重点を含む視野を選び、所定の観察倍率で電子顕微鏡写真を撮影する。次に、電子顕微鏡写真を画像処理して、大きさが0.4μm以上の結晶粒界上の粗大析出物に対応するコントラストのみを抽出し2値化像を作成し、その面積率を算出する。   Evaluate deterioration due to embrittlement in the high temperature part of the turbine. The collected replica film is observed with a scanning electron microscope, a visual field including a prior austenite grain boundary triple point is selected, and an electron micrograph is taken at a predetermined observation magnification. Next, the electron micrograph is subjected to image processing, and only the contrast corresponding to the coarse precipitate on the crystal grain boundary having a size of 0.4 μm or more is extracted to create a binarized image, and the area ratio is calculated. .

次いで、図2に示す、試験片についての粗大析出物の面積率とΔFATTとの相関を表すマスターカーブと、タービン調査位置表面に生成した粗大析出物の面積率とを照合する。図2のマスターカーブからタービン調査位置表面の粗大析出物の面積率に対応するΔFATTの値を読み取り、タービン調査位置の脆化度合いとし、タービンの劣化度合いを評価する。   Next, the master curve representing the correlation between the area ratio of coarse precipitates and ΔFATT shown in FIG. 2 is compared with the area ratio of coarse precipitates generated on the surface of the turbine investigation position. The value of ΔFATT corresponding to the area ratio of coarse precipitates on the surface of the turbine inspection position is read from the master curve in FIG. 2, and the degree of deterioration of the turbine is evaluated as the degree of embrittlement at the turbine inspection position.

タービン高温部のクリープ損傷による劣化を評価する。採取したレプリカフィルムを走査型電子顕微鏡で観察し、顕微鏡写真を撮影する。得られた電子顕微鏡写真を画像処理し、粒界上のボイドに対応するコントラストを2値化像に変換する。このようにして検出したボイドの個数を計測し、単位面積あたりのボイド個数密度を算出する。   Evaluate deterioration due to creep damage in the high temperature part of the turbine. The collected replica film is observed with a scanning electron microscope, and a micrograph is taken. The obtained electron micrograph is subjected to image processing, and the contrast corresponding to the void on the grain boundary is converted into a binary image. The number of voids detected in this way is measured, and the void number density per unit area is calculated.

その後、タービンの調査位置での多軸度を、調査位置のFEM計算により算出する。そして、算出した多軸度で調査位置表面のボイド個数密度を規格化する。図4に示す、試験片についてのクリープ破断寿命比t/tと多軸度で規格化したボイド個数密度との相関を表すマスターカーブと、タービン調査位置での多軸度で規格化したボイド個数密度とを照合する。図4のマスターカーブからタービン調査位置での多軸度で規格化したボイド個数密度に対応する寿命比t/tの値を読み取り、タービン調査位置のクリープ損傷度合いとし、タービンの劣化度合いを評価する。 Thereafter, the multiaxiality at the turbine survey position is calculated by FEM calculation at the survey position. Then, the void number density on the surface of the investigation position is normalized with the calculated multiaxiality. The master curve showing the correlation between the creep rupture life ratio t / tr and the void number density normalized by the multiaxiality shown in FIG. 4 and the void normalized by the multiaxiality at the turbine investigation position. Check the number density. Figure 4 of the master curve at multiaxiality at turbine interrogation position reads the value of the life ratio t / t r corresponding to the void number density normalized, and creep damage degree of the turbine interrogation position, evaluating the degree of deterioration of the turbine To do.

上記で得られたタービン高温部における脆化度合い及びクリープ損傷度合いを、それぞれの材料の規格値と比較しても良い。例えば、いずれも規格値よりも小さければタービンを継続して使用できると判断する。タービン高温部における脆化度合いあるいはクリープ損傷度合いの少なくとも一方が規格値よりも大きい場合は、タービンを交換する必要があると判断することができる。   The degree of embrittlement and the degree of creep damage in the turbine high-temperature part obtained above may be compared with the standard values of the respective materials. For example, if both are smaller than the standard value, it is determined that the turbine can be used continuously. If at least one of the degree of embrittlement or the degree of creep damage in the high temperature part of the turbine is larger than the standard value, it can be determined that the turbine needs to be replaced.

なお、本発明の耐熱鋼の劣化評価方法、およびタービンの劣化評価方法は、上述した実施形態に限定されるものではなく、本発明の範囲内で任意に組み合わせ可能である。   The heat-resistant steel deterioration evaluation method and the turbine deterioration evaluation method of the present invention are not limited to the above-described embodiment, and can be arbitrarily combined within the scope of the present invention.

耐熱鋼表面から析出したレプリカの画像処理像と、大きさが0.4μm未満の析出物を除外した画像処理像である。It is the image processing image of the replica which precipitated from the heat-resistant steel surface, and the image processing image which excluded the precipitate whose magnitude | size is less than 0.4 micrometer. 耐熱鋼試験片に生成した大きさ0.4μm以上の析出物の面積率と耐熱鋼の脆性指標との相関を表すグラフである。It is a graph showing the correlation with the area ratio of the precipitate of the magnitude | size of 0.4 micrometer or more produced | generated to the heat-resisting steel test piece, and the brittle parameter | index of heat-resisting steel. 各種耐熱鋼試験片における生成ボイドの個数密度と寿命比との相関を表すグラフである。It is a graph showing the correlation of the number density of the production | generation void in various heat-resistant steel test pieces, and a life ratio. 多軸度で規格化した各種耐熱鋼試験片における生成ボイドの個数密度と寿命比との相関を表すグラフである。It is a graph showing the correlation between the number density of generated voids and the life ratio in various heat-resistant steel test pieces standardized by multiaxiality.

Claims (4)

検査対象の耐熱鋼の表面に生成した結晶粒界近傍の粗大析出物であるラーベス相及び、M 23 炭化物を検出し、
該検査対象の耐熱鋼の表面に生成した析出物の面積率を算出し、
予め作成された、脆化指標と耐熱鋼に生成した析出物の面積率との相関を表すグラフに基づき、前記検査対象の耐熱鋼の表面に生成した析出物の面積率から検査対象の耐熱鋼の脆化の度合いを判定する耐熱鋼の劣化評価方法。
The Laves phase, which is a coarse precipitate near the grain boundary , generated on the surface of the heat-resistant steel to be inspected , and M 23 C 6 carbide ,
Calculate the area ratio of precipitates generated on the surface of the heat-resistant steel to be inspected,
Based on the graph representing the correlation between the embrittlement index and the area ratio of precipitates generated in the heat-resistant steel, prepared in advance, the heat-resistant steel to be inspected from the area ratio of precipitates generated on the surface of the heat-resistant steel to be inspected. Degradation evaluation method for heat-resistant steel to determine the degree of embrittlement.
前記検出する析出物の大きさが0.4μm以上である請求項1に記載の耐熱鋼の劣化評価方法。 The method for evaluating deterioration of heat-resistant steel according to claim 1, wherein the size of the precipitate to be detected is 0.4 μm or more. 前記脆化指標が、延性脆性遷移温度またはシャルピー吸収エネルギーである請求項1または請求項2に記載の耐熱鋼の劣化評価方法。 The heat resistance steel deterioration evaluation method according to claim 1 or 2 , wherein the embrittlement index is a ductile brittle transition temperature or Charpy absorbed energy. 請求項1ないしのいずれか1項に記載する方法で耐熱鋼の脆化の度合いを判定することにより、タービンの劣化度合いを評価するタービンの劣化評価方法。 By determining the embrittlement degree physicians of the heat-resisting steel according to the methods described in any one of claims 1 to 3, the deterioration evaluation method of the turbine of evaluating the degree of deterioration of the turbine.
JP2007262458A 2007-10-05 2007-10-05 Degradation evaluation method for heat resistant steel and degradation evaluation method for turbine Active JP5010422B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007262458A JP5010422B2 (en) 2007-10-05 2007-10-05 Degradation evaluation method for heat resistant steel and degradation evaluation method for turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007262458A JP5010422B2 (en) 2007-10-05 2007-10-05 Degradation evaluation method for heat resistant steel and degradation evaluation method for turbine

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2012053379A Division JP5412540B2 (en) 2012-03-09 2012-03-09 Degradation evaluation method for heat resistant steel and degradation evaluation method for turbine

Publications (2)

Publication Number Publication Date
JP2009092478A JP2009092478A (en) 2009-04-30
JP5010422B2 true JP5010422B2 (en) 2012-08-29

Family

ID=40664608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007262458A Active JP5010422B2 (en) 2007-10-05 2007-10-05 Degradation evaluation method for heat resistant steel and degradation evaluation method for turbine

Country Status (1)

Country Link
JP (1) JP5010422B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010101848A (en) * 2008-10-27 2010-05-06 Ihi Corp Damage evaluation method of high-chromium steel product
JP5254863B2 (en) * 2009-03-30 2013-08-07 三菱重工業株式会社 Brittleness determination method
JP5622406B2 (en) * 2010-02-25 2014-11-12 三菱重工業株式会社 Evaluation method of embrittlement of heat-resistant steel
JP5492057B2 (en) * 2010-11-18 2014-05-14 バブコック日立株式会社 Damage prediction method for heat-resistant steel welds
JP5931381B2 (en) * 2011-09-13 2016-06-08 三菱日立パワーシステムズ株式会社 Damage evaluation method and maintenance evaluation index formulation method
JP6131539B2 (en) * 2012-07-13 2017-05-24 富士電機株式会社 Degradation evaluation method for machine parts
JP2014071053A (en) 2012-10-01 2014-04-21 Hitachi Ltd Creep damage assessment method and creep damage assessment system for high-temperature members

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2589429B2 (en) * 1992-01-30 1997-03-12 株式会社神戸製鋼所 Ni-Fe-Cr alloy
JP3486315B2 (en) * 1997-02-17 2004-01-13 三菱重工業株式会社 High temperature damage evaluation method for tempered martensitic steel
JP4398639B2 (en) * 2002-12-13 2010-01-13 株式会社神戸製鋼所 Soft magnetic steel materials with excellent machinability and magnetic properties, soft magnetic steel components with excellent magnetic properties, and methods for producing soft magnetic steel components
JP2004315947A (en) * 2003-04-21 2004-11-11 Hitachi Metals Ltd Method for manufacturing maraging steel strip for continuously variable transmission
JP4421346B2 (en) * 2004-03-26 2010-02-24 川崎重工業株式会社 Ductile fracture limit estimation method, program and recording medium

Also Published As

Publication number Publication date
JP2009092478A (en) 2009-04-30

Similar Documents

Publication Publication Date Title
JP5010422B2 (en) Degradation evaluation method for heat resistant steel and degradation evaluation method for turbine
US5140264A (en) Method for non-destructively assessing the condition of a turbine blade using eddy current probes inserted within cooling holes
CA2693045C (en) Method for assessing remaining lifespan of bolt used at high temperatures
US20040240600A1 (en) Positron annihilation for inspection of land based industrial gas turbine components
CN110741136B (en) Extended life of power turbine disks exposed to corrosion damage in use
JP5412540B2 (en) Degradation evaluation method for heat resistant steel and degradation evaluation method for turbine
Rani et al. Failure analysis of a low-pressure stage steam turbine blade
JPH09195795A (en) Remaining life evaluation method for gas turbine stationary blade and device thereof
JP5254863B2 (en) Brittleness determination method
JP6131539B2 (en) Degradation evaluation method for machine parts
JP2804701B2 (en) Gas turbine coating blade deterioration diagnosis method and apparatus
JP2014142304A (en) Life evaluation method for austenite stainless steel
JP5622406B2 (en) Evaluation method of embrittlement of heat-resistant steel
JP2013057546A (en) Life diagnosis method and life diagnosis device for high-temperature member
JP6741233B2 (en) Method for evaluating embrittlement of steel members
JP2020118566A (en) High-temperature apparatus remaining life evaluation method and remaining life evaluation assisting system
EP1426760A1 (en) A non-destructive testing method of determining the service metal temperature of a component
Zilberstein et al. Validation of multi-frequency eddy current MWM sensors and MWM-Arrays for coating production quality and refurbishment assessment
RU2386962C1 (en) Method of magnetic diagnostics of turbomachine blade made from nickel alloys
JP6523816B2 (en) Life evaluation method of structure
Livings et al. Process Compensated Resonance Testing for Qualifying the Metallurgical Aspects and Manufacturing Defects of Turbine Blades
Mokhtar et al. Failure analysis of high pressure high temperature super-heater outlet header tube in heat recovery steam generator
RU2376594C2 (en) Magnetic method of detecting flaws in blades of turbo-machines made from cobalt alloys in mechanical loading conditions
RU2386961C1 (en) Method of magnetic diagnostics of turbomachine blade made from cobalt alloys
Prasad et al. Remaining life assessment (RLA) of gas based units—case studies

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100818

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120508

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120601

R151 Written notification of patent or utility model registration

Ref document number: 5010422

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150608

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350