JPH10197492A - Electromagnetic induction thin film probe - Google Patents

Electromagnetic induction thin film probe

Info

Publication number
JPH10197492A
JPH10197492A JP9001284A JP128497A JPH10197492A JP H10197492 A JPH10197492 A JP H10197492A JP 9001284 A JP9001284 A JP 9001284A JP 128497 A JP128497 A JP 128497A JP H10197492 A JPH10197492 A JP H10197492A
Authority
JP
Japan
Prior art keywords
thin film
coil
electromagnetic induction
probe
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP9001284A
Other languages
Japanese (ja)
Inventor
Osamu Iwai
修 岩井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP9001284A priority Critical patent/JPH10197492A/en
Publication of JPH10197492A publication Critical patent/JPH10197492A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/82Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
    • G01N27/90Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents
    • G01N27/9006Details, e.g. in the structure or functioning of sensors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable use of a probe at a smaller clearance and measurement of discontinued parts with a complicated shape while achieving a higher detection sensitivity by forming a concentric circular coil on a thin film made of a resin or the like while an electromagnetic shielding layer is arranged on one surface side of the coil. SOLUTION: In the forming of a probe 10, a concentric circular coil 11 is stuck on one surface of a thin film 12 made of a resin or other synthetic resins and an amorphous metal 13 as electromagnetic shielding layer on the side opposite to the coil 11. The shape of the coil 11 may be circular, oval or rectangular as the stuck surface of the thin film 12 is viewed from above. When inspecting a discontinued part or the like of a testing object, a high frequency voltage is applied to the coil 11 from an eddy current flaw detector to perform a scanning in the longitudinal direction of the probe and in the vertical direction thereto in the state where the coil 11 is in contact with the testing object or slightly separated therefrom and a change in the impedance of the coil 11 is sent to the eddy current flaw detector as signal. Then, the signal is analyzed to detect a flaw.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は主に金属表面に存在
する割れ等の傷を、非破壊的に検査する際に使用する電
磁誘導薄膜プロ−ブに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electromagnetic induction thin film probe mainly used for nondestructively inspecting a flaw such as a crack existing on a metal surface.

【0002】[0002]

【従来の技術】金属の表面に存在する割れ等の傷を非破
壊的に検査する場合には、磁粉探傷法や浸透探傷法と呼
ばれる表面非破壊検査技術が一般的に使用されている。
また、最近では、渦流探傷法による表面傷の探傷技術と
して、表面探傷用のプロ−ブ(サ−フェイスプロ−ブ)
による検査手法が用いられているようになって来てい
る。
2. Description of the Related Art In order to non-destructively inspect a flaw such as a crack existing on the surface of a metal, a non-destructive surface inspection technique called a magnetic particle inspection method or a penetration inspection method is generally used.
Recently, as a technique for detecting a surface flaw by an eddy current flaw detection method, a probe for surface flaw detection (surface probe) has been proposed.
Has been used.

【0003】このサ−フェイスプロ−ブを用いた検査手
法は、図10に示すように、プラスチック等からなる基
板1の片面にコイル2を貼り付けたプローブ3を使用
し、これを試験体4,5の隙間Wなどに挿入して、コイ
ル2に高周波電流を流し、その電磁誘導によるインピー
ダンスの変化を捕らえて探傷を行うものである。
An inspection method using this surface probe uses a probe 3 having a coil 2 attached to one surface of a substrate 1 made of plastic or the like, as shown in FIG. , 5 and the like, a high-frequency current is passed through the coil 2, and a change in impedance due to the electromagnetic induction is captured to perform flaw detection.

【0004】しかしながら、図11に示すように、試験
体4,5の隙間Wが数ミリメ−トル程度しかない場合
に、不連続部6,7が互いに向き合った試験体4,5の
表面に存在するような場合には、不連続部6と不連続部
7の影響が重なり合ったインピーダンス変化による信号
8が測定されるため、不連続部6、7がいずれの面に存
在するのかを識別することができず、また不連続部6と
不連続部7が共に存在する場合も、それを識別すること
ができない。
However, as shown in FIG. 11, when the gap W between the test pieces 4 and 5 is only about several millimeters, the discontinuous portions 6 and 7 exist on the surfaces of the test pieces 4 and 5 facing each other. In such a case, since the signal 8 due to the impedance change where the effects of the discontinuous portion 6 and the discontinuous portion 7 overlap is measured, it is necessary to identify on which surface the discontinuous portions 6 and 7 are present. When the discontinuous portion 6 and the discontinuous portion 7 are both present, it cannot be identified.

【0005】[0005]

【発明が解決しようとする課題】上述のように、従来の
サ−フェイスプロ−ブによる検査技術は、試験体の隙間
Wがある程度大きい箇所への適用に限られ、隙間Wが数
ミリメ−トル程度の狭い箇所への適用は実際困難であっ
た。
As described above, the inspection technique using the conventional surface probe is limited to the application to a place where the gap W of the test piece is relatively large, and the gap W is several millimeters. Application to narrow areas was difficult in practice.

【0006】本発明は、狭い隙間での適用を可能にする
とともに、試験体に存在している不連続部の形状の特
定、不連続部の存在位置の特定および試験体表面の一方
が複雑形状である場合の不連続部の測定を可能とし、し
かも不連続部等の検出感度を高めた電磁誘導薄膜プロ−
ブを提供することを課題とするものである。
The present invention enables application in a narrow gap, specifies a shape of a discontinuous portion existing in a test piece, specifies a position where the discontinuous portion exists, and forms one of the surfaces of the test piece having a complicated shape. The electromagnetic induction thin film probe that enables measurement of discontinuous parts in the case of
It is an object to provide a service.

【0007】[0007]

【課題を解決するための手段】本発明の第1の発明は、
電磁誘導を利用して金属試験体の表面に存在する傷を検
出する電磁誘導薄膜プロ−ブにおいて、プラスチック等
の薄膜フィルム上に同心環状のコイルを形成すると共
に、このコイルの一面側に電磁遮蔽層を配置したことを
特徴とするものである。また、本発明の第2の発明は、
電磁誘導を利用して金属試験体の表面に存在する傷を検
出する電磁誘導薄膜プロ−ブにおいて、プラスチック等
の薄膜フィルム上にコイルを形成すると共に、このコイ
ルの一面側に磁石(永久磁石)を配置したことを特徴と
するものである。
Means for Solving the Problems A first invention of the present invention is:
In an electromagnetic induction thin film probe for detecting a flaw present on the surface of a metal specimen by using electromagnetic induction, a concentric annular coil is formed on a thin film such as plastic, and an electromagnetic shield is provided on one side of the coil. It is characterized by arranging layers. Further, the second invention of the present invention
In an electromagnetic induction thin film probe for detecting a flaw present on the surface of a metal specimen using electromagnetic induction, a coil is formed on a thin film such as plastic and a magnet (permanent magnet) is provided on one side of the coil. Are arranged.

【0008】[0008]

【発明の実施の形態】本発明において、薄膜フィルムと
しては数マイクロメートル程度のプラスチック等の薄膜
を用いることができる。電磁遮蔽層としてはアモルファ
ス金属の薄膜を用いることができる。電磁遮蔽層は、薄
膜フィルム上のコイルと反対側の面に形成してもよく、
あるいは同じ側の面に形成してもよい。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the present invention, a thin film of plastic or the like having a thickness of about several micrometers can be used as a thin film. An amorphous metal thin film can be used as the electromagnetic shielding layer. The electromagnetic shielding layer may be formed on the surface of the thin film opposite to the coil,
Alternatively, they may be formed on the same side surface.

【0009】本発明においては、プラスチック等の薄膜
フィルム上に同心環状のコイルを形成すると共に、その
反対側の面に形成した電磁遮蔽層の上にもう1個のコイ
ルを形成してもよい。また、プラスチック等の薄膜上に
2個のコイルを近接して配置し、これらのコイルから差
動成分を取り出すようにしてもよい。
In the present invention, a concentric annular coil may be formed on a thin film of plastic or the like, and another coil may be formed on an electromagnetic shielding layer formed on the opposite surface. Alternatively, two coils may be arranged close to each other on a thin film of plastic or the like, and a differential component may be extracted from these coils.

【0010】[0010]

【実施例】次に、本発明の好ましい実施例を、図面を参
照しながら説明する。
Next, a preferred embodiment of the present invention will be described with reference to the drawings.

【0011】図1は本発明の電磁誘導薄膜プロ−ブの実
施例を示すもので、プロ−ブ10は同心環状のコイル1
1を、プラスチックその他の合成樹脂性の薄膜フィルム
12の一面に貼り付け、コイル11の反対側の面にアモ
ルファス金属13を貼り付けて構成されている。この場
合、プロ−ブの厚さtは数mm以下であることが好まし
い。同心環状のコイル11の形状は、薄膜フィルム12
への貼り付け面を上部から見た場合、円形、楕円形、ま
たは矩形のいずれでもかまわない。
FIG. 1 shows an embodiment of an electromagnetic induction thin-film probe according to the present invention.
1 is attached to one surface of a thin film 12 made of plastic or other synthetic resin, and an amorphous metal 13 is attached to the opposite surface of the coil 11. In this case, the thickness t of the probe is preferably several mm or less. The shape of the concentric annular coil 11 is a thin film 12
When viewed from above, the surface to be adhered to the surface may be circular, oval, or rectangular.

【0012】この電磁誘導薄膜プロ−ブを用いて試験体
5における不連続部等の検査を行う場合には、図2に示
すように、渦流探傷器20からコイル11に高周波電圧
を与え、試験体5に対してコイル11を接触または少し
離した状態に保ちながら、矢印Sで示すように、プロ−
ブの長手方向と垂直な方向に走査し、その間のコイル1
1のインピ−ダンスの変化を信号として渦流探傷器20
に送り、この信号を解析して探傷する。なお、プロ−ブ
の走査方向は、試験体表面とほぼ平行な方向であれば、
任意の方向を選択することができる。
When an inspection of a discontinuity or the like in the test piece 5 is performed using this electromagnetic induction thin film probe, a high frequency voltage is applied to the coil 11 from the eddy current flaw detector 20 as shown in FIG. While keeping the coil 11 in contact with or slightly away from the body 5, as shown by the arrow S,
Scanning in the direction perpendicular to the longitudinal direction of the
The eddy current flaw detector 20 uses the change in the impedance of 1 as a signal.
And analyze this signal for flaw detection. In addition, if the scanning direction of the probe is a direction substantially parallel to the surface of the specimen,
Any direction can be selected.

【0013】図3は、試験体5における不連続部30の
形状に応じた検出信号の差異により、その識別を行う例
を示している。すなわち図3(a)に示すように、不連
続部30の形状が試験体表面側から見てほぼ線状の場合
に、プロ−ブを矢印Sの方向に走査した場合には、不連
続部30によるコイル11のインピ−ダンスの変化によ
る信号が、同図の30aのように検出される。この場
合、コイル11の円形に巻かれている導線の巻数を適正
な条件にすることによって、形状等の雑音の影響や、プ
ロ−ブが試験体表面に対して垂直に上下することにより
生じる雑音(リフトオフ)の影響による信号30bと不
連続部30による信号30aとを明確に識別することが
できる。
FIG. 3 shows an example in which the identification is made based on the difference in the detection signal according to the shape of the discontinuous portion 30 in the test body 5. That is, as shown in FIG. 3A, when the shape of the discontinuous portion 30 is substantially linear when viewed from the surface side of the test piece, when the probe is scanned in the direction of the arrow S, the discontinuous portion 30 is formed. A signal due to a change in the impedance of the coil 11 due to 30 is detected as indicated at 30a in FIG. In this case, by setting the number of turns of the circularly wound conductor of the coil 11 to an appropriate condition, the influence of noise such as the shape and the noise generated by the probe moving up and down perpendicular to the surface of the test piece are obtained. The signal 30b due to the influence of (lift-off) and the signal 30a due to the discontinuous portion 30 can be clearly distinguished.

【0014】また図3(b)に示すように、試験体表面
からみた場合の不連続部31の形状がほぼ円形に近い場
合、信号31aがコイル11のインピ−ダンスの変化と
して検出される。このとき、円形状の不連続部31によ
って生じた信号31aと、線状の不連続部30によって
生じた信号30aとの間には位相差θがあるため、両者
を識別することができる。この場合、不連続部30,3
1からの信号30a、31aと雑音による信号30bを
それぞれ識別可能であることから、不連続部の形状を識
別することができる。
As shown in FIG. 3B, when the shape of the discontinuous portion 31 when viewed from the surface of the test piece is almost circular, the signal 31a is detected as a change in the impedance of the coil 11. At this time, since there is a phase difference θ between the signal 31a generated by the circular discontinuous portion 31 and the signal 30a generated by the linear discontinuous portion 30, both can be identified. In this case, the discontinuous portions 30, 3
Since the signals 30a and 31a from No. 1 and the signal 30b due to noise can be respectively identified, the shape of the discontinuous portion can be identified.

【0015】図4は本発明のプロ−ブにより、図11と
同じ試験体4,5における不連続部6,7を測定した場
合の例を示している。図4(a)はアモルファス金属1
3面を不連続部6側に向けてプロ−ブを走査し、測定し
た場合を示し、図4(b)はアモルファス金属13面を
不連続部7側に向けてプロ−ブを走査し、測定した場合
を示す。図4(c)は図4(a)の場合の不連続部の検
出例を示し、図4(d)は図4(b)の場合の不連続検
出例を示している。アモルファス金属13による電磁遮
蔽効果により、図4(c)では、不連続部6による影響
を受けないため、不連続部7による信号7aのみが検出
され、また図4(d)では、不連続部7による影響を受
けないため、不連続部6による信号6aのみが検出され
ている。したがって例えば不連続部7が存在しない場
合、図(c)に示す信号7aは検出されないため、図4
(a)に示す測定と、図4(b)に示す測定をそれぞれ
実施すれば、不連続部がいずれの試験体4,5に存在し
ているかを知ることができる。また、本例のように不連
続部が試験片4,5の双方に向かい合って存在している
場合でも、それを確実に知ることができる。
FIG. 4 shows an example in which discontinuous parts 6, 7 in the same test pieces 4, 5 as those in FIG. 11 are measured by the probe of the present invention. FIG. 4A shows an amorphous metal 1
FIG. 4B shows a case where the probe is scanned with the three surfaces directed toward the discontinuous portion 6 and the measurement is performed. The case where measurement was performed is shown. FIG. 4C shows an example of detecting a discontinuous portion in the case of FIG. 4A, and FIG. 4D shows an example of detecting a discontinuous portion in the case of FIG. In FIG. 4C, the signal is not affected by the discontinuous portion 6 due to the electromagnetic shielding effect of the amorphous metal 13, so that only the signal 7a due to the discontinuous portion 7 is detected. In FIG. 7, only the signal 6a due to the discontinuity 6 is detected. Therefore, for example, when the discontinuous portion 7 does not exist, the signal 7a shown in FIG.
By performing the measurement shown in FIG. 4A and the measurement shown in FIG. 4B respectively, it is possible to know which of the specimens 4 and 5 has the discontinuous portion. Further, even when the discontinuous portion exists facing both of the test pieces 4 and 5 as in the present example, it can be surely known.

【0016】図5は、薄膜フィルム12の一面にアモル
ファス金属13を介してコイル14を貼り付け、薄膜フ
ィルム12の他面にはコイル15を直接貼り付けた構造
の電磁誘導薄膜プロ−ブを用い、試験体4,5の表面間
の隙間の探傷を行った場合を示している。前述のよう
に、不連続部6,7が異なる試験体表面に存在している
場合、従来のセンサによる測定では、それらが存在して
いる試験体表面を特定することは不可能であったが、本
発明の電磁誘導薄膜プロ−ブを用いることにより、これ
が可能となる。すなわち、図5(b)に示すように、コ
イル14は不連続部6による信号6aのみを検出し、コ
イル15は同図(c)に示すように、不連続部7による
信号7aのみを検出することから、それぞれのコイルに
よるインピ−ダンスの変化を測定すれば、不連続部が存
在する試験体4,5を特定することが可能である。
FIG. 5 shows an electromagnetic induction thin film probe having a structure in which a coil 14 is attached to one surface of a thin film 12 via an amorphous metal 13 and a coil 15 is attached directly to the other surface of the thin film 12. 4 shows a case where a flaw detection of a gap between the surfaces of the test pieces 4 and 5 is performed. As described above, when the discontinuous portions 6 and 7 exist on different specimen surfaces, it is impossible to specify the specimen surface on which the discontinuous portions 6 and 7 exist by the measurement using the conventional sensor. This is made possible by using the electromagnetic induction thin film probe of the present invention. That is, as shown in FIG. 5B, the coil 14 detects only the signal 6a due to the discontinuous portion 6, and the coil 15 detects only the signal 7a due to the discontinuous portion 7 as shown in FIG. 5C. Therefore, if the change in impedance due to each coil is measured, it is possible to specify the specimens 4 and 5 where the discontinuous portion exists.

【0017】図6は、試験体表面の一方が非常に複雑な
形状をしている場合の測定例を示している。従来のプロ
−ブによる測定では、表面の形状の影響による信号が検
出されてしまうため、不連続部による信号との識別が困
難または不可能であったが、本発明の電磁誘導薄膜プロ
−ブによれば、アモルファス金属の遮蔽効果により複雑
形状による影響をなくすことが可能となり、不連続部の
みによる信号を測定することができる。
FIG. 6 shows a measurement example when one of the surfaces of the test piece has a very complicated shape. In the measurement by the conventional probe, since the signal due to the influence of the surface shape is detected, it is difficult or impossible to discriminate the signal from the discontinuous portion. According to this, it is possible to eliminate the influence of the complicated shape due to the shielding effect of the amorphous metal, and it is possible to measure the signal only at the discontinuous portion.

【0018】図7は薄膜フィルム12の上にコイル11
を2個並べ、これらのコイルのリード線を差動接続し
て、両者の差動成分を検出できるような構造にしたもの
である。
FIG. 7 shows a coil 11 on a thin film 12.
Are arranged, and the lead wires of these coils are differentially connected to each other so that a differential component between them can be detected.

【0019】図8はコイル11がある表面と反対側の薄
膜フィルム12の表面に磁石16を貼り付けることによ
り、磁束Fを発生させ、これを試験体に貫通させること
により、試験体が鉄等の磁性体の場合の雑音低減を計っ
たものである。試験体が磁性体の場合、透磁率のばらつ
きによる磁気ノイズが生じるため、不連続部等による信
号と磁気ノイズによる雑音信号との合成信号が検出され
るが、図8に示すように磁石16によって磁束を試験体
5に通すことにより、透磁率のばらつきが低減し、磁気
ノイズを低減できることから、結果的に雑音を低減する
ことが可能となる。なお、貼り付け磁石としては図9に
示すように、鞍型磁石17等の使用も可能である。
FIG. 8 shows that a magnetic flux F is generated by attaching a magnet 16 to the surface of the thin film 12 opposite to the surface on which the coil 11 is located, and the magnetic flux F is caused to penetrate through the test piece. The noise reduction in the case of the magnetic material is measured. When the test body is a magnetic body, magnetic noise is generated due to variation in magnetic permeability, and a composite signal of a signal due to a discontinuous portion or the like and a noise signal due to the magnetic noise is detected, but as shown in FIG. By passing the magnetic flux through the test body 5, the variation in the magnetic permeability is reduced, and the magnetic noise can be reduced. As a result, the noise can be reduced. As shown in FIG. 9, a saddle type magnet 17 or the like can be used as the pasting magnet.

【0020】上述のように、本発明の電磁誘導薄膜プロ
−ブにおいては、薄膜フィルム上に同心環状に巻かれた
コイルは、金属表面を走査することにより、その表面形
状の変化によって生ずるコイルのインピーダンス変化か
ら欠陥を識別することができる。コイルの一面にアモル
ファス金属層を形成することにより、リフトオフによっ
て生じる雑音部分と欠陥信号の差を大きくし、検出感度
が向上する。また、アモルファス金属層を形成した面側
の試験体の形状変化などの雑音による影響を低減させる
ことができる。本発明において、薄膜フィルムの両面に
それぞれコイルを配置し、それらの間にアモルファス金
属層を介在させた場合には、近接した試験体の一方の面
にのみ不連続部が存在する場合と、双方の面に不連続部
が存在する場合との識別が可能となり、しかも不連続部
がどちらの面に存在しているかも識別することができ
る。本発明において、コイルの一面に磁石を配置した場
合には、試験体が磁性体の場合の雑音低減を計ることが
できる。
As described above, in the electromagnetic induction thin film probe of the present invention, the coil concentrically wound on the thin film is scanned by scanning the metal surface to change the surface shape of the coil. Defects can be identified from impedance changes. By forming an amorphous metal layer on one surface of the coil, the difference between a noise portion caused by lift-off and a defect signal is increased, and the detection sensitivity is improved. In addition, it is possible to reduce the influence of noise such as a change in the shape of the test piece on the side where the amorphous metal layer is formed. In the present invention, a coil is arranged on both surfaces of a thin film, and when an amorphous metal layer is interposed between them, when a discontinuous portion exists only on one surface of an adjacent specimen, Can be distinguished from the case where a discontinuous portion exists on the surface, and it is also possible to identify on which surface the discontinuous portion exists. In the present invention, when a magnet is arranged on one surface of the coil, noise can be reduced when the test body is a magnetic body.

【0021】[0021]

【発明の効果】本発明によれば試験体表面の間の隙間が
狭い場合でも探傷が可能となり、また試験体に存在して
いる不連続部の形状の特定、不連続部の存在位置の特定
および試験体表面の一方が複雑形状である場合の不連続
部の測定が可能となり、しかも感度を向上させることが
できる。
According to the present invention, flaw detection can be performed even when the gap between the surfaces of the test specimens is small, and the shape of the discontinuous part existing in the test specimen and the position of the discontinuous part can be specified. In addition, when one of the surfaces of the test piece has a complicated shape, measurement of a discontinuous portion becomes possible, and sensitivity can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の電磁誘導薄膜プロ−ブの実施例を示す
説明図。
FIG. 1 is an explanatory view showing an embodiment of an electromagnetic induction thin film probe of the present invention.

【図2】本発明の電磁誘導薄膜プロ−ブによる探傷方法
を示す説明図。
FIG. 2 is an explanatory view showing a flaw detection method using an electromagnetic induction thin film probe of the present invention.

【図3】本発明の電磁誘導薄膜プロ−ブにより、不連続
部の形状の識別を行う例を示す説明図。
FIG. 3 is an explanatory view showing an example in which the shape of a discontinuous portion is identified by the electromagnetic induction thin film probe of the present invention.

【図4】本発明の電磁誘導薄膜プロ−ブにより、不連続
部が両側に近接して存在する場合でも検出できることを
示す説明図。
FIG. 4 is an explanatory view showing that the electromagnetic induction thin film probe of the present invention can detect a discontinuous portion even when it exists near both sides.

【図5】本発明の電磁誘導薄膜プロ−ブの他の実施例の
構成と使用方法を示す説明図。
FIG. 5 is an explanatory view showing the configuration and use of another embodiment of the electromagnetic induction thin film probe of the present invention.

【図6】試験体表面の一方が非常に複雑な形状をしてい
る場合の測定例を示す説明図。
FIG. 6 is an explanatory diagram showing a measurement example in the case where one of the surfaces of a test object has a very complicated shape.

【図7】本発明の電磁誘導薄膜プロ−ブの他の実施例を
示す平面図と側面図。
FIG. 7 is a plan view and a side view showing another embodiment of the electromagnetic induction thin film probe of the present invention.

【図8】本発明の電磁誘導薄膜プロ−ブの他の実施例を
示す平面図と側面図。
FIG. 8 is a plan view and a side view showing another embodiment of the electromagnetic induction thin film probe of the present invention.

【図9】本発明の電磁誘導薄膜プロ−ブの他の実施例を
示す平面図と側面図。
FIG. 9 is a plan view and a side view showing another embodiment of the electromagnetic induction thin film probe of the present invention.

【図10】従来の電磁誘導薄膜プロ−ブの構成と使用方
法を示す説明図。
FIG. 10 is an explanatory view showing the configuration and usage of a conventional electromagnetic induction thin film probe.

【図11】従来の電磁誘導薄膜プロ−ブにより、不連続
部が両側に近接して存在する場合の検出例を示す説明
図。
FIG. 11 is an explanatory diagram showing an example of detection in the case where a discontinuous portion exists close to both sides by a conventional electromagnetic induction thin film probe.

【符号の説明】[Explanation of symbols]

1……基板 2,11,14,15……コイル 10……電磁誘導薄膜プロ−ブ 12……薄膜フィルム 13……アモルファス金属 16……磁石 DESCRIPTION OF SYMBOLS 1 ... Substrate 2, 11, 14, 15 ... Coil 10 ... Electromagnetic induction thin film probe 12 ... Thin film 13 ... Amorphous metal 16 ... Magnet

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 電磁誘導を利用して金属試験体の表面に
存在する傷を検出する電磁誘導薄膜プロ−ブにおいて、
薄膜フィルム上に同心環状のコイルを形成すると共に、
このコイルの一面側に電磁遮蔽層を配置したことを特徴
とする電磁誘導薄膜プロ−ブ。
1. An electromagnetic induction thin film probe for detecting a flaw present on a surface of a metal specimen using electromagnetic induction,
While forming a concentric annular coil on the thin film,
An electromagnetic induction thin-film probe characterized in that an electromagnetic shielding layer is disposed on one side of the coil.
【請求項2】 電磁遮蔽層がアモルファス金属からなる
ことを特徴とする請求項1に記載の電磁誘導薄膜プロ−
ブ。
2. The electromagnetic induction thin film probe according to claim 1, wherein the electromagnetic shielding layer is made of an amorphous metal.
Bu.
【請求項3】 薄膜フィルムの一面にコイルを形成し、
この薄膜フィルムの反対側の面に電磁遮蔽層を形成した
ことを特徴とする請求項1または2に記載の電磁誘導薄
膜プロ−ブ。
3. A coil is formed on one surface of the thin film,
3. An electromagnetic induction thin film probe according to claim 1, wherein an electromagnetic shielding layer is formed on a surface opposite to the thin film.
【請求項4】 電磁遮蔽層の上にもう1個のコイルを形
成したことを特徴とする請求項3に記載の電磁誘導薄膜
プロ−ブ。
4. The electromagnetic induction thin film probe according to claim 3, wherein another coil is formed on the electromagnetic shielding layer.
【請求項5】 プラスチック等の薄膜上に2個のコイル
を近接して配置し、これらのコイルから差動成分を取り
出せるようにしたことを特徴とする請求項1ないし3の
いずれか一項に記載の電磁誘導薄膜プロ−ブ。
5. The method according to claim 1, wherein two coils are arranged close to each other on a thin film of plastic or the like so that a differential component can be extracted from these coils. The described electromagnetic induction thin film probe.
【請求項6】 電磁誘導を利用して金属試験体の表面に
存在する傷を検出する電磁誘導薄膜プロ−ブにおいて、
薄膜フィルム上にコイルを形成すると共に、このコイル
の一面側に磁石を配置したことを特徴とする電磁誘導薄
膜プロ−ブ。
6. An electromagnetic induction thin film probe for detecting a flaw existing on a surface of a metal specimen using electromagnetic induction,
An electromagnetic induction thin film probe comprising: a coil formed on a thin film; and a magnet disposed on one side of the coil.
JP9001284A 1997-01-08 1997-01-08 Electromagnetic induction thin film probe Withdrawn JPH10197492A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9001284A JPH10197492A (en) 1997-01-08 1997-01-08 Electromagnetic induction thin film probe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9001284A JPH10197492A (en) 1997-01-08 1997-01-08 Electromagnetic induction thin film probe

Publications (1)

Publication Number Publication Date
JPH10197492A true JPH10197492A (en) 1998-07-31

Family

ID=11497165

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9001284A Withdrawn JPH10197492A (en) 1997-01-08 1997-01-08 Electromagnetic induction thin film probe

Country Status (1)

Country Link
JP (1) JPH10197492A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002063572A3 (en) * 2001-02-05 2003-03-20 Wincor Nixdorf Int Gmbh Device for accepting banknotes
EP1496355A1 (en) * 2003-07-09 2005-01-12 Siemens Aktiengesellschaft Probe for electrical measurements, particularly eddy current inspections
US7688067B2 (en) 2002-01-17 2010-03-30 Siemens Aktiengesellschaft Probe for electrical measurement methods and use of a flexible probe for production of a rigid probe

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002063572A3 (en) * 2001-02-05 2003-03-20 Wincor Nixdorf Int Gmbh Device for accepting banknotes
US7055738B2 (en) 2001-02-05 2006-06-06 Wincor Nixdorf International Gmbh Device for accepting banknotes
CN1295661C (en) * 2001-02-05 2007-01-17 温克尔尼克斯多夫国际有限公司 Device for accepting banknotes
US7688067B2 (en) 2002-01-17 2010-03-30 Siemens Aktiengesellschaft Probe for electrical measurement methods and use of a flexible probe for production of a rigid probe
EP1496355A1 (en) * 2003-07-09 2005-01-12 Siemens Aktiengesellschaft Probe for electrical measurements, particularly eddy current inspections
WO2005005976A1 (en) * 2003-07-09 2005-01-20 Siemens Aktiengesellschaft Probe for electrical measurement methods, especially eddy current measurements
US7463039B2 (en) 2003-07-09 2008-12-09 Siemens Aktiengesellschaft Probe for electrical measurement methods, especially eddy current measurements

Similar Documents

Publication Publication Date Title
Tsukada et al. Small eddy current testing sensor probe using a tunneling magnetoresistance sensor to detect cracks in steel structures
US6888346B2 (en) Magnetoresistive flux focusing eddy current flaw detection
US5510709A (en) Eddy current surface inspection probe for aircraft fastener inspection, and inspection method
US6975108B2 (en) Methods and devices for eddy current PCB inspection
JP3811039B2 (en) Magnetic leak detection sensor for magnetic flaw detector
US7495433B2 (en) Device for detecting defects in electrically conductive materials in a nondestructive manner
US4095181A (en) Rotating pot shaped eddy current probe in which only a small fraction of the lip forming the outer core portion is retained
EP1674861A1 (en) Eddy current probe and inspection method comprising a pair of sense coils
JPH10197492A (en) Electromagnetic induction thin film probe
JP3266899B2 (en) Method and apparatus for flaw detection of magnetic metal body
US20070247145A1 (en) Device for detecting defects on metals
US20070029997A1 (en) Test circuit with drive windings and sense elements
Wincheski et al. Development of Giant Magnetoresistive inspection system for detection of deep fatigue cracks under airframe fasteners
JPH1038854A (en) Non-destructive inspection method and device of conductive material
JPH04221757A (en) Defect detecting device
Yamada et al. Application of ECT technique for inspection of bare PCB
Dalal Radia et al. Detection of Defects Using GMR and Inductive Probes
JPH07167839A (en) Inspection coil for electromagnetic induction flaw detection and flaw detecting method
JPH09274018A (en) Method and apparatus for detecting flaw of magnetic metal element
Kacprzak et al. Inspection of printed-circuit board by ECT probe with solenoid pickup coil
Reig et al. High-Spatial Resolution Giant Magnetoresistive Sensors-Part I: Application in Non-Destructive Evaluation
Nakamura et al. Optimization of magnetic-field component detection for unsaturated AC magnetic-flux-leakage testing to detect cracks in steel
WO2019077778A1 (en) Eddy-current flaw testing method and eddy-current flaw testing device
JPH02236446A (en) Method and device for detecting flaw by leaked magnetic flux
Nadzri et al. Depth evaluation of slits on galvanized steel plate using a low frequency eddy current probe

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20040406