JPH10197360A - Temperature-measuring circuit and temperature-measuring resistance body input device - Google Patents

Temperature-measuring circuit and temperature-measuring resistance body input device

Info

Publication number
JPH10197360A
JPH10197360A JP35116796A JP35116796A JPH10197360A JP H10197360 A JPH10197360 A JP H10197360A JP 35116796 A JP35116796 A JP 35116796A JP 35116796 A JP35116796 A JP 35116796A JP H10197360 A JPH10197360 A JP H10197360A
Authority
JP
Japan
Prior art keywords
temperature
resistor
constant current
series
current source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP35116796A
Other languages
Japanese (ja)
Inventor
Hisashi Kitamura
久 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP35116796A priority Critical patent/JPH10197360A/en
Publication of JPH10197360A publication Critical patent/JPH10197360A/en
Pending legal-status Critical Current

Links

Landscapes

  • Safety Devices In Control Systems (AREA)

Abstract

PROBLEM TO BE SOLVED: To duplicate a temperature-measuring circuit using a temperature- measuring resistance body(RTD) and a temperature-measuring resistance body input device. SOLUTION: Constant current circuits 1, 8 having bypass diodes 7, 13 are connected in series, thereby supplying a current to an RTD 4, 100% reference resistors 5, 11 and 0% reference resistors 6, 12. Voltages of the RTD 4 and both end parts of each reference resistor are switched by signal switches 3, 10. A measured temperature is operated by an operating part via amplifying parts 2, 9 and sent outside. Even when the constant current circuit 1 fails, the constant current source 8 supplies the current via the bypass diode 7 to continue the temperature measurement. Moreover, even if a temperature-measuring resistance body input device 101 fails, the temperature measurement is continued at the side of a temperature-measuring resistance body input device 102.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は測温抵抗体を検出
器として温度を測定する温度測定回路と、測温抵抗体か
らの入力を処理する測温抵抗体入力装置に関するもの
で、特に二重化に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a temperature measuring circuit for measuring a temperature by using a resistance temperature detector as a detector, and to a resistance temperature detector input device for processing an input from the resistance temperature detector, and more particularly to a duplexer. Things.

【0002】[0002]

【従来の技術】図17は例えば特開平5−100703
号公報に示された従来の制御装置を示すブロック図であ
る。図において、22は主調節ユニット、23は副調節
ユニット、24は内部通信回線、25は切換ユニット、
26はリレー部である。
2. Description of the Related Art FIG.
FIG. 1 is a block diagram illustrating a conventional control device disclosed in Japanese Patent Laid-Open Publication No. H10-26095. In the figure, 22 is a main adjustment unit, 23 is a sub adjustment unit, 24 is an internal communication line, 25 is a switching unit,
26 is a relay unit.

【0003】次に動作について説明する。入力として取
り込まれる熱電対、測温抵抗体、直流電圧、直流電流等
の信号は主調節ユニット22と副調節ユニット23に並
列に入力され、設定データに基づいてPID等の制御演
算を行い、演算結果を制御出力として切換ユニット25
を経由して出力する。
Next, the operation will be described. Signals such as a thermocouple, a resistance temperature detector, a DC voltage, and a DC current which are taken in as inputs are input to the main control unit 22 and the sub-control unit 23 in parallel, and control calculations such as PID are performed based on the setting data. Switching unit 25 using the result as a control output
Output via.

【0004】通常は主調節ユニット22からの制御出力
が切換ユニット25を経由して出力されるが、内部通信
回線24を介して主調節ユニット22からの異常信号を
副調節ユニット23が検出すると、リレー部26を切り
換えて副調節ユニット23からの制御出力を送出する。
このようにして調節ユニットを二重化し信頼性の向上を
図っている。
Normally, the control output from the main control unit 22 is output via the switching unit 25. However, when the auxiliary control unit 23 detects an abnormal signal from the main control unit 22 via the internal communication line 24, By switching the relay section 26, the control output from the sub-adjustment unit 23 is transmitted.
In this way, the adjustment unit is duplicated to improve reliability.

【0005】[0005]

【発明が解決しようとする課題】従来の制御装置は以上
のように構成されているので、二重化する場合電圧入力
なら容易に行えるが、RTD(Resistance Temperature
Detector 測温抵抗体)からの入力を処理するRTD
(測温抵抗体)入力装置のように一定の規定電流を流
し、その両端の電圧を入力するというタイプの信号は容
易に適用することができないという問題があった。
Since the conventional control device is configured as described above, a voltage input can be easily performed in the case of duplexing, but the RTD (Resistance Temperature)
RTD that processes input from Detector (RTD)
(RTD) There is a problem that a signal of a type in which a predetermined current is applied and a voltage across both ends is input, as in an input device, cannot be easily applied.

【0006】この発明は上記のような課題を解決するた
めになされたものであり、RTD信号を入力する場合に
も調節なしに容易に二重化できるRTD入力装置と、R
TDを用いた二重化対応の温度測定回路を得ることを目
的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and an RTD input device which can easily be duplexed without adjustment even when an RTD signal is input;
It is an object of the present invention to obtain a temperature measurement circuit that uses TD and supports duplication.

【0007】[0007]

【課題を解決するための手段】[Means for Solving the Problems]

(1)この発明に係る温度測定回路は、バイパスダイオ
ードを並列接続した第1の定電流源と、別のバイパスダ
イオードを並列接続した第2の定電流源とを順方向に直
列接続した電流源、温度検出用の測温抵抗体と第1の基
準抵抗と第2の基準抵抗とを直列接続し上記電流源から
電流が供給される直列抵抗体、上記測温抵抗体と上記第
1の基準抵抗の各両端部の電位差に基づいて測定温度を
演算する第1の演算部、上記測温抵抗体と上記第2の基
準抵抗の各両端部の電位差に基づいて測定温度を演算す
る第2の演算部を備え、定電流源、基準抵抗、演算部を
二重化したものである。
(1) A temperature measuring circuit according to the present invention is a current source in which a first constant current source having a bypass diode connected in parallel and a second constant current source having another bypass diode connected in parallel are serially connected in the forward direction. A series resistor connected in series with a temperature detecting resistor for temperature detection, a first reference resistor, and a second reference resistor, and supplied with current from the current source; the temperature measuring resistor and the first reference; A first calculating section for calculating a measured temperature based on a potential difference between both ends of the resistor, and a second calculating section for calculating a measured temperature based on a potential difference between both ends of the temperature measuring resistor and the second reference resistor. An arithmetic unit is provided, and the constant current source, the reference resistance, and the arithmetic unit are duplicated.

【0008】(2)また、上記(1)の温度測定回路に
おいて、電流源は、第1の定電流源と第2の定電流源の
各々に開閉手段を直列接続し、その両端部に各々バイパ
スダイオードを接続して構成し、上記両開閉手段により
上記第1と第2の定電流源を投入・解放自在としたもの
である。
(2) In the temperature measuring circuit according to (1), the current source has switching means connected in series to each of the first constant current source and the second constant current source. A bypass diode is connected, and the first and second constant current sources can be turned on / off by the two opening / closing means.

【0009】(3)この発明に係る測温抵抗体入力装置
は、上記(1)または(2)の温度測定回路の内、バイ
パスダイオードを並列接続した第1の定電流源、第1の
基準抵抗、第1の演算部で第1の測温抵抗体入力装置を
構成すると共に、バイパスダイオードを並列接続した第
2の定電流源、第2の基準抵抗、第2の演算部で第2の
測温抵抗体入力装置を構成したものである。
(3) The temperature measuring resistor input device according to the present invention is a temperature measuring circuit according to (1) or (2), wherein a first constant current source having a bypass diode connected in parallel, a first reference. The resistance and the first calculation unit constitute a first resistance thermometer input device, and the second constant current source, the second reference resistance, and the second calculation unit having the bypass diode connected in parallel form the second calculation unit. This constitutes a resistance temperature detector input device.

【0010】(4)この発明に係る温度測定回路は、バ
イパスダイオードを並列接続した第1の定電流源と、別
のバイパスダイオードを並列接続した第2の定電流源と
を順方向に直列接続した電流源、温度検出用の測温抵抗
体と基準抵抗とを直列接続し上記電流源から電流が供給
される直列抵抗体、上記測温抵抗体と上記基準抵抗の各
両端部の電位差に基づいて測定温度を演算する第1と第
2の2つの演算部を備え、定電流源、演算部を二重化し
たものである。
(4) The temperature measuring circuit according to the present invention is configured such that a first constant current source having a bypass diode connected in parallel and a second constant current source having another bypass diode connected in parallel are serially connected in the forward direction. A current source, a temperature measuring resistor for temperature detection and a reference resistor connected in series and a current is supplied from the current source, a series resistor, and a potential difference between both ends of the temperature measuring resistor and the reference resistor. A constant current source and an arithmetic unit are provided in duplicate.

【0011】(5)また、上記(4)の温度測定回路に
おいて、電流源は、第1の定電流源と第2の定電流源の
各々に開閉手段を直列接続し、その両端部に各々バイパ
スダイオードを接続して構成し、上記両開閉手段により
上記第1と第2の定電流源を投入・解放自在としたもの
である。
(5) In the temperature measuring circuit according to the above (4), the current source has switching means connected in series to each of the first constant current source and the second constant current source. A bypass diode is connected, and the first and second constant current sources can be turned on / off by the two opening / closing means.

【0012】(6)この発明に係る測温抵抗体入力装置
は、上記(4)または(5)の温度測定回路の内、第1
の定電流源と第1の演算部とで第1の測温抵抗体入力装
置を構成すると共に、第2の定電流源と第2の演算部と
で第2の測温抵抗体入力装置を構成したものである。
(6) A temperature measuring resistor input device according to the present invention is the first of the temperature measuring circuits of (4) or (5).
Constitutes a first resistance thermometer input device with the constant current source and the first calculation unit, and forms a second resistance temperature sensor input device with the second constant current source and the second calculation unit. It is composed.

【0013】(7)この発明に係る温度測定回路は、ダ
イオードを順方向に直列接続した第1の定電圧源と、別
のダイオードを順方向に直列接続した第2の定電圧源と
を同極性で並列接続した電圧源、温度検出用の測温抵抗
体と基準抵抗とを直列接続し上記電圧源からの電圧印加
により電流が供給される直列抵抗体、上記測温抵抗体と
上記基準抵抗の各両端部の電位差に基づいて測定温度を
演算する第1と第2の2つの演算部を備え、定電圧源、
演算部を二重化したものである。
(7) In the temperature measuring circuit according to the present invention, a first constant voltage source having a diode connected in series in the forward direction and a second constant voltage source having another diode connected in series in the forward direction are the same. A voltage source connected in parallel with polarity, a temperature measuring resistor for temperature detection and a reference resistor connected in series, and a current is supplied by applying a voltage from the voltage source, the temperature measuring resistor and the reference resistor A first and a second calculating unit for calculating a measured temperature based on a potential difference between both ends of the constant voltage source;
The operation unit is duplicated.

【0014】(8)また、上記(7)の温度測定回路に
おいて、第1の定電圧源と第2の定電圧源の各々に直列
接続した開閉手段を設け、上記両開閉手段により上記第
1と第2の定電圧源を投入・解放自在としたものであ
る。
(8) In the temperature measuring circuit of (7), switching means connected in series to each of the first constant voltage source and the second constant voltage source are provided, and the first constant voltage source and the second constant voltage source are provided by the first and second switching means. And the second constant voltage source can be turned on and off freely.

【0015】(9)この発明に係る測温抵抗体入力装置
は、上記(7)または(8)の温度測定回路の内、ダイ
オードを順方向に直列接続した第1の定電圧源と第1の
演算部とで第1の測温抵抗体入力装置を構成すると共
に、ダイオードを順方向に直列接続した第2の定電圧源
と第2の演算部とで第2の測温抵抗体入力装置を構成し
たものである。
(9) The temperature-measuring-resistance-element input device according to the present invention includes the first constant-voltage source having a diode connected in series in the forward direction and the first constant-voltage source in the temperature measuring circuit according to (7) or (8). And a second constant voltage source in which diodes are connected in series in a forward direction and a second arithmetic unit, and a second resistance thermometer input device. It is what constituted.

【0016】(10)この発明に係る温度測定回路は、
ダイオードを順方向に直列接続した第1の定電圧源と、
別のダイオードを順方向に直列接続した第2の定電圧源
とを同極性で並列接続した電圧源、温度検出用の測温抵
抗体と第1の基準抵抗と第2の基準抵抗とを直列接続し
上記電圧源からの電圧印加により電流が供給される直列
抵抗体、上記測温抵抗体と上記第1の基準抵抗の各両端
部の電位差に基づいて測定温度を演算する第1の演算
部、上記測温抵抗体と上記第2の基準抵抗の各両端部の
電位差に基づいて測定温度を演算する第2の演算部を備
え、定電圧源、基準抵抗、演算部を二重化したものであ
る。
(10) The temperature measuring circuit according to the present invention comprises:
A first constant voltage source in which diodes are connected in series in a forward direction;
A voltage source in which another diode is serially connected in the forward direction and a second constant voltage source in parallel with the same polarity, a temperature measuring resistor for temperature detection, and a first reference resistor and a second reference resistor in series; A first calculating unit for calculating a measured temperature based on a potential difference between both ends of the series resistor to which a current is supplied by applying a voltage from the voltage source and the temperature measuring resistor and the first reference resistor; A second calculating section for calculating a measured temperature based on a potential difference between both ends of the temperature measuring resistor and the second reference resistor, wherein a constant voltage source, a reference resistor, and a calculating section are duplicated. .

【0017】(11)また、上記(10)の温度測定回
路において、第1の定電圧源と第2の定電圧源の各々に
直列接続した開閉手段を設け、上記両開閉手段により上
記第1と第2の定電圧源を投入・解放自在としたもので
ある。
(11) In the temperature measuring circuit of (10), switching means connected in series to each of the first constant voltage source and the second constant voltage source are provided, and the first constant voltage source and the second constant voltage source are provided by the first and second switching means. And the second constant voltage source can be turned on and off freely.

【0018】(12)この発明に係る測温抵抗体入力装
置は、上記(10)または(11)の温度測定回路の
内、ダイオードを順方向に直列接続した第1の定電圧源
と第1の基準抵抗と第1の演算部とで第1の測温抵抗体
入力装置を構成すると共に、ダイオードを順方向に直列
接続した第2の定電圧源と第2の基準抵抗と第2の演算
部とで第2の測温抵抗体入力装置を構成したものであ
る。
(12) The temperature-measuring-resistance-element input device according to the present invention is the temperature-measuring circuit of (10) or (11), wherein the first constant-voltage source having a diode connected in series in the forward direction and the first constant-voltage source. A first resistance thermometer input device, a second constant voltage source in which diodes are connected in series in a forward direction, a second reference resistance, and a second operation. And the second part constitute a second resistance bulb input device.

【0019】[0019]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

実施の形態1.以下この発明の実施の形態1を図に基づ
いて説明する。図1は測温抵抗体入力装置を含む温度測
定回路の回路図で、図2は図1の回路の演算処理する部
分のブロック図である。図3は図1の回路図を分かりや
すくした動作説明用の回路図であり、図1とはRTDと
基準抵抗の接続が若干異なっているが、動作原理を理解
しやすく書いたものである。これは実施の形態2以降の
動作説明用回路図(図5ほか)についても同様である。
Embodiment 1 FIG. Hereinafter, a first embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a circuit diagram of a temperature measuring circuit including a resistance temperature detector input device, and FIG. 2 is a block diagram of a portion of the circuit of FIG. FIG. 3 is a circuit diagram for explaining the operation in which the circuit diagram of FIG. 1 is easily understood. Although the connection between the RTD and the reference resistor is slightly different from that of FIG. 1, the operation principle is written for easy understanding. This is the same for the circuit diagrams for explaining the operation after the second embodiment (FIG. 5 and others).

【0020】図1、図3において、1,8は定電流回
路、2,9は増幅回路、3,10は信号切換器で、ソフ
トウエアでS1,S2,S3のスイッチを順次ON(他
はOFF)にしていき、また、S4,S5,S6のスイ
ッチを順次ONにしていく。4は温度測定対象の温度を
検出するためのRTD(測温抵抗体)、5,11は10
0%側基準抵抗で、測定温度範囲の上限値、即ちフルス
ケール値を決めるものである。6,12は0%側基準抵
抗で、温度測定範囲の下限値を決めるものである。
In FIGS. 1 and 3, reference numerals 1 and 8 denote constant current circuits, reference numerals 2 and 9 denote amplification circuits, reference numerals 3 and 10 denote signal switches, and switches S1, S2 and S3 are sequentially turned on by software (others are turned on). OFF), and switches S4, S5 and S6 are sequentially turned on. Reference numeral 4 denotes an RTD (resistance temperature detector) for detecting the temperature of the temperature measurement target;
The 0% side reference resistance determines the upper limit value of the measurement temperature range, that is, the full scale value. Reference numerals 6 and 12 denote 0% -side reference resistances, which determine the lower limit of the temperature measurement range.

【0021】7,13は定電流回路1,8をバイパスす
るダイオードである。101は第1の測温抵抗体入力装
置、102は第2の測温抵抗体入力装置である。
Reference numerals 7 and 13 denote diodes that bypass the constant current circuits 1 and 8, respectively. 101 is a first resistance temperature detector input device, and 102 is a second resistance temperature detector input device.

【0022】図2において、31,41はA/D変換
器、32,42は演算部で、検出したRTDの抵抗値か
ら測定温度を演算する。33,43は計算機等の故障検
出に用いるウオッチドッグタイマーで、演算部32,4
2に内蔵のCPUからのクロック信号が所定の時間内に
入力されないと、演算部32,42が故障として信号を
送出する。なお、第1の測温抵抗体入力装置101の内
部は第1の演算部全体を表し、第2の測温抵抗体入力装
置102の内部は第2の演算部全体を表し、CPUを用
いてソフトウエアで処理する。
In FIG. 2, reference numerals 31 and 41 denote A / D converters, and reference numerals 32 and 42 denote arithmetic units for calculating the measured temperature from the detected resistance value of the RTD. Reference numerals 33 and 43 denote watchdog timers used for detecting failures of computers and the like.
If the clock signal from the built-in CPU is not input within a predetermined time, the arithmetic units 32 and 42 send out a signal as a failure. Note that the inside of the first resistance thermometer input device 101 represents the entire first calculation unit, and the inside of the second resistance temperature sensor input device 102 represents the entire second calculation unit. Process with software.

【0023】次に動作を説明する。RTD4に流れる規
定電流は定電流回路1,8から供給される。RTD入力
装置101,102を二重化するときは定電流回路1,
8を直列に接続する。定電流回路1の出力電流は、図1
の回路で、 RTD4→基準抵抗11→基準抵抗12→定電流回路8
→基準抵抗5→基準抵抗6 の経路で流れる。
Next, the operation will be described. The specified current flowing through the RTD 4 is supplied from the constant current circuits 1 and 8. When the RTD input devices 101 and 102 are duplicated, the constant current circuit 1
8 in series. The output current of the constant current circuit 1 is shown in FIG.
RTD4 → reference resistance 11 → reference resistance 12 → constant current circuit 8
→ Reference resistance 5 → Reference resistance 6

【0024】一方、定電流回路8の出力電流は 基準抵抗5→基準抵抗6→定電流回路1→RTD4→基
準抵抗11→基準抵抗12 の経路で流れる。
On the other hand, the output current of the constant current circuit 8 flows through the path of the reference resistance 5 → reference resistance 6 → constant current circuit 1 → RTD4 → reference resistance 11 → reference resistance 12.

【0025】RTD4、基準抵抗5、基準抵抗6、基準
抵抗11、基準抵抗12には定電流回路1、定電流回路
8の出力電流のうち大きい方の電流となり、ダイオード
7またはダイオード13には2個の定電流回路の出力電
流の差の分が分流する。このようにRTD4と4個の基
準抵抗5,6,11,12に流れる電流は等しくなるの
で、二重化した各RTD入力装置101,102の定電
流回路1,8の出力電流が等しくなるように調整しなく
てもRTD4、基準抵抗5,11、基準抵抗6,12の
各両端の電圧からRTDの抵抗値を求めことができる。
The RTD 4, the reference resistor 5, the reference resistor 6, the reference resistor 11, and the reference resistor 12 have the larger one of the output currents of the constant current circuit 1 and the constant current circuit 8, and the diode 7 or the diode 13 has the larger output current. The difference between the output currents of the constant current circuits shunts. Since the currents flowing through the RTD 4 and the four reference resistors 5, 6, 11, and 12 are equal, the output currents of the constant current circuits 1 and 8 of the duplicated RTD input devices 101 and 102 are adjusted to be equal. Even without doing so, the resistance value of the RTD can be obtained from the voltages at both ends of the RTD 4, the reference resistors 5, 11 and the reference resistors 6, 12.

【0026】検出したRTD4、基準抵抗5,11、基
準抵抗6,12の各両端の電圧は信号切換器3,10内
でスイッチS1,S2,S3およびS4,S5,S6で
順次切り換えて増幅回路2,9で増幅されたのち、A/
D変換器31,41でディジタル変換されCPUを内蔵
した演算部32,42でRTD4が検出する測定対象の
温度を演算し出力する。
The detected voltages at both ends of the RTD 4, the reference resistances 5, 11, and the reference resistances 6, 12 are sequentially switched by switches S1, S2, S3 and S4, S5, S6 in the signal switches 3, 10, and are then amplified. After amplification in 2,9, A /
The temperature of the object to be measured detected by the RTD 4 is calculated and output by the calculation units 32 and 42 which are digitally converted by the D converters 31 and 41 and have a built-in CPU.

【0027】もし、定電流回路1が故障して電流出力が
無くなると、定電流回路8の電流がダイオード1をバイ
パスして定電流を流すので、引き続き測定が可能であ
る。この場合、RTD4と基準抵抗5,6,11,12
に流れる電流の絶対値は変化するが、相対的にはすべて
等しくなるため、基準抵抗11,12とRTD4の両端
の電圧からRTDの抵抗値を求めることができる。
If the constant current circuit 1 breaks down and there is no current output, the current of the constant current circuit 8 bypasses the diode 1 to flow a constant current, so that the measurement can be continued. In this case, the RTD 4 and the reference resistors 5, 6, 11, and 12
Although the absolute values of the currents flowing through the RTDs vary, they are all relatively equal, so that the resistance value of the RTD can be obtained from the voltages across the reference resistors 11, 12 and the RTD4.

【0028】以上のようにこの実施の形態では、定電流
回路、基準抵抗、信号切換器以降の演算処理部分(第1
と第2の演算部)を二重化し、二重化しても二つの定電
流回路の出力電流の差が誤差にならないようにすること
ができる。また、一方の定電流回路が故障しても他方の
定電流回路により温度測定を継続することができ、信頼
性を向上することができる。
As described above, in this embodiment, the arithmetic processing part (the first part) after the constant current circuit, the reference resistance, and the signal switch is performed.
And the second arithmetic unit), and the difference between the output currents of the two constant current circuits does not cause an error even if the output is duplicated. Further, even if one of the constant current circuits fails, the temperature measurement can be continued by the other constant current circuit, and the reliability can be improved.

【0029】実施の形態2.図4にこの実施の形態の回
路図を示し、図5に動作説明のための回路図を示す。な
お、図2に示す演算処理部分は実施の形態1と同一であ
るので、以降の実施の形態では説明を省略する。
Embodiment 2 FIG. 4 shows a circuit diagram of this embodiment, and FIG. 5 shows a circuit diagram for explaining the operation. Note that the operation processing part shown in FIG. 2 is the same as that of the first embodiment, and thus the description thereof will be omitted in the following embodiments.

【0030】上記実施の形態1では定電流回路を直列に
接続する場合について述べたが、この実施の形態では、
図4、図5に示すようにスイッチ14,15を設け、定
電流回路1と8とを切り換える。
In the first embodiment, the case where the constant current circuits are connected in series has been described.
Switches 14 and 15 are provided as shown in FIGS. 4 and 5 to switch between the constant current circuits 1 and 8.

【0031】この場合、切り換えによってRTD4と基
準抵抗5,6,11,12に流れる電流の絶対値は変化
するが、相対的にはすべて等しくなるため、基準抵抗
5,6とRTD4の両端の電圧からRTDの抵抗値を求
めて、温度を測定することができる。
In this case, although the absolute values of the currents flowing through the RTD 4 and the reference resistors 5, 6, 11, and 12 are changed by the switching, they are all relatively equal. The temperature can be measured by calculating the resistance value of the RTD.

【0032】切り換えは、例えば、スイッチ14をO
N、スイッチ15をOFFしてRTD入力装置101側
を使用しているとき、演算部32の故障をウオッチドッ
グタイマー33が検出するとスイッチ14をOFF、ス
イッチ15をONしてRTD入力装置102側に切り換
える。なお、故障が発生したとき、人為的にスイッチの
切り換えるようにしてもよい。
For switching, for example, the switch 14 is set to O
N, when the switch 15 is turned off and the RTD input device 101 side is used, when the watchdog timer 33 detects a failure of the arithmetic unit 32, the switch 14 is turned off, the switch 15 is turned on and the RTD input device 102 side is turned on. Switch. When a failure occurs, the switch may be switched artificially.

【0033】以上のようにこの実施の形態では、二重化
した一方のRTD入力装置に故障が生じると他方のRT
D入力装置に切り換えるようにしたので、信頼性を向上
することができる。
As described above, in this embodiment, if a failure occurs in one of the duplicated RTD input devices, the other RTD input device will fail.
Since switching to the D input device is performed, reliability can be improved.

【0034】実施の形態3.図6にこの実施の形態の回
路図を示し、図7に動作説明のための回路図を示す。実
施の形態1では、基準抵抗5,6,15,16をRTD
入力装置101,102に内臓する場合を述べたが、こ
の実施の形態は、図6に示すように外部に基準抵抗1
6,17およびバイパス用ダイオード7,13を設け
る。
Embodiment 3 FIG. 6 is a circuit diagram of this embodiment, and FIG. 7 is a circuit diagram for explaining the operation. In the first embodiment, the reference resistors 5, 6, 15, and 16 are
Although the case where it is incorporated in the input devices 101 and 102 has been described, in this embodiment, as shown in FIG.
6, 17 and bypass diodes 7, 13 are provided.

【0035】このようにすると、例えば、RTD入力装
置101を交換する場合に、RTD入力装置101の端
子部で回路から切り離しても、RTD入力装置102に
影響を与えることがないので、容易に交換することがで
きる。動作については、基準抵抗16,17の両端の電
位差を信号切換器3と10にそれぞれ入力している点以
外は実施の形態1と同様である。
In this way, for example, when the RTD input device 101 is replaced, even if the RTD input device 101 is disconnected from the circuit at the terminal portion thereof, the RTD input device 102 is not affected, so that the RTD input device 102 is easily replaced. can do. The operation is the same as that of the first embodiment except that the potential difference between both ends of the reference resistors 16 and 17 is input to the signal switches 3 and 10, respectively.

【0036】以上のようにこの実施の形態では、定電流
回路と信号切換器以降の演算処理部分(第1と第2の演
算部)とを二重化し、一方のRTD入力装置に不具合を
生じても、回路からの切り離しや交換等が他方のRTD
入力装置に影響を与えることなくできるので保守・点検
作業の効率化を図ることができる。
As described above, in this embodiment, the constant current circuit and the arithmetic processing part (first and second arithmetic parts) after the signal switch are duplicated, and a problem occurs in one of the RTD input devices. Also, disconnection or replacement from the circuit is the other RTD
Since the operation can be performed without affecting the input device, the efficiency of maintenance and inspection work can be improved.

【0037】実施の形態4.図8にこの実施の形態の回
路図を示し、図9に動作説明のための回路図を示す。図
8、図9に示すように、実施の形態3の定電流回路1,
8のそれぞれにスイッチ14,15を設けたものであ
る。このスイッチ14,15の動作は実施の形態2と同
一であるので省略する。
Embodiment 4 FIG. FIG. 8 shows a circuit diagram of this embodiment, and FIG. 9 shows a circuit diagram for explaining the operation. As shown in FIGS. 8 and 9, the constant current circuits 1 and
8 are provided with switches 14 and 15 respectively. The operations of the switches 14 and 15 are the same as in the second embodiment, and a description thereof will be omitted.

【0038】以上のようにこの実施の形態では、実施の
形態2と同様に二重化した一方のRTD入力装置に故障
が生じても他方のRTD入力装置に切り換えるようにし
たので、信頼性を向上することができる。また、実施の
形態3と同様に、一方のRTD入力装置に不具合を生じ
ても、回路からの切り離し、交換等が他方のRTD入力
装置に影響を与えることなくできるので保守・点検作業
の効率化を図ることができる。
As described above, in this embodiment, even if a failure occurs in one of the duplicated RTD input devices as in the second embodiment, switching to the other RTD input device is performed, thereby improving reliability. be able to. Further, as in the third embodiment, even if a failure occurs in one of the RTD input devices, disconnection from the circuit, replacement, and the like can be performed without affecting the other RTD input device. Can be achieved.

【0039】実施の形態5.図10にこの実施の形態の
回路図を示し、図11に動作説明のための回路図を示
す。図に示すように、ダイオード20,21を直列接続
した定電圧回路18,19を並列に接続することにより
二重化したもので、定電圧回路18と19の出力電圧に
差があっても大きい方の出力電圧が出力されRTD4と
基準抵抗16,17に電流が流れる。
Embodiment 5 FIG. 10 shows a circuit diagram of this embodiment, and FIG. 11 shows a circuit diagram for explaining the operation. As shown in the figure, the constant voltage circuits 18 and 19 in which diodes 20 and 21 are connected in series are duplicated by connecting them in parallel, and even if there is a difference between the output voltages of the constant voltage circuits 18 and 19, the larger one is used. An output voltage is output, and a current flows through the RTD 4 and the reference resistors 16 and 17.

【0040】そして、一方の定電圧回路に不具合があっ
ても、その定電圧回路はダイオード20または21によ
り隔離されるので、他方の定電圧回路で測定動作を継続
して行うことができる。この場合、出力電圧値が若干変
動しても、RTD4と基準抵抗16,17に流れる電流
の絶対値は変化するが、相対的にはすべて等しくなるた
め、RTD4と基準抵抗16,17との両端の電圧から
RTDの抵抗値を求め、温度を測定することができる。
Even if one of the constant voltage circuits has a defect, the constant voltage circuit is isolated by the diode 20 or 21, so that the measurement operation can be continued with the other constant voltage circuit. In this case, even if the output voltage value slightly fluctuates, the absolute values of the currents flowing through the RTD 4 and the reference resistances 16 and 17 change, but all become relatively equal. , The resistance value of the RTD can be determined from the voltage, and the temperature can be measured.

【0041】また、一方のRTD入力装置を交換・修理
する場合に、回路からの切り離しが、他方のRTD入力
装置に影響を与えることなくできる。
When one RTD input device is replaced or repaired, disconnection from the circuit can be performed without affecting the other RTD input device.

【0042】以上のようにこの実施の形態では、定電圧
回路と信号切換器以降の演算処理部分(第1と第2の演
算部)とを二重化し、一方の定電圧回路に不具合が生じ
ても、他方の定電圧回路で測定動作が継続できる。ま
た、一方のRTD入力装置に不具合を生じても、回路か
らの切り離しや交換等が他方のRTD入力装置に影響を
与えることなくできるので保守・点検作業の効率化を図
ることができる。
As described above, in this embodiment, the constant voltage circuit and the operation processing portion (first and second operation portions) after the signal switch are duplicated, and one of the constant voltage circuits has a problem. Also, the measurement operation can be continued by the other constant voltage circuit. Further, even if a failure occurs in one of the RTD input devices, disconnection or replacement from the circuit can be performed without affecting the other RTD input device, so that the efficiency of maintenance and inspection work can be improved.

【0043】実施の形態6.図12にこの実施の形態の
回路図を示し、図13に動作説明のための回路図を示
す。図12、図13に示すように、実施の形態5の定電
圧回路18,19のそれぞれにスイッチ14,15を設
けたものである。このスイッチ14,15は定電圧回路
18,19をそれぞれ切り換える。
Embodiment 6 FIG. FIG. 12 is a circuit diagram of this embodiment, and FIG. 13 is a circuit diagram for explaining the operation. As shown in FIGS. 12 and 13, switches 14 and 15 are provided in each of the constant voltage circuits 18 and 19 of the fifth embodiment. The switches 14 and 15 switch the constant voltage circuits 18 and 19, respectively.

【0044】この場合も実施の形態5と同様、切り換え
によってRTD4と基準抵抗16,17に流れる電流の
絶対値は変化するが、相対的にはすべて等しくなるた
め、RTD4と基準抵抗16,17の両端の電圧からR
TDの抵抗値を求めて、温度を測定することができる。
In this case, as in the fifth embodiment, the absolute value of the current flowing through the RTD 4 and the current flowing through the reference resistors 16 and 17 are changed by the switching. From the voltage at both ends, R
The temperature can be measured by determining the resistance value of TD.

【0045】切り換えは、実施の形態2と同様に、例え
ば、スイッチ14をON、スイッチ15をOFFしてR
TD入力装置101側を使用しているとき、図2に示す
演算部32の故障をウオッチドッグタイマー33が検出
するとスイッチ14をOFF、スイッチ15をONして
RTD入力装置102側に切り換える。なお、故障が発
生したとき、人為的にスイッチの切り換えをするように
してもよい。
Switching is performed, for example, by turning on the switch 14 and turning off the switch 15 in the same manner as in the second embodiment.
When the watchdog timer 33 detects a failure of the arithmetic unit 32 shown in FIG. 2 while using the TD input device 101, the switch 14 is turned off and the switch 15 is turned on to switch to the RTD input device 102 side. When a failure occurs, the switches may be switched artificially.

【0046】以上のようにこの実施の形態では、二重化
した一方のRTD入力装置に故障が生じると他方のRT
D入力装置に切り換えるようにしたので、信頼性を向上
することができる。また、実施の形態5と同様に、一方
のRTD入力装置に不具合を生じても、回路からの切り
離しや交換等が他方のRTD入力装置に影響を与えるこ
となくできるので保守・点検作業の効率化を図ることが
できる。
As described above, in this embodiment, if a failure occurs in one of the duplicated RTD input devices, the other RTD input device will fail.
Since switching to the D input device is performed, reliability can be improved. Further, as in the fifth embodiment, even if a failure occurs in one of the RTD input devices, disconnection or replacement of the RTD input device can be performed without affecting the other RTD input device. Can be achieved.

【0047】実施の形態7.図14にこの実施の形態の
回路図を示し、図15に動作説明のための回路図を示
す。定電圧回路18,19と直列接続のダイオード2
0,21の構成は、実施の形態5と同一であるが、基準
抵抗は第1と第2のRTD入力装置101,102にそ
れぞれ設けている。
Embodiment 7 FIG. FIG. 14 is a circuit diagram of this embodiment, and FIG. 15 is a circuit diagram for explaining the operation. Diode 2 connected in series with constant voltage circuits 18 and 19
The configurations of 0 and 21 are the same as those of the fifth embodiment, but the reference resistors are provided in the first and second RTD input devices 101 and 102, respectively.

【0048】定電圧回路18,19は並列に接続するこ
とにより二重化し、定電圧回路18と19の出力電圧に
差があっても大きい方の出力電圧が出力されRTD4と
基準抵抗5,6,11,12に電流が流れる。
The constant voltage circuits 18 and 19 are duplicated by being connected in parallel, so that even if there is a difference between the output voltages of the constant voltage circuits 18 and 19, the larger output voltage is output, and the RTD 4 and the reference resistors 5, 6 Current flows through 11 and 12.

【0049】そして、一方の定電圧回路に不具合があっ
ても、他方の定電圧回路で測定動作を継続して行うこと
ができる。この場合、出力電圧値が若干変動しても、R
TD4と基準抵抗5,6,11,12に流れる電流の絶
対値は変化するが、相対的にはすべて等しくなるため、
RTD4と基準抵抗5,6,11,12との両端の電圧
からRTDの抵抗値を求め、温度を測定することができ
る。
Then, even if one of the constant voltage circuits is defective, the other constant voltage circuit can continue the measurement operation. In this case, even if the output voltage value slightly changes, R
Although the absolute values of the current flowing through TD4 and the reference resistors 5, 6, 11, and 12 change, they are all relatively equal.
The resistance value of the RTD can be determined from the voltage between both ends of the RTD 4 and the reference resistors 5, 6, 11, and 12, and the temperature can be measured.

【0050】また、一方のRTD入力装置の演算部等に
故障が生じても、他方のRTD入力装置で測定動作を継
続することができる。但し、RTD入力装置は交換・修
理する場合に、一方のRTD入力装置を回路から切り離
す場合は、実施の形態5のような他のRTD入力装置に
影響を与えずに切り離しはできない。切り離す場合は、
接続変更を必要とする。
Further, even if a failure occurs in the operation unit or the like of one RTD input device, the measurement operation can be continued with the other RTD input device. However, when one RTD input device is disconnected from the circuit when the RTD input device is replaced or repaired, it cannot be disconnected without affecting the other RTD input device as in the fifth embodiment. When disconnecting,
Requires a connection change.

【0051】以上のようにこの実施の形態では、定電圧
回路と基準抵抗と信号切換器以降の演算処理部分(第1
と第2の演算部)とを二重化し、一方の定電圧回路に不
具合が生じても、他方の定電圧回路で測定動作が継続で
きる。また、一方のRTD入力装置が故障した場合は、
他方のRTD入力装置を用いて測定動作を行うことがで
きる。
As described above, in this embodiment, the arithmetic processing portion (the first portion) after the constant voltage circuit, the reference resistor, and the signal switch is performed.
And the second arithmetic unit), so that even if a malfunction occurs in one of the constant voltage circuits, the measurement operation can be continued in the other constant voltage circuit. Also, if one RTD input device fails,
The measurement operation can be performed using the other RTD input device.

【0052】実施の形態8.図16にこの実施の形態の
回路図を示す。図16は実施の形態7の図14にスイッ
チ14,15を設けたものである。このスイッチ14,
15は定電圧回路18,19をそれぞれ切り換える。
Embodiment 8 FIG. FIG. 16 shows a circuit diagram of this embodiment. FIG. 16 is obtained by providing switches 14 and 15 in FIG. 14 of the seventh embodiment. This switch 14,
Reference numeral 15 switches the constant voltage circuits 18 and 19, respectively.

【0053】この場合も実施の形態5と同様、切り換え
によってRTD4と基準抵抗5,6,11,12に流れ
る電流の絶対値は変化するが、相対的にはすべて等しく
なるため、RTD4と基準抵抗5,6,11,12の両
端の電圧からRTDの抵抗値を求めて、温度を測定する
ことができる。
In this case as well, the absolute value of the current flowing in the RTD 4 and the reference current flowing through the reference resistors 5, 6, 11, and 12 change as in the fifth embodiment. The temperature can be measured by determining the resistance value of the RTD from the voltage across the terminals 5, 6, 11, and 12.

【0054】スイッチの切り換えは、故障を検出して自
動的に切り換えるようにするが、人為的に切り換えるよ
うにしてもよい。
The switch is switched automatically upon detection of a failure, but may be switched manually.

【0055】以上のようにこの実施の形態では、二重化
した一方のRTD入力装置に故障が生じると他方のRT
D入力装置に切り換えるようにしたので、信頼性を向上
することができる。
As described above, in this embodiment, if a failure occurs in one of the duplicated RTD input devices, the other RTD input device will fail.
Since switching to the D input device is performed, reliability can be improved.

【0056】実施の形態9.実施の形態1では、図1に
示すように、スイッチS1,S2,S3およびS4,S
5,S6を順次切り換えて、S1が0Nの場合はRTD
4により測定対象の温度測定を行い、S5,S6がON
の場合は基準抵抗による増幅回路2,9やA/D変換器
31,41のゲイン・オフセット校正を行っているが、
常時はスイッチS1,と4をONとして温度測定し、所
定の時間間隔でスイッチS2,S3およびS5,S6を
順次ONにして校正を行うようにしてもよい。
Embodiment 9 FIG. In the first embodiment, as shown in FIG. 1, switches S1, S2, S3 and S4, S3
5 and S6 are sequentially switched, and when S1 is 0N, RTD
4. Measure the temperature of the measurement target with 4, and turn on S5 and S6
In the case of, the gain / offset calibration of the amplifier circuits 2 and 9 and the A / D converters 31 and 41 by the reference resistance is performed.
The switches S1 and S4 may be normally turned on to measure the temperature, and the switches S2, S3 and S5 and S6 may be sequentially turned on at predetermined time intervals to perform calibration.

【0057】また、実施の形態1の図2の演算部などは
CPUを用いてソフトウエア処理により測定温度を演算
して求めたが、従来の測定手段であるハードウエアで回
路を構成し測定温度を測定するようにしてもよい。ま
た、図1のダイオード7,13、図10のダイオード2
0,21などは、ダイオード以外の整流作用のある整流
素子を用いればよく、この発明では整流素子もダイオー
ドの範疇に入れている。
Although the calculation unit in FIG. 2 according to the first embodiment calculates the measured temperature by software processing using a CPU, the circuit is configured by hardware, which is a conventional measuring means, and the measured temperature is calculated. May be measured. Also, the diodes 7, 13 in FIG. 1 and the diode 2 in FIG.
A rectifying element having a rectifying action other than a diode may be used for 0, 21 and the like. In the present invention, the rectifying element is also included in the category of the diode.

【0058】[0058]

【発明の効果】以上のようにこの発明によれば、測温抵
抗体を用いた温度測定回路の二重化、およびこの回路に
用いる測温抵抗体入力装置の二重化を実現するために、
定電流または定電圧の電源、測定温度を演算する演算部
等を二重化して、電源や演算部の不具合が生じても温度
測定が継続できるようにしたので信頼性の向上を図るこ
とができる。
As described above, according to the present invention, in order to realize a dual temperature measuring circuit using a resistance temperature detector and a dual resistance temperature detector input device used in this circuit,
A constant current or constant voltage power supply, a calculation unit for calculating the measurement temperature, and the like are duplicated so that temperature measurement can be continued even if a failure occurs in the power supply or the calculation unit, so that reliability can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 この発明の実施の形態1による温度測定回路
の回路図である。
FIG. 1 is a circuit diagram of a temperature measuring circuit according to Embodiment 1 of the present invention.

【図2】 この発明の実施の形態1による測温抵抗体入
力装置の演算部のブロック図である。
FIG. 2 is a block diagram of a calculation unit of the resistance bulb input device according to Embodiment 1 of the present invention;

【図3】 この発明の実施の形態1による温度測定回路
の動作説明のための回路図である。
FIG. 3 is a circuit diagram for describing an operation of the temperature measurement circuit according to the first embodiment of the present invention.

【図4】 この発明の実施の形態2による温度測定回路
の回路図である。
FIG. 4 is a circuit diagram of a temperature measuring circuit according to a second embodiment of the present invention.

【図5】 この発明の実施の形態2による温度測定回路
の動作説明のための回路図である。
FIG. 5 is a circuit diagram for explaining an operation of the temperature measuring circuit according to the second embodiment of the present invention.

【図6】 この発明の実施の形態3による温度測定回路
の回路図である。
FIG. 6 is a circuit diagram of a temperature measuring circuit according to a third embodiment of the present invention.

【図7】 この発明の実施の形態3による温度測定回路
の動作説明のための回路図である。
FIG. 7 is a circuit diagram for describing an operation of a temperature measurement circuit according to Embodiment 3 of the present invention.

【図8】 この発明の実施の形態4による温度測定回路
の回路図である。
FIG. 8 is a circuit diagram of a temperature measuring circuit according to a fourth embodiment of the present invention.

【図9】 この発明の実施の形態4による温度測定回路
の動作説明のための回路図である。
FIG. 9 is a circuit diagram for describing an operation of a temperature measurement circuit according to a fourth embodiment of the present invention.

【図10】 この発明の実施の形態5による温度測定回
路の回路図である。
FIG. 10 is a circuit diagram of a temperature measuring circuit according to a fifth embodiment of the present invention.

【図11】 この発明の実施の形態5による温度測定回
路の動作説明のための回路図である。
FIG. 11 is a circuit diagram for describing an operation of a temperature measurement circuit according to a fifth embodiment of the present invention.

【図12】 この発明の実施の形態6による温度測定回
路の回路図である。
FIG. 12 is a circuit diagram of a temperature measuring circuit according to a sixth embodiment of the present invention.

【図13】 この発明の実施の形態6による温度測定回
路の動作説明のための回路図である。
FIG. 13 is a circuit diagram for describing an operation of a temperature measuring circuit according to a sixth embodiment of the present invention.

【図14】 この発明の実施の形態7による温度測定回
路の回路図である。
FIG. 14 is a circuit diagram of a temperature measuring circuit according to a seventh embodiment of the present invention.

【図15】 この発明の実施の形態7による温度測定回
路の動作説明のための回路図である。
FIG. 15 is a circuit diagram for describing an operation of a temperature measurement circuit according to a seventh embodiment of the present invention.

【図16】 この発明の実施の形態8による温度測定回
路の回路図である。
FIG. 16 is a circuit diagram of a temperature measurement circuit according to an eighth embodiment of the present invention.

【図17】 従来の制御装置のブロック図である。FIG. 17 is a block diagram of a conventional control device.

【符号の説明】[Explanation of symbols]

1,8 定電流回路、 2,9 増幅回路、
3,10 信号切換器、 4 RTD(測温抵
抗体) 5,11 100%側基準抵抗、 6,12 0%側基
準抵抗、7,13 ダイオード、 14,15
スイッチ(開閉手段)、16 外部100%側基準抵
抗、 17 外部0%側基準抵抗、18,19 定電圧
回路、 20,21 ダイオード、31,41
A/D変換器、 32,42 演算部、33,43
ウオッチドッグタイマー。
1,8 constant current circuit, 2,9 amplifier circuit,
3,10 signal switch, 4 RTD (resistance temperature detector) 5,11 100% side reference resistance, 6,120% side reference resistance, 7,13 diode, 14,15
Switch (opening / closing means), 16 external 100% side reference resistance, 17 external 0% side reference resistance, 18, 19 constant voltage circuit, 20, 21 diode, 31, 41
A / D converter, 32, 42 arithmetic unit, 33, 43
Watchdog timer.

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 バイパスダイオードを並列接続した第1
の定電流源と、別のバイパスダイオードを並列接続した
第2の定電流源とを順方向に直列接続した電流源、温度
検出用の測温抵抗体と第1の基準抵抗と第2の基準抵抗
とを直列接続し上記電流源から電流が供給される直列抵
抗体、上記測温抵抗体と上記第1の基準抵抗の各両端部
の電位差に基づいて測定温度を演算する第1の演算部、
上記測温抵抗体と上記第2の基準抵抗の各両端部の電位
差に基づいて測定温度を演算する第2の演算部を備え、
定電流源、基準抵抗、演算部を二重化したとを特徴とす
る温度測定回路。
A first diode having a bypass diode connected in parallel;
Current source in which a constant current source having a constant current source and a second constant current source having another bypass diode connected in parallel are connected in series in the forward direction, a temperature measuring resistor for temperature detection, a first reference resistor, and a second reference A first resistor connected in series to supply a current from the current source; a first calculator for calculating a measured temperature based on a potential difference between both ends of the temperature measuring resistor and the first reference resistor; ,
A second calculating unit that calculates a measured temperature based on a potential difference between both ends of the temperature measuring resistor and the second reference resistor,
A temperature measurement circuit characterized in that a constant current source, a reference resistor, and a calculation unit are duplicated.
【請求項2】 請求項1の温度測定回路において、電流
源は、第1の定電流源と第2の定電流源の各々に開閉手
段を直列接続し、その両端部に各々バイパスダイオード
を接続して構成し、上記両開閉手段により上記第1と第
2の定電流源を投入・解放自在としたことを特徴とする
温度測定回路。
2. The temperature measuring circuit according to claim 1, wherein the current source has switching means connected in series to each of the first constant current source and the second constant current source, and has a bypass diode connected to both ends thereof. A temperature measuring circuit characterized in that the first and second constant current sources can be freely turned on and off by the opening and closing means.
【請求項3】 請求項1または請求項2の温度測定回路
の内、バイパスダイオードを並列接続した第1の定電流
源、第1の基準抵抗、第1の演算部で第1の測温抵抗体
入力装置を構成すると共に、バイパスダイオードを並列
接続した第2の定電流源、第2の基準抵抗、第2の演算
部で第2の測温抵抗体入力装置を構成したことを特徴と
する測温抵抗体入力装置。
3. The temperature measuring circuit according to claim 1 or 2, wherein a first constant current source having a bypass diode connected in parallel, a first reference resistor, and a first temperature measuring resistor in a first calculating section. A second constant current source, a second reference resistance, and a second arithmetic unit, which constitute a body input device and a bypass diode connected in parallel, constitute a second resistance bulb input device. Resistance thermometer input device.
【請求項4】 バイパスダイオードを並列接続した第1
の定電流源と、別のバイパスダイオードを並列接続した
第2の定電流源とを順方向に直列接続した電流源、温度
検出用の測温抵抗体と基準抵抗とを直列接続し上記電流
源から電流が供給される直列抵抗体、上記測温抵抗体と
上記基準抵抗の各両端部の電位差に基づいて測定温度を
演算する第1と第2の2つの演算部を備え、定電流源、
演算部を二重化したとを特徴とする温度測定回路。
4. A first circuit in which bypass diodes are connected in parallel.
A current source in which a constant current source having a constant current source and a second constant current source having another bypass diode connected in parallel are connected in series in a forward direction; A first resistor and a second calculator for calculating a measured temperature based on a potential difference between both ends of the temperature measuring resistor and the reference resistor, and a constant current source;
A temperature measurement circuit characterized in that the operation unit is duplicated.
【請求項5】 請求項4の温度測定回路において、電流
源は、第1の定電流源と第2の定電流源の各々に開閉手
段を直列接続し、その両端部に各々バイパスダイオード
を接続して構成し、上記両開閉手段により上記第1と第
2の定電流源を投入・解放自在としたことを特徴とする
温度測定回路。
5. The temperature measuring circuit according to claim 4, wherein the current source has switching means connected in series to each of the first constant current source and the second constant current source, and has a bypass diode connected to both ends thereof. A temperature measuring circuit characterized in that the first and second constant current sources can be freely turned on and off by the opening and closing means.
【請求項6】 請求項4または請求項5の温度測定回路
の内、第1の定電流源と第1の演算部とで第1の測温抵
抗体入力装置を構成すると共に、第2の定電流源と第2
の演算部とで第2の測温抵抗体入力装置を構成したこと
を特徴とする測温抵抗体入力装置。
6. The temperature measuring circuit according to claim 4 or 5, wherein the first constant current source and the first arithmetic unit constitute a first resistance temperature detector input device, and the second constant current source and the first arithmetic unit. Constant current source and second
A second resistance thermometer input device comprising: a second resistance thermometer input device;
【請求項7】 ダイオードを順方向に直列接続した第1
の定電圧源と、別のダイオードを順方向に直列接続した
第2の定電圧源とを同極性で並列接続した電圧源、温度
検出用の測温抵抗体と基準抵抗とを直列接続し上記電圧
源からの電圧印加により電流が供給される直列抵抗体、
上記測温抵抗体と上記基準抵抗の各両端部の電位差に基
づいて測定温度を演算する第1と第2の2つの演算部を
備え、定電圧源、演算部を二重化したとを特徴とする温
度測定回路。
7. A first device in which diodes are connected in series in a forward direction.
A constant voltage source, a second constant voltage source in which another diode is connected in series in the forward direction, a voltage source in which the same polarity is connected in parallel, a temperature measuring resistor for temperature detection, and a reference resistor connected in series. A series resistor to which a current is supplied by applying a voltage from a voltage source,
It is provided with first and second two calculation units for calculating a measured temperature based on a potential difference between both ends of the resistance temperature detector and the reference resistance, and a constant voltage source and a calculation unit are duplicated. Temperature measurement circuit.
【請求項8】 請求項7の温度測定回路において、第1
の定電圧源と第2の定電圧源の各々に直列接続した開閉
手段を設け、上記両開閉手段により上記第1と第2の定
電圧源を投入・解放自在としたことを特徴とする温度測
定回路。
8. The temperature measuring circuit according to claim 7, wherein:
A switching means connected in series to each of the constant voltage source and the second constant voltage source, and the first and second constant voltage sources can be freely turned on and off by the two switching means. Measurement circuit.
【請求項9】 請求項7または請求項8の温度測定回路
の内、ダイオードを順方向に直列接続した第1の定電圧
源と第1の演算部とで第1の測温抵抗体入力装置を構成
すると共に、ダイオードを順方向に直列接続した第2の
定電圧源と第2の演算部とで第2の測温抵抗体入力装置
を構成したことを特徴とする測温抵抗体入力装置。
9. A first resistance thermometer input device comprising a first constant voltage source in which diodes are serially connected in a forward direction and a first arithmetic unit in the temperature measurement circuit according to claim 7 or 8. And a second constant-voltage source in which diodes are connected in series in the forward direction and a second arithmetic unit constitute a second resistance-temperature detector input device. .
【請求項10】 ダイオードを順方向に直列接続した第
1の定電圧源と、別のダイオードを順方向に直列接続し
た第2の定電圧源とを同極性で並列接続した電圧源、温
度検出用の測温抵抗体と第1の基準抵抗と第2の基準抵
抗とを直列接続し上記電圧源からの電圧印加により電流
が供給される直列抵抗体、上記測温抵抗体と上記第1の
基準抵抗の各両端部の電位差に基づいて測定温度を演算
する第1の演算部、上記測温抵抗体と上記第2の基準抵
抗の各両端部の電位差に基づいて測定温度を演算する第
2の演算部を備え、定電圧源、基準抵抗、演算部を二重
化したとを特徴とする温度測定回路。
10. A voltage source in which a first constant voltage source in which diodes are connected in series in the forward direction and a second constant voltage source in which another diode is connected in series in the forward direction are connected in parallel with the same polarity, and temperature detection. Resistor, a first reference resistor, and a second reference resistor connected in series, and a current is supplied by applying a voltage from the voltage source; the temperature resistor and the first resistor A first calculating unit for calculating a measured temperature based on a potential difference between both ends of the reference resistor; and a second calculating unit for calculating a measured temperature based on a potential difference between both ends of the temperature measuring resistor and the second reference resistor. A temperature measuring circuit comprising: a constant voltage source, a reference resistor, and a dual computing unit.
【請求項11】 請求項10の温度測定回路において、
第1の定電圧源と第2の定電圧源の各々に直列接続した
開閉手段を設け、上記両開閉手段により上記第1と第2
の定電圧源を投入・解放自在としたことを特徴とする温
度測定回路。
11. The temperature measuring circuit according to claim 10,
Opening / closing means connected in series to each of the first constant voltage source and the second constant voltage source is provided, and the first and second constant voltage sources are provided by the two opening / closing means.
A temperature measuring circuit characterized in that the constant voltage source can be freely turned on and off.
【請求項12】 請求項10または請求項11の温度測
定回路の内、ダイオードを順方向に直列接続した第1の
定電圧源と第1の基準抵抗と第1の演算部とで第1の測
温抵抗体入力装置を構成すると共に、ダイオードを順方
向に直列接続した第2の定電圧源と第2の基準抵抗と第
2の演算部とで第2の測温抵抗体入力装置を構成したこ
とを特徴とする測温抵抗体入力装置。
12. The temperature measuring circuit according to claim 10 or 11, wherein a first constant voltage source having a diode connected in series in a forward direction, a first reference resistor, and a first calculation unit. A second resistance thermometer input device comprises a second constant voltage source in which diodes are connected in series in a forward direction, a second reference resistor, and a second arithmetic unit. A thermometer input device.
JP35116796A 1996-12-27 1996-12-27 Temperature-measuring circuit and temperature-measuring resistance body input device Pending JPH10197360A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35116796A JPH10197360A (en) 1996-12-27 1996-12-27 Temperature-measuring circuit and temperature-measuring resistance body input device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35116796A JPH10197360A (en) 1996-12-27 1996-12-27 Temperature-measuring circuit and temperature-measuring resistance body input device

Publications (1)

Publication Number Publication Date
JPH10197360A true JPH10197360A (en) 1998-07-31

Family

ID=18415512

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35116796A Pending JPH10197360A (en) 1996-12-27 1996-12-27 Temperature-measuring circuit and temperature-measuring resistance body input device

Country Status (1)

Country Link
JP (1) JPH10197360A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002148124A (en) * 2000-07-28 2002-05-22 Valeo Climatisation Measuring instrument for heating/air-conditioning facility
US6529392B2 (en) 2000-09-06 2003-03-04 Murata Manufacturing Co., Ltd. Switching power supply unit
CN102012279A (en) * 2010-10-19 2011-04-13 上海微程电气设备有限公司 Dual-constant current source temperature measurement system for thermal resistor
CN102087149A (en) * 2010-12-22 2011-06-08 泰安磐然测控科技有限公司 Temperature calibrator with temperature difference measurement function
CN102998024A (en) * 2012-11-26 2013-03-27 上海电力学院 Novel temperature measuring method based on resistor-inductor (RL) circuit zero-input response
CN106092358A (en) * 2016-06-13 2016-11-09 潍柴动力股份有限公司 A kind for the treatment of method and apparatus of resistance sensor signal
JP2017133995A (en) * 2016-01-29 2017-08-03 サンデンシステムエンジニアリング株式会社 Temperature measurement device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002148124A (en) * 2000-07-28 2002-05-22 Valeo Climatisation Measuring instrument for heating/air-conditioning facility
US6529392B2 (en) 2000-09-06 2003-03-04 Murata Manufacturing Co., Ltd. Switching power supply unit
CN102012279A (en) * 2010-10-19 2011-04-13 上海微程电气设备有限公司 Dual-constant current source temperature measurement system for thermal resistor
CN102087149A (en) * 2010-12-22 2011-06-08 泰安磐然测控科技有限公司 Temperature calibrator with temperature difference measurement function
CN102998024A (en) * 2012-11-26 2013-03-27 上海电力学院 Novel temperature measuring method based on resistor-inductor (RL) circuit zero-input response
JP2017133995A (en) * 2016-01-29 2017-08-03 サンデンシステムエンジニアリング株式会社 Temperature measurement device
CN106092358A (en) * 2016-06-13 2016-11-09 潍柴动力股份有限公司 A kind for the treatment of method and apparatus of resistance sensor signal
CN106092358B (en) * 2016-06-13 2018-07-03 潍柴动力股份有限公司 A kind for the treatment of method and apparatus of resistance sensor signal

Similar Documents

Publication Publication Date Title
JPH0278962A (en) Compensation type current detector
US9696352B2 (en) Current sense circuit with offset calibration
US10310462B2 (en) System and apparatus for sustaining process temperature measurement for RTD lead wire break
JPH10197360A (en) Temperature-measuring circuit and temperature-measuring resistance body input device
JP2011130077A (en) Digital signal output circuit
JP3726261B2 (en) Thermal flow meter
JP3575573B2 (en) Thermal air flow meter
JP2562078B2 (en) Combined flow meter
US10897234B2 (en) Fully differential operational amplifier common mode current sensing feedback
JP2001194256A (en) Sensor device
JPH11295354A (en) Current detector
JP2024061961A (en) Current Sensors
WO2018130349A2 (en) Failure tolerant thermos-voltage acquisition for thermocouple applications
JP3170084B2 (en) Temperature measurement device
JPH01229596A (en) Digital controller
JP2000321107A (en) Apparatus and method for deciding fault of flow sensor
US11762036B2 (en) Control device for a vehicle
JPH0769246B2 (en) Leakage position detection device
US11581898B2 (en) Circuit for analog/digital conversion
JP4321167B2 (en) Burnout detection circuit
JP4967690B2 (en) Contact inspection device
JP2002310754A (en) Abnormality judgment device for flow sensor
JP2018013425A (en) Voltage detection circuit
JP2003121231A (en) Thermal type flowmeter
JPH0353128A (en) Zero point correcting circuit