JP4321167B2 - Burnout detection circuit - Google Patents

Burnout detection circuit Download PDF

Info

Publication number
JP4321167B2
JP4321167B2 JP2003274884A JP2003274884A JP4321167B2 JP 4321167 B2 JP4321167 B2 JP 4321167B2 JP 2003274884 A JP2003274884 A JP 2003274884A JP 2003274884 A JP2003274884 A JP 2003274884A JP 4321167 B2 JP4321167 B2 JP 4321167B2
Authority
JP
Japan
Prior art keywords
detection circuit
burnout detection
temperature
thermocouple
bias
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003274884A
Other languages
Japanese (ja)
Other versions
JP2005037257A (en
Inventor
直之 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Systems Co Ltd filed Critical Fuji Electric Systems Co Ltd
Priority to JP2003274884A priority Critical patent/JP4321167B2/en
Publication of JP2005037257A publication Critical patent/JP2005037257A/en
Application granted granted Critical
Publication of JP4321167B2 publication Critical patent/JP4321167B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明は、温度変換器、記録計及び温度調節計等の工業用プロセス計測機器に用いられる熱電対温度計測回路に利用されるバーンアウト検出回路に関する。 The present invention relates to a burnout detection circuit used for a thermocouple temperature measurement circuit used in industrial process measurement equipment such as a temperature converter, a recorder, and a temperature controller.

バーンアウト検出回路は、温度センサである熱電対のセンサ断線検出回路である。熱電対の温度センサで断線(バーンアウト)が発生すると、受信計の指示や記録が不定の値になることがある。例えば、調節計を燃焼プラントの一部として使用している場合にセンサ断線で正常値より低い温度を出力すると、燃料を過供給して異常燃焼を起こし重大な事故となる恐れがある。また、実験に使用した場合でも誤ったデータとなる。この様なことを防ぐため、センサが正常な状態で測定したデータと、断線したときに測定したデータとを区別するために使用される。以下、温度センサとして熱電対を代表して説明する。 The burnout detection circuit is a sensor disconnection detection circuit of a thermocouple that is a temperature sensor. If disconnection (burnout) occurs in the thermocouple temperature sensor, the instruction and recording of the receiver may become indefinite values. For example, when a controller is used as part of a combustion plant, if a temperature lower than a normal value is output due to a sensor disconnection, fuel may be oversupplied, causing abnormal combustion, resulting in a serious accident. In addition, even when used for experiments, the data is incorrect. In order to prevent this, it is used to distinguish between data measured when the sensor is in a normal state and data measured when the sensor is disconnected. Hereinafter, a thermocouple will be described as a representative temperature sensor.

に、従来のバーンアウト検出回路の回路構成を示し、その説明を行う。
に示すバーンアウト検出回路10は、熱電対11に接続端子11a,11bを介して接続され、熱電対11の断線を検出するものであり、半導体スイッチ13、高インピーダンス抵抗器14及び内部電圧源15を有するバイアス回路16と、半導体マルチプレクサ18と、増幅器20と、A/D(Analog/Digital)コンバータ22と、マイクロプロセッサ24とを備え、熱電対11の接地端との対向端が、抵抗器26及びコンデンサ27で構成されるLPF(LowPass Filter)28を介して半導体マルチプレクサ18の入力側に接続されている。この半導体マルチプレクサ18の入力側には、冷接点補償入力部29が更に接続されている。
FIG. 2 shows a circuit configuration of a conventional burnout detection circuit, which will be described.
The burnout detection circuit 10 shown in FIG. 2 is connected to the thermocouple 11 via connection terminals 11a and 11b, and detects disconnection of the thermocouple 11. The semiconductor switch 13, the high impedance resistor 14 and the internal voltage A bias circuit 16 having a source 15, a semiconductor multiplexer 18, an amplifier 20, an A / D (Analog / Digital) converter 22, and a microprocessor 24 are provided, and an end opposite to the ground end of the thermocouple 11 is a resistor. It is connected to the input side of the semiconductor multiplexer 18 through an LPF (Low Pass Filter) 28 composed of a capacitor 26 and a capacitor 27. A cold junction compensation input unit 29 is further connected to the input side of the semiconductor multiplexer 18.

バイアス回路16は、バイアス電流を熱電対11に供給することによって、熱電対11が断線したことを検出するために用いられる回路である。そのバイアス電流の供給は、半導体スイッチ13のON/OFF動作によって制御されるようになっており、半導体スイッチ13のON/OFF制御は、マイクロプロセッサ24から出力されるON/OFF制御信号30によって時分割で制御される。 The bias circuit 16 is a circuit used to detect that the thermocouple 11 is disconnected by supplying a bias current to the thermocouple 11. The supply of the bias current is controlled by the ON / OFF operation of the semiconductor switch 13. The ON / OFF control of the semiconductor switch 13 is controlled by the ON / OFF control signal 30 output from the microprocessor 24. Controlled by splitting.

熱電対11から出力される熱電対起電力信号31は、LPF28によって商用ノイズ等の低周波ノイズが除去された後、半導体マルチプレクサ18に入力される。
冷接点補償入力部29からは、熱電対11の温度補償を行うための熱電対温度補償信号32が半導体マルチプレクサ18へ入力される。更に、半導体マルチプレクサ18には、熱電対起電力信号31及び熱電対温度補償信号32を適正な信号にソフト的に補正するために用いられる基準信号33,34が入力される。
The thermocouple electromotive force signal 31 output from the thermocouple 11 is input to the semiconductor multiplexer 18 after low frequency noise such as commercial noise is removed by the LPF 28.
A thermocouple temperature compensation signal 32 for performing temperature compensation of the thermocouple 11 is input from the cold junction compensation input unit 29 to the semiconductor multiplexer 18. Further, the semiconductor multiplexer 18 is supplied with reference signals 33 and 34 that are used to softly correct the thermocouple electromotive force signal 31 and the thermocouple temperature compensation signal 32 to appropriate signals.

半導体マルチプレクサ18は、熱電対起電力信号31、熱電対温度補償信号32及び基準信号33,34の各信号を、マイクロプロセッサ24から出力される時分割制御信号35に応じた時分割によって選択する。
この選択された信号は、増幅器20で増幅され、このアナログの増幅信号36がA/Dコンバータ22でディジタル信号37に変換されてマイクロプロセッサ24へ出力される。マイクロプロセッサ24は、そのディジタル信号37から温度物理量を演算によって求める。
The semiconductor multiplexer 18 selects the thermocouple electromotive force signal 31, the thermocouple temperature compensation signal 32, and the reference signals 33 and 34 by time division according to the time division control signal 35 output from the microprocessor 24.
The selected signal is amplified by the amplifier 20, and the analog amplified signal 36 is converted into a digital signal 37 by the A / D converter 22 and output to the microprocessor 24. The microprocessor 24 obtains the temperature physical quantity from the digital signal 37 by calculation.

この際、A/Dコンバータ22に、積分方式を採用すればディジタル信号37は、パルス幅信号で得られるので、マイクロプロセッサ24は、そのパルス幅信号のパルス幅の時間を計測することによって熱電対11の両端に発生している温度起電力を計測することができる。
は、バーンアウト検出回路10の動作シーケンス図である。
の横軸は時間tを示し、1,2,3,…は、A/Dコンバータ22のA/D変換サイクルを示す。各A/D変換サイクル1,2,3,…において、熱電対起電力信号31、熱電対温度補償信号32及び基準信号33,34の各信号が、マイクロプロセッサ24で処理されて温度物理量が得られている。
At this time, if the integration method is adopted for the A / D converter 22, the digital signal 37 can be obtained as a pulse width signal. Therefore, the microprocessor 24 measures the time of the pulse width of the pulse width signal, thereby measuring the thermocouple. 11 can measure the temperature electromotive force generated at both ends.
FIG. 3 is an operation sequence diagram of the burnout detection circuit 10.
3, the horizontal axis indicates time t, and 1, 2, 3,... Indicate the A / D conversion cycle of the A / D converter 22. In each A / D conversion cycle 1, 2, 3,..., The thermocouple electromotive force signal 31, the thermocouple temperature compensation signal 32, and the reference signals 33 and 34 are processed by the microprocessor 24 to obtain a temperature physical quantity. It has been.

また、各A/D変換サイクル1,2,3,…において、A/D変換サイクル1に代表して示すa,b,c,dは、マイクロプロセッサ24からのON/OFF制御信号30に応じてON/OFF制御される半導体スイッチ13及び、時分割制御信号35に応じて時分割制御を行う半導体マルチプレクサ18によって、熱電対起電力信号31、熱電対温度補償信号32及び基準信号33,34の何れかの信号が、増幅器20へ出力されるタイミングを示す。 Further, in each A / D conversion cycle 1, 2, 3,..., A, b, c, d shown as representative of the A / D conversion cycle 1 correspond to the ON / OFF control signal 30 from the microprocessor 24. The thermocouple electromotive force signal 31, the thermocouple temperature compensation signal 32, and the reference signals 33 and 34 are controlled by the semiconductor switch 13 that is ON / OFF controlled and the semiconductor multiplexer 18 that performs time division control according to the time division control signal 35. The timing at which any signal is output to the amplifier 20 is shown.

このようなa,b,c,dのシーケンスを1つのA/D変換サイクルとし、このサイクルを1,2,3,…と継続することで熱電対11による温度計測を継続することが可能となる。
例えば、A/D変換サイクル1において、バイアス回路16の半導体スイッチ13をONとしてバーンアウト検出を行い、A/D変換サイクル2,3において、半導体スイッチ13をOFFとして、熱電対11の両端に発生している温度起電力を計測するようなシーケンスとして設計される。
It is possible to continue temperature measurement by the thermocouple 11 by making such a sequence of a, b, c, d one A / D conversion cycle and continuing this cycle as 1, 2, 3,... Become.
For example, in the A / D conversion cycle 1, the semiconductor switch 13 of the bias circuit 16 is turned on to perform burnout detection. In the A / D conversion cycles 2 and 3, the semiconductor switch 13 is turned off and is generated at both ends of the thermocouple 11. It is designed as a sequence that measures the temperature electromotive force.

このようなON/OFF動作によって、バーンアウト検出及び温度計測を正確に行うことが可能となる。つまり、このバーンアウト検出回路10は、温度計測回路の機能も備えており、言い換えれば、バーンアウト検出機能を備えた温度計測回路ともいえる。
上記では、半導体スイッチ13のON/OFF動作のタイミングに応じて、バーンアウト検出及び温度計測を行うバーンアウト検出回路10について説明したが、この他に、図に示した半導体スイッチ13が無く、常時、熱電対11へバイアス電流を供給する構成の他のバーンアウト検出回路もある。この回路では、熱電対11の断線時に、図に示したコンデンサ27へのバイアス電流のみのチャージによる電圧が、予め定められた閾値を越えるようにすることで、バーンアウト検出が行えるように構成されている。
By such ON / OFF operation, burnout detection and temperature measurement can be performed accurately. In other words, the burnout detection circuit 10 also has a function of a temperature measurement circuit, in other words, it can be said to be a temperature measurement circuit having a burnout detection function.
In the above, according to the timing of the ON / OFF operation of the semiconductor switch 13 has been described burnout detecting circuit 10 to perform burn-out detection and temperature measurement, In addition, there is no semiconductor switch 13 shown in FIG. 2, There is another burnout detection circuit configured to always supply a bias current to the thermocouple 11. In this circuit, when the thermocouple 11 is disconnected, the burnout detection can be performed by causing the voltage resulting from the charging of only the bias current to the capacitor 27 shown in FIG. 2 to exceed a predetermined threshold. Has been.

更に、温度検出システム的には、プロセス計測では熱電対起電力信号31は、工業温度制御などに使用されるため、熱電対11の異常時には、システムを安全方向(フェールセーフ)へ制御しなければならない。しかし、上記のように熱電対11に微小なバイアス電流を流すことは、このバイアス電流に熱電対11自体の抵抗値を乗算した電圧降下分に相当する誤差信号が、熱電対起電力信号31に加算され、これがマイクロプロセッサ24で計測されることになるので、温度計測結果に誤差が生じていた。 Furthermore, in terms of temperature detection system, the thermocouple electromotive force signal 31 is used for industrial temperature control or the like in process measurement. Therefore, when the thermocouple 11 is abnormal, the system must be controlled in a safe direction (fail-safe). Don't be. However, when a minute bias current is allowed to flow through the thermocouple 11 as described above, an error signal corresponding to a voltage drop obtained by multiplying the bias current by the resistance value of the thermocouple 11 itself is generated in the thermocouple electromotive force signal 31. Since the values are added and measured by the microprocessor 24, an error has occurred in the temperature measurement result.

このような不具合を、図に示したバーンアウト検出回路10では、バイアス電流の供給を制御するための半導体スイッチ13がONの場合にバーンアウト検出を行い、OFFの場合に温度計測を行うことによって解決している。
この種の従来のバーンアウト検出回路として、例えば特許文献1に記載のものがある。
特許第2569878号公報
In the burnout detection circuit 10 shown in FIG. 2 , such a malfunction is detected when the semiconductor switch 13 for controlling the supply of the bias current is ON, and when the semiconductor switch 13 is OFF, the temperature is measured. Is solved by.
An example of this type of conventional burnout detection circuit is disclosed in Patent Document 1.
Japanese Patent No. 2567878

ところで、従来のバーンアウト検出回路においては、1つの熱電対11に、接続端子11a,11bを介して2以上のバーンアウト検出回路10を接続して温度検出システムを構成するケースがある。この場合、各々のバーンアウト検出回路10からバーンアウト検出を行うためのバイアス電流が1つの熱電対11に対して供給されるが、各々のバイアス電流の電流量及び方向が異なるので、バイアス電流に熱電対11自体の抵抗値を乗算した電圧降下の影響が、各バーンアウト検出回路10相互に及んで温度計測に誤差が生じ、各々のバーンアウト検出回路において正確な温度計測が行えないという問題がある。 By the way, in the conventional burnout detection circuit, there is a case where two or more burnout detection circuits 10 are connected to one thermocouple 11 via connection terminals 11a and 11b to constitute a temperature detection system. In this case, a bias current for performing burnout detection is supplied from each burnout detection circuit 10 to one thermocouple 11. However, since the amount and direction of each bias current are different, the bias current is The influence of the voltage drop multiplied by the resistance value of the thermocouple 11 itself causes an error in temperature measurement between the burnout detection circuits 10, and accurate temperature measurement cannot be performed in each burnout detection circuit. is there.

本発明は、このような課題に鑑みてなされたものであり、1つの熱電対に2以上のバーンアウト検出回路を接続して温度検出システムを構成した場合でも、各バーンアウト検出回路において正確な温度計測を行うことができるバーンアウト検出回路を提供することを目的としている。 The present invention has been made in view of such problems. Even when two or more burnout detection circuits are connected to one thermocouple to constitute a temperature detection system, each burnout detection circuit is accurate. and its object is to provide a burnout detecting circuit can be determined promptly by using an temperature measurement.

上記目的を達成するために、本発明の請求項1によるバーンアウト検出回路は、熱電対の温度センサの断線を検出すると共に、その温度センサの温度検出時に発生する起電力をもとに温度計測を行うバーンアウト検出回路において、前記温度センサに、各々電流値の異なる少なくとも2つ以上のバイアス電流を供給するバイアス手段と、前記バイアス手段から前記温度センサに、前記少なくとも2つ以上のバイアス電流を個別に供給する第1の制御、及び全てのバイアス電流を無供給とする第2の制御の何れか一方を行うバイアス制御手段と、前記温度センサに他のバーンアウト検出回路が接続されているか否かを検出する接続有無検出手段と、前記接続有無検出手段により他のバーンアウト検出回路の接続が検出された際に、前記第1の制御による前記少なくとも2つ以上のバイアス電流の個別の供給時に各々温度計測された複数の温度計測値同士の差と、前記少なくとも2つ以上のバイアス電流同士の差との除算を行って前記温度センサの抵抗値を求め、この抵抗値に前記他のバーンアウト検出回路のバイアス電流を乗算した電圧降下分に相当する誤差を補正値として記憶し、前記第2の制御時に温度計測された第3の温度計測値から前記記憶された補正値を減算して補正を行う補正演算手段とを備えたことを特徴としている。 In order to achieve the above object, a burnout detection circuit according to claim 1 of the present invention detects disconnection of a temperature sensor of a thermocouple and measures temperature based on an electromotive force generated when the temperature of the temperature sensor is detected. In the burnout detection circuit, the bias means for supplying at least two bias currents having different current values to the temperature sensor, and the at least two bias currents from the bias means to the temperature sensor. Bias control means for performing either one of the first control to be individually supplied and the second control to not supply all the bias currents, and whether or not another burnout detection circuit is connected to the temperature sensor A connection presence / absence detection means for detecting whether or not the connection of another burnout detection circuit is detected by the connection presence / absence detection means. The difference between a plurality of temperature measurement values each measured at the time of individual supply of the at least two or more bias currents and a difference between the at least two or more bias currents is divided to provide the temperature sensor. A resistance value is obtained, an error corresponding to a voltage drop obtained by multiplying the resistance value by the bias current of the other burnout detection circuit is stored as a correction value, and the third temperature measured during the second control is measured. And a correction calculation means for performing correction by subtracting the stored correction value from the measured value.

この構成によれば、温度センサに自バーンアウト検出回路以外に1つ以上の他バーンアウト検出回路が接続された際に、温度センサの抵抗値に当該他バーンアウト検出回路のバイアス電流を乗算した電圧降下分に相当する誤差を求め、これを補正値として記憶しておく。そして、自バーンアウト検出回路の少なくとも2つ以上のバイアス電流を無供給として温度計測を行った際に、この温度計測値から先に記憶した補正値を減算すれば、その温度計測値に含まれる他バーンアウト検出回路の上記の誤差が無くなるので、適正な温度計測値を求めることができる。 According to this configuration, when one or more other burnout detection circuits other than the self burnout detection circuit are connected to the temperature sensor, the resistance value of the temperature sensor is multiplied by the bias current of the other burnout detection circuit. An error corresponding to the voltage drop is obtained and stored as a correction value. Then, when the temperature is measured without supplying at least two or more bias currents of the self burnout detection circuit, if the previously stored correction value is subtracted from this temperature measurement value, it is included in the temperature measurement value. Since the above-described error of the other burnout detection circuit is eliminated, an appropriate temperature measurement value can be obtained.

以上説明したように本発明は、温度センサに自バーンアウト検出回路以外に1つ以上の他バーンアウト検出回路が接続された際に、温度センサの抵抗値に当該他バーンアウト検出回路のバイアス電流を乗算した電圧降下分に相当する誤差を求め、これを補正値として記憶しておく。そして、自バーンアウト検出回路の第1及び第2のバイアス電流を無供給として温度計測を行った際に、この温度計測値から先に記憶した補正値を減算すれば、その温度計測値に含まれる他バーンアウト検出回路の上記の誤差が無くなるので、適正な温度計測値を求めることができる。   As described above, according to the present invention, when one or more other burnout detection circuits are connected to the temperature sensor in addition to the self burnout detection circuit, the bias current of the other burnout detection circuit is added to the resistance value of the temperature sensor. An error corresponding to the voltage drop multiplied by is obtained and stored as a correction value. Then, when the temperature is measured without supplying the first and second bias currents of the self burnout detection circuit, if the previously stored correction value is subtracted from this temperature measurement value, it is included in the temperature measurement value. Since the above-described error of the other burnout detection circuit is eliminated, an appropriate temperature measurement value can be obtained.

従って、1つの熱電対に2以上のバーンアウト検出回路を接続して温度検出システムを構成した場合でも、各バーンアウト検出回路において正確な温度計測を行うことができるという効果がある。 Therefore, even when two or more burnout detection circuits are connected to one thermocouple to constitute a temperature detection system, there is an effect that accurate temperature measurement can be performed in each burnout detection circuit.

以下、本発明の実施の形態を、図面を参照して説明する。
(第1の実施の形態)
図1は、本発明の第1の実施の形態に係るバーンアウト検出回路の回路構成図である。但し、図1に示す本実施の形態において、図に示した従来例の各部に対応する部分には同一符号を付し、その説明を省略する。
図1に示すバーンアウト検出回路40が、図に示した従来のバーンアウト検出回路10と異なる点は、バイアス回路41とマイクロプロセッサ42にある。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
(First embodiment)
FIG. 1 is a circuit configuration diagram of a burnout detection circuit according to the first embodiment of the present invention. However, in the present embodiment shown in FIG. 1, the same reference numerals are given to portions corresponding to those of the conventional example shown in FIG. 2, the description thereof is omitted.
The burnout detection circuit 40 shown in FIG. 1 is different from the conventional burnout detection circuit 10 shown in FIG. 2 in the bias circuit 41 and the microprocessor 42.

バイアス回路41は、内部電圧源15に並列に、各々の抵抗値が異なる第1及び第2の高インピーダンス抵抗器14a,14bを介して第1及び第2の半導体スイッチ13a,13bを接続することによって、熱電対11に、各々電流値が異なる第1及び第2のバイアス電流を供給するように構成されている。
マイクロプロセッサ42は、全体の制御を司る主制御部44に、バイアス電流切替制御部46と、外部回路接続有無検出部47と、補正演算部48と、補正値記憶部49とを接続して構成されている。
The bias circuit 41 connects the first and second semiconductor switches 13a and 13b in parallel with the internal voltage source 15 via the first and second high impedance resistors 14a and 14b having different resistance values. Thus, the first and second bias currents having different current values are supplied to the thermocouple 11.
The microprocessor 42 is configured by connecting a bias current switching control unit 46, an external circuit connection presence / absence detection unit 47, a correction calculation unit 48, and a correction value storage unit 49 to a main control unit 44 that performs overall control. Has been.

バイアス電流切替制御部46は、バイアス電流切替制御信号51によって各半導体スイッチ13a,13bを時分割によって個別にON/OFFする制御を行う。通常の温度計測では、従来例で図を参照して説明したと同様に各バイアス電流は供給しないので、双方の半導体スイッチ13a,13bともOFFとする。また、バーンアウト検出時には、何れか一方の半導体スイッチ13a,13bをONとするものである。 The bias current switching control unit 46 performs control to turn on / off the semiconductor switches 13a and 13b individually in a time-sharing manner by the bias current switching control signal 51. In normal temperature measurement, each bias current is not supplied in the same manner as described with reference to FIG. 3 in the conventional example, so both semiconductor switches 13a and 13b are turned off. Further, at the time of detecting burnout, one of the semiconductor switches 13a and 13b is turned on.

外部回路接続有無検出部47は、熱電対11の接続端子11a,11bに、本来接続されるべき自バーンアウト検出回路40以外の図示せぬバーンアウト検出回路(以降、他バーンアウト検出回路という)が接続されているか否かを検出するものである。
補正値記憶部49は、後述のように補正演算部48によって求められる補正値を記憶するものである。
The external circuit connection presence / absence detection unit 47 is a burnout detection circuit (not shown) other than the own burnout detection circuit 40 to be connected to the connection terminals 11a and 11b of the thermocouple 11 (hereinafter referred to as other burnout detection circuit). Is to detect whether or not is connected.
The correction value storage unit 49 stores a correction value obtained by the correction calculation unit 48 as described later.

補正演算部48は、外部回路接続有無検出部47で他バーンアウト検出回路が接続されていると検出された際に、当該他バーンアウト検出回路におけるバイアス電流に熱電対11自体の抵抗値を乗算した電圧降下分に相当する誤差を、後述するように計算して求める。この求められた誤差を補正値として補正値記憶部49に記憶しておき、自バーンアウト検出回路40における熱電対起電力信号31による温度計測時に、その記憶された補正値を用いて温度計測値の補正を行うものである。 When the external circuit connection presence / absence detection unit 47 detects that the other burnout detection circuit is connected, the correction calculation unit 48 multiplies the bias current in the other burnout detection circuit by the resistance value of the thermocouple 11 itself. An error corresponding to the voltage drop is calculated and calculated as described later. The obtained error is stored in the correction value storage unit 49 as a correction value, and when the temperature is measured by the thermocouple electromotive force signal 31 in the own burnout detection circuit 40, the temperature measurement value is used by using the stored correction value. Correction is performed.

次に、その補正が行われるまでの補正演算部48による各種の計算を説明する。
まず、図1に示すように、熱電対11に自バーンアウト検出回路40のみが接続されている状態を想定する。この場合に、2種類のバイアス電流を別々のタイミングで供給すると、第1のバイアス電流iB1及び第2のバイアス電流iB2の各々に、熱電対11自体の抵抗値r(tc)を乗算した電圧降下分に相当する各々の誤差r(tc)×iB1とr(tc)×iB2が、熱電対起電力信号31による起電力mV(tc)に加算され、これらの結果がマイクロプロセッサ42で計測される。この場合の温度計測値は、下式(1)及び(2)のように求められる。
Next, various calculations performed by the correction calculation unit 48 until the correction is performed will be described.
First, as shown in FIG. 1, it is assumed that only the self burnout detection circuit 40 is connected to the thermocouple 11. In this case, when two types of bias currents are supplied at different timings, a voltage drop obtained by multiplying each of the first bias current iB1 and the second bias current iB2 by the resistance value r (tc) of the thermocouple 11 itself. Each error r (tc) × iB1 and r (tc) × iB2 corresponding to the minute is added to the electromotive force mV (tc) by the thermocouple electromotive force signal 31, and these results are measured by the microprocessor 42. . The temperature measurement value in this case is obtained as in the following formulas (1) and (2).

第1の温度計測値=mV(tc)+r(tc)×iB1 …(1)
第2の温度計測値=mV(tc)+r(tc)×iB2 …(2)
また、通常の温度計測では、従来例で図を参照して説明したと同様に各バイアス電流は供給しないので、マイクロプロセッサ42で計測される温度計測値は、下式(3)のように求められる。
第3の温度計測値=mV(tc) …(3)
First temperature measurement value = mV (tc) + r (tc) × iB1 (1)
Second temperature measurement value = mV (tc) + r (tc) × iB2 (2)
Further, in the normal temperature measurement, each bias current is not supplied in the same manner as described with reference to FIG. 3 in the conventional example. Therefore, the temperature measurement value measured by the microprocessor 42 is expressed by the following equation (3). Desired.
Third temperature measurement value = mV (tc) (3)

また、各バイアス電流iB1,iB2は、設計段階で予め定まる値なので、温度計測時の環境温度が一定とみなせる条件では、下式(4)のように熱電対11自体の抵抗値r(tc)が求められる。
r(tc)=(第1の温度計測値−第2の温度計測値)÷(iB1−iB2) …(4)
次に、熱電対11に自バーンアウト検出回路40以外に他バーンアウト検出回路が接続されている状態を想定する。この場合、他バーンアウト検出回路のバイアス電流iBに、熱電対11自体の抵抗値r(tc)を乗算した電圧降下分に相当する誤差r(tc)×iBが、上式(1)及び(2)の結果に加算され、この結果がマイクロプロセッサ42で計測される。この場合の温度計測値は、下式(5)及び(6)のように求められる。
Since each bias current iB1, iB2 is a value determined in advance at the design stage, the resistance value r (tc) of the thermocouple 11 itself as shown in the following equation (4) under the condition that the environmental temperature at the time of temperature measurement can be regarded as constant. Is required.
r (tc) = (first temperature measurement value−second temperature measurement value) ÷ (iB1-iB2) (4)
Next, it is assumed that another burnout detection circuit is connected to the thermocouple 11 in addition to the self burnout detection circuit 40. In this case, an error r (tc) × iB corresponding to a voltage drop obtained by multiplying the bias current iB of the other burnout detection circuit by the resistance value r (tc) of the thermocouple 11 itself is represented by the above equations (1) and ( 2), and the result is measured by the microprocessor 42. The temperature measurement value in this case is obtained as in the following formulas (5) and (6).

第4の温度計測値=mV(tc)+r(tc)×iB1+r(tc)×iB …(5)
第5の温度計測値=mV(tc)+r(tc)×iB2+r(tc)×iB …(6)
ここで、計算を簡単とするため、他バーンアウト検出回路のバイアス電流を一定とすると、通常の温度計測では、自バーンアウト検出回路40における各バイアス電流は供給しないので、マイクロプロセッサ42で計測される温度計測値は、下式(7)のように求められる。
第6の温度計測値=mV(tc)+r(tc)×iB …(7)
Fourth measured temperature value = mV (tc) + r (tc) × iB1 + r (tc) × iB (5)
Fifth temperature measurement value = mV (tc) + r (tc) × iB2 + r (tc) × iB (6)
Here, in order to simplify the calculation, if the bias current of the other burnout detection circuit is constant, each bias current in the self burnout detection circuit 40 is not supplied in normal temperature measurement. The measured temperature value is obtained as in the following formula (7).
Sixth temperature measurement value = mV (tc) + r (tc) × iB (7)

また、他バーンアウト検出回路が接続された状態においても、各バイアス電流iB1,iB2は、設計段階で予め定まる値なので、温度計測時の環境温度が一定とみなせる条件では、下式(8)のように熱電対11自体の抵抗値r(tc)が求められる。
r(tc)=(第4の温度計測値−第5の温度計測値)÷(iB1−iB2) …(8)
Even when other burnout detection circuits are connected, the bias currents iB1 and iB2 are values determined in advance at the design stage. Therefore, under the condition that the environmental temperature at the time of temperature measurement can be regarded as constant, Thus, the resistance value r (tc) of the thermocouple 11 itself is obtained.
r (tc) = (fourth temperature measurement value−fifth temperature measurement value) ÷ (iB1-iB2) (8)

このことから、他バーンアウト検出回路のバイアス電流iBに、熱電対11自体の抵抗値r(tc)を乗算した電圧降下分に相当する誤差r(tc)×iBを、補正値として補正値記憶部49に記憶しておけば、他バーンアウト検出回路が接続された際の温度計測において、上式(7)の結果から補正値を減算すれば、適正な温度計測値を求めることが可能となる。
但し、上記の説明では、他バーンアウト検出回路が1つであることを前提としたが、2つ以上の場合でも同様に補正を行って適正な温度計測値を求めることができる。
このように、第1の実施の形態のバーンアウト検出回路40によれば、外部回路接続有無検出部47で、熱電対11に自バーンアウト検出回路40以外に1つ以上の他バーンアウト検出回路が接続された際に、補正演算部48で、熱電対11の抵抗値に当該他バーンアウト検出回路のバイアス電流を乗算した電圧降下分に相当する誤差を求め、これを補正値として補正値記憶部49に記憶しておく。
Therefore, an error r (tc) × iB corresponding to a voltage drop obtained by multiplying the bias current iB of the other burnout detection circuit by the resistance value r (tc) of the thermocouple 11 itself is stored as a correction value. If stored in the unit 49, an appropriate temperature measurement value can be obtained by subtracting the correction value from the result of the above equation (7) in the temperature measurement when the other burnout detection circuit is connected. Become.
However, in the above description, it is assumed that there is one other burnout detection circuit. However, even when there are two or more burnout detection circuits, an appropriate temperature measurement value can be obtained by performing the same correction.
Thus, according to the burnout detection circuit 40 of the first embodiment, the external circuit connection presence / absence detection unit 47 includes one or more other burnout detection circuits in addition to the self burnout detection circuit 40 in the thermocouple 11. Is connected, the correction calculation unit 48 obtains an error corresponding to a voltage drop obtained by multiplying the resistance value of the thermocouple 11 by the bias current of the other burnout detection circuit, and stores the correction value as a correction value. Stored in the unit 49.

そして、バイアス電流切替制御部46で、自バーンアウト検出回路40の第1及び第2のバイアス電流を無供給として温度計測を行った際に、補正演算部48で、その温度計測値から先に記憶した補正値を減算する。これによって、その温度計測値に含まれる他バーンアウト検出回路の上記の誤差が無くなるので、適正な温度計測値を求めることができる。
従って、1つの熱電対11に2以上のバーンアウト検出回路を接続して温度検出システムを構成した場合でも、各バーンアウト検出回路において正確な温度計測を行うことができる。
When the bias current switching control unit 46 performs temperature measurement without supplying the first and second bias currents of the self burnout detection circuit 40, the correction calculation unit 48 first determines the temperature measurement value. The stored correction value is subtracted. As a result, the above-described error of the other burnout detection circuit included in the temperature measurement value is eliminated, so that an appropriate temperature measurement value can be obtained.
Therefore, even when two or more burnout detection circuits are connected to one thermocouple 11 to constitute a temperature detection system, accurate temperature measurement can be performed in each burnout detection circuit.

本発明の第1の実施の形態に係るバーンアウト検出回路の回路構成図である。1 is a circuit configuration diagram of a burnout detection circuit according to a first embodiment of the present invention. 従来のバーンアウト検出回路の回路構成図である。It is a circuit block diagram of the conventional burnout detection circuit. バーンアウト検出回路の動作シーケンス図である。It is an operation | movement sequence diagram of a burnout detection circuit.

符号の説明Explanation of symbols

10 バーンアウト検出回路
11 熱電対
11a,11b 接続端子
13 半導体スイッチ
13a 第1の半導体スイッチ
13b 第2の半導体スイッチ
14 高インピーダンス抵抗器
14a 第1の高インピーダンス抵抗器
14b 第2の高インピーダンス抵抗器
15 内部電圧源
16,41 バイアス回路
18 半導体マルチプレクサ
20 増幅器
22 A/Dコンバータ
24,42 マイクロプロセッサ
26 抵抗器
27 コンデンサ
28 LPF
29 冷接点補償入力部
30 ON/OFF制御信号
31 熱電対起電力信号
32 熱電対温度補償信号
33,34 基準信号
35 時分割制御信号
36 増幅信号
37 ディジタル信号
44 主制御部
46 バイアス電流切替制御部
48 補正演算部
49 補正値記憶部
51 バイアス電流切替制御信号
10 burnout detection circuit 11 thermocouple 11a, 11b connection terminal 13 semiconductor switch 13a first semiconductor switch 13b second semiconductor switch 14 high impedance resistor 14a first high impedance resistor 14b second high impedance resistor 15 Internal voltage source 16, 41 Bias circuit 18 Semiconductor multiplexer 20 Amplifier 22 A / D converter 24, 42 Microprocessor 26 Resistor 27 Capacitor 28 LPF
29 Cold junction compensation input unit 30 ON / OFF control signal 31 Thermocouple electromotive force signal 32 Thermocouple temperature compensation signal 33, 34 Reference signal 35 Time division control signal 36 Amplification signal 37 Digital signal 44 Main control unit 46 Bias current switching control unit 48 Correction calculation unit 49 Correction value storage unit 51 Bias current switching control signal

Claims (1)

熱電対の温度センサの断線を検出すると共に、その温度センサの温度検出時に発生する起電力をもとに温度計測を行うバーンアウト検出回路において、
前記温度センサに、各々電流値の異なる少なくとも2つ以上のバイアス電流を供給するバイアス手段と、
前記バイアス手段から前記温度センサに、前記少なくとも2つ以上のバイアス電流を個別に供給する第1の制御、及び全てのバイアス電流を無供給とする第2の制御の何れか一方を行うバイアス制御手段と、
前記温度センサに他のバーンアウト検出回路が接続されているか否かを検出する接続有無検出手段と、
前記接続有無検出手段により他のバーンアウト検出回路の接続が検出された際に、前記第1の制御による前記少なくとも2つ以上のバイアス電流の個別の供給時に各々温度計測された複数の温度計測値同士の差と、前記少なくとも2つ以上のバイアス電流同士の差との除算を行って前記温度センサの抵抗値を求め、この抵抗値に前記他のバーンアウト検出回路のバイアス電流を乗算した電圧降下分に相当する誤差を補正値として記憶し、前記第2の制御時に温度計測された第3の温度計測値から前記記憶された補正値を減算して補正を行う補正演算手段と
を備えたことを特徴とするバーンアウト検出回路。
In the burnout detection circuit that detects the disconnection of the temperature sensor of the thermocouple and measures the temperature based on the electromotive force generated when the temperature of the temperature sensor is detected,
Bias means for supplying the temperature sensor with at least two bias currents each having a different current value;
Bias control means for performing either one of the first control for individually supplying the at least two or more bias currents from the bias means to the temperature sensor and the second control for not supplying all the bias currents. When,
Connection presence / absence detection means for detecting whether or not another burnout detection circuit is connected to the temperature sensor;
A plurality of temperature measurement values each measured at the time of individual supply of the at least two or more bias currents by the first control when connection of another burnout detection circuit is detected by the connection presence / absence detection means A voltage drop obtained by dividing a difference between the two and the difference between the at least two bias currents to obtain a resistance value of the temperature sensor and multiplying the resistance value by a bias current of the other burnout detection circuit Correction calculation means for storing an error corresponding to the minute as a correction value, and subtracting the stored correction value from the third temperature measurement value measured during the second control. A burnout detection circuit characterized by the above.
JP2003274884A 2003-07-15 2003-07-15 Burnout detection circuit Expired - Fee Related JP4321167B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003274884A JP4321167B2 (en) 2003-07-15 2003-07-15 Burnout detection circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003274884A JP4321167B2 (en) 2003-07-15 2003-07-15 Burnout detection circuit

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008206179A Division JP2008268234A (en) 2008-08-08 2008-08-08 Burnout detection circuit

Publications (2)

Publication Number Publication Date
JP2005037257A JP2005037257A (en) 2005-02-10
JP4321167B2 true JP4321167B2 (en) 2009-08-26

Family

ID=34211718

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003274884A Expired - Fee Related JP4321167B2 (en) 2003-07-15 2003-07-15 Burnout detection circuit

Country Status (1)

Country Link
JP (1) JP4321167B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5348380B2 (en) * 2008-08-25 2013-11-20 横河電機株式会社 Control circuit
US20150276498A1 (en) * 2014-03-27 2015-10-01 Rockwell Automation Technologies, Inc. Thermocouple module with wire resistance compensation

Also Published As

Publication number Publication date
JP2005037257A (en) 2005-02-10

Similar Documents

Publication Publication Date Title
JP4908608B2 (en) Electric load current control device
US10983187B2 (en) Measuring bridge arrangement with improved error detection
US4852544A (en) Self-cleaning oven temperature control with multiple redundant oven temperature sensing elements
JP2003329713A (en) Measuring circuit
JPH07159460A (en) Input device for resistance sensor
JP2017044638A (en) Disconnection detection device
JP5053421B2 (en) Signal judgment system and temperature judgment system
JP2011075530A (en) Thermistor monitoring device
JP2011130077A (en) Digital signal output circuit
JP4321167B2 (en) Burnout detection circuit
JP2007304006A (en) Secondary battery charge/discharge inspection device and method
JP6714860B2 (en) Measurement module
JP4350458B2 (en) Signal input device
US10514307B2 (en) Fault detection apparatus
JP2004045209A (en) Detector for physical quantity
CN111123106B (en) Sensor and method for checking a sensor
JP4326582B1 (en) Gas sensor device
JP2008268234A (en) Burnout detection circuit
JPH0462439A (en) Wire breaking detecting circuit of temperature measuring instrument
US10671103B2 (en) Voltage supply apparatus
JPH0820075B2 (en) Control device for combustion equipment
JP5348380B2 (en) Control circuit
JP4835207B2 (en) Temperature transmitter
JP5457152B2 (en) Inverter device
JPH07209050A (en) Two wire system electromagnetic flow meter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050816

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080617

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090512

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090525

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120612

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120612

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120612

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130612

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees