JPH10195597A - Thin steel sheet excellent in joinability - Google Patents

Thin steel sheet excellent in joinability

Info

Publication number
JPH10195597A
JPH10195597A JP4514897A JP4514897A JPH10195597A JP H10195597 A JPH10195597 A JP H10195597A JP 4514897 A JP4514897 A JP 4514897A JP 4514897 A JP4514897 A JP 4514897A JP H10195597 A JPH10195597 A JP H10195597A
Authority
JP
Japan
Prior art keywords
steel sheet
steel
content
brazing
welding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4514897A
Other languages
Japanese (ja)
Inventor
Jun Haga
純 芳賀
Masanori Taiyama
正則 泰山
Naomitsu Mizui
直光 水井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP4514897A priority Critical patent/JPH10195597A/en
Publication of JPH10195597A publication Critical patent/JPH10195597A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a thin steel sheet excellent in formability, free from fracture and deterioration in fatigue strength caused by molten metal brittleness at the time of brazing and welding and excellent in joinability. SOLUTION: This steel sheet has a compsn. contg., by weight, 0.003 to 0.01% C, 0.05 to 0.5% Mn, <=0.02% P, <=0.1% sol. Al, Ti: 48×(N/14) to 48× (N/14)+(S/32)}%, Nb: 93×(C/12) to 0.1%, 0.0005 to 0.003% B, <=0.01% N, <=0.05% Ni, and the balance Fe with inevitable impurities. Or, this is the one in which, in the above chemical compsn., the content of N is regulated to 0.004 to 0.01%, the content of Ni is regulated to <=0.05%, also, (Ni/Cu)>=1, and the content of Cu is regulated to <=0.05%.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、成形性が良好で、
溶接やろう付け等の方法で鋼板を接合するときの加熱の
影響による脆化や強度低下が生じ難い接合性に優れた薄
鋼板に関する。
TECHNICAL FIELD The present invention relates to a mold having good moldability,
The present invention relates to a thin steel sheet which is excellent in joining property and is less likely to cause embrittlement or strength reduction due to the influence of heating when joining steel sheets by welding or brazing.

【0002】[0002]

【従来の技術】自動車あるいは家電製品に用いられる薄
鋼板は、成形後はんだ合金やろう材を用いてろう付けし
たり、溶接して組立てられる場合が多い。ろう付け時に
はろう材は融点以上に加熱されて溶融状態になった後に
再凝固する。また、めっき鋼板を溶接する場合には、め
っき層は一旦溶融状態になった後に再凝固する。このよ
うにろう付けや溶接をする場合に、鋼板表面に融点が低
い金属が溶融して存在する瞬間がある。
2. Description of the Related Art In many cases, thin steel sheets used for automobiles and home electric appliances are assembled by brazing or welding using a solder alloy or brazing material after forming. At the time of brazing, the brazing material is heated to a temperature higher than the melting point and becomes a molten state, and then resolidifies. When a plated steel sheet is welded, the plated layer is once in a molten state and then re-solidified. When brazing or welding is performed in this way, there is a moment when a metal having a low melting point exists on the surface of the steel sheet.

【0003】一般的にプレス成形すると製品には様々な
残留応力が残る。残留応力が存在する高温の鋼板にろう
材やZn、Alなどが溶融状態で接すると、これらの金
属が鋼板の結晶粒界に侵入して結晶粒界の強度を弱め、
粒界脆性破壊を生じたり、繰り返し応力を受けた際に疲
労強度が大幅に低下したりすることがある。これは一般
的には、はんだ脆性または溶融金属脆性と称されてい
る。
In general, various residual stresses remain in products when pressed. When brazing material, Zn, Al, etc. come into contact with molten steel in a molten state at high temperature where residual stress exists, these metals penetrate into the grain boundaries of the steel plate and weaken the strength of the grain boundaries,
The grain boundary brittle fracture may occur, or the fatigue strength may be significantly reduced when subjected to repeated stress. This is commonly referred to as solder embrittlement or molten metal embrittlement.

【0004】自動車や家電製品には、プレス成形性を重
視して極低炭素IF(Interstitial Fr
ee)鋼板を使用することが多くなっている。IF鋼で
は鋼中のCが全て炭化物として固定され結晶粒界が清浄
になるので溶融金属が粒界に浸入しやすい。このため、
極低炭素IF鋼板あるいはこれを母材とするめっき鋼板
ではろう付け部や溶接熱影響部で溶融金属脆性が生じや
すい。
For automobiles and home electric appliances, emphasis is placed on press formability, and extremely low carbon IF (Interstitial Fr).
ee) Steel plates are increasingly used. In the IF steel, all the C in the steel is fixed as carbide and the crystal grain boundaries are cleaned, so that the molten metal easily enters the grain boundaries. For this reason,
In an ultra-low carbon IF steel sheet or a plated steel sheet using the same as a base material, molten metal brittleness is likely to occur in a brazed portion or a weld heat affected zone.

【0005】また、極低炭IF鋼を母材としたZn めっ
き鋼板あるいはAl めっき鋼板において、Cu含有量が
高い母材を用いると溶接部近傍の鋼が脆くなりやすい。
この理由は定かではないが、めっき層のZnやAlおよ
び鋼板中のCuが溶融して溶融部近傍の結晶粒界に浸入
し、結晶粒界でZn−Cu合金やAl−Cu合金が形成
されて結晶粒界が脆化するのではないかと推定される。
Alめっき鋼板を溶接する場合には、亜鉛めっき鋼板以
上にCuによる脆化現象が生じやすい。Znめっき鋼板
の場合には、溶融部のZnはある程度蒸発するが、Al
は沸点が亜鉛よりも高く、Zn以上にAlが溶接部に残
留しやすいためであろうと推測される。固溶Cを炭化物
として固定して製造される極低炭素のIF鋼板ではこの
現象が顕著に現れる。これらの問題が成形性に優れるI
F鋼の活用を妨げる要因になっている。
[0005] Further, in a Zn-plated steel sheet or an Al-plated steel sheet using an ultra-low carbon IF steel as a base material, if a base material having a high Cu content is used, the steel in the vicinity of the weld tends to become brittle.
The reason for this is not clear, but Zn and Al in the plating layer and Cu in the steel sheet are melted and penetrate into the crystal grain boundaries near the molten portion, where Zn-Cu alloy and Al-Cu alloy are formed at the crystal grain boundaries. It is presumed that the crystal grain boundary is embrittled.
When welding an Al-plated steel sheet, embrittlement by Cu is more likely to occur than in a galvanized steel sheet. In the case of a Zn-plated steel sheet, Zn in the molten portion evaporates to some extent, but Al
It is presumed that the boiling point is higher than that of zinc, and Al is more likely to remain in the welded portion than Zn. This phenomenon is conspicuous in an ultra-low carbon IF steel sheet manufactured by fixing solid solution C as carbide. These problems are caused by I
This is a factor that hinders the use of F steel.

【0006】溶融金属脆性を防止する方法が種々提案さ
れている。特開昭60−92453号公報にはTi−B
−Crを含有するろう付溶接用冷延鋼板が開示されてい
る。特開昭63−243225号公報には、極低C鋼に
Ti−B、Ti−B−Cr、Ti−Nb−BあるいはT
i−Nb−B−Crを含有させた耐ろう接割れ性に優れ
た冷延鋼板の製造法が開示されている。特開平3−17
3717号公報には低C−Alキルド鋼にBを含有させ
る銅系ろう付け用冷延鋼板の製造方法が開示されてい
る。特開昭64−4456号公報には低C−Alキルド
鋼にBを含有させた母材を用いる耐溶接割れ性に優れた
銅めっき鋼板とその製造法が開示されている。しかしこ
れらの方法のみでは、溶融金属脆性の防止効果は十分で
はない。
Various methods have been proposed for preventing brittleness of molten metal. JP-A-60-92453 discloses Ti-B
A cold-rolled steel sheet for brazing welding containing Cr is disclosed. Japanese Unexamined Patent Publication (Kokai) No. 63-243225 discloses that a very low C steel is made of Ti-B, Ti-B-Cr, Ti-Nb-B or T-B.
A method for producing a cold-rolled steel sheet containing i-Nb-B-Cr and having excellent brazing crack resistance is disclosed. JP-A-3-17
No. 3717 discloses a method for producing a copper-based cold-rolled steel sheet for brazing in which B is contained in a low C-Al killed steel. Japanese Unexamined Patent Publication (Kokai) No. 64-4456 discloses a copper-plated steel sheet having excellent weld cracking resistance using a base material containing B in a low C-Al killed steel and a method for producing the same. However, these methods alone are not enough to prevent the brittleness of molten metal.

【0007】溶接部近傍の熱影響部はオーステナイト域
以上に加熱される。ろう付けにおいても、安価で施工し
やすいので広く用いられる4−6黄銅の融点は900℃
前後であるので、ろう付けに際して接合部は950℃以
上、即ちオーステナイト域まで加熱される。鋼板をオー
ステナイト域以上に加熱すると鋼板中の炭化物が溶解す
るため、オーステナイト結晶粒が異常に大きく成長する
ことがある。粗大なオーステナイト結晶粒から生成する
フェライト結晶粒は粒径が大きくなりやすく、その部分
の静的強度や疲労強度が低下しやすい。特に結晶粒界が
清浄な極低炭IF鋼においてこの現象が著しい。
The heat-affected zone near the weld is heated above the austenite zone. In brazing, the melting point of 4-6 brass, which is widely used because it is inexpensive and easy to apply, is 900 ° C.
Since it is before and after, at the time of brazing, the joint is heated to 950 ° C. or more, that is, to the austenite region. When the steel sheet is heated to a temperature higher than the austenite region, carbides in the steel sheet are dissolved, and thus austenite crystal grains may grow abnormally large. Ferrite crystal grains generated from coarse austenite crystal grains tend to have a large grain size, and the static strength and fatigue strength at that portion are likely to be reduced. In particular, this phenomenon is remarkable in an ultra low carbon IF steel having a clean grain boundary.

【0008】鋼板の接合においてはこれらの溶融金属脆
性や強度低下を共に防止することが望まれるが、これま
での方法ではいずれもその効果が十分ではなく、所望の
強度を確保するために接合部材の厚みを増したり、溶接
部のめっき皮膜を除去して溶接する等の対応がとられて
いる。
In the joining of steel sheets, it is desired to prevent both the brittleness of the molten metal and the decrease in the strength. However, none of the conventional methods is effective enough, and the joining members are required to secure the desired strength. In order to increase the thickness of the steel sheet or to remove the plating film of the welded portion and perform welding.

【0009】[0009]

【発明が解決しようとする課題】本発明が解決しようと
する課題は、成形性に優れ、ろう付け部や溶接部で溶融
金属脆性や接合強度の低下がない接合性に優れた薄鋼板
を提供することである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a thin steel sheet which is excellent in formability and has excellent weldability without causing brittleness of molten metal or reduction in bonding strength at a brazed portion or a welded portion. It is to be.

【0010】[0010]

【課題を解決するための手段】本発明の要旨は下記
(1)および(2)に記載の接合性に優れた薄鋼板にあ
る。
SUMMARY OF THE INVENTION The gist of the present invention is a thin steel sheet having excellent bonding properties described in the following (1) and (2).

【0011】(1)重量%で、C:0.003〜0.0
1%、Mn:0.05〜0.5%、P:0.02%以
下、sol.Al:0.1%以下、Ti:48×(N/
14)〜48×{(N/14)+(S/32)}%、N
b:93×(C/12)〜0.1%、B:0.0005
〜0.003%、N:0.01%以下、Ni:0.05
%以下、残部Feおよび不可避的不純物からなる化学組
成を有する接合性に優れた薄鋼板。ここで、記号Sは鋼
板中のSの含有量(重量%)を表す。
(1) C: 0.003-0.0% by weight
1%, Mn: 0.05 to 0.5%, P: 0.02% or less, sol. Al: 0.1% or less, Ti: 48 × (N /
14) to 48 × {(N / 14) + (S / 32)}%, N
b: 93 × (C / 12) -0.1%, B: 0.0005
0.003%, N: 0.01% or less, Ni: 0.05
% Or less and a chemical composition comprising the balance of Fe and unavoidable impurities, and having excellent bonding properties. Here, the symbol S represents the content (% by weight) of S in the steel sheet.

【0012】(2)重量%で、C:0.003〜0.0
1%、Mn:0.05〜0.5%、P:0.02%以
下、sol.Al:0.01〜0.1%、Ti:48×
(N/14)〜48×{(N/14)+(S/32)}
%、Nb:93×(C/12)〜0.1%、B:0.0
005〜0.003%、N:0.004〜0.01%、
Ni:0.05%以下、かつ(Ni/Cu)≧1、残部
Feおよび不可避的不純物からなる化学組成を有し、不
可避的不純物中のCu含有量が0.05%以下である接
合性に優れた薄鋼板。ここで、記号Sは、鋼板中のSの
含有量(重量%)を表す。
(2) C: 0.003-0.0% by weight
1%, Mn: 0.05 to 0.5%, P: 0.02% or less, sol. Al: 0.01 to 0.1%, Ti: 48 ×
(N / 14) to 48 × {(N / 14) + (S / 32)}
%, Nb: 93 × (C / 12) to 0.1%, B: 0.0
005 to 0.003%, N: 0.004 to 0.01%,
Ni: 0.05% or less, and (Ni / Cu) ≧ 1, having a chemical composition consisting of the balance Fe and inevitable impurities, and having a Cu content of 0.05% or less in inevitable impurities. Excellent thin steel plate. Here, the symbol S represents the content (% by weight) of S in the steel sheet.

【0013】本発明は、ろう付け時や溶接時に受ける熱
履歴による鋼板の組織と強度の変化に関する以下の新た
な知見を得て完成されたものである。
The present invention has been completed by obtaining the following new knowledge regarding the change in the structure and strength of a steel sheet due to the heat history received during brazing and welding.

【0014】 極低炭素鋼中にNbCを析出させてお
けば、オーステナイト域に加熱された場合に生じやすい
オーステナイト結晶粒の異常成長を抑制できる。
By precipitating NbC in the ultra-low carbon steel, abnormal growth of austenite crystal grains which is likely to occur when heated to the austenite region can be suppressed.

【0015】極低炭素鋼をIF鋼化するときに生じるN
bC、TiC等の炭化物は結晶粒界移動の障害になるの
で結晶粒の粗大化防止に有効な手段である。しかし、い
ずれの炭化物もオーステナイト域のような高温では鋼中
に再固溶する。
[0015] N generated when ultra-low carbon steel is converted to IF steel
Carbides such as bC and TiC are obstacles to the movement of crystal grain boundaries, and are effective means for preventing crystal grains from becoming coarse. However, at high temperatures such as in the austenitic region, any of the carbides re-dissolves in the steel.

【0016】鋼板を加熱した場合、TiCは、フェライ
ト域では殆ど再固溶しないがオーステナイト域になると
一気に再固溶する。フェライト域での結晶粒成長を強力
に抑制していたTiCが突然無くなるため、オーステナ
イト結晶粒は逆に急激に成長する。このため、TiCを
含む鋼板をオーステナイト域に加熱すると、結果的には
TiCを含まない鋼よりも粗大なオーステナイト結晶粒
組織になる場合がある。
When a steel sheet is heated, TiC hardly re-dissolves in the ferrite region, but re-dissolves at once in the austenite region. Austenitic crystal grains grow rapidly, on the contrary, because TiC, which has strongly suppressed crystal grain growth in the ferrite region, suddenly disappears. For this reason, when the steel sheet containing TiC is heated to the austenitic region, the steel may eventually have a coarser austenite grain structure than the steel not containing TiC.

【0017】他方、NbCを含む鋼板が加熱されると、
NbCはフェライト域から徐々に再固溶し、これに伴っ
て結晶粒も徐々に大きくなる。このため、鋼板温度がオ
ーステナイト域になってNbCが完全に再固溶してしま
った後でも、結晶粒はそれ以上にはさほど大きくはなら
ない。したがい、オーステナイトの異常粒成長を防止す
る炭化物としては、TiCではなくてNbCが適してい
る。
On the other hand, when the steel sheet containing NbC is heated,
NbC gradually re-dissolves from the ferrite region, and the crystal grains gradually increase accordingly. For this reason, even after the steel sheet temperature reaches the austenite region and NbC completely re-dissolves, the crystal grains do not become so large. Accordingly, NbC rather than TiC is suitable as a carbide for preventing abnormal austenite grain growth.

【0018】 鋼板中に所定の量以上のNbCを確保
し、かつ、Bと共存させると、ろう付け後や溶接後の急
冷により硬質なアシキュラー・フェライト組織が生じ
る。これにより、ろう付け部や溶接部の強度低下を防ぐ
ことができる。これは一旦固溶したNbCが溶接後再析
出する前に急速に冷却されるため、焼入れ効果が生じる
ためと考えられる。
If a predetermined amount or more of NbC is secured in a steel sheet and coexist with B, a hard acicular ferrite structure is generated by rapid cooling after brazing or welding. As a result, it is possible to prevent the strength of the brazed portion and the welded portion from decreasing. This is presumably because the once dissolved NbC is rapidly cooled before re-precipitation after welding, thereby producing a quenching effect.

【0019】 めっき鋼板の母材である極低炭IF鋼
に、そのCu含有量に対応して適量のNiを含有させる
と溶接溶融部近傍の脆化が抑制される。この理由は定か
ではないが、溶融部が凝固するときにCu−Ni合金が
形成されて、結晶粒界でのZn−Cu合金や、Al−C
u合金の形成が抑制されるのではないかと推測される。
[0019] When the ultra-low carbon IF steel, which is the base material of the plated steel sheet, contains an appropriate amount of Ni in accordance with the Cu content, embrittlement near the weld fusion zone is suppressed. Although the reason for this is not clear, a Cu—Ni alloy is formed when the molten portion solidifies, and a Zn—Cu alloy or an Al—C
It is presumed that the formation of the u alloy is suppressed.

【0020】 IF鋼では鋼中の不純物が少ないため
に、溶接時に一旦溶融する部分の結晶組織は粗大化しや
すい。このため、溶接部の静的強度および疲労強度が低
下する場合がある。溶融部の結晶組織は鋼板中にTiN
を含ませることで微細にできる。これはTiNが凝固核
となること、および、TiNが結晶粒界の移動を抑制す
るためと推測される。
In the IF steel, since the impurities in the steel are small, the crystal structure of the portion once melted at the time of welding tends to be coarse. For this reason, the static strength and fatigue strength of the weld may decrease. The crystal structure of the fusion zone is TiN
The fineness can be achieved by including. This is presumed to be due to the fact that TiN becomes a solidification nucleus and that TiN suppresses the movement of crystal grain boundaries.

【0021】[0021]

【発明の実施の形態】本発明の実施に際し、各要因や条
件を限定した理由を以下に述べる。なお、以下に記す化
学組成の%表示は重量%を意味する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The reasons for limiting each factor and condition in implementing the present invention will be described below. The percentages of the chemical compositions described below mean% by weight.

【0022】C:一般的には、成形性の観点から少ない
ほど好ましい。しかし本発明では、溶接時の加熱による
熱影響部の結晶粒の粗大化に伴う溶接組み立て製品の強
度や疲労強度の低下等を防ぐための析出物形成元素とし
て積極的に添加する。加熱による強度低下を防止するに
は析出物の数を増すのが効果的である。このため鋼中の
C含有量は0.003%以上とする。C含有量が高すぎ
ると固溶Cを固定するのに必要なNbの量が増すので経
済性を損なう。また、NbCの析出量が多くなり過ぎる
と、再結晶温度が高くなり、鋼板の成形性が低下する。
このためC含有量は0.01%を上限とする。望ましく
は、0.004〜0.006%含有させる。
C: Generally, from the viewpoint of moldability, the smaller the better, the better. However, in the present invention, it is positively added as a precipitate-forming element for preventing a decrease in the strength and fatigue strength of a welded product due to coarsening of the crystal grains in the heat-affected zone due to heating during welding. It is effective to increase the number of precipitates to prevent the strength from being reduced by heating. Therefore, the C content in steel is set to 0.003% or more. If the C content is too high, the amount of Nb required for fixing solid solution C increases, which impairs economic efficiency. On the other hand, when the amount of NbC precipitated is too large, the recrystallization temperature increases, and the formability of the steel sheet decreases.
Therefore, the upper limit of the C content is 0.01%. Desirably, 0.004 to 0.006% is contained.

【0023】Mn:鋼中の不純物であり熱間脆性の原因
ともなるSは、本発明では、まずTiSとして固定して
無害化する。しかし後述するようにTiCの析出を避け
るためにTi含有量を低めに制限する必要があるので、
TiSにならないでSが残存する場合がある。Mnは、
TiSとして固定されなかったSをMnSとして固定す
るために含有させる。このため、Mn含有量の下限は
0.05%とする。Mnが過剰になると鋼中の全SがM
nSになり、TiSになるべきTiがTiCを形成す
る。TiCはオーステナイト結晶粒の粗大化させ、溶接
熱影響部の強度を低くするおそれがあるので好ましくな
い。これを避けるためにMn含有量の上限は0.5%と
する。 P:不可避的不純物として鋼中に含有されるが、溶接時
やろう付け時の熱影響部で結晶粒界に偏析して、これら
の部分を脆化させるおそれがあるので、Pの含有量は
0.02%以下とする。
Mn: S, which is an impurity in steel and causes hot brittleness, is first fixed in the present invention as TiS to render it harmless. However, as will be described later, it is necessary to limit the Ti content to a low level in order to avoid precipitation of TiC.
S may remain without forming TiS. Mn is
S not fixed as TiS is contained for fixing as MnS. Therefore, the lower limit of the Mn content is set to 0.05%. When Mn becomes excessive, all S in steel becomes M
Ti which becomes nS and becomes TiS forms TiC. TiC is not preferred because it may cause austenite crystal grains to become coarse and reduce the strength of the weld heat affected zone. To avoid this, the upper limit of the Mn content is set to 0.5%. P: contained in steel as inevitable impurities, but segregates at the grain boundaries in the heat-affected zone during welding or brazing, which may embrittle these portions. 0.02% or less.

【0024】Ti:鋼中のN全量と、Sの全量または一
部をTiNまたはTiSとして固定して成形性を改善す
るために添加する。本発明では、TiCを形成させな
い。N全量を固定するためにTi含有量の下限は48×
(N/14)%とする。TiCを形成させないためにT
i含有量の上限は48×{(N/14)+(S/3
2)}%とする。
Ti: added in order to improve the formability by fixing the total amount of N and the entire amount or a part of S in the steel as TiN or TiS. In the present invention, no TiC is formed. In order to fix the total amount of N, the lower limit of the Ti content is 48 ×
(N / 14)%. In order not to form TiC, T
The upper limit of the i content is 48 × {(N / 14) + (S / 3
2) Set to}%.

【0025】Nb:固溶CをNbCとして固定すること
で成形性を改善し、また、NbCを高温域での結晶粒成
長を抑制するのに活用する。そのため、Nb含有量の下
限は93×(C/12)%とする。しかし、0.1%を
超えて含有させると再結晶温度が高くなり製品の特性が
低下するので、0.1%を上限とする。
Nb: Improves formability by fixing solid solution C as NbC, and uses NbC to suppress crystal grain growth in a high temperature range. Therefore, the lower limit of the Nb content is set to 93 × (C / 12)%. However, if the content exceeds 0.1%, the recrystallization temperature increases and the properties of the product deteriorate, so the upper limit is 0.1%.

【0026】B:IF鋼の結晶粒界に偏析して溶接時や
ろう付け時に生じる溶融金属脆性を防止する効果があ
る。溶融金属脆性を防止するにはBを0.0005%以
上含有させることが必要である。他方、過剰に含有させ
るとその防止効果が飽和するうえ深絞り性の劣化も顕著
になるので、その含有量の上限を0.003%とする。 sol.Al:必須元素ではないが、鋼を脱酸する作用
があるので、脱酸剤として用いるのが望ましい。脱酸効
果を確保するためにsol.Alは0.01%以上添加
するのが好ましく、また、sol・Alを過剰に含有す
ると経済性が損なわれるのでその上限は0.1%とす
る。
B: It has the effect of segregating at the crystal grain boundaries of IF steel to prevent brittleness of molten metal during welding or brazing. In order to prevent the brittleness of molten metal, it is necessary to contain B by 0.0005% or more. On the other hand, if it is contained excessively, its prevention effect is saturated and the deep drawability deteriorates remarkably, so the upper limit of the content is made 0.003%. sol. Al: Although not an essential element, it has an action of deoxidizing steel, so it is desirable to use it as a deoxidizing agent. To ensure the deoxidizing effect, sol. Al is preferably added in an amount of 0.01% or more, and if sol.Al is excessively contained, economic efficiency is impaired, so the upper limit is set to 0.1%.

【0027】N:必須元素ではないが、Tiと結合して
窒化物を形成し、溶接時に生じる溶融部の結晶組織を微
細化し、溶接部の強度を改善する効果があるので必要に
応じて添加してもよい。結晶組織を微細化する効果を十
分に得るにはNは0.004%以上含有させるのが好ま
しい。Nを0.01%を超えて含有させると、Ti添加
量が多くなり経済性に欠けるうえ、TiNの析出量が多
くなって鋼板の成形性が損なわれる。このため、Nの上
限は0.01%とする。
N: Although not an essential element, it combines with Ti to form a nitride, refines the crystal structure of the molten portion generated at the time of welding, and has the effect of improving the strength of the welded portion. May be. In order to sufficiently obtain the effect of refining the crystal structure, N is preferably contained at 0.004% or more. If N is contained in an amount exceeding 0.01%, the amount of Ti added becomes large, resulting in lack of economy, and the precipitation amount of TiN becomes large, thereby impairing the formability of the steel sheet. Therefore, the upper limit of N is set to 0.01%.

【0028】Ni:不可避的不純物としてのCuを多く
含む母材にZnやAlをめっきした鋼板を溶接した時に
生じやすい溶融部近傍の脆化を抑制する効果がある。こ
のため、必要に応じてNiを含有させることが出来る。
この効果を得るにはCu含有量の1倍以上Niを含有さ
せるのが好ましい。過剰に含有させても、脆化を抑制す
る効果が飽和するうえ、加工性が損なわれるのでその上
限は0.05%とする。
Ni: has an effect of suppressing embrittlement in the vicinity of a molten portion, which tends to occur when welding a steel sheet plated with Zn or Al to a base material containing a large amount of Cu as an unavoidable impurity. For this reason, Ni can be contained as needed.
In order to obtain this effect, it is preferable to contain Ni at least one time the Cu content. Even if it is contained excessively, the effect of suppressing embrittlement is saturated and workability is impaired, so the upper limit is made 0.05%.

【0029】上記以外はFeおよび不可避的不純物であ
るが、不可避的不純物の中でもCuおよびSについては
以下のように制限するのが好適である。
Other than the above, Fe and inevitable impurities are included. Among the inevitable impurities, Cu and S are preferably limited as follows.

【0030】Cu:溶解原料等から混入する不可避的不
純物である。高温状態でZnやAlと共存すると溶接時
にZnやAlと共に結晶粒界に浸入して溶融部近傍を脆
化させるので、少ないほど好ましい。Ni含有量を調整
して溶接部の脆化を効果的に抑制するためにCuの含有
量は0.05%以下とする。
Cu: an unavoidable impurity that is mixed in from the raw material to be dissolved. When Zn and Al coexist in a high temperature state, they enter the crystal grain boundaries together with Zn and Al at the time of welding and embrittle the vicinity of the molten portion. In order to effectively suppress the embrittlement of the welded portion by adjusting the Ni content, the Cu content is set to 0.05% or less.

【0031】S:不可避的不純物として鋼中に含有され
るが、鋼を熱間圧延する時の赤熱脆性の原因になること
があり、また、鋼板の成形性を阻害するので0.01%
以下とするのがよい。
S: contained in steel as an unavoidable impurity, but may cause red hot embrittlement during hot rolling of steel, and impair the formability of steel sheet, so that 0.01%
It is better to do the following.

【0032】本発明の薄鋼板の製造方法は特定するもの
ではないが、例えば、転炉や電気炉など通常用いられて
いる方法で溶製し、必要に応じて真空脱ガス処理等を施
して上記の化学組成の鋼とし、鋼塊にして分塊圧延する
方法や連続鋳造法等によってスラブとし、熱間圧延し、
必要に応じて酸洗して熱延鋼板とする。また、常法によ
り、冷間圧延、焼鈍、調質圧延などを施して冷延鋼板と
するか、さらには、これらの熱延鋼板や冷延鋼板の表面
にめっきを施してもよい。めっきする金属はFeよりも
融点が低い金属または合金が適用でき、例えば、Zn、
Al、Pb、Snなどや、Zn−Fe、Zn−Alその
他の合金が挙げられる。めっき方法は任意であるが、例
えば、電気めっき法、溶融めっき法、蒸着めっき法等が
適用できる。
Although the method for producing a thin steel sheet of the present invention is not specified, for example, it is melted by a commonly used method such as a converter or an electric furnace and, if necessary, subjected to a vacuum degassing treatment or the like. A steel having the above chemical composition, a slab is formed by a method such as a method of bulk rolling into a steel ingot or a continuous casting method, and hot rolling is performed.
Pickling is performed as necessary to obtain a hot-rolled steel sheet. In addition, cold rolling, annealing, temper rolling and the like may be performed to form a cold-rolled steel sheet, or plating may be performed on the surface of the hot-rolled steel sheet or the cold-rolled steel sheet by an ordinary method. As the metal to be plated, a metal or an alloy having a lower melting point than Fe can be applied, for example, Zn,
Examples include Al, Pb, Sn, and the like, and Zn-Fe, Zn-Al, and other alloys. Although the plating method is arbitrary, for example, an electroplating method, a hot-dip plating method, a vapor deposition plating method, or the like can be applied.

【0033】熱間圧延鋼板として使用する場合には、鋼
板の成形性を向上させるために熱間圧延工程における巻
取温度を550℃以上にするのが好ましい。また冷間圧
延鋼板として用いる場合には、その焼鈍を連続焼鈍法で
施すのが経済的であり好ましい。連続焼鈍を施す際に
は、焼鈍温度で均熱した後650℃までの冷却を平均5
℃/秒以下の冷却速度で徐冷するのが好ましい。これら
の処理によりBのフェライト粒界への偏析が促進され、
耐溶融金属脆性が一層向上する。
When used as a hot-rolled steel sheet, the winding temperature in the hot-rolling step is preferably set to 550 ° C. or higher in order to improve the formability of the steel sheet. When used as a cold-rolled steel sheet, it is economically preferable to perform the annealing by a continuous annealing method. When performing continuous annealing, after cooling at an annealing temperature, cooling to 650 ° C.
It is preferable to gradually cool at a cooling rate of not more than ° C / sec. These treatments promote the segregation of B into ferrite grain boundaries,
Melt metal brittleness is further improved.

【0034】[0034]

【実施例】【Example】

(実施例1)実験用真空溶解炉を用いて、表1に示した
化学組成を有する鋼を溶解し、熱間鍛造により厚さ25
mm、幅210mmの実験用スラブとした。
(Example 1) A steel having a chemical composition shown in Table 1 was melted by using an experimental vacuum melting furnace, and a steel sheet having a thickness of 25 was formed by hot forging.
mm and a width of 210 mm.

【0035】[0035]

【表1】 [Table 1]

【0036】これらを電気炉で1250℃にて1時間加
熱した後、1150℃から930℃の温度範囲で、実験
用熱間圧延機による3パスの圧延で5mmの厚さに圧延
した。圧延後直ちに強制空冷あるいは水スプレー冷却に
より450〜800℃の温度に冷却し、それぞれの温度
に保持した電気炉に入れて1時間保持した後、20℃/
時で常温まで炉冷した。得られた鋼板の表裏面を研削し
て厚さ3.2mmとし、これを冷間圧延して厚さ0.8
mm、幅210mmの冷延板を得た。これらの冷延板を
赤外線加熱炉にて、10℃/秒の加熱速度で820℃ま
で加熱し、40秒間保持し、650℃まで3℃/秒の冷
却速度で徐冷し、それ以降は50℃/秒の冷却速度で室
温まで冷却した。焼鈍後、伸び率0.8%の調質圧延を
施した。得られた冷間圧延鋼板の成形性を、JIS Z
2201に規定される5号引張試験片による引張特性
で評価した。
These were heated in an electric furnace at 1250 ° C. for 1 hour, and then rolled to a thickness of 5 mm in a temperature range of 1150 ° C. to 930 ° C. by three-pass rolling using an experimental hot rolling mill. Immediately after the rolling, the material is cooled to a temperature of 450 to 800 ° C. by forced air cooling or water spray cooling, placed in an electric furnace maintained at each temperature, and maintained for 1 hour.
In some cases, the furnace was cooled to room temperature. The front and back surfaces of the obtained steel sheet were ground to a thickness of 3.2 mm, and this was cold-rolled to a thickness of 0.8 mm.
A cold-rolled plate having a width of 210 mm and a width of 210 mm was obtained. These cold rolled sheets were heated in an infrared heating furnace to 820 ° C. at a heating rate of 10 ° C./sec, held for 40 seconds, gradually cooled to 650 ° C. at a cooling rate of 3 ° C./sec, and thereafter cooled to 50 ° C. Cooled to room temperature at a cooling rate of ° C / sec. After annealing, temper rolling at an elongation of 0.8% was performed. The formability of the obtained cold-rolled steel sheet was measured according to JIS Z
Evaluation was made based on the tensile properties of a No. 5 tensile test piece specified in 2201.

【0037】耐溶融金属脆性は図1に示す方法で評価し
た。幅25mm、長さ60mmの平行部を有する鋼板試
料1に、両端に装備した保持具3、ワイヤー4を介して
重錘2による引張荷重を負荷する。その状態で鋼板試料
1の上面中央部にフラックス(ナイス社製F10S)を
置き、鋼板試料下面のガスバーナー(図示せず)によっ
て20℃/秒の加熱速度で950℃まで加熱する。ろう
材6としてはJISZ 3262に規定されるBCuZ
n−2(4―6黄銅)を用い、これをフラックスの上に
置く。ろう材の溶解により鋼板試料の温度は一旦低下す
るが、この温度が再度950℃に復帰してから30秒間
その荷重を掛けたまま保持する。重錘2の質量を変えて
試験を行ない、上記の30秒間に脆性破壊する下限の荷
重を求め、初期断面に対する応力を計算してこれを「脆
化臨界応力」とした。試料の温度は試料に付した熱電対
(図示せず)で測定した。
The brittle metal resistance was evaluated by the method shown in FIG. A tensile load by the weight 2 is applied to the steel sheet sample 1 having a parallel portion having a width of 25 mm and a length of 60 mm via a holder 3 and a wire 4 provided at both ends. In this state, a flux (F10S manufactured by Nice Co., Ltd.) is placed at the center of the upper surface of the steel plate sample 1, and heated to 950 ° C. at a heating rate of 20 ° C./sec by a gas burner (not shown) on the lower surface of the steel plate sample. The brazing material 6 is BCuZ specified in JISZ3262.
Use n-2 (4-6 brass) and place it on the flux. Although the temperature of the steel sheet sample once decreases due to the melting of the brazing material, the temperature is returned to 950 ° C. again, and the load is maintained for 30 seconds. The test was performed by changing the mass of the weight 2, the lower limit load for brittle fracture in the above 30 seconds was obtained, and the stress on the initial cross section was calculated and defined as "critical brittle stress". The temperature of the sample was measured with a thermocouple (not shown) attached to the sample.

【0038】ろう付け時や溶接時に高温に加熱されるこ
とによる鋼板の強度低下状況は、これらの熱履歴を模擬
した熱処理を施した鋼板の常温での引張破断応力をJI
SZ 2201に規定される5号引張試験片で求めて評
価した。以下、この応力を「熱処理後の破断応力」と記
す。上記の熱処理は、電気炉にて鋼板試料を20℃/秒
の加熱速度で950℃まで加熱し、30秒間保持した後
500℃まで空冷し、以降常温まで水冷するものであ
る。
The strength reduction of a steel sheet caused by heating to a high temperature during brazing or welding is based on the fact that the tensile fracture stress at room temperature of a heat-treated steel sheet simulating these heat histories is determined by JI.
It was determined and evaluated using a No. 5 tensile test piece specified in SZ2201. Hereinafter, this stress is referred to as “rupture stress after heat treatment”. In the above heat treatment, a steel sheet sample is heated to 950 ° C. at a heating rate of 20 ° C./sec in an electric furnace, held for 30 seconds, air-cooled to 500 ° C., and then water-cooled to room temperature.

【0039】鋼板試料の引張特性、脆化臨界応力、熱処
理後の破断応力等の測定結果を表2に示す。
Table 2 shows the measurement results of the tensile properties, critical embrittlement stress, and rupture stress after heat treatment of the steel sheet sample.

【0040】[0040]

【表2】 [Table 2]

【0041】表2に示されるように、本発明の化学組成
を満たす鋼1〜5から試作した鋼板はいずれも脆化臨界
応力が18MPa以上あり、熱処理後の破断応力も30
0MPa以上の優れたろう付け性を有する。これらの鋼
板は、r値が1.7以上、全延びが45%以上の引張特
性を示しており、プレス成形性も良好である。これに対
し、C含有量が本発明に規定する範囲に満たない鋼6の
鋼板は熱処理後の破断応力が低下している。CとNbを
過剰に含む鋼7およびBを過剰に含む鋼9の鋼板は、い
ずれも脆化臨界応力は良好であるが、NbCの過剰な析
出あるいはBの過剰な固溶により成形性を示す特性が劣
化している。Bが不足している鋼8の鋼板は脆化臨界応
力が低く、Tiを過剰に含有する鋼10の鋼板はTiC
が過剰に析出し、高温加熱時に結晶粒が粗大化したため
に熱処理後の破断応力が低下した。鋼11は、P含有量
が高く、脆化臨界応力が劣る。鋼12はN含有量が過剰
であり、成形性が好ましくない。
As shown in Table 2, all of the steel plates prototyped from steels 1 to 5 satisfying the chemical composition of the present invention have an embrittlement critical stress of 18 MPa or more and a rupture stress after heat treatment of 30.
It has excellent brazeability of 0 MPa or more. These steel sheets exhibit tensile properties with an r value of 1.7 or more and a total elongation of 45% or more, and have good press formability. On the other hand, the steel sheet of Steel 6 having a C content less than the range specified in the present invention has a reduced fracture stress after heat treatment. The steel sheet 7 containing excessive amounts of C and Nb and the steel sheet 9 containing excessive amounts of B all have good embrittlement critical stress, but exhibit formability due to excessive precipitation of NbC or excessive solid solution of B. The characteristics have deteriorated. The steel sheet 8 of steel 8 lacking B has a low critical stress for embrittlement, and the steel sheet 10 of steel 10 containing excess Ti is TiC.
Was excessively precipitated, and the crystal grains became coarse during heating at a high temperature, so that the breaking stress after the heat treatment was reduced. Steel 11 has a high P content and is inferior in embrittlement critical stress. Steel 12 has an excessive N content, and thus has poor moldability.

【0042】(実施例2)実験用真空溶解炉を用いて、
表3に示した化学組成を有する鋼を溶解し、熱間鍛造に
より厚さ25mm、幅210mmの実験用スラブとし
た。
Example 2 Using an experimental vacuum melting furnace,
Steel having the chemical composition shown in Table 3 was melted and hot forged into a 25 mm thick, 210 mm wide experimental slab.

【0043】[0043]

【表3】 [Table 3]

【0044】これらを実施例1に記載したのと同一の条
件で、熱間圧延、冷間圧延、焼鈍および調質圧延を施し
て厚さ0.8mm、幅210mmの冷延鋼板を得た。こ
れらの冷延鋼板に、電気めっきシミュレーターにて片面
当たりの付着量が30g/m2 のZnめっきを両面に施
した。得られたZnめっき鋼板からJIS Z 220
1に規定される5号引張試験片を採取して引張試験に供
した。また、実施例1に記載したのと同様の方法で脆化
臨界応力と熱処理後の破断応力を求めた。さらに、それ
ぞれのめっき鋼板から得た幅50mmの試験片2枚を重
ね合わせ、直径6mmのドーム型電極を用いて、通電時
間10サイクル、電流8kA、加圧力200kgfの条
件でスポット溶接を行った。溶接後、溶接部に試験片表
面に平行な方向の引張荷重を0〜max.の間で繰り返
して付加する片振り法で試験し、107 回の繰り返しで
破断しない最大荷重(せん断引張疲労強度)を求めた。
これらの諸性能測定結果を表4に示す。
These were subjected to hot rolling, cold rolling, annealing and temper rolling under the same conditions as described in Example 1 to obtain a cold-rolled steel sheet having a thickness of 0.8 mm and a width of 210 mm. These cold-rolled steel sheets were subjected to Zn plating with an adhesion amount per side of 30 g / m 2 on both sides by an electroplating simulator. JIS Z 220 from the obtained Zn-plated steel sheet
A No. 5 tensile test piece specified in 1 was collected and subjected to a tensile test. Further, the embrittlement critical stress and the rupture stress after the heat treatment were determined in the same manner as described in Example 1. Further, two test pieces having a width of 50 mm obtained from the respective plated steel sheets were overlapped, and spot welding was performed using a dome-shaped electrode having a diameter of 6 mm under the conditions of a current supply time of 10 cycles, a current of 8 kA, and a pressure of 200 kgf. After the welding, a tensile load of 0 to max. Tested in pulsating method for adding repeatedly between, was determined maximum load is not broken at 107 iterations (tensile shear fatigue strength).
Table 4 shows the results of these various performance measurements.

【0045】[0045]

【表4】 [Table 4]

【0046】本発明が規定する化学組成である鋼A、
B、C、D、EおよびFはいずれも成形性が良好で、脆
化臨界応力や熱処理後の破断応力も良好である。さらに
NとNiの含有量が、本発明の規定する好ましい範囲で
ある鋼A、B、CおよびDは、スポット溶接部のせん断
引張疲労強度が1290N以上で良好である。これに対
して、N含有量が好ましい範囲よりも低い鋼Eでは溶融
部の結晶組織が粗大になったために疲労強度が鋼A等に
較べてやや劣り、Ni/Cu比が好ましい範囲よりも低
い鋼Fでは溶接部の疲労強度が鋼A等に較べて低下して
いる。Cu含有量が本発明の規定する上限を外れた鋼G
ではNiを過剰に添加しているにもかかわらず疲労強度
が低下している。
Steel A having the chemical composition defined by the present invention,
B, C, D, E and F all have good formability, and also have good brittle critical stress and good breaking stress after heat treatment. Further, the steels A, B, C and D whose N and Ni contents are in the preferable ranges defined by the present invention have good shear tensile fatigue strength of the spot welded portion of 1290 N or more. On the other hand, in the steel E in which the N content is lower than the preferable range, the crystal structure of the melted portion becomes coarse, so that the fatigue strength is slightly inferior to the steel A or the like, and the Ni / Cu ratio is lower than the preferable range. In the case of steel F, the fatigue strength of the welded portion is lower than that of steel A or the like. Steel G whose Cu content is outside the upper limit specified in the present invention
In this case, the fatigue strength is reduced despite the excessive addition of Ni.

【0047】[0047]

【発明の効果】本発明の薄鋼板は成形性が良好で、耐溶
融金属脆性が優れており、ろう付け部の強度や、溶接部
の疲労強度も優れている。
The thin steel sheet of the present invention has good formability, excellent brittle metal resistance, excellent strength at the brazed portion, and excellent fatigue strength at the welded portion.

【図面の簡単な説明】[Brief description of the drawings]

【図1】耐溶融金属脆化臨界応力の測定方法の概要を示
す斜視図である。
FIG. 1 is a perspective view showing an outline of a method for measuring a critical stress for embrittlement resistance to molten metal.

【符号の説明】[Explanation of symbols]

1 鋼板試料 2 重錘 3 鋼板試料保持具 4 荷重負荷用ワイヤー 5 固定壁 6 ろう材 DESCRIPTION OF SYMBOLS 1 Steel plate sample 2 Weight 3 Steel plate sample holder 4 Wire for load application 5 Fixed wall 6 Brazing filler metal

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】重量%で、C:0.003〜0.01%、
Mn:0.05〜0.5%、P:0.02%以下、so
l.Al:0.1%以下、Ti:48×(N/14)〜
48×{(N/14)+(S/32)}%、Nb:93
×(C/12)〜0.1%、B:0.0005〜0.0
03%、N:0.01%以下、Ni:0.05%以下、
残部Feおよび不可避的不純物からなる化学組成を有す
る接合性に優れた薄鋼板。ここで、記号Sは鋼板中のS
の含有量(重量%)を表す。
(1) C: 0.003 to 0.01% by weight,
Mn: 0.05-0.5%, P: 0.02% or less, so
l. Al: 0.1% or less, Ti: 48 × (N / 14) ~
48 × {(N / 14) + (S / 32)}%, Nb: 93
× (C / 12) to 0.1%, B: 0.0005 to 0.0
03%, N: 0.01% or less, Ni: 0.05% or less,
A thin steel sheet having a chemical composition consisting of a balance of Fe and unavoidable impurities and having excellent bonding properties. Here, the symbol S is S in the steel sheet.
(% By weight).
【請求項2】重量%で、C:0.003〜0.01%、
Mn:0.05〜0.5%、P:0.02%以下、so
l.Al:0.01〜0.1%、Ti:48×(N/1
4)〜48×{(N/14)+(S/32)}%、N
b:93×(C/12)〜0.1%、B:0.0005
〜0.003%、N:0.004〜0.01%、Ni:
0.05%以下、かつ(Ni/Cu)≧1、残部Feお
よび不可避的不純物からなる化学組成を有し、不可避的
不純物中のCu含有量が0.05%以下である接合性に
優れた薄鋼板。ここで、記号Sは、鋼板中のSの含有量
(重量%)を表す。
2. C: 0.003 to 0.01% by weight,
Mn: 0.05-0.5%, P: 0.02% or less, so
l. Al: 0.01 to 0.1%, Ti: 48 × (N / 1
4) -48 × {(N / 14) + (S / 32)}%, N
b: 93 × (C / 12) -0.1%, B: 0.0005
-0.003%, N: 0.004-0.01%, Ni:
0.05% or less, (Ni / Cu) ≧ 1, has a chemical composition consisting of the balance of Fe and inevitable impurities, and has excellent bondability in which the Cu content in the inevitable impurities is 0.05% or less. Sheet steel. Here, the symbol S represents the content (% by weight) of S in the steel sheet.
JP4514897A 1996-11-14 1997-02-28 Thin steel sheet excellent in joinability Pending JPH10195597A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4514897A JPH10195597A (en) 1996-11-14 1997-02-28 Thin steel sheet excellent in joinability

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP8-302578 1996-11-14
JP30257896 1996-11-14
JP4514897A JPH10195597A (en) 1996-11-14 1997-02-28 Thin steel sheet excellent in joinability

Publications (1)

Publication Number Publication Date
JPH10195597A true JPH10195597A (en) 1998-07-28

Family

ID=26385118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4514897A Pending JPH10195597A (en) 1996-11-14 1997-02-28 Thin steel sheet excellent in joinability

Country Status (1)

Country Link
JP (1) JPH10195597A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007080926A1 (en) * 2006-01-13 2007-07-19 Matsushita Electric Industrial Co., Ltd. Inter-substrate bonding chip part, its manufacturing method, and wiring substrate connection method using the same
KR101149288B1 (en) 2009-07-24 2012-05-24 현대제철 주식회사 Method for producing of steel sheet having good surface quality
KR20180031033A (en) 2015-08-27 2018-03-27 제이에프이 스틸 가부시키가이샤 Resistance spot welding method and method for manufacturing welding member
KR20180081581A (en) 2015-12-16 2018-07-16 제이에프이 스틸 가부시키가이샤 Method of resistance spot welding and method of manufacturing welding member
WO2018159764A1 (en) 2017-03-01 2018-09-07 Jfeスチール株式会社 Resistance spot welding method
WO2020080407A1 (en) 2018-10-18 2020-04-23 Jfeスチール株式会社 Steel sheet and manufacturing method therefor
US11298773B2 (en) 2017-03-01 2022-04-12 Jfe Steel Corporation Resistance spot welding method
WO2023080076A1 (en) 2021-11-02 2023-05-11 Jfeスチール株式会社 Resistance spot welded member, and resistance spot welding method for same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007080926A1 (en) * 2006-01-13 2007-07-19 Matsushita Electric Industrial Co., Ltd. Inter-substrate bonding chip part, its manufacturing method, and wiring substrate connection method using the same
KR101149288B1 (en) 2009-07-24 2012-05-24 현대제철 주식회사 Method for producing of steel sheet having good surface quality
KR20180031033A (en) 2015-08-27 2018-03-27 제이에프이 스틸 가부시키가이샤 Resistance spot welding method and method for manufacturing welding member
US10835986B2 (en) 2015-08-27 2020-11-17 Jfe Steel Corporation Resistance spot welding method and welded member production method
KR20180081581A (en) 2015-12-16 2018-07-16 제이에프이 스틸 가부시키가이샤 Method of resistance spot welding and method of manufacturing welding member
US10946470B2 (en) 2015-12-16 2021-03-16 Jfe Steel Corporation Resistance spot welding method and welded member production method
WO2018159764A1 (en) 2017-03-01 2018-09-07 Jfeスチール株式会社 Resistance spot welding method
KR20190112045A (en) 2017-03-01 2019-10-02 제이에프이 스틸 가부시키가이샤 Resistance spot welding method
US11298773B2 (en) 2017-03-01 2022-04-12 Jfe Steel Corporation Resistance spot welding method
WO2020080407A1 (en) 2018-10-18 2020-04-23 Jfeスチール株式会社 Steel sheet and manufacturing method therefor
KR20210061370A (en) 2018-10-18 2021-05-27 제이에프이 스틸 가부시키가이샤 Steel plate and its manufacturing method
WO2023080076A1 (en) 2021-11-02 2023-05-11 Jfeスチール株式会社 Resistance spot welded member, and resistance spot welding method for same

Similar Documents

Publication Publication Date Title
JP3699077B2 (en) Base material for clad steel plate excellent in low temperature toughness of weld heat affected zone and method for producing the clad steel plate
JP4905024B2 (en) Ferritic stainless steel sheet with high strength of spot welded joint and method for producing the same
JPH10195597A (en) Thin steel sheet excellent in joinability
JP2001152287A (en) High strength cold rolled steel sheet excellent in spot weldability
JP5070866B2 (en) Hot-rolled steel sheet and spot welded member
JP2001271148A (en) HIGH Al STEEL SHEET EXCELLENT IN HIGH TEMPERATURE OXIDATION RESISTANCE
JP3908964B2 (en) Hot-dip galvanized high-strength steel sheet with excellent formability and manufacturing method thereof
JP3533548B2 (en) Ferritic stainless steel pipe for heat resistance with excellent workability
JP6961518B2 (en) Ferrite / austenite two-phase stainless steel plate for tank band and tank band and spot welding method using this
JP4818710B2 (en) Deep drawing high strength cold-rolled steel sheet, deep drawing high strength hot-dip galvanized steel sheet and method for producing the same
JP2002363650A (en) Method for producing ultrahigh strength cold rolled steel sheet having excellent seam weldability
JP3951282B2 (en) Hot-dip galvanized steel sheet and manufacturing method thereof
US3373015A (en) Stainless steel and product
JP3758515B2 (en) High tensile galvanized steel sheet with excellent resistance weldability
JP2930772B2 (en) High manganese ultra-high strength steel with excellent toughness of weld heat affected zone
JP2007277714A (en) Hot dip plated high strength steel sheet for deep drawing and its production method
JP3975882B2 (en) High corrosion resistance low strength stainless steel with excellent workability and toughness of welds and its welded joints
JP2573109B2 (en) Method for producing high-strength steel for Zn plating crack resistant structure
JPH0913150A (en) High chromium ferritic steel excellent in creep characteristic of welded joint
JP3420372B2 (en) Chromium steel sheet with excellent formability and weld ductility
JP3391625B2 (en) Cold rolled steel sheet excellent in deep drawability and fatigue properties of spot welded joint and method for producing the same
JP3874931B2 (en) Steel plate for processing with excellent weld strength and its manufacturing method
JP2023037686A (en) ferritic stainless steel
JPS63243225A (en) Production of cold rolled steel sheet having excellent resistance to cracking by brazing
JP2022089303A (en) Filler metal for austenitic stainless steel welding