JPH10195531A - Production of invar alloy excellent in strength and toughness - Google Patents

Production of invar alloy excellent in strength and toughness

Info

Publication number
JPH10195531A
JPH10195531A JP302297A JP302297A JPH10195531A JP H10195531 A JPH10195531 A JP H10195531A JP 302297 A JP302297 A JP 302297A JP 302297 A JP302297 A JP 302297A JP H10195531 A JPH10195531 A JP H10195531A
Authority
JP
Japan
Prior art keywords
strength
alloy
temperature
toughness
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP302297A
Other languages
Japanese (ja)
Other versions
JP3428341B2 (en
Inventor
Hideto Kimura
秀途 木村
Sadahiro Yamamoto
定弘 山本
Katsuyoshi Tsurisaki
勝義 釣崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP00302297A priority Critical patent/JP3428341B2/en
Publication of JPH10195531A publication Critical patent/JPH10195531A/en
Application granted granted Critical
Publication of JP3428341B2 publication Critical patent/JP3428341B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide as method for producing Fe-Ni invar alloy excellent in strength and toughness without checking its physical properties (low thermal expansion characteristics) and producibility. SOLUTION: In a method for producing an Fe-Ni series invar alloy contg., by weight, 30 to 45% Ni and 0.001 to 0.04% C, the alloy is heated at 900 to 1150 deg.C and is subjected to hot rolling at a cumulative draft of >=5% at <=TR deg.C expressed by the formula of TR( deg.C)=2,500×C%+750.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、特にLNG輸送、
貯蔵容器の構造材料等に適した強度、靭性に優れたFe
−Ni系アンバー合金の製造方法に関する。
The present invention relates to LNG transport,
Fe with excellent strength and toughness suitable for storage container structural materials, etc.
The present invention relates to a method for producing a Ni-based invar alloy.

【0002】[0002]

【従来の技術】近年、エネルギー源の多様化にともな
い、天然ガスが脚光を浴びており、その需要量は全世界
的に増加している。天然ガスの輸送と貯蔵に際しては、
−160℃といった極低温で液化天然ガス(LNG)と
しておこなわれる。このLNGの海上輸送船及び陸上貯
蔵用低温容器には、それぞれ、いくつかの構造形式があ
るが、近年の大容量化の傾向にともないLNG船は独立
タンク方式からメンブレン方式へ、陸上貯蔵タンクも二
重殻構造をもつ金属製タンクから半地下式のメンブレン
タンクに移行しようとしている。
2. Description of the Related Art In recent years, with the diversification of energy sources, natural gas has been in the spotlight and its demand is increasing worldwide. When transporting and storing natural gas,
It is carried out as liquefied natural gas (LNG) at a very low temperature of -160 ° C. The LNG marine transport ship and cryogenic container for land storage each have several types of structures, but with the recent trend of large capacity, LNG ships have changed from an independent tank type to a membrane type, We are moving from a metal shell with a double shell structure to a semi-underground membrane tank.

【0003】そして、これらのメンブレン用材料とし
て、LNGの液面の上下によって生ずる熱膨張、収縮を
緩和するため、及び溶接部デザインを簡略化して施工性
を上げるために、低熱膨張率を有するFe−Ni系アン
バー合金が用いられている。
[0003] In order to reduce thermal expansion and contraction caused by the rise and fall of the liquid level of LNG, and to improve weldability by simplifying the design of a welded part, Fe has a low coefficient of thermal expansion. -A Ni-based invar alloy is used.

【0004】しかしながら、このアンバー合金はオース
テナイト組織であるため、オーステナイト鋼特有の低強
度、低耐力が大きな欠点となっている。アンバー合金の
場合、完全溶体化処理状態で引張破断応力レベルは高々
450〜500MPa、耐力250〜350MPa程度
を有するにすぎない。メンブレン材としての構造信頼性
確保と軽量化のために重要な強度特性を、基材成分に添
加元素を少量加えることによる固溶硬化、析出強化等で
得ることを考えると、不純物元素の添加は本合金の基本
性能とも言うべきアンバー特性(低熱膨張特性)を阻害
し、また微量元素の添加自体、母相中の介在物量の増加
に繋がり、靱性が低下するといった問題がある。同じオ
ーステナイト鋼としては、オーステナイトステンレス鋼
において、特開昭60−26619号公報では、高強度
化対策として細粒化強化による高張力化を達成する方法
が開示され、特開昭60−197817号公報では、未
再結晶域で圧下を加え転位強化により高張力化を達成す
る方法が開示されている。さらに特開昭63−1868
22号公報においては、部分再結晶温度域を回避して圧
延することによって、安定した高強度の確保がなされて
いる。こうした試みはアンバー合金については行なわれ
ておらず、物理的性質(低熱膨張特性)や靱性を大きく
阻害することなく、強度特性の優れたFe−Ni系アン
バー合金を製造する方法が嘱望されていたものである。
However, since this amber alloy has an austenitic structure, the low strength and low proof stress peculiar to austenitic steel are major drawbacks. In the case of an amber alloy, the tensile rupture stress level at the time of complete solution treatment has a maximum of 450 to 500 MPa and a proof stress of only 250 to 350 MPa. Considering that the strength properties important for ensuring the structural reliability and weight reduction of the membrane material can be obtained by solid solution hardening and precipitation strengthening by adding a small amount of additional elements to the base material, the addition of impurity elements is There is a problem that the amber characteristic (low thermal expansion characteristic) which is also called basic performance of the alloy is impaired, the addition of a trace element itself leads to an increase in the amount of inclusions in the parent phase, and the toughness is reduced. As the same austenitic steel, for austenitic stainless steel, Japanese Patent Application Laid-Open No. 60-26619 discloses a method for achieving high tensile strength by grain reinforcement as a measure for increasing strength. Discloses a method in which a reduction is applied in a non-recrystallized region to increase the tensile strength by strengthening the dislocation. Further, JP-A-63-1868
In Japanese Patent Publication No. 22, a stable high strength is ensured by rolling while avoiding the partial recrystallization temperature range. Such an attempt has not been made on an invar alloy, and a method for producing an Fe—Ni-based invar alloy having excellent strength properties without greatly impairing physical properties (low thermal expansion properties) and toughness has been desired. Things.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、オース
テナイト鋼を細粒化した場合の強度の粒度依存性は、低
合金鋼の2/3以下と小さく、効果が少ないことが知ら
れている。また、アンバー合金は高温での耐酸化性が低
く、高温加熱が不可であり、部分再結晶温度が700〜
950℃程度と広いため、ステンレス鋼における特開昭
63−186822号公報等の技術による方法が適用困
難である。
However, it is known that the grain size dependence of strength when austenitic steel is refined is as small as 2/3 or less of that of low alloy steel, and that the effect is small. Further, the amber alloy has low oxidation resistance at high temperatures, cannot be heated at high temperatures, and has a partial recrystallization temperature of 700 to
Since the temperature is as wide as about 950 ° C., it is difficult to apply a method based on a technique such as Japanese Patent Application Laid-Open No. 63-186822 for stainless steel.

【0006】本発明の目的は、物理的性質(低熱膨張特
性)や製造性を阻害することなく、強度、靭性に優れた
Fe−Ni系アンバー合金の製造方法を提供することに
ある。
An object of the present invention is to provide a method for producing an Fe—Ni-based invar alloy having excellent strength and toughness without impairing physical properties (low thermal expansion properties) and manufacturability.

【0007】[0007]

【課題を解決するための手段】前記課題を解決し目的を
達成するために、本発明は以下に示す手段を用いてい
る。 (1)本発明の合金は、重量%で、Ni:30〜45%
と、C:0.001〜0.04%とを含むFe−Ni系
アンバー合金を製造する方法において、合金を900〜
1150℃に加熱し、下記(1)式で表されるTR ℃以
下の温度で、累積圧下率5%以上の熱間圧延を行うこと
を特徴とする、強度、靱性に優れたアンバー合金の製造
方法である。 TR (℃)=2,500×C%+750 …(1)
In order to solve the above problems and achieve the object, the present invention uses the following means. (1) The alloy of the present invention has a Ni content of 30 to 45% by weight.
And a method for producing an Fe—Ni-based invar alloy containing 0.001% to 0.04% of C:
The invar alloy having excellent strength and toughness characterized in that it is heated to 1150 ° C. and hot rolled at a cumulative reduction rate of 5% or more at a temperature of not more than T R ° C represented by the following formula (1). It is a manufacturing method. T R (° C.) = 2,500 × C% + 750 (1)

【0008】[0008]

【発明の実施の形態】本発明者は、物理的性質(低熱膨
張特性)や製造性を阻害することなく、強度、靭性に優
れたFe−Ni系アンバー合金を得るため、合金の添加
元素、圧延終了温度と強度向上との相関性について、鋭
意研究を重ねた。
BEST MODE FOR CARRYING OUT THE INVENTION The present inventor has proposed an Fe-Ni-based Invar alloy having excellent strength and toughness without impairing physical properties (low thermal expansion properties) and manufacturability. Intensive research was conducted on the correlation between the rolling end temperature and the strength improvement.

【0009】その結果、まず耐高温酸化性の観点からの
スラブ加熱は、1150℃を超えなければ表面の酸化は
許容範囲であること、これを超える高い温度で加熱する
と粒界酸化が著しく進行し、圧延後に疵または割れとな
って健全な板が得られず、軽度な場合も表面手入に大変
な手間と時間を要することがわかった。
As a result, first, in slab heating from the viewpoint of high-temperature oxidation resistance, surface oxidation is within an allowable range unless the temperature exceeds 1150 ° C. When heated at a temperature higher than this, grain boundary oxidation remarkably progresses. In addition, it was found that a healthy plate was not obtained due to flaws or cracks after rolling, and that even in a mild case, it took a great deal of time and effort to repair the surface.

【0010】さらに、アンバー合金の熱間加工後の完全
再結晶温度、及び部分再結晶開始温度はC量と密接に相
関し、熱間加工を模擬した圧縮試験後の金属組織と硬さ
から再結晶組織の判断を実施した結果、完全再結晶温
度、部分再結晶温度と、C量との量的な関係を把握でき
ることが明らかとなった。
[0010] Further, the complete recrystallization temperature and the partial recrystallization initiation temperature after hot working of an invar alloy are closely correlated with the C content, and the recrystallization temperature and the hardness after a compression test simulating hot working are re-evaluated. As a result of the judgment of the crystal structure, it became clear that the quantitative relationship between the complete recrystallization temperature, the partial recrystallization temperature, and the C amount can be grasped.

【0011】図1に圧延終了温度と硬さの関係を示す。
これから、C量、圧延終了温度と強度向上との相関は数
式化でき、TR (℃)=2,500×C%+750で決
まる温度TR が、部分再結晶開始温度を表現していると
見ることができる。すなわち、この温度以下での圧延・
加工では、残留歪みによる強度向上が達成されること等
が見いだされた。
FIG. 1 shows the relationship between the rolling end temperature and the hardness.
Now, C content, can correlation equations of the rolling end temperature and strength improvement, the temperature T R which is determined by T R (℃) = 2,500 × C% + 750 is, expresses the partial recrystallization starting temperature You can see. In other words, rolling at below this temperature
In processing, it was found that strength improvement due to residual strain was achieved.

【0012】一方、C含有量が少なく、母相に固溶しき
れない炭素量の殆どない範囲であれば、部分再結晶温度
範囲(粗粒+細粒の混合粒範囲)であっても、未固溶炭
化物による結晶粒成長の抑制作用はなく、特に転位の回
復は完全再結晶温度範囲と殆ど同様に進行することが、
硬さ試験の結果等から判断できた。
On the other hand, as long as the C content is small and the amount of carbon that cannot be completely dissolved in the mother phase is almost zero, even in the partial recrystallization temperature range (coarse grain + fine grain mixed grain range), The undissolved carbides do not inhibit the growth of crystal grains, and in particular, the recovery of dislocations proceeds almost the same as the complete recrystallization temperature range,
It could be judged from the results of the hardness test and the like.

【0013】本発明者は、この結果からアンバー合金は
同じオーステナイト組織とは言え、炭化物の析出や残留
が再結晶挙動に支配的な役割をはたす、オーステナイト
系ステンレス鋼とは異なり、その強度向上は未再結晶温
度域においては大であるが、部分再結晶温度域では小さ
く、あたかも再結晶温度域として取り扱うことができる
事を意味し、広い範囲での熱間加工を許容しつつ、高い
強度を安定して確保できることを新たに見いだしたので
ある。
[0013] The present inventor has concluded from the results that although the amber alloy has the same austenitic structure, unlike the austenitic stainless steel in which the precipitation and retention of carbides play a dominant role in the recrystallization behavior, the strength improvement is not achieved. It is large in the non-recrystallization temperature range, but small in the partial recrystallization temperature range, meaning that it can be treated as a recrystallization temperature range, allowing high strength while allowing hot working in a wide range. They have newly found that they can be secured stably.

【0014】以上の知見に基づき、本発明者は、合金組
成及びスラブ加熱温度を制御し、C量の規定する部分再
結晶温度を下回らない範囲(即ち、部分再結晶温度域
内)で、積極的に部分再結晶温度域を加工に使用するよ
うにして、熱間加工が比較的低温度域に及ぶ製品でも加
工が可能(即ち、圧延パス数が多いので薄物製造も容易
となる)で、かつ、強度の向上を安定して達成すること
ができる、本発明の強度、靭性に優れたアンバー合金の
製造方法を見いだし、本発明を完成させた。
Based on the above findings, the present inventor has controlled the alloy composition and the slab heating temperature, and has been active in a range not lower than the partial recrystallization temperature defined by the amount of C (that is, within the partial recrystallization temperature range). By using the partial recrystallization temperature range for processing, it is possible to process even products in which hot working extends to a relatively low temperature range (that is, thin materials can be easily manufactured because of the large number of rolling passes), and The present inventors have found a method for producing an invar alloy excellent in strength and toughness according to the present invention, which can stably improve strength, and completed the present invention.

【0015】すなわち、本発明は、合金組成及び製造条
件を下記範囲に限定することにより、物理的性質(低熱
膨張特性)や製造性を阻害することなく、強度、靭性に
優れたFe−Ni系アンバー合金を得ることができる。
That is, the present invention limits the alloy composition and the manufacturing conditions to the following ranges, thereby preventing the physical properties (low thermal expansion properties) and the manufacturability without impairing the strength and toughness of the Fe-Ni-based alloy. Amber alloy can be obtained.

【0016】以下に本発明の成分添加理由、成分限定理
由、及び製造条件の限定理由について説明する。 (1)成分組成範囲 Ni:30〜45% 本発明においては、低熱膨張率のFe−Ni系アンバー
合金を対象としており、Niは本合金の熱膨張率を支配
する元素である。30〜45%Ni−Fe bal.の
合金範囲で所要の低熱膨張特性が得られる。Niが30
%未満もしくは45%越えでは所要の低熱膨張特性が得
られないため、Niの範囲は30〜45%である。 C:0.001〜0.04% Cは本合金において、強度を向上させる添加元素である
とともに、その含有量は再結晶温度を大きく左右する。
ただし、C添加量に応じた加工温度設定が可能であるた
め、強度面から添加範囲を規定する。すなわち、Cが
0.001%未満では強度特性が劣る上、これ未満にC
量を低減することは通常の精錬では一般的でなく、一方
0.04%を超えると低熱膨張特性が阻害されるため、
添加量は0.001〜0.04%である。
The reasons for adding the components, the reasons for limiting the components, and the reasons for limiting the production conditions of the present invention are described below. (1) Component composition range Ni: 30 to 45% In the present invention, a low thermal expansion Fe—Ni-based invar alloy is targeted, and Ni is an element that controls the thermal expansion coefficient of the present alloy. 30-45% Ni-Fe bal. The required low thermal expansion characteristics can be obtained in the alloy range of 1. Ni is 30
If the content is less than 45% or more than 45%, the required low thermal expansion characteristics cannot be obtained, so the range of Ni is 30 to 45%. C: 0.001 to 0.04% C is an additive element for improving the strength in the present alloy, and its content greatly affects the recrystallization temperature.
However, since the processing temperature can be set according to the amount of C added, the addition range is defined from the viewpoint of strength. That is, if C is less than 0.001%, the strength properties are inferior, and if C is less than 0.001%,
Decreasing the amount is not common in ordinary refining, while exceeding 0.04% impairs the low thermal expansion characteristics,
The amount of addition is 0.001 to 0.04%.

【0017】ちなみに、本合金においては、溶製の際の
不可避的不純物として、Si,Mn,P,S,N,O,
Coの混入があっても、また、必要に応じて、強度や耐
食性に有効なCr,Mo,Cu,Nbの1%以下の添加
や、熱間加工性向上などに有効なHf,Ta,Al,T
i,Zrの0.1%以下の添加、さらに、B,Ca,M
gの0.01%以下の添加を行なっても、本発明の効果
は阻害されず含有は許容される。
Incidentally, in the present alloy, Si, Mn, P, S, N, O,
Even if Co is mixed, if necessary, addition of 1% or less of Cr, Mo, Cu, Nb effective for strength and corrosion resistance, and Hf, Ta, Al effective for improving hot workability, etc. , T
Addition of 0.1% or less of i, Zr, and B, Ca, M
Even if 0.01% or less of g is added, the effect of the present invention is not impaired and the content is acceptable.

【0018】上記の成分組成範囲に調整することによ
り、物理的性質(低熱膨張特性)や製造性を阻害するこ
となく、強度、靭性に優れたFe−Ni系アンバー合金
を得ることが可能となる。
By adjusting to the above component composition range, it is possible to obtain an Fe—Ni-based Invar alloy excellent in strength and toughness without impairing physical properties (low thermal expansion properties) and manufacturability. .

【0019】このような特性の合金は以下の製造方法に
より、製造することができる。 (2)合金板製造工程 上記の成分組成範囲に調整した合金を転炉にて溶製した
後、鋳造スラブとし、合金を900〜1150℃に加熱
する。
An alloy having such characteristics can be manufactured by the following manufacturing method. (2) Alloy plate manufacturing process After melting the alloy adjusted to the above component composition range in a converter, it is made into a cast slab, and the alloy is heated to 900 to 1150 ° C.

【0020】耐高温酸化性の観点からのスラブ加熱は、
1150℃を超えなければ表面の酸化は許容範囲である
こと、これをこえる高い温度で加熱すると粒界酸化が著
しく進行し、圧延後に疵または割れとなって健全な板が
得られず、軽度な場合も表面手入に大変な手間と時間、
ひいてはコストを要することから、スラブ加熱温度の上
限は1150℃である。一方、加熱温度が低すぎると、
スラブ中の炭化物析出元素が充分に固溶せず、強度、靭
性バランスが劣化するため、下限は900℃である。
Slab heating from the viewpoint of high-temperature oxidation resistance is as follows.
If the temperature does not exceed 1150 ° C., oxidation of the surface is within an allowable range. If heated at a temperature higher than this temperature, grain boundary oxidation remarkably progresses, resulting in flaws or cracks after rolling, failing to obtain a sound plate, Even in the case of hard work and time to clean the surface,
Since the cost is required, the upper limit of the slab heating temperature is 1150 ° C. On the other hand, if the heating temperature is too low,
The lower limit is 900 ° C. because the carbide precipitation element in the slab does not sufficiently form a solid solution and the balance between strength and toughness deteriorates.

【0021】次に、加熱した合金に対して、下記(1)
式で表されるTR ℃以下の温度で、累積圧下率5%以上
の熱間圧延を行う。 TR (℃)=2,500×C%+750 …(1) 圧延方法に関しては、(1)式で規定される温度TR
(℃)以下で圧延を実施すると、その累積圧下率に応じ
た強度向上効果が得られ、一方TR (℃)より高い温度
で圧下を加えても、強度の向上効果は殆どない。また、
累積の圧下率が5%未満では、強度向上への効果が小さ
い。図2に、TR (℃)以下で圧延を実施した場合の累
積圧下率と引張強さ、耐力の関係を示す。同図より明ら
かなように、累積圧下率5%以上で、引張強さ450N
/mm2 以上、耐力280N/mm2 以上の良好な強度
特性が得られる。従って、TR (℃)以下での圧下で、
かつ累積圧下率は5%以上である。以下に本発明の実施
例を挙げ、本発明の効果を立証する。
Next, for the heated alloy, the following (1)
Hot rolling is performed at a temperature equal to or lower than T R ° C represented by the equation and a cumulative draft of 5% or more. T R (° C.) = 2,500 × C% + 750 (1) Regarding the rolling method, the temperature T R defined by the equation (1)
When rolling is performed at (° C.) or lower, a strength improving effect corresponding to the cumulative rolling reduction is obtained. On the other hand, even when rolling is performed at a temperature higher than T R (° C.), there is almost no strength improving effect. Also,
If the cumulative rolling reduction is less than 5%, the effect on strength improvement is small. FIG. 2 shows the relationship between the cumulative draft, the tensile strength, and the proof stress when rolling is performed at T R (° C.) or less. As is clear from the figure, when the cumulative rolling reduction is 5% or more, the tensile strength is 450N.
/ Mm 2 or more, and good strength characteristics of proof strength 280 N / mm 2 or more. Therefore, under pressure below T R (° C.)
And the cumulative rolling reduction is 5% or more. Hereinafter, examples of the present invention will be described to demonstrate the effects of the present invention.

【0022】[0022]

【実施例】表1、表2に、それぞれ本発明合金、比較合
金の化学成分、回復臨界温度TR(℃)、TR (℃)以
下での累積圧下率その他の製造条件を示す。また、表
3、表4に、それぞれの発明合金、比較合金の圧延後の
表面疵発生状況(目視で粒界割れの有・無を確認)、こ
れらについて実施した引張試験、シャルピー衝撃試験の
結果を示す。表3には、比較のため高温で焼鈍した後の
引張試験、シャルピー衝撃試験の結果も示した。各合金
は実験炉真空溶解し、得られた鋳塊を熱間圧延して試材
とした。
EXAMPLES Tables 1 and 2 show the chemical composition of the alloy of the present invention and the comparative alloy, the critical recovery temperature T R (° C.), the cumulative rolling reduction below T R (° C.), and other manufacturing conditions, respectively. Tables 3 and 4 show the occurrence of surface flaws after rolling of the respective inventive alloys and comparative alloys (the presence or absence of grain boundary cracks was visually observed), and the results of tensile tests and Charpy impact tests performed on these alloys. Is shown. Table 3 also shows the results of a tensile test and a Charpy impact test after annealing at a high temperature for comparison. Each alloy was vacuum-melted in an experimental furnace, and the obtained ingot was hot-rolled to prepare a test material.

【0023】表1に示すとおり、合金No.1−A〜N
o.7−Dは本発明合金であり、全て1150℃以下の
スラブ加熱、回復臨界温度TR (℃)以下での累積圧下
率5%以上の本発明の製造条件で製造した。
As shown in Table 1, the alloy No. 1-A to N
o. 7-D is an alloy of the present invention, which was manufactured under the manufacturing conditions of the present invention, in which the slab was heated to 1150 ° C. or less and the cumulative draft was 5% or more at a recovery critical temperature T R (° C.) or less.

【0024】表3に示すように、本発明合金は、圧延後
の表面状態は良好であり、引張強さ約460N/mm2
以上、耐力約300N/mm2 以上の良好な強度特性を
示している。同じ表の右欄に示した、焼鈍した後の引張
性質と比較すれば、圧延状態での良好な強度特性はなお
はっきりする。一方、靱性は焼鈍した状態の方が高い値
を示すが、圧延ままでも200J/cm2 以上と十分な
値である。
As shown in Table 3, the alloy of the present invention has a good surface condition after rolling, and has a tensile strength of about 460 N / mm 2.
As described above, good strength characteristics with a proof strength of about 300 N / mm 2 or more are exhibited. Compared to the tensile properties after annealing, shown in the right column of the same table, the good strength properties in the rolled state are still clear. On the other hand, the toughness shows a higher value in the annealed state, but it is a sufficient value of 200 J / cm 2 or more even as-rolled.

【0025】一方、表4に示すように、比較合金No.
3−N,3−P,4−N,4−P,5−N,6−Nに見
られるように、1150℃を超える温度でスラブ加熱し
た圧延材では、種々の成分系において圧延後の表面状態
は粒界割れの様相を呈した。組織観察すると、アンバー
の結晶粒界での酸化が起こっており、高温加熱に起因す
る圧延中の割れであることが認められた。また、比較合
金No.1−L,1−M,2−L,2−M,5−R,5
−L,5−M,6−Mにおいては、TR 以下での累積圧
下率が不足し、またはTR 以上で仕上げているため、引
張強さが平均値で本発明合金より約50N/mm2 、耐
力が平均値で約100N/mm2 劣っている。比較合金
No.8−AではCの含有量が少ないため、強度特性の
向上はもっとC量の多い合金に比べて劣っている。比較
合金No.9−BではCの含有量が多いため、低温〜室
温付近の平均熱膨張係数が2.3×10-6/Kとアンバ
ー特性自体に劣化が生じている(本発明のアンバーの平
均熱膨張係数:約1.6×10-6/K)。
On the other hand, as shown in Table 4, comparative alloy No.
As seen in 3-N, 3-P, 4-N, 4-P, 5-N and 6-N, in the rolled material heated by slab at a temperature exceeding 1150 ° C., after rolling in various component systems, The surface condition showed the appearance of grain boundary cracking. Observation of the structure revealed that oxidation had occurred at the grain boundaries of amber, and cracks during rolling caused by high-temperature heating were recognized. In addition, the comparative alloy No. 1-L, 1-M, 2-L, 2-M, 5-R, 5
-L, 5-M, in 6-M is, T for cumulative reduction rate at R following is finished with missing or T R, equal to or greater than about than the tensile strength of the present invention alloy in average 50 N / mm 2. The yield strength is inferior to the average by about 100 N / mm 2 . Comparative alloy No. In 8-A, since the content of C is small, the improvement of the strength characteristics is inferior to that of the alloy having a higher C content. Comparative alloy No. In 9-B, since the content of C is large, the average thermal expansion coefficient from low temperature to around room temperature is 2.3 × 10 −6 / K, deteriorating the amber characteristic itself (average thermal expansion of amber of the present invention). Coefficient: about 1.6 × 10 −6 / K).

【0026】以上に例示するように、本発明で意図する
圧延後の良好な表面性状、高い強度特性及び靱性を得る
ためには、本発明で規定するように、Cの量を適性範囲
とした上で、スラブ加熱温度を1150℃以下とし、T
R (℃)以下での累積圧下率5%以上で製造することが
必要であると理解される。
As exemplified above, in order to obtain good surface properties after rolling and high strength properties and toughness intended in the present invention, the amount of C is set to an appropriate range as specified in the present invention. Above, the slab heating temperature is set to 1150 ° C or less, and T
It is understood that it is necessary to produce at a cumulative draft of 5% or more at R (° C.) or less.

【0027】[0027]

【表1】 [Table 1]

【0028】[0028]

【表2】 [Table 2]

【0029】[0029]

【表3】 [Table 3]

【0030】[0030]

【表4】 [Table 4]

【0031】[0031]

【発明の効果】本発明によれば、合金組成及び製造条件
を特定することにより、物理的性質(低熱膨張特性)、
製造性を阻害することなく、機械的性質の優れた高強度
Fe−Ni系アンバー合金を提供することができる。本
発明の合金は、LNG輸送、貯蔵容器の構造材料等をは
じめとする強度、靭性を要する部材への利用が可能であ
り、工業上有用な効果がもたらされる。
According to the present invention, the physical properties (low thermal expansion properties),
A high-strength Fe—Ni-based invar alloy having excellent mechanical properties can be provided without impairing manufacturability. INDUSTRIAL APPLICABILITY The alloy of the present invention can be used for members requiring strength and toughness, such as LNG transportation and structural materials for storage containers, and has industrially useful effects.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態に係る合金の硬さに影響す
るC含有量と圧延終了温度との関係を示す図。
FIG. 1 is a view showing a relationship between a C content affecting a hardness of an alloy according to an embodiment of the present invention and a rolling end temperature.

【図2】本発明の実施の形態に係るTR 以下の温度にお
ける累積圧下率と引張強さ及び耐力との関係を示す図。
FIG. 2 is a diagram showing the relationship between the cumulative draft and the tensile strength and proof stress at a temperature equal to or lower than T R according to the embodiment of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、Ni:30〜45%と、C:
0.001〜0.04%とを含むFe−Ni系アンバー
合金を製造する方法において、 合金を900〜1150℃に加熱し、下記(1)式で表
されるTR ℃以下の温度で、累積圧下率5%以上の熱間
圧延を行うことを特徴とする、強度、靱性に優れたアン
バー合金の製造方法。 TR (℃)=2,500×C%+750 …(1)
(1) Ni: 30 to 45% by weight and C:
A method of producing a Fe-Ni-based amber alloy containing 0.001 to .04%, heating the alloy to 900 to 1150 ° C., at T R ° C. below the temperature shown by the following equation (1), A method for producing an invar alloy excellent in strength and toughness, wherein hot rolling is performed at a cumulative rolling reduction of 5% or more. T R (° C.) = 2,500 × C% + 750 (1)
JP00302297A 1997-01-10 1997-01-10 Method for producing invar alloy excellent in strength and toughness Expired - Fee Related JP3428341B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00302297A JP3428341B2 (en) 1997-01-10 1997-01-10 Method for producing invar alloy excellent in strength and toughness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00302297A JP3428341B2 (en) 1997-01-10 1997-01-10 Method for producing invar alloy excellent in strength and toughness

Publications (2)

Publication Number Publication Date
JPH10195531A true JPH10195531A (en) 1998-07-28
JP3428341B2 JP3428341B2 (en) 2003-07-22

Family

ID=11545713

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00302297A Expired - Fee Related JP3428341B2 (en) 1997-01-10 1997-01-10 Method for producing invar alloy excellent in strength and toughness

Country Status (1)

Country Link
JP (1) JP3428341B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105506474A (en) * 2016-01-11 2016-04-20 河北钢铁股份有限公司 Carbide-enhanced type invar alloy wire and preparing method thereof
CN106269975A (en) * 2015-06-08 2017-01-04 丹阳市凯鑫合金材料有限公司 The ingot hot rolling of a kind of invar side makes the method for pipe
CN106271391A (en) * 2015-06-06 2017-01-04 丹阳市凯鑫合金材料有限公司 A kind of method of technique making simpler, lower-cost invar bar
CN106269967A (en) * 2015-06-06 2017-01-04 丹阳市凯鑫合金材料有限公司 A kind of method making invar bar
CN109852896A (en) * 2019-04-16 2019-06-07 常熟理工学院 The manufacturing method of the Fe-36Ni invar alloy plate of low thermal expansion
JP2020190018A (en) * 2019-05-23 2020-11-26 日鉄ステンレス株式会社 Invar alloy sheet and its manufacturing method
WO2021132634A1 (en) 2019-12-27 2021-07-01 日本製鉄株式会社 Alloy
CN113210423A (en) * 2021-04-21 2021-08-06 鞍钢联众(广州)不锈钢有限公司 Manufacturing method of invar alloy hot-rolled steel coil

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106271391A (en) * 2015-06-06 2017-01-04 丹阳市凯鑫合金材料有限公司 A kind of method of technique making simpler, lower-cost invar bar
CN106269967A (en) * 2015-06-06 2017-01-04 丹阳市凯鑫合金材料有限公司 A kind of method making invar bar
CN106269975A (en) * 2015-06-08 2017-01-04 丹阳市凯鑫合金材料有限公司 The ingot hot rolling of a kind of invar side makes the method for pipe
CN105506474A (en) * 2016-01-11 2016-04-20 河北钢铁股份有限公司 Carbide-enhanced type invar alloy wire and preparing method thereof
CN109852896A (en) * 2019-04-16 2019-06-07 常熟理工学院 The manufacturing method of the Fe-36Ni invar alloy plate of low thermal expansion
JP2020190018A (en) * 2019-05-23 2020-11-26 日鉄ステンレス株式会社 Invar alloy sheet and its manufacturing method
WO2021132634A1 (en) 2019-12-27 2021-07-01 日本製鉄株式会社 Alloy
CN113210423A (en) * 2021-04-21 2021-08-06 鞍钢联众(广州)不锈钢有限公司 Manufacturing method of invar alloy hot-rolled steel coil
CN113210423B (en) * 2021-04-21 2022-02-22 鞍钢联众(广州)不锈钢有限公司 Manufacturing method of invar alloy hot-rolled steel coil

Also Published As

Publication number Publication date
JP3428341B2 (en) 2003-07-22

Similar Documents

Publication Publication Date Title
JP6615773B2 (en) Low temperature steel with excellent surface processing quality
JP6078554B2 (en) Austenitic steel material excellent in cryogenic toughness in machinability and weld heat affected zone and method for producing the same
WO2020087653A1 (en) Austenite low temperature steel and preparation method therefor
JP4926447B2 (en) Manufacturing method of high strength steel with excellent weld crack resistance
CN112143959B (en) Steel plate with low yield ratio, high toughness and excellent weldability and manufacturing method thereof
CN106756536A (en) A kind of automobile-used low-alloy steel of the normalizing type of resistance to hydrogen-type corrosion movable tank and preparation method thereof
JP2020509181A (en) Sour-resistant thick steel plate excellent in low-temperature toughness and post-heat treatment characteristics and method for producing the same
JP7183410B2 (en) Steel plate for pressure vessel with excellent cryogenic toughness and ductility and its manufacturing method
JP6703608B2 (en) Austenitic steel with excellent hydrogen embrittlement resistance
JP3428341B2 (en) Method for producing invar alloy excellent in strength and toughness
JPH0941074A (en) Ultra-high tensile strength steel excellent in low temperature tougheness
JP5037204B2 (en) Method for producing high-strength steel material having yield stress of 500 MPa or more and tensile strength of 570 MPa or more which is excellent in toughness of weld heat affected zone
JPH1171615A (en) Production of thick steel plate excellent in low temperature toughness
KR101299361B1 (en) Steel and manufacturing method of steel pipe using the steel
CN113373381B (en) 670 MPa-level steel plate welded by high heat input and manufacturing method thereof
KR101543915B1 (en) Austenitic steels for low temperature services having excellent strength and method for manufacturing the same
JP6856083B2 (en) High Mn steel and its manufacturing method
JPH11131177A (en) Steel plate for medium-or ordinary-temperature pressure vessel, capable of omitting post weld heat treatment, and its production
JP2004323966A (en) Steel sheet superior in quake resistance and weldability, and manufacturing method therefor
JP2005307312A (en) Method for producing steel plate excellent in earthquake-proof and weldability
JPH0827517A (en) Heat treatment for 9%ni steel excellent in yield strength and toughness
JPH05245657A (en) Production of high ni alloy clad steel sheet excellent in brittleness propagation stoppage property of base metal
JP2705946B2 (en) Manufacturing method of high strength steel sheet with excellent SSC resistance
KR102413841B1 (en) Steel having excellent strength and low-temperature toughness after PWHT and method of manufacturing the same
JP6566166B1 (en) Steel sheet and manufacturing method thereof

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20090516

LAPS Cancellation because of no payment of annual fees